
Journal of

Risk and Financial
Management

Article

The Determinants of Equity Risk and
Their Forecasting Implications: A Quantile
Regression Perspective

Giovanni Bonaccolto 1,† and Massimiliano Caporin 2,*,†

1 Department of Economics and Management “Marco Fanno”, University of Padova, Via del Santo 22,

35123 Padova, Italy; giovanni.bonaccolto@unipd.it
2 Department of Statistical Sciences, University of Padova, Via Cesare Battisti 241, 35121 Padova, Italy

* Correspondence: massimiliano.caporin@unipd.it; Tel.: +39-049-827-4199

† These authors contributed equally to this work.

Academic Editor: Michael McAleer

Received: 21 May 2016; Accepted: 29 June 2016; Published: 7 July 2016

Abstract: Several market and macro-level variables influence the evolution of equity risk in addition

to the well-known volatility persistence. However, the impact of those covariates might change

depending on the risk level, being different between low and high volatility states. By combining

equity risk estimates, obtained from the Realized Range Volatility, corrected for microstructure noise

and jumps, and quantile regression methods, we evaluate the forecasting implications of the equity

risk determinants in different volatility states and, without distributional assumptions on the realized

range innovations, we recover both the points and the conditional distribution forecasts. In addition,

we analyse how the the relationships among the involved variables evolve over time, through a

rolling window procedure. The results show evidence of the selected variables’ relevant impacts and,

particularly during periods of market stress, highlight heterogeneous effects across quantiles.

Keywords: realized range volatility; quantile regression; volatility quantiles and density forecasting;

forecast assessment

1. Introduction

Recent events, such as the subprime crisis, that originated in the United States and was marked

by the Lehman Brothers’ default in September 2008 and the sovereign debt crisis, that hit the

Eurozone in 2009, have highlighted the fundamental importance of risk measurement, monitoring

and forecasting. The volatility of asset returns, a commonly used measure of risk, is a key variable

in several areas of finance and investment, such as risk management, asset allocation, pricing and

trading strategies. Therefore, estimating and forecasting the volatility point values and distribution

play a critical role. The use of predicted volatility levels is central, for instance, in the pricing of

equity derivatives, in the development of equity derivative trading strategies and in risk measurement

when risk is associated with volatility. The volatility distribution is of interest when trading/pricing

volatility derivatives, when designing volatility hedges for generic portfolios and when accounting for

the uncertainty of volatility point forecasts.

Many financial applications use constant volatility models [1], although empirical evidence

suggests that variance changes over time. Several approaches have been developed with the purpose

of achieving more accurate estimates, such as the class of autoregressive conditional heteroscedasticity

(ARCH) [2] and generalized autoregressive heteroscedasticity (GARCH) [3] models and the stochastic

volatility models [4–7]. Nevertheless, financial data are affected by several features, such as the

so-called stylized facts [8], and standard GARCH and stochastic volatility models do not capture all of

them [9].
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We might also estimate volatility with non-parametric methods, such as by means of realized

measures, which have been shown to perform better than traditional GARCH and stochastic volatility

models when forecasting conditional second-order moments [10]. This approach has attracted

considerable interest because of the availability of high-frequency financial data. In fact, as opposed

to models that treat volatility as a latent (non-observable) element, realized measures use additional

information from the intraday returns. We believe these methods provide more flexibility than standard

GARCH-type models do, and therefore we focus on realized measures here. Among the various

realized volatility measures, we choose a range-based measure for reasons of efficiency. Notably, the

realized range estimator is five times more efficient than the corresponding realized variance [11].

This is because the realized range is built from two prices, the minimum and the maximum, for

each intradaily interval, as opposed to using just the closing price in the realized volatility estimator.

We therefore follow Christensen et al. [12] and adopt the realized range-based bias corrected bipower

variation. Christensen et al. [12] demonstrated that their measure is a consistent estimator of the

integrated variance in the presence of microstructure noise, arising from peculiar phenomena like

non-continuous trading, infrequent trades and bid-ask bounce [13–15], and price jumps.

Studies that focus on volatility forecasting have identified key macroeconomic and financial

variables as important drivers of volatility, highlighting their power in improving forecast

performances. For instance, Christiansen et al. [16] predicted the asset return volatility using

macroeconomic and financial variables in a Bayesian model averaging framework. They considered

several asset classes, such as equities, foreign exchange, bonds and commodities, over long time

spans and found that economic variables provide information about future volatility from both an

in-sample and an out-of-sample perspective. Paye [17] tested the power of financial and economic

variables to forecast the volatility at monthly and quarterly horizons and rarely found a statistical

difference between the performance of macroeconomic fundamentals and univariate benchmarks.

Fernandes et al. [18] used parametric and semi-parametric heterogeneous auto regressive (HAR)

processes to model and forecast the CBOE Volatility Index (VIX) and found significant results

using financial and macroeconomic variables as additional regressors. Caporin and Velo [19]

used an HAR model with asymmetric effects with respect to volatility and return and GARCH

and Glosten–Jagannathan–Runkle GARCH (GJR-GARCH) specifications for the variance equation.

Caporin et al. [20] studied the relationship between the first principal component (FPC) of the volatility

jumps, estimated using 36 stocks and a set of macroeconomic and financial variables, such as the VIX,

the S&P 500 volume, the Credit Default Swap (CDS) and the Federal Fund rates, and found that CDS

captures a large part of the moves of the expected jumps. Opschoor et al. [21] used the Bloomberg

Financial Conditions Index, which comprises money, bond and equity markets, observing that worse

financial conditions are associated with both higher volatility and higher correlations. Given the

findings in the previous studies, we take into account several macroeconomic and financial variables

commonly used in the literature; nevertheless, among them, we select just the VIX and the S&P 500

index, as all the other variables turned out to be non-significant in the model we propose.

