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Abstract— Presently, many condition monitoring techniques that 
are based on steady-state analysis are being applied to wind 
generators. However, the operation of wind generators is 
predominantly transient, therefore prompting the development of 
non-stationary techniques for fault detection. In this paper we 
apply steady-state techniques e.g. Motor Current Signatures 
Analysis (MCSA) and the Extended Park’s Vector Approach 
(EPVA), as well as a new transient technique that is a 
combination of the EPVA, the Discrete Wavelet Transform and 
statistics, to the detection of turn faults in a doubly-fed induction 
generators (DFIG). It will be shown that steady-state techniques 
are not effective when applied to DFIG’s operating under 
transient conditions. The new technique shows that stator turn 
faults can be unambiguously detected under transient conditions. 
 

Keywords-condition monitoring; wavelets; turn faults; doubly-fed 
induction generators. 

I.  INTRODUCTION 
There is a constant need for the reduction of operational 

and maintenance costs of wind generators. The most efficient 
way of reducing these costs would be to continuously monitor 
the condition of these generators. This allows for early 
detection of the degeneration of the generator’s health, 
facilitating a proactive response, minimizing downtime, and 
maximizing productivity [1]. Wind generators are also 
inaccessible since they’re situated on extremely high towers, 
which are normally 20m or greater in height. There are also 
plans to increase the number of offshore sites increasing the 
need for a remote means of monitoring the generator, which 
eliminates some of the difficulties faced due to accessibility 
problems. 

There are many techniques and tools available, which are 
used to monitor the condition of these machines, thus 
prolonging their life span. Some of the technology used for 
monitoring includes sensors, which may measure speed, output 
torque, vibrations, temperature, flux densities, etc. These 
sensors are together coupled with algorithms and architectures, 
which allows for efficient monitoring of the machines 
condition [2]. The most popular methods of induction machine 
condition monitoring utilize the steady-state spectral 
components of the stator quantities [3]. These stator spectral 

components can include voltage, current and power and are 
used to detect turn faults, broken rotor bars, bearing failures, air 
gap eccentricities. Presently, many techniques that are based on 
steady-state analysis are being applied to wind generators. 
However, the operation of wind generators is predominantly 
transient, therefore prompting the development of non-
stationary techniques for fault detection. 

In this paper we apply steady-state techniques e.g. Motor 
Current Signatures Analysis (MCSA) and the Extended Park’s 
Vector Approach (EPVA), as well as a new transient technique 
that is a combination of the EPVA, the Discrete Wavelet 
Transform and statistics, to the detection of turn faults in a 
doubly-fed induction generators (DFIG). It will be shown that 
steady-state techniques are not effective when applied to 
DFIG’s operating under transient conditions The new 
technique shows that stator turn faults can be unambiguously 
detected under transient conditions. 

II. DESCRIPTION OF THE OVERALL DFIG EXPERIMENTAL 
SYSTEM 

Fig. 1 shows the DFIG in its application to wind generation. 
The generator uses an AC-AC converter in the rotor circuit 
while the stator is connected directly to the grid. The rotor 
circuit is capable of bi-directional flow and operates in two 
regions: 1) sub-synchronous operation (speeds below 
synchronous speed), 2) super-synchronous operation (speeds 
above synchronous speed).  

 

Figure 1.  DFIG in it’s application to wind generation 
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The experimental system is a model of the above system. 
The generator is a 2.2kW, 4-pole, 50Hz wound rotor induction 
machine. The wind turbine is emulated using a DC drive 
system, which consisted of a 2.2kW DC machine and a 4-
quadrant thyristor converter. Two back-to-back, hysterisis 
current controlled converters are used in the rotor circuit. They 
are responsible for maintaining the DC-Link voltage at a 
desired setpoint speed control of the system and transfer of 
reactive power.   

