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The detection of gene–environment interaction
for continuous traits: should we deal with
measurement error by bigger studies or better
measurement?
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Background The search for biologically relevant gene–environment interactions has been
facilitated by technological advances in genotyping. The design of studies to
detect interactions on continuous traits such as blood pressure and insulin
sensitivity is attracting increasing attention. We have previously described power
calculations for such studies, and this paper describes the extension of those
calculations to take account of measurement error.

Methods The model considered in this paper is a simple linear regression relating a continuous
outcome to a continuously distributed exposure variable in which the ratio of slopes
for each genotype is considered as the interaction parameter. The classical measure-
ment error model is used to describe the uncertainty in measurement in the outcome
and the exposure. The sample size to detect differing magnitudes of interaction with
varying frequencies of the minor allele are calculated for a given main effect observed
with error both in the exposure and the outcome. The sample size to detect a given
interaction for a given minor allele frequency is calculated for differing degrees of
measurement error in the assessment of the exposure and the outcome.

Results The required sample size is dependent upon the magnitude of the interaction, the
allele frequency and the strength of the association in those with the common
allele. As an example, we take the situation in which the effect size in those with
the common allele was a quarter of a standard deviation change in the outcome
for a standard deviation change in the exposure. If a minor allele with a frequency
of 20% leads to a doubling of that effect size, then the sample size is highly de-
pendent upon the precision with which the exposure and outcome are measured.
ρTx and ρTy are the correlation between the measured exposure and outcome,
respectively and the true value. If poor measures of the exposure and outcome
are used, (e.g. ρTx = 0.3, ρTy = 0.4), then a study size of 150 989 people would 
be required to detect the interaction with 95% power at a significance level of
10–4. Such an interaction could be detected in study samples of under 10 000
people if more precise measurements of exposure and outcome were made (e.g.
ρTx = 0.7, ρTy = 0.7), and possibly in samples of under 5000 if the precision of
estimation were enhanced by taking repeated measurements.

Conclusions The formulae for calculating the sample size required to study the interaction
between a continuous exposure and a genetic factor on a continuous outcome
variable in the face of measurement error will be of considerable utility in
designing studies with appropriate power. These calculations suggest that smaller
studies with repeated and more precise measurement of the exposure and
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The calculation of the number of participants required for
traditional forms of epidemiological studies is made relatively
straightforward by the publication of formulae and tables
allowing estimation of samples size for any given power and
significance.1 An increasing area of interest in epidemiology is
the design of studies for the detection of gene-environment
interactions. Established methods are already available for the
computation of sample size for studies where the outcome is a
category (e.g. hypertension or diabetes) and the environmental
exposure is considered as a binary or ordered categorical state 
or as a continuum.2–5 We have recently produced sample size
formulae for situations where both the exposure and the out-
come are continuously distributed.6 The key determinants of
power in this context are the allele frequency, the size of the
main effect and the magnitude of the interaction effect. How-
ever, in planning studies to examine gene-environment inter-
action on continuous traits, researchers are also presented with
choices about how the outcome and exposures are assessed. As
with many such studies, the trade-off is one between precision
and feasibility. If the exposure of interest is dietary, then the
gold standard method may be a 7-day weighed diary, but if large
numbers of participants are required a less precise instrument
such as a food frequency questionnaire may be employed. The
measurement error introduced by using a less precise exposure
measurement gives rise to an attenuation of the true effect.7 A
similar phenomenon also occurs when the outcome measure-
ment used in a particular study is a proxy for the true outcome
of interest. In the case of examination of usual or habitual blood
pressure for example, using a single measure as an estimate of
the usual level leads to an attenuation of the true association.8,9

Although there is an established literature on the impact of such
error,10 and also techniques for adjusting observed associations
to take its impact into account,11,12 the effect of the measure-
ment error on the power to detect gene-environment inter-
actions has not previously been considered. In the statistical
literature, the general issues about the effects of measurement
error on the power to detect interactions between two continu-
ously distributed measures have been considered13 but sample
size formulae have not been presented. In this paper we describe
power calculations that include information about the meas-
urement error in the continuously distributed exposures and
outcome. In addition we describe the impact of misclassification
in the genotyping.