Our purpose is to generalize the previous contributions further. We model and forecast the

conditional quantiles of the realized range-based bias corrected bipower variation using the quantile

regression method introduced by Koenker and Bassett [22]. Focusing on realized volatility measures,

we believe that the quantile regression approach can provide useful new evidence by allowing the

entire conditional distribution of the realized volatility measure to be estimated, instead of restricting

attention to the conditional mean. This approach could have a relevant advantage when the impact of

covariates is changing, depending on market conditions (say, on low or high volatility states) or when

the purpose is to recover density forecasts without making a distributional assumption.

Other authors have applied quantile regression in a financial framework. For instance, Engle

and Manganelli [23] proposed the Conditional Autoregressive Value at Risk (CAViaR) model to

estimate the conditional value-at-risk, an important measure of risk that financial institutions and

their regulators employ. In the present work, we do not consider the CAViaR model in order to
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control the computational complexity of the analysis. White et al. [24] generalized the CAViaR to the

multi-quantile CAViaR (MQ-CAViaR) model, studying the conditional skewness and kurtosis of S&P

500 daily returns. White et al. [25] extended the MQ-CAViaR model in the multivariate context to

measure the systemic risk, a critical issue highlighted by the recent financial crises, taking into account

the relationships among 230 financial institutions around the world. Li and Miu [26] proposed, on the

basis of the binary quantile regression approach, a hybrid bankruptcy prediction model with dynamic

loadings for both the accounting-ratio based and market-based information. Castro and Ferrari [27]

used the ∆CoVaR model as a tool for identifying/ranking systemically important institutions. Finally,

Caporin et al. [28] adopted quantile regressions in detecting financial contagion across bond spreads

in Europe.

Our work is closely related to the contribution of Zikes and Barunik [29]. However, our analysis

differs in some important ways. First, Zikes and Barunik [29] estimated volatility using a realized

measure that takes into account only the effects of jumps in the price process. In contrast, we use the

realized range-based bias corrected bipower variation, which considers the impact of microstructure

noise and that of jumps. To the best of our knowledge, quantile regression methods for the analysis of

realized range volatility measures have never been used in the econometric and empirical financial

literature, which provides a strong motivation for our study. Second, Zikes and Barunik [29] performed

quantile forecasts, focusing on a few quantiles; we go farther by estimating a fine grid of quantiles in

order to recover information about the entire realized volatility conditional distribution. Finally, on the

basis of the obtained volatility quantiles, we build the entire conditional volatility density.

Our work takes an empiric point of view and focuses on the high-frequency data of 16 stocks

issued by large-cap companies that operate in different economic sectors. All companies are quoted

on the U.S. market. In the first step, we analyse the FPC of the estimated volatility as a summary of

the 16 series (a kind of market factor).

Our first empirical contribution to the literature by showing that the VIX and the S&P 500 index

have a significant impact on volatility quantiles, that their impact changes across quantiles, becoming

irrelevant in some cases, and that the significance and strength of the relationship changes over

time. This last finding is particularly evident when we focus on turbulent market phases, as in these

periods we note an increase in the impact of both the VIX and the S&P 500 index. The last finding

is particularly evident for high-volatility quantiles. The heterogeneity we observe across quantiles

can also be interpreted as evidence against the location-shift hypothesis, that assumes homogeneous

impacts of the covariates across the conditional quantiles of the response variable. Therefore, we

highlight the benefits obtained through the quantile regression approach with respect to the classical

least squares method, which focuses just on the conditional expected value of the volatility and is not

able to capture the more interesting and significant relationships in its extreme conditional quantiles.

This empirical evidence suggests that the uncertainty of volatility point forecasting, as measured

by the influence of covariates on different volatility quantiles, changes depending on market states.

Consequently, volatility forecast precision is ensured, as is the appropriateness of volatility density

forecasting. Both of these elements have a central role in risk management and volatility hedging and

trading, thus providing support for our analyses. In volatility hedging, or in the pricing of volatility

derivatives, the most traditional measure is the realized volatility. However, as previously mentioned,

the realized range estimator is more efficient and therefore provides more appropriate density forecasts

as opposed to the realized variance density forecasts.

Our second empirical contribution comes from the single-asset analyses. We develop a specific

model for each asset to determine how the features of the 16 companies affect the relationships among

the variables involved. We find some heterogeneity in the assets’ reactions to macro-level variables,

such as the VIX and the S&P 500 index, which holds across both time and volatility quantiles. However,

we find overall confirmation of the findings associated with the FPC. Therefore, the relevance of

the quantile-based covariate impact on volatility is of interest both at the aggregated and at the

single-asset level.
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Our third empirical contribution stems from a forecasting exercise. We compare the quantile-based

density forecasts to those of a benchmark model adapted to the realized range volatility mean and

variance. The reference model combines an HAR structure of the realized volatility mean plus a

GJR-GARCH [30] for the mean innovation variances. The HAR structure, inspired by the work

of Corsi [9], captures the persistence of realized measures and is consistent with the presence of

heterogeneous agents in the market, while the GJR-GARCH structure is coherent with the volatility of

volatility hypothesis discussed in Corsi et al. [31]. We compare the benchmark model density forecasts

and the quantile regression-based forecasts using the tests proposed by Berkowitz [32] and Amisano

and Giacomini [33]. Moreover, by using a quantile-based loss function, we also consider the Diebold

and Mariano [34] test. We stress that the Berkowitz [32] test allows for an absolute evaluation of the

density forecasts provided by one model, while the Amisano and Giacomini [33] approach compares

two competing models. The results confirm that our approach performs better, thus providing support

for the use of quantile regression methods in all areas where volatility quantiles might have a role.

Among the possible applications, we mention volatility trading and volatility hedging [35,36], as

well as the evaluation of uncertainty around volatility point forecasts. The latter could be of crucial

importance if we plan to combine volatility point and density forecasts derived from realized volatility

measures with returns-based volatility models, as in the high-frequency-based volatility (HEAVY)

models [37].