A DS1104 R&D Controller Card was used to perform the 
computational and control tasks for both converters. Some of 
the more important features of the card include the main 
processor, which is a MPC 8420, PowerPC 603e core with a 
250MHz clock frequency. It also consists of 8 ADC channels, 
20-bit digital I/O ports and a slave DSP subsystem from Texas 
instruments (i.e. DSP TMS 320F240). The controller card 
forms part of the Advanced Control Educational Kit and is 
fully programmable from the Matlab-Simulink block diagram 
environment, provided that the real-time interface software 
supplied by DSPACE, is installed. The software translates the 
simulink model into equivalent C-code for processing by the 
board. The card may also be programmed directly from C-
code, making it as efficient as any other processor. The ACE 
Kit also consists of an experimental software package 
(ControlDesk) which allows for real-time control of the 
system. The kit essentially upgrades a PC into a development 
system for rapid control prototyping. The converters used are 
standard 100A commercial IGBT inverters. The inverters are 
switched at a maximum frequency of 5kHz and analog signals 
are sampled at 5kHz during the experimental tests, due to the 
computational ability of the controller card. However, this 
switching frequency employed in the prototype confirms that 
the control techniques can be extended to higher power levels. 
All recorded data were processed using the Matlab software 
package. 
 

III. PRACTICAL TECHNIQUE TO SIMULATE AN INTER-TURN 
FAULT OF A STATOR PHASE WINDING 

   An inter-turn fault of a stator phase winding is a result of the 
deterioration of insulation between the individual coils. This is 
in essence a short circuit of the stator phase winding, which 
changes the symmetrical stator current to one that is 
asymmetrical. For predicting the electrical behavior from the 
stator supply due to an inter-turn fault, it would appear that the 
impedance of the short-circuited stator winding has decreased. 
The degree to which its impedance has decreased depends on 
the severity of the fault. To simulate the inter-turn fault on the 
DFIG, the impedance of the stator phase winding is decreased 
by placing a resistor in parallel with the winding, as shown in 
Fig. 2 [1-2].  
 

IV. EXPERIMENTAL RESULTS 
The experimental results show the DFIG operating in 

steady-state and transient conditions. The steady-state results 
show the DFIG operating at 1120rpm. The transient captured 

shows the speed change of the DFIG as it is ramped from 
1120rpm to 1880rpm over 5 seconds and is shown if figure 3. 
This illustrates the ability of the system to operate within sub-
synchronous and super-synchronous regions, since the 
synchronous speed is 1500rpm. For each of the speed 
conditions, the machine was operated under three health 
conditions. The first condition illustrates the machine operating 
without any faults placed on the machine. The next two 
conditions illustrate the simulated inter-turn fault placed on one 
stator phase winding.  
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Figure 2.  Simulation of the turn fault. 

 The three non-invasive diagnostic techniques used to 
identify the inter-turn fault include Motor Current Signature 
Analysis (MCSA), The Extended Park’s Vector Approach 
(EPVA) and the Discrete Wavelet Transform (DWT). 

A. Motor Current Signature Analysis 
The most popular methods of induction machine condition 

monitoring utilize the steady-state spectral components of the 
stator quantities. These spectral components can include 
voltage, current and power and can be used to detect broken 
rotor bars, bearing failures, air gap eccentricity etc. The 
accuracy of these techniques depend on the loading of the 
machine, the signal to noise ratio of the spectral components 
being examined and the ability to maintain a constant speed to 
facilitate fault detection [2]. 

The objective of the Motor Current Signature Analysis is to 
identify the stator current spectral components that are 
characteristic of inter-turn stator faults. Equation (1) indicates 
the frequency components that are characteristic of shorted 
turns [3]. 

( )1 1                            (1)st
nf f s k
p

 
= − ± 

   
            

where, fst = stator frequency components that are a function of 
shorted turns, f1 = supply frequency, n = 1,2,3,…, k = 1,3,5,…, 
p = pole-pairs, s = slip 

 As shown in (1), the inter-turn fault frequency components 
are dependant upon slip. During transient conditions there are 
change s in speed. The frequency components are therefore 
continuously changing and identifying these frequencies 
becomes an extremely difficult task.   

Using the Fast Fourier Transform (FFT), a frequency 
spectrum of the stator current is shown and examined, for a 



DFIG operating at a constant speed and a speed change from 
subsynchronous to supersynchronous. Figure 4 shows the 
stator current spectrum for the machine operating at a constant 
speed of 1120rpm. During the inter turn fault conditions, there 
appears to be a new current component existing around 
124.7Hz, which corresponds to the theoretical predictions as 
given by (1), with n=4 and k=1. Figure 5 shows the current 
spectrum during the transient response. Although there seems 
to be components at 124.7Hz, this could be misinterpreted 
because the slip has changed and these frequencies should be 
present.  