Methods
For the purpose of these calculations, we designate two differ-
ent alleles at a certain locus as A and a, where a is the minor

allele, giving three possible genotypes, aa, aA and AA. We have
restricted our attention in this paper to the dominant genetic
models only, allowing the three genotypes to be reduced to two
genetic groups, i.e. carriers of the minor allele versus homo-
zygotes for the common allele but extension of our approach to
the recessive model is simple.

The relationship between the outcome and the genetic factor
with a non-genetic exposure can be expressed as two simple
linear regressions shown below.

y = α1 + β1E + ε for an individual in the first group;

y = α2 + β2E + ε for an individual in the second group

where y is a continuous outcome variable; E represents a
continuously distributed environmental exposure; ε represents
a stochastic error term and is assumed to be normally dis-
tributed with mean zero and variance σ2

y. We assume that the
variances of exposure E in each group are equal. The regression
coefficient βi reflects the magnitude of the contribution of the
environmental exposure to outcome, y, for the ith group. If the
outcome is not significantly associated with the non-genetic
exposure or if that relationship cannot be expressed in terms of
a linear function, then subsequent examination of the data for
possible interaction would not be appropriate. In addition, if the
model chosen to describe the linear relationship is in fact log-
linear, then the interaction term is specific to the manner in
which the data are transformed and cannot be generalized
either to other transformations or the situation where data are
untransformed.

To study the effect of the environmental exposure, E, on 
the association of the dependent variable with the genetic
factor, we test the hypothesis H0 : β1 = β2 = β. If β1 and β2
are equal, we have two parallel lines and thus there is no
interaction. Because of measurement error, instead of the true
exposure Et, we observe its corresponding surrogate Eo. We
assume that the measurement error is non-differential with
regard to the outcome variable y, i.e. Eo contributes no informa-
tion about y beyond what is available in Et. Eo is related to Et
by an additive error model as Eo = Et + εe with E(εe) = 0 and
Var(εe) = σ2

e. The true exposure Et is assumed to have mean µ
and variance τ2. The correlation coefficient of the true exposure
Et and its corresponding surrogate Eo is defined as ρTx. A similar
phenomenon exists of the outcome variable that is assessed 
by the surrogate Yo which is correlated to the true outcome Yt
by the coefficient ρTy.

We consider a general situation for a polymorphism which is
in Hardy-Weinberg equilibrium14 with a minor allele frequency

52 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY

outcome will be as powerful as studies even 20 times bigger, which necessarily
employ less precise measures because of their size. Even though the cost of geno-
typing is falling, the magnitude of the effect of measurement error on the power
to detect interaction on continuous traits suggests that investment in studies with
better measurement may be a more appropriate strategy than attempting to deal
with error by increasing sample sizes.

Keywords Environmental exposure, gene-environment interaction, genotype, quantitative
trait, sample size
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of p, giving genotype frequencies for aa, aA and AA of p2, 
2p(1 – p) and (1 – p)2, respectively. Accordingly, the true
proportions of individuals in the two genetic groups, pT1
and pT2, are p(2 – p) and (1 – p)2 for a dominant model. We
assume that misclassification of each allele is independent of 
the other. If the probabilities of misclassification of A and a are 
PA and Pa, respectively, then the observed genotype frequency
of the rare gene is equal to p′ = (1 – p)PA + p(1 – Pa). The
observed frequencies of aa, aA and AA are thus p′2, 2 p′(1 – p′)
and (1 – p′)2, respectively. When the exposure is subject to
classical measurement error model, the conditional mean and
variance of y on the observed exposure in the ith group are 
αi + βi(1 – ρ2

Tx
) µ + βiρ

2
Tx

Eo and σ2
y + β2

i τ2(1 – ρ2
Tx

),
respectively.15

In a situation where the true exposure cannot be observed
and the genotype cannot be assessed correctly, the likelihood
ratio test statistic Wβ (Appendix), under the alternative hypo-
thesis, is approximately distributed as a non-central χ2 with one
degree of freedom. The non-centrality parameter φn is given in
the Appendix. Using the distribution and the non-centrality
parameter, we are then able to calculate power for detecting an
interaction effect or alternatively the sample size necessary to
detect a given interaction with fixed power and significance
level using any statistical software, e.g. SAS. Power at the signifi-
cance level α for a fixed sample size n is equal to the probability
of a chi-square random variable with one degree of freedom
and a non-centrality parameter φn, greater than χ2

1–α(1), where
χ2

1– α(1) is the 100(1– α)th percentile of the chi-square distribu-
tion with one degree of freedom. In SAS, it is calculated as

PROBCHI(CINV(1– α, 1), 1, φn).