The remainder of the paper is structured as follows. Section 2 includes the description of the

data and of the conditioning variables. Section 3 presents the model we propose to forecast the range

bipower variation conditional quantiles. Section 4 is devoted to the density forecast and predictive

accuracy and provides the details about the tests we use. The results are analysed in Section 5, and

Section 6 consists of concluding remarks.

2. Realized Volatilities and Conditioning Variables

The database we use includes stock prices recorded with a frequency of one minute, from 9:30 a.m.

to 4:00 p.m. of every trading day between 2 January 2003 and 28 June 2013, inclusive. The equities

analysed are those of large companies that operate in various economic sectors of the U.S. market:

AT&T Inc. (ATT), Bank of America (BAC), Boeing (BOI), Caterpillar, Inc. (CAT), Citigroup, Inc. (CTG),

FedEx Corporation (FDX), Honeywell International, Inc. (HON), Hewlett-Packard Company (HPQ),

International Business Machines Corp. (IBM), JPMorgan Chase & Co. (JPM), Mondelez International,

Inc. (MDZ), Pepsico, Inc. (PEP), The Procter & Gamble Company (PRG), Time Warner, Inc. (TWX),

Texas Instruments, Inc. (TXN) and Wells Fargo & Company (WFC). The dataset is drawn from TickData.

The prices are adjusted for extraordinary operations and filtered for errors, anomalies and outliers that

arise from traders’ activities (for additional details see the company website http://www.tickdata.com).

From the high-frequency data described above and after computing the assets returns, we estimate

the daily volatilities of the 16 assets using the realized range-based bias corrected bipower variation

(RRVn,m
BVBC) introduced by Christensen et al. [12]. Notably, RRVn,m

BVBC is a robust estimator of the

integrated variance in the the presence of both price jumps and microstructure noise. The realized range

volatility sequences show that the financial companies are the most volatile, while all the companies

show sudden increases in the risk measure during the global financial crisis. Detailed descriptive

analysis and plots of the estimated realized range are available upon request.

A principal component analysis is carried out on the range-based bias corrected bipower variations

of the 16 assets. In particular, the first principal component (FPC) explains 77% of the overall variance.

The evolution of the assets’ volatilities have a strong common behaviour that we might interpret

as market or systematic behaviour. Therefore, the analysis of FPC could produce useful results.

Consequently, in the following, we model the conditional quantiles of both FPC and the single-asset

realized volatilities.

Previous studies in the literature, such as those by Caporin and Velo [19] and Caporin et al. [20],

have used several indicators to analyse the realized variance and the range series. Therefore, in addition



J. Risk Financial Manag. 2016, 9, 8 5 of 25

to the data described so far, we have taken into account some macroeconomic and financial variables,

such as the VIX and the S&P 500 indexes, the U.S. dollar–euro exchange rate, the crude oil price and

the US Treasury interest rates, that convey important information about the overall market trend

and risk. They will be considered exogenous variables that affect the conditional volatility quantiles.

However, we included just two of them in our model: the daily return of the S&P 500 index (sp500)

and the logarithm of the VIX index (vix), as all the others turned out to be non-significant in the model

we propose. sp500 reflects the trend of the U.S. stock market, and we expect that negative returns

of the S&P 500 will have a positive impact on the market volatility, consistently to the well-known

leverage effect. In contrast, high levels of vix reflect pessimism among the economic agents, so a

positive relationship between vix and the volatility level is expected. The observations associated with

sp500 and vix are recorded at a daily frequency and are recovered from Datastream.

Many macroeconomic and financial time series are not stationary and are often characterized

by unit-root non-stationarity [38]. Building on this evidence, we must determine whether the

data-generating process of vix is affected by unit-root (we do not report the tests on sp500, as they

provided no useful results: the index level is non-stationary, while the index return is stationary). To

this purpose, we consider two standard tests: the augmented Dickey–Fuller (ADF) test [39] and the

Phillips–Perron (PP) test [40]. The ADF test rejects the null hypothesis at the 10% significance level,

and the test statistic equals −3.18 (with a p-value of 0.09). The PP test rejects the null hypothesis at

the 5% level, and the test statistic is −24.48 (with a p-value of 0.03). Therefore, we have a moderate

amount of evidence against the presence of a unit root for the vix series. The rejection of the null is

much clearer with the PP test.

Beside vix and sp500, we use other quantities to describe the evolution of realized range

conditional quantiles. First, we follow Corsi [9] in introducing among the explanatory variables

those commonly adopted in (HAR) models of realized volatility. Focusing on the FPC of realized

ranges, whose observed value at t is denoted by f pct, a first explanatory variable is its lagged value,

f pct−1. This variable is usually accompanied by other quantities that are built from local averages of

past elements:

f pcm∗ t =
1

m∗
m∗−1

∑
i=0

f pct−i. (1)

Corsi’s [9] model used m∗ = 5 and m∗ = 21, representing the weekly and monthly horizons.

These components allow the heterogeneous nature of the information arrivals [9] in the market to be

considered. In fact, many operators have differing time horizons. For instance, intraday speculators

have a short horizon, while insurance companies trade much less frequently. Therefore, agents whose

time horizons differ perceive, react to and cause different types of volatility components. In our study,

we use only m∗ = 5 with the first lag. In fact, the longer horizon component, with m∗ = 21, was

not significant. We might interpret f pc5t−1 as reflecting the medium-term investors who typically

rebalance their positions at a weekly frequency. We found that f pct−1 and f pc5t−1 are positively

correlated with f pct, suggesting a positive impact at least on the mean. We will use similar variables

(lagged and weekly elements) for each of the company-specific realized range sequences.