 

 
Figure 3.  Spectrum of stator currents for constant subsynchronous speed 

operation. 
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Figure 4.  Spectrum of stator currents for operation through synchronous 

operation. 

B. The Extended Park’s Vector Approach (EPVA) 
   The EPVA is a relatively new diagnostic technique, which 
has been successfully applied in the steady-state diagnosis of 
rotor faults, inter-turn stator faults and unbalanced supply 

voltage and mechanical load-misalignment. This technique is 
based on the Park’s Vector Approach, however it provides 
greater insight into these severity of the faults. 
   The instantaneous line currents of the stator are transformed 
into the Park’s vector using (2). An undamaged machine 
theoretically shows a perfect circle where the instantaneous 
magnitude is constant as shown in figure 6. An unbalance due 
to turn faults results in an elliptic representation of the Park’s 
Vector as shown in figure 7. The magnitude of the Park’s 
Vector will contain a frequency that is twice the fundamental 
frequency. The amplitude of this frequency is proportional to 
the degree of unbalance. In the case of a real healthy machine 
there will always be a small degree of unbalance. A severity 
factor has been introduced and described as the ratio of the 
magnitude of the twice-fundamental frequency to the DC 
component in the magnitude of the Park’s Vector. In this case 
a FFT is applied to the magnitude of the Park’s Vector to 
determine the amplitude of the spectral components needed 
[2], [3]. 
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Figure 5.  The Park’s Vector (left) and magnitude (right) for a healthy 

machine operating in steady state. 
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Figure 6.  The Park’s Vector (left) and magnitude (right) for a damaged 

machine operating in steady-state. 

 
   This method of detection works well if the machines 

being diagnosed operate only in steady state. The behavior of 
these DFIG’s is however transient as the following 



experimental results will show. In these experiments the speed 
of the machine under test is varied from 1170rpm to 1900rpm 
(subsynchronous to supersynchronous) as shown in figure 8. 
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Figure 7.  The speed profile of an undamaged machine. 
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Figure 8.  The Park’s Vector of an undamaged machine. 
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Figure 9.  The magnitude of the Park’s Vector of an undamaged machine. 

Observing the Park’s vector, of the undamaged machine in 
figures 9, shows that there is not a constant magnitude. In fact 
the amplitude spirals in and then out as time progresses. This 
obviously complicates the expression for the severity factor 
since the dc component is not a constant. The amplitude of the 
twice fundamental frequency component changes too, and 
therefore the use of Fourier analysis is questionable.  

V. WAVELET ANALYSIS 
   Since the previous methodology has weakness when the 
system is transient, we therefore proposed the use of wavelets 
to produce a similar analogy to that of the steady state severity 
factor. The methodology employed is to decompose the non-

stationary EPVA magnitude signal into both detail and 
approximate coefficients at different scales using Daubechies 
wavelets. The detail coefficients are then examined to 
determine the fault severity. 
 

The orthogonal basis functions used in Wavelet analysis are 
families of scaling functions, ( ),tφ  and associated wavelets, 
( ).tψ  The scaling function, ( ),tφ  can be represented by the 

following mathematical expression: 

, ( ) (2 )                                      (3)j
j k k

k
t H t kφ φ= −∑

where, 
Hk represents the coefficients of the scaling function, 
k represents a translation, 
j represents the scale. 

Similarly, the associated wavelet ( ),tψ  can be generated 
using the same coefficients as the scaling function. 

 

, 1( ) ( 1) 2 (2 )                    (4)k j
j k k

k
t h t kφ φ−= − −∑

       
The scaling functions are orthogonal to each other as well as 

with the wavelet functions as shown in (3), (4). This fact is 
crucial and forms part of the framework for a multiresolution 
analysis. 

(2 ) (2 ) 0         for all .   (5) t k t l dt k lφ φ
∞

−∞
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∞

−∞

⋅ =∫
             
                 

Using an iterative method, the scaling function and 
associated wavelet can be computed if the coefficients are 
known. Figure 1 shows the Daubechies 2 scaling function and 
wavelet.       