The sample size needed to achieve a power of at least (1 – β) is
thus the smallest positive integer n satisfying the inequality of

Pr(χ2 � χ2
1– α (1)) �1 – β,

where χ2 has a chi-square distribution with one degree of
freedom and non-centrality parameter φn.

In the figures we present power calculations over a range of
values for β1 and β2. In order to give the β coefficients a clear inter-
pretation, we standardize the environmental exposure by mak-
ing τ2 = 1. In most situations E would account for 20% or less of
the total variation in y and therefore the residual variance of y
after adjusting for E, σ2

y, would be within 10% of the population
standard deviation. We take σ2

y = 1/ρ2
Ty

– 1. Thus the β coefficients
are interpretable as the approximate proportion of a standard
deviation change in y for a standard deviation change in E.

Results
As with all power calculations, the required sample sizes are
dependent upon the level of significance and power assumed.
For the purpose of illustration we have selected a power of 
95% and a significance of 10–4 but calculation of sample size for
different values of power and significance is straightforward,
given the formula. The main determinants of the sample size
required to detect interaction between a gene and a continuous
trait for a continuous outcome are the strength of the true
association in those with the common allele, the magnitude 

of the interaction, the measurement error of the exposure and
outcome, the frequency of the minor allele and the degree of
genetic misclassification. Rather than attempt to show the impact
on sample size of varying all these parameters at once, we have
elected to show the effects of varying combinations of them.

Table 1 shows the effect on sample size of varying allele
frequencies (p) and allele misclassification rates (PA and Pa) to
detect an interaction effect of 2 with a moderate effect (β2 = 0.25).
The effect of the allele misclassification on power is greatest
when the minor allele frequency is low. Thus for common
alleles reduction of measurement error in the classification of
genotypes by repeated measurement would not greatly increase
power and would, of course, result in considerable additional
expense. However, for potentially important but less common
alleles, it may be important to reduce genetic misclassification.
Repeated measurement would only diminish that component of
error that was random. If the misclassification were non-
random, this would not be the case. It may be that the degree
of misclassification varies according to which polymorphism 
is being examined, in which case computation of the extent of
measurement error in a pilot study of a particular polymor-
phism would be as important as estimating its frequency.

For the purposes of the remaining calculations we have
assumed that the genetic misclassification is fixed at 2.5%, a
figure in the range demonstrated in empirical studies.16–19 In
Table 2 we have fixed the measurement error in the exposure
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Table 1 Sample size for detecting a gene-environment interaction 
(β1 = 0.5, β2 = 0.25) with 95% power at a significance level of 10–4

for different minor allele frequencies (p) and varying degrees of genetic
misclassification (PA and Pa)

Allele Minor allele frequency

misclassification 0.05 0.10 0.15 0.20

0.0 16 909 9766 7568 6644

0.01 20 690 10 949 8232 7122

0.025 26 890 12 887 9321 7904

0.05 38 857 16 626 11 418 9411

0.10 70 983 26 651 17 039 13 447

The parameters fixed in this calculation are the exposure measurement error
ρTx

= 0.6, the outcome measurement error ρTy
= 0.7, the effect size in the

common allele group β2 = 0.25 and the interaction 

= 2.
β1

β2

Table 2 Sample size required to detect with 95% power and a
significance level of 10–4 different degrees of interaction between
genotype and a continuous exposure on a continuously distributed
outcome for different minor allele frequencies