The last explanatory variable we consider, denoted by JUMP, takes into account the impact of

jumps in the price process. At the single-asset level, the jump intensity could be detected through the

test statistic introduced by Christensen and Podolskij [41], here denoted as ZTP,t, by which we test the

null hypothesis of no jumps at day t. For each asset, we test for the presence of jumps by computing

the ratio between the number of days in which the null hypothesis of no jumps is rejected by the

total number of days included in our dataset, with significance level set to 0.05 (the output of the test

for jumps is available on request). We observed that the ratio ranges from 44.89% (CTG) to 91.97%

(MDZ); therefore, the inferential procedure of Christensen and Podolskij [41] detects the presence

of jumps, with clear heterogeneity across the 16 assets, and supports the inclusion of a component

accounting for jumps in our model. In particular, we compute JUMP as the difference between the
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realized range-based variance [11,42], denoted as RRVn,m, and the realized range-based bias corrected

bipower variation [12], RRVn,m
BVBC, which are, respectively, jump non-robust and jump robust estimators

of the integrated variance. For the i-th stock, the observed value of JUMP at t is denoted by jumpi,t;

we checked that the jumpi,t series has evident peaks in periods of financial turmoil (the estimated

jumps series are available on request). For reasons of consistency, when we analyse FPC, we compute

jumpt as the first principal component of jumpi,t, for i = 1, ..., 16.

To summarize, if we consider the FPC of the realized ranges, the variables of interest are: f pct (i.e.,

the dependent variable), f pct−1, f pc5t−1, vixt−1, sp500t−1 and jumpt−1 (the explanatory variables).

f pct−1 has the highest correlation with f pct (0.75), and the signs of the correlation coefficients are

consistent with the expectations, as f pct−1, f pc5t−1, vixt−1 and jumpt−1 are positively correlated

with f pct, while sp500t−1 has a negative correlation coefficient. We obtain similar results for each

realized volatility sequence where the lagged values, the weekly lags and the jump variable are

company-specific (the results are not reported for space constraints but are available upon request).

3. Modelling the Realized Range Conditional Quantiles

We now introduce the model that we propose to study the conditional quantiles of volatility.

As specified in the introduction, we focus on realized range quantiles, estimated using the quantile

regression approach introduced by Koenker and Bassett [22]. Quantile regression overcomes some

limitations of linear regression methods, including the sensitivity to outliers and the need to assume a

linearity, and allows us to focus on the quantiles of the conditional distribution of a random variable

without restricting the attention on the conditional mean. Let Y be a real-valued random variable

with distribution function FY(y) = P(Y ≤ y). For any 0 < τ < 1, the τ-th quantile of Y is equal to

F−1
Y (τ) = inf{y : FY(y) ≥ τ}. In our work, Y coincides with FPC when we study the FPC of the stocks’

volatilities; at the single-asset level it is equal to the volatility of each stock.

Let I(·) be the indicator function taking value 1 if the condition in (·) is true, 0 otherwise, and the

approach introduced by Koenker and Bassett [22] makes use of the asymmetric loss function

ρτ(ǫ) = ǫ[τ − I(ǫ < 0)], (2)

showing that the minimizer ỹτ of the expected loss function E[ρτ(Y − ỹτ)] satisfies FY(ỹτ) −
τ = 0. In particular, ỹτ is the conditional quantile function QY(τ|X1, X2, ..., Xδ) in the linear

quantile regression:

ỹτ = QY(τ|X1, X2, ..., Xδ) = β0(τ) + β1(τ)X1 + ... + βδ(τ)Xδ, (3)

where X = (X1, X2, ..., Xδ) is the vector of δ explanatory variables. When we analyse the FPC quantiles,

the covariates are f pct−1, f pc5t−1, vixt−1, sp500t−1 and jumpt−1; in contrast, at the single-asset level,

the explanatory variables are rrvi,t−1, rrv5i,t−1, vixt−1, sp500t−1 and jumpi,t−1.

Given the time index t = 1, ..., T, let yt and xj,t be, respectively, the realizations of Y and Xj for

j = 1, ..., δ at t. Then, the parameter vector βββ(τ) = (β0(τ), ..., βδ(τ)) is estimated as a solution of the

quantile regression problem:

min
βββ∈Rδ+1

T

∑
t=1

ρτ(yt − β0 − β1x1,t − ... − βδxδ,t). (4)

The specification adopted for the conditional quantiles of the FPC is the following:

Q f pct
(τ|xt−1) = x′t−1βββ(τ) = β0(τ) + β1(τ) f pct−1 + β2(τ) f pc5t−1 + β3(τ)vixt−1

+ β4(τ)sp500t−1 + β5(τ)jumpt−1, (5)



J. Risk Financial Manag. 2016, 9, 8 7 of 25

where Q f pct
(τ|xt−1) denotes the τ-th quantile of f pct, conditional to the information included in

xt−1. Although this approach is not novel, as conditional quantiles have already been used in a

risk-management framework (e.g., Engle and Manganelli [23], White et al. [24] and White et al. [25]),

we stress that, to the best of our knowledge, realized measures based on ranges have never been used.

Therefore, even a simple estimation of Model (5) would provide useful results in terms of revealing the

impact of covariates and the stability of the various coefficients across quantiles. Quantile regressions

could also be used to forecast the conditional quantiles of the realized range volatility sequence, as we

discuss below.

Certain events, such as the subprime crisis that originated in the U.S. and that was marked by the

Lehman Brothers’ default in September 2008 and the Eurozone sovereign debt crisis in 2010–2011, had

considerable effects on the mechanisms that govern the international financial system. These extreme

events could have affected the relationship between control variables and conditional quantiles, so it is

necessary to determine whether the relationships that characterize Model (5) change over time before,

during or after such periods of turmoil. For this purpose, we performed a rolling analysis with a step

of one day and a window size of 500 observations. Thus, it is possible to determine how the coefficient

values evolve over time and over τ. Further, Engle and Manganelli [23], within a risk management

perspective, adopt quantile regression methods for the estimation of the value-at-risk. In their model,

they introduce lagged quantiles among the conditioning variables. We do not follow their approach

to control the computational complexity given the presence of a rolling method in the evaluation of

conditional quantiles.