A signal can be decomposed into approximate coefficients, 
aj,k, through the inner product of the original signal at scale j 
and the scaling function. 

, ,( ) ( ) 0                              (7) j k j j ka f t t dtφ
∞

−∞
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2
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Figure 10.  Daubechies2 scaling function (left) and associated wavelet (right). 



Similarly the detail coefficients, dj,k can be obtained though 
the inner product of the signal and the complex conjugate of 
the wavelet function. 
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Figure 11.  A three level multiresolution decomposition.   

 
The EPVA hints that the frequencies of interest, when 

determining turn faults, are twice the fundamental frequency. 
However these frequencies could shift during transients. It 
therefore makes sense to want to observe a band of frequencies 
rather than a single. The fundamental frequency of the stator is 
about 50Hz and therefore the frequencies of interest should be 
found around 100Hz. Using these clues we should be able to 
determine the scale of the detail level that will contain the 
coefficients that encode these frequencies. The sampling 
frequency of the signals is 5000Hz. It is therefore evident that 
the bandwidth captured is 2500Hz. We can now divide this 
bandwidth into scale levels knowing that the bandwidth is 
halved after each scale.  

From table 1 we can see that a 100Hz signal will be 
encoded by the detail coefficients of scale 5, (d5), and therefore 
this is the detail level of interest. When comparing the wavelet 
decomposition for a damaged and undamaged machine, a 
difference can be seen in detail levels d4, d5 and d6. However 
the most significant difference can be seen in d5 as shown in 
figures 13 and 14.  

It is therefore clear that d5 should be used in some kind of 
diagnostic algorithm. In the experiments performed, the speed 
of the machine was changed from 1170-1500, 1170-1970, 
1400-1720 and 1640-1970rpm. The motivation for this is that 
the diagnostic method should not be affected by speed or slip 
changes as with steady-state analysis.  

Scale Bandwidth (Hz) 

d1 1250-2500 
d2 625-1250 

d3 312-625 

d4 156-312 
d5 78-156 
d6 39-78 

d7 19-39 

TABLE I.  THE BANDWIDTH REPRESENTED BY EACH SCALE. 
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Figure 12.  The Wavelet decomposition of the Park’s vector magnitude. 
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Figure 13.  The Wavelet decomposition of the Park’s vector magnitude. 



When observing the coefficients of d5 for each transient, it 
was found to be an extremely difficult task to correlate the 
coefficients in the damaged machine to that of the healthy 
machine at all speed changes. For this reason a statistical 
approach was attempted. Generating a histogram of the d5 
coefficients has shown to give a better insight into the 
machine’s condition. In the case of a healthy machine the 
coefficients produce a gaussian distribution at all speed 
changes as shown in figure 15. In the case of the damaged 
machine, the distribution is bimodal as shown in figure 16. 
These distribution plots are especially useful when 
unambiguously determining if a machine is healthy. The EPVA 
method will always have an amplitude at twice the fundamental 
frequency, and depends on the DC component for a severity 
factor. These results can be misinterpreted if the DC 
component varies with time as in the case with DFIG’s. 
However in these distribution plots, the healthy condition is 
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Figure 14.  The distribution of the d5 coefficients at different speed changes. 

(Healthy Machine). 
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Figure 15.  The distribution of the d5 coefficients at different speed changes. 

(Damaged Machine).  

only indicated by the gaussian shape of the distribution. The 
same principle applies to a damaged machine. The bimodal 
shape is indicative of the turn fault. 

VI. CONCLUSIONS 
Wavelet analysis has been successfully applied to the 

detection of stator turnfaults in doubly-fed induction generators 
found in wind turbines. The detection algorithm is a 
combination of the Extended Park’s Vector, wavelet analysis 
and statistics. This technique is not affected by changes in the 
speed of the machine which is crucial when applied to wind 
generators. 

The 5th detail scale has been identified for use in the 
analysis. It has been found that the order of the wavelet used is 
not crucial, in fact the simplest wavelet, i.e. Haar wavelet, can 
be used to successfully detect the turn fault. 

The coefficient distribution for the 5th detail scale is 
Gaussian when there are no turn faults. The distribution is 
bimodal with a flattened interior when the turn faults are 
present.  
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