Minor allele frequency

b1/b2 0.05 0.10 0.15 0.20

1.5 106 886 50 926 36 631 30 906

2.0 26 890 12 887 9321 7904

3.0 6843 3333 2447 2103

4.0 3116 1551 1160 1014

The parameters fixed in this calculation are the exposure measurement error
ρTx = 0.6, the outcome measurement error ρTy = 0.7, the effect size in the
common allele group β2 = 0.25, and the gene misclassification rate PA = Pa
= 0.025.
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and outcome at ρTx = 0.6 and ρTy = 0.7. The magnitude of the
true effect in the group homozygous for the common allele is
fixed at 0.25, which can be interpreted as a quarter of a standard
deviation difference in the outcome for a standard deviation
difference in the exposure. The table demonstrates how relat-
ively small interaction effects on uncommon alleles will be dif-
ficult to detect unless study samples exceed 100 000 individuals.
Conversely, interactions for common alleles that are very strong
may be detected in study samples with as few as 1014 indi-
viduals. The important fixed variables in Table 2 are the error in
the assessment of the exposure and outcome. The values of 0.6
and 0.7 for the correlation between the true and observed
exposure and outcome, respectively, would be typical of studies
where relatively precise methods are employed. In reality, such
methods are rarely employed in large studies where less accur-
ate methods are often employed in the interests of feasibility.

Table 3 shows how study sample size is heavily dependent
upon the measurement error in the exposure and outcome. For
studies with poor assessment of exposure and outcome (ρTx = 0.3
and ρTy = 0.4), sample sizes in excess of 100 000 individuals
would be required to detect an interaction that was detectable
in under 20 000 people with studies employing even reasonably
accurate measurement (ρTx = ρTy = 0.6). Improving the meas-
urement can be achieved by taking repeated measurements
provided the error in repeated measures is uncorrelated.7 For 
a measurement with a validity coefficient of 0.6, taking two
independent repeated measures increases the overall validity
coefficient (ρTa) to just under 0.8. Referring to Table 3 this
would reduce the necessary sample size from 13 086 to 2410.

Discussion
In this paper, we present the formulae necessary to calculate the
statistical power and the sample size for the study of interaction
between a continuous environment exposure and a genotype
on a continuous outcome variable when there is measurement
error in the assessment of both exposure and outcome and
misclassification error in assessing the genotype. The need for
such sample size calculations is likely to increase as we attempt

to design studies aimed at understanding the genetic basis of
common diseases. The impact of the misclassification in the
assessment of the genotype is relatively minor except when 
the frequency of the minor allele is low. Given that the mis-
classification may differ between specific polymorphisms, some
assessment of typing error may need to be built into pilot phases
of association studies, which will be necessary in any event to
calculate allele frequencies. When the allele frequency is low
but the error is high, it may be worth undertaking repeat
genotyping to reduce that error, provided that error is random.
An assumption of the analyses presented here is that the error
is non-differential and different results would be found if
genotyping or exposure measurement were subject to non-
random error.

A greater impact on power comes not from genotyping errors,
but from the precision with which the exposure and outcome
are estimated. The practical consideration when designing studies
aimed at detecting gene-environment interactions will be the
trade-off between sample size and measurement precision. 
Our calculations suggest that this trade-off should be weighted
towards better measurement. This general point may be illus-
trated with an example, the study of the relationship between
physical activity and insulin sensitivity. This association has
been demonstrated in previous epidemiological studies20,21 and
is biologically plausible as intervention studies demonstrate
improvements of insulin sensitivity with increasing activity.22

Ecologic studies would suggest that certain sub-groups of the
population e.g. people from specific at-risk ethnic groups or
those with a family history of diabetes, are more susceptible 
to the adverse effects of sedentary living than others.23 There is
also reasonable evidence that insulin sensitivity has a genetic
component,24 and thus the search for gene-physical activity
interactions in this context would be logical. In designing a
study to examine this association and possible gene-physical
activity interactions, one would be left with difficult choices 
for the assessment of both the exposure and the outcome. The
accepted optimal methods for assessing insulin sensitivity 
are either the frequently sample minimal model intravenous
glucose tolerance test or the euglycaemic clamp technique.25
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Table 3 Sample size required to detect with 95% power and a significance level of 10–4 a given interaction for different degrees of precision in
the continuously distributed exposure and outcome

rTx

b2 rTy 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.10 0.4 926 208 520 848 333 225 231 306 169 852 129 966 102 620

0.5 530 688 298 368 190 837 132 426 97 205 74 346 58 673

0.6 315 838 177 515 113 491 78 713 57 743 44 132 34 801

0.7 186 290 104 644 66 854 46 326 33 948 25 915 20 407

0.8 102 208 57 348 36 585 25 306 18 505 14 091 11 064

0.25 0.4 150 989 84 787 54 146 37 501 27 464 20 950 16 484

0.5 87 705 49 191 31 364 21 680 15 841 12 051 9453

0.6 53 329 29 854 18 988 13 086 9527 7217 5633

0.7 32 602 18 195 11 526 7904 5720 4302 3330

0.8 19 149 10 627 6683 4541 3249 2410 1836

The parameters fixed in this calculation are the minor allele frequency p = 0.2, the gene misclassification PA = Pa = 0.025, the interaction