We also built Model (5) to predict the conditional quantiles of the FPC computed on the realized

range-based bias corrected bipower variations of the 16 assets. The forecasts, produced for a single

step ahead, provide relevant details for the covariates’ prediction abilities.

As the underlying companies have different features and operate in different economic sectors,

it is also useful to build a model for each asset. These asset-specific models have the same structure of

the one given in Equation (5), but the dependent variable is the conditional RRVn,m
BVBC quantile of the

one asset, and f pct−1, f pc5t−1 and jumpt−1 are replaced with the analogous quantities computed for

each asset. Therefore, the model built for the i-th asset, for i = 1, ..., 16, is

Qrrvi,t
(τ|xi,t−1) = β0,i(τ) + β1,i(τ)rrvi,t−1 + β2,i(τ)rrv5i,t−1 + β3,i(τ)vixt−1

+ β4,i(τ)sp500t−1 + β5,i(τ)jumpi,t−1, (6)

where rrvi,t is the observed RRVn,m
BVBC related to the i-th company at day t, rrv5i,t is the mean of the rrvi,t

values recorded in the last five days and jumpi,t−1 is the difference between RRVn,m and RRVn,m
BVBC,

computed for the i-th stock at day t − 1.

The models that we propose allow the conditional quantiles of a realized volatility measure

to be estimated. We do not know the true, unobserved volatility of the assets’ returns (they are

estimated), so measurement errors might play a role. However, we restrict our attention to the forecast

of the realized measure at a given sampling frequency and not to a forecast of the future returns’

volatility. As a consequence, as Zikes and Barunik [29] discussed, the impact of measurement errors

has limited importance.

4. Density Forecast and Predictive Accuracy

In contrast to Section 3, we prefer providing more details on the forecast evaluation tools that

we consider given the central role of volatility forecasting in our work. In Section 3, we described the

models that we propose to estimate the dynamic governing of the conditional quantiles of the response

variable Y; that is, the FPC of the assets’ volatilities in Model (5) or the volatilities of the single stocks

in Model (6). Given the estimated model, we are able to forecast the conditional τ-th quantile of Y,

which is Qyt(τ|xt−1).
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The standard quantile regression approach allows estimating individual quantiles, but it does not

guarantee their coherence, that is their increasing monotonicity in τ ∈ (0, 1). For instance, it might

occur that the predicted 95th percentile of the response variable is lower than the 90th percentile.

If quantiles cross, corrections must be applied to obtain a valid conditional distribution of volatility.

For instance, to cope with the crossing problem, Koenker [43] applied parallel quantile planes, whereas

Bondell et al. [44] estimated the quantile regression coefficients with a constrained optimization

method. Here, we follow a different approach proposed by Zhao [45]. Given a collection of ϑ

predicted conditional quantiles (Qyt(τ1|xt−1), ..., Qyt(τϑ|xt−1), for 0 < τj < τj+1 < 1, j = 1, ..., ϑ − 1,

we first rearrange them into ascending order, by making use of the quantile bootstrap method

proposed by Chernozhukov et al. [46]. Then, starting from the rearranged quantiles, denoted by

(Q∗
yt
(τ1|xt−1), ..., Q∗

yt
(τϑ|xt−1)), we estimate the entire conditional distribution with a nonparametric

kernel method. The predicted density equals

f̂Yt
(y∗|xt−1) =

1

ϑhϑ

ϑ

∑
i=1

K

(

y∗ − Q∗
yt
(τi|xt−1)

hϑ

)

, (7)

where y∗ are evenly interpolated points that generate the support of the estimated distribution, hϑ is

the bandwidth, K(·) is the kernel function and f̂Yt
(y∗|xt−1) is the one-period ahead forecasted density

of Y computed at y∗, given the information set available in t − 1. Following Gaglianone and Lima [47],

we use K(·) as the Epanechnikov kernel.

With the solution above described, we are able to recover the entire volatility density, which could

be of interest if one is dealing with volatility trading or volatility hedging applications. In this case,

the analysis takes a density-forecasting perspective, where the assessment of a proposed approach’s

predictive power (as compared to a benchmark model) and the evaluation of the potential benefits

associated with introducing covariates are particularly important. Therefore, we apply three testing

approaches: the tests proposed by Berkowitz [32] and Amisano and Giacomini [33] and a loss

function-based forecast evaluation that builds on the Diebold and Mariano [34] testing approach.

If, for simplicity, we denote the ex ante forecasted conditional density f̂Yt
(·|xt−1) that we estimate

in t − 1 by f̂t−1(·), the first step of the Berkowitz [32] test consists in computing, for all the available

days, the variable

νt =
∫ yt

−∞
f̂t−1(u)du = F̂t−1(yt), (8)

where F̂t−1(·) is the distribution function corresponding to the density f̂t−1(·).
Under correct model specification, Rosenblatt [48] showed that νt is i.i.d. and uniformly

distributed on (0, 1), a result that holds regardless of the underlying distribution of yt, even when

F̂t−1(·) changes over time. Berkowitz [32] first pointed out that if νt ∼ U (0, 1), then

zt = Φ−1(νt) ∼ N (0, 1), (9)

where Φ−1(·) denotes the inverse of the standard normal distribution function.

Given that under correct model specification zt should be independent and identically distributed

as standard normal, an alternative hypothesis is that the mean and the variance differ from 0 and 1,

respectively, with a first-order autoregressive structure. In particular, Berkowitz [32] considered

the model

zt − µb = ρb(zt−1 − µb) + et (10)

to test the null hypothesis H0 : µb = 0, ρb = 0, var(et) = σ2
b = 1. The test builds on (10) and is based

on the likelihood-ratio statistic

LRb = −2 [Lb(0, 1, 0; zt)− Lb(µ̂b, σ̂b, ρ̂b; zt)] , (11)



J. Risk Financial Manag. 2016, 9, 8 9 of 25

where Lb(µ̂b, σ̂b, ρ̂b; zt) is the likelihood function associated with Equation (10) and is computed from

the maximum-likelihood estimates of the unknown parameters µb, σb and ρb. Under the null hypothesis

H0, the test statistic is distributed as χ2(3).

The Berkowitz [32] test can be applied to models that provide a density forecast for the

realized range volatility. The alternative models’ specifications for the conditional quantiles (such as

with/without the covariates) or density forecast approaches may differ. Obviously, models that do

not provide a rejection of the null hypothesis will be correctly specified, so, at least in principle, many

alternative specifications could be appropriate for the data at hand.

The approach Berkowitz proposed allows for an absolute assessment of a given model. In fact,

it focuses on the goodness of a specific sequence of density forecasts, relative to the unknown

data-generating process. However, the Berkowitz test has a limitation in that it has power only with

respect to misspecification of the first two moments. As Berkowitz [32] noted, if the first two conditional

moments are specified correctly, then the likelihood function is maximized at the conditional moments’

true values. Nevertheless, in practice, models could be misspecified even at higher-order moments.

In that case, a viable solution is to compare density forecasts, that is, to perform a relative comparison

given a specific measure of accuracy. To cope with this issue, in addition to the Berkowitz’s [32]

approach, we consider the Amisano and Giacomini’s [33] test and a similar loss function-based

approach that uses the Diebold and Mariano [34] test statistics.

Amisano and Giacomini [33] developed a formal out-of-sample test for ranking competing

density forecasts that is valid under general conditions. The test is based on a widely adopted metric,

the log-score. In particular, the log-score arising from our approach is equal to log( f̂t−1(yt)), whereas

log(ĝt−1(yt)) is the log-score obtained by a competing model. For the two sequences of density forecasts,

we define the quantity

WLRt = w
(

yst
t

)

[

log f̂t−1(yt)− log ĝt−1(yt)
]

, (12)

where yst
t is the realization of Y at day t, standardized using the estimates of the unconditional mean

and standard deviation computed from the same sample on which the density forecasts for t are

estimated, and w
(

yst
t

)

is the weight the forecaster arbitrarily chooses to emphasize particular regions

of the distribution’s support. After computing the quantities WLRt for all of the samples considered

in the forecast evaluation, we compute the mean WLR = (T − ws)−1 ∑
T
t=ws+1 WLRt, where ws is the

window size adopted for the computation of density forecasts. The test can be used in the presence

of a rolling approach for the computation of density forecasts. The value ws indicates the size of the

rolling window or the fact that time t forecasts depend, at maximum, on the last ws data points. To

test for the null hypothesis of equal performance, that is, H0 : E
[

WLR
]

= 0, against the alternative of

a different predictive ability H1 : E
[

WLR
]

6= 0, Amisano and Giacomini [33] proposed the use of a

weighted likelihood ratio test:

AG =
WLR

σ̂AG/
√

T − ws
, (13)

where σ̂2
AG is a heteroskedasticity- and autocorrelation-consistent (HAC) Newey and West [49]

estimator of the asymptotic variance σ2
AG = Var

[√
T − ws WLR

]

. Amisano and Giacomini [33]

showed that under the null hypothesis AG
d→ N (0, 1).

We applied the Amisano and Giacomini [33] test by using four designs for the weights in

Equation (12), which allows us to verify how the results change according to the particular regions

of the distribution’s support on which we are focusing. We set wCE

(

yst
t

)

= φ
(

yst
t

)

to give a higher

weight to the centre of the distribution, wRT

(

yst
t

)

= Φ
(

yst
t

)

when we focus more on the right tail,

wLT

(

yst
t

)

= 1 − Φ
(

yst
t

)

for the left tail and wNW

(

yst
t

)

= 1 when giving equal importance to the

entire support (φ(.) and Φ(.) denote the standard normal density function and the standard normal

distribution function, respectively).
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Finally, we carried out a comparison at the single quantile level, focusing on the quantiles that have

critical importance in our framework. Therefore, we built on the approach Diebold and Mariano [34]

proposed and considered the following loss function:

L
(i)
τ,t

(

yt, Q
(i)
yt
(τ, xt−1)

)

=
[

τ − I
(

yt − Q
(i)
yt
(τ, xt−1) < 0

)]

×
(

yt − Q
(i)
yt
(τ, xt−1)

)

, (14)

where Q
(i)
yt
(τ, xt−1) is the τ-th forecasted quantile of Y, obtained from the i-th model.

Let dDM,τ,t be the loss differential between the quantile forecasts from two competitive

models, i and j (where i represents our proposal), that is, dDM,τ,t = L
(i)
τ,t

(

yt, Q
(i)
yt
(τ, xt−1)

)

−
L
(j)
τ,t

(

yt, Q
(j)
yt
(τ, xt−1)

)

. After computing the quantities dDM,τ,t for the forecasting sample, we compute

the mean: dDM,τ = (T − ws)−1 ∑
T
t=ws+1 dDM,τ,t. We are interested in testing the null hypothesis

H0 : E
[

dDM,τ

]

= 0 against the alternative H1 : E
[

dDM,τ

]

6= 0. Therefore, we compute for

τ = {0.1, 0.5, 0.9} the test statistic Diebold and Mariano [34] proposed:

DMτ =
dDM,τ

σ̂DM/
√

T − ws
, (15)

where σ̂2
DM is a consistent estimate of σ2

DM = Var
(√

T − ws dDM,τ

)

, the asymptotic (long-run)

variance. Diebold and Mariano [34] showed that, under the null hypothesis of equal predictive

accuracy, DMτ
d→ N (0, 1).