= 2.
β1

β2
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Both of these tests are difficult to do in populations greater than
a few hundred individuals and therefore epidemiological studies
have relied on proxy measures. One such measure is the fasting
insulin concentration which has a correlation with the gold
standard method of whole-body glucose uptake of about 0.66 
in normoglycaemic individuals.26 A study with two repeats of
fasting insulin would provide an overall assessment that had a
correlation with the true outcome of 0.84, assuming that the
error in each repeat was uncorrelated with each other. How-
ever, many large epidemiological studies cannot study fasted
individuals and may employ indicative measures of insulin
sensitivity that are more distantly related. One such example
could be the waist-hip ratio, an indicator of the degree of central
obesity which has previously been shown to be associated with
insulin resistance.27,28 However, the correlation between the
waist-hip ratio and fasting insulin is only of the order of 0.3.29

If such a poor measure of outcome were employed, large num-
bers would be required to overcome the measurement error. As
Table 3 indicates, there would be a 10-fold difference in sample
size between a study employing a good measure of outcome i.e.
repeated fasting insulin, compared to one relying on a poor
measure such as waist-hip ratio.

The paradox is that the larger study employing the poorer
measurement would, for practical reasons, also compromise 
on the exposure measurement. If that exposure of interest 
were physical activity, then large studies would probably only
consider a questionnaire. Even a comprehensive questionnaire
covering occupational and recreational activity is unlikely to
have a correlation with the true exposure of interest of habitual
energy expenditure in a general population of above 0.3. For
example, the correlation of the ARIC/Baeke questionnaire with
objective movement sensor derived estimates of energy
expenditure was only 0.24 in men and 0.19 in women.30 Our
study of the EPIC-Norfolk physical activity questionnaire (EPAQ2)
demonstrated an overall correlation of 0.44 with repeated
measures of energy expenditure over one year. The correlation
after adjustment of age and sex was 0.28.31 Other questionnaires
such as the Cardia questionnaire used in the Insulin Resistance
Atherosclerosis Study (IRAS) to demonstrate an association
between physical activity and insulin sensitivity have not been
associated with energy expenditure measured by objective

methods.32,33 The use of a relatively poor measure of physical
activity (ρTx = 0.3) together with a proxy for insulin sensitivity
such as waist-hip ratio (ρTy = 0.4) would mean that over
150 000 individuals would need to be genotyped to detect a
doubling of an effect in individuals with a minor allele that 
was present in 20% of the population. Although genotyping on
this scale will undoubtedly become increasing feasible and less
costly, there may be considerable cost savings in investing in
better measurement.

As an alternative to physical activity questionnaires more
direct measurements have been proposed. The optimal method
for measuring energy expenditure in free-living individuals, the
doubly-labelled water technique is very expensive and isotopes
are not always readily available.34 Less expensive objective
methods such as heart rate monitoring with individual calibra-
tion have been correlated with the gold standard methods over
the short term (r = 0.93) and are applicable in medium-sized
epidemiological studies.35–37 Studies with repeated assessment
of energy expenditure by heart rate monitoring suggest that 
a single measure has a correlation with the latent variable of
habitual energy expenditure of 0.73.38 Thus a study that had
even two repeat measurements would increase the overall ρTx
to 0.88. Referring to Table 3 one can see that if such a method
were employed in a study with repeated measures of fasting
insulin as the outcome, then a sample size of 2000 would be
sufficient to detect the interaction that required a study of more
that 150 000 individuals with poorer measurement.

Although incorporating increased precision of measurement
into a study requires additional resources, these would certainly
be dwarfed by the savings on study infra-structure and geno-
typing costs when compared to bigger studies with less accurate
methods. The magnitude of the impact of measurement
precision on power to detect gene-environment interaction on
continuous traits would suggest that smaller studies with better
measurement may be preferable to very large studies with less
precise measurement.
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KEY MESSAGES

• The sample size needed to detect the interaction of a genetic factor with a continuously distributed exposure on
a continuous outcome is dependent upon the magnitude of the interaction, the allele frequency and the strength
of the association between exposure and outcome.