5. Empirical Results

5.1. Full-Sample Analyses

First, we focus on Model (5) to analyse the full-sample estimated parameters and their p-values.

This model was built to analyse and forecast the conditional quantiles of the FPC of the realized

range-based bias corrected bipower variations. For simplicity, Table 1 shows just the results associated

with τ = {0.1, 0.5, 0.9}; additional results for other quantiles are available on request. The standard

errors are computed by means of a bootstrapping procedure using the xy-pair method, which provides

accurate results without assuming any particular distribution for the error term.

When τ equals 0.1, only sp500t−1 is not significant at the 5% level. At τ = {0.2, 0.3, 0.4, 0.5}, all the

coefficients have small p-values, while for τ = {0.6, 0.7} only jumpt−1 is not significant. Finally, when

τ > 0.7, only f pct−1 and sp500t−1 are highly significant. Therefore, the first important result is that the

variables that significantly affect Q f pct
(τ|xt−1) change according to the τ level. Notably, only f pct−1

is always significant, whereas sp500t−1 is not significant only at τ = 0.1. It is important to highlight

that only f pct−1 and sp500t−1 are significant in order to explain the high quantiles of volatility, which

assume critical importance in finance. Moreover, the fact that jumpt−1 is not significant for high values

of τ is a reasonable result because the volatility is already in a ‘high’ state, and we might safely assume

that the jump risk is already incorporated in it.

The fact that f pct−1 and sp500t−1 are the most significant variables along the different quantiles’

levels is further confirmed when we compare two different models: a restricted model that has fewer

explanatory variables (just f pct−1 and sp500t−1) against an unrestricted one that includes all the

available covariates. The comparisons are made by means of the pseudo-coefficient of determination

proposed by Koenker and Machado [50], here denoted by R1(τ), and the test statistic ξw proposed

by Koenker and Bassett [51]. R1(τ) is a local goodness-of-fit measure, which ranges between 0 (when

the covariates are useless to predict the response quantiles) and 1 (in the case of a perfect fit); with
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ξw, we aim to test the null hypothesis that the additional variables used in the unrestricted model do

not significantly improve the goodness-of-fit with respect to the restricted model. Table 2 shows the

values of the pseudo-coefficient of determination computed for the restricted and the unrestricted

models at τ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We first observe that R1(τ) is a positive function

of τ for both the models and then note that the differences between the restricted and the unrestricted

models decrease as τ increases, to substantially disappear at τ = 0.9. Therefore, the contribution of

f pc5t−1, vixt−1 and jumpt−1 to the goodness-of-fit of Model (5) is largely irrelevant at τ = 0.9. We

obtain similar conclusions from the test proposed in Koenker and Bassett [51]: the null hypothesis of

the test is not rejected at τ = 0.9, while at lower quantiles some of the additional variables provide

sensible improvements in the model fit (see the fourth column of Table 2).

Table 1. Quantile regression results.

Variable Coefficient Value p-Value

τ = 0.1

f pct−1 0.24157 0.00548

f pc5t−1 0.15385 0.03927
vixt−1 0.00020 0.00001

sp500t−1 −0.00119 0.17431
jumpt−1 0.87638 0.03242

τ = 0.5

f pct−1 0.44580 0.00000

f pc5t−1 0.28779 0.00013
vixt−1 0.00019 0.00006

sp500t−1 −0.00339 0.00002
jumpt−1 0.77113 0.01017

τ = 0.9

f pct−1 1.44195 0.00000

f pc5t−1 0.15027 0.52722
vixt−1 −0.00002 0.87801

sp500t−1 −0.00919 0.00000
jumpt−1 −0.07240 0.90576

The table reports the coefficients and the p-values for Model (5); τ = {0.1, 0.5, 0.9}. The standard
errors are computed by means of the bootstrapping procedure, by employing the xy-pair method.

Table 2. Restricted model against unrestricted model.

τ
R1(τ) R1(τ) ξw

Unrestricted Model Restricted Model p-Value

0.1 0.3655 0.2940 0.0000
0.2 0.4439 0.3785 0.0000
0.3 0.5005 0.4422 0.0000
0.4 0.5427 0.4952 0.0000
0.5 0.5801 0.5396 0.0000
0.6 0.6142 0.5803 0.0000
0.7 0.6474 0.6223 0.0000
0.8 0.6865 0.6755 0.0007
0.9 0.7492 0.7467 0.9123

The table reports some results coming from the comparison between the unrestricted model, that is
Model (5), and the restricted model, in which the regressors are just f pct−1 and sp500t−1. The second
and the third columns give the pseudo coefficients of determination, whereas the fourth one gives
the p-values of the test statistic introduced by Koenker and Bassett [51].



J. Risk Financial Manag. 2016, 9, 8 12 of 25

Returning to the coefficients’ values, we note that the impact on the FPC conditional quantiles

of f pct−1, f pc5t−1, vixt−1 and jumpt−1 is positive in all cases in which the coefficients are statistically

significant. Therefore, there is a positive relationship between these variables and Q f pct
(τ|xt−1).

With respect to the price jumps, the positive impact is a somewhat expected result, and it extends the

findings in Corsi et al. [52] about the impact of price jumps on realized volatility. However, as the

coefficient of sp500t−1, β̂4(τ), is always negative, in keeping with Black [53], we find that an increasing

market return implies greater stability and negative effects on Q f pct
(τ|xt−1). We also checked on the

persistence of volatility, measured by the sum of the HAR coefficients, that is, β̂1(τ) + β̂2(τ), and noted

that persistence is stronger at high levels of τ: β̂1(0.1) + β̂2(0.1) = 0.396, β̂1(0.5) + β̂2(0.5) = 0.734 and

β̂1(0.9) + β̂2(0.9) = 1.5923. This evidence, which is coherent with the result for jumps, suggests that

volatility in high regimes (upper quantiles) is more persistent as opposed to median or low regimes

(lower quantiles) and that unexpected movements/shocks (including jumps) may have a larger effect

on lower volatility quantiles compared to their impact on higher volatility quantiles, as they convey

relevant information. While these results, recovered from a full-sample analysis, provide an interesting

interpretation, they do not take into account the possible structural changes in the relationship between

covariates and volatility conditional quantiles. This problem is analysed below.