• Sample size is highly dependent upon the measurement error in the assessment of the exposure and outcome
variables.

• Studies employing imprecise exposure and outcome assessment may need to be 20 times larger than studies that
utilize repeated and more precise measurement.

• Investment in better measurement may be a more cost-effective strategy for the detection of this form of gene-
environment interaction than simply increasing sample size.
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Appendix
The likelihood ratio test, for testing H0 : β1 = β2 = β, is equal to
(σ̂ 2/σ̂ 2

β)n/2, where n is the sample size, σ̂ 2 equals to Y ′(I –
X(X ′X)–1X ′)Y/n and σ̂ 2

β equals to Y ′(I – Xβ(X ′β Xβ)–1X ′β)Y/n,
where Y = (y1,y2,…,yn)’, X is the design matrix accommodating
the linear regression model in this paper, i.e.,

and Xβ is the design matrix when β1 = β2, i.e.,

where xi is the environmental variable of the ith individual and
k is the number of individuals in the first genetic group.39,40

When the sample size n is large and H0 is true, Wβ = nlog(σ̂ 2
β/σ̂ 2)

is approximately distributed as a chi-squared distribution with
one degree of freedom. The statistic Wβ has a limiting non-
central chi-squared distribution with one degree of freedom.15

The non-centrality parameter φn is

where δst is the joint probability that an individual has been
assessed to the sth group but it, in fact, belongs to the tth group,
pTi

and poi
is the true and observed proportions of individuals in

the ith genetic group with ΣpTi
= Σpoi

= 1 and poi
= δi1 + δi2.

It can be shown that for a dominant model, if we assign 
the carriers of the rare allele into the first group, pT1

= p (2 – p),
pT2

= (1 – p)2, δ11 = p2 (1 – P2
a) + 2p(1 – p)(1 – Pa + PaPA), δ12 = 

(1 – p)2 PA(2 – PA), δ21 = p2P2
a + 2p(1 – p)Pa(1 – PA) and δ22 = 

(1 – p)2(1 – PA)2. For a recessive model, if we assign the
homozygotes for the rare allele into the first group, pT1 = p2, 
pT2 = 1 – p2, δ11 = p2(1 – Pa)2, δ12 = 2p(1 – p)(1 – Pa)PA + (1 – p)2

P2
A, δ21 = p2Pa(2 – Pa) and δ22 = 2p(1 – p)(1 – PA + Pa PA) + 

(1 – p)2(1 – P2
A).

The non-centrality parameter, if the true exposure can be
observed and the genotype can be assessed correctly, is obtained
by setting PA and Pa to be zero and ρTx

to be one. It is, thus,
equal to

The same power can be achieved in different situations if the
non-centrality parameter is identical. Hence, the ratio of the
sample size required to attain the desired power for a likelihood
ratio test based on the surrogate exposure to that based on the
true exposure is equal to

When the probabilities of misclassification are equal to zero, the
ratio becomes

Under the situation that β1 = β2, the likelihood ratio test stat-
istic, for testing H0 : α1 = α2 = α, is equal to Wa = nlog(σ̂ 2

α/σ̂ 2
β),

where σ̂ 2
α is equal to Y ′(I – Xα(X ′α Xα)–1X ′α)Y/n for Xα being the

design matrix when α1 = α2 and β1 = β2, i.e., a n × 2 matrix with
all elements in the first column equal to one and x1,x2,…,xn in
the second column.

When β1 = β2 = β, the test statistic Wa for testing the equality
of intercepts follows a chi-squared distribution with one degree
of freedom under the null hypothesis and a non-central chi-
squared distribution with non-centrality parameter

under the alternative hypothesis. Without errors on measuring
exposure and on assessing the genotype, the non-centrality
parameter becomes

Thus, to achieve the same power at a fixed significance level,
the ratio of sample sizes based on the surrogate exposure and its
true one is equal to

Even when there is no misclassification in assessing the geno-
type, the ratio becomes

The non-centrality parameter of the test statistic is thus smaller
when the true exposure is unobservable. The loss of power can
be substantial. It is noted that the loss of power is related to the
strength of the exposure as measured by β2.
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