Even if the coefficients’ signs do not change over τ, it is important to determine whether

changes in τ affect their magnitude. In other words, we want to check the so-called location-shift

hypothesis, which states that the parameters in the conditional quantile equation are identical over τ.

Important information can be drawn from Figure 1, which shows the coefficients’ plots.

Figure 1. Coefficients plots. The red lines represent the coefficients values over τ levels, while the blue

areas are the associated 95% confidence intervals.

The impact of f pct−1 on the conditional quantiles of volatility is constant up to τ = 0.7, where

it increases significantly. In the case of f pc5t−1, we observe a slightly increasing trend until τ = 0.7,

when the uncertainty level becomes noticeable. The impact of vixt−1 has a flat trend up to τ = 0.7,

when it begins a decreasing trend, reaching negative values in a region where the regressor is not

significant. However, sp500t−1 shows a negative effect on the volatility quantiles, and this relationship

grows quickly at high values of τ. We associate this finding with the so-called leverage effect, as argued

by Black [53]: increases in volatility are larger when previous returns are negative than when they

have the same magnitude but are positive. To verify this claim, we divided the f pct series into deciles

and, conditional to those deciles, computed the mean of sp500t−1 for the various groups. As expected,
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the mean of sp500t−1, corresponding to the values of f pct in the first decile, is 0.19%, whereas the

mean corresponding to the last decile, in which we have the highest f pct values, is −0.28%. As a

consequence, the negative coefficients for sp500t−1 can be seen as supporting the existence of the

leverage effect. Finally, in the case of jumpt−1, we observe a wide band, where its impact grows at the

beginning but takes negative turns from τ = 0.4.

To summarize, we verify that the relationships between the regressors and the response variable

are not constant over τ. In particular, the impact of f pct−1 and sp500t−1 grows considerably at high

values of τ. Therefore, f pct−1 and sp500t−1 are critical indicators in the context of extreme events

where volatility can reach high levels. The coefficients of the other explanatory variables do not exhibit

particular trends at low-medium levels of τ, and when τ assumes high values, they become even more

volatile in a region of high uncertainty, given their wide confidence bands.

An analysis of the coefficients’ plots shown in Figure 1 suggests that the hypothesis of equal

slopes does not hold. To reach more accurate conclusions, we perform a variant of the Wald test

introduced by Koenker and Bassett [54]. The null hypothesis of the test is that the coefficient slopes

are the same across quantiles. The test is performed taking into account three distant values of τ,

τ = {0.1, 0.5, 0.9}, to cover a wide interval. When we compare the models estimated for τ = 0.1 and

τ = 0.5, the null hypothesis is rejected at the 95% confidence level for f pct−1, f pc5t−1 and sp500t−1.

When we consider τ = 0.5 and τ = 0.9, the null hypothesis is rejected at the 99% confidence level

for f pct−1 and sp500t−1. We obtain the same result when we focus on τ = 0.1 and τ = 0.9, so we

have evidence against the location-shift hypothesis for those regressors. This finding confirms that

the relationship between covariates and conditional quantiles varies across quantile values. This

fundamentally relevant finding highlights that when the interest lies in specific volatility quantiles,

linear models can lead to inappropriate conclusions about whether there is a relationship between

covariates and volatility measures, and if there is, about the strength of the relationship.

5.2. Rolling Analysis

The U.S. subprime crisis and the European sovereign debt crisis have had noticeable effects

on the financial system, with possible impacts also on the relationship between volatility and its

determinants. Therefore, it is important to determine whether these events also affect the parameters

of Model (5). To this end, we perform a rolling analysis with steps of one day using a window size

of 500 observations and τ ranging from 0.05 to 0.95 with steps of 0.05. Therefore, we consider 19 levels

of τ and, for a given τ, obtain 2133 estimates of a single coefficient. The finer grid adopted here allows

us to recover a more accurate picture of the evolution of conditional quantiles. Nevertheless, the most

relevant quantiles in this case are the upper quantiles, that are associated with the highest volatility

levels. The estimated coefficients across time and quantiles are summarized in several figures.

Figure 2 shows the evolution of the relationship between f pct−1 and the conditional volatility

quantiles over time and over τ. The first result that arises from Figure 2 is that the impact of f pct−1 has

a comparatively stable trend over time for medium-low τ levels; some jumps are recorded, mainly in

the period of the subprime crisis, but their magnitude is negligible. The picture significantly changes

in the region of high τ levels, where the surface is relatively flat and lies at low values in the beginning.

However, after the second half of 2007, when the effects of the subprime crisis start to be felt, there

is a clear increase in the coefficient values, which reach their peak in the months between late 2008

and the beginning of 2009. Moreover, in this period, we record the highest volatilities in the f pct−1

coefficients over τ levels. In the following months, the coefficient values decrease, but they remain

at high levels until the end of the sample period. f pct−1 is a highly relevant variable for explaining

the entire conditional distribution of f pct because it is statistically significant over a large number

of quantiles. Figure 2 verifies that the relationship between f pct and f pct−1 is affected by particular

events, such as the subprime crisis, mainly at medium-high τ levels. This finding confirms the change

in the parameter across τ values, with an increasing pattern in τ and highlights that, during periods of

market turbulence where the volatility stays at high levels, the volatility density overreacts to past
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movements of volatility, as the f pct−1 coefficient is larger than one for upper quantiles. Therefore,

after a sudden increase in volatility at, say, time t, we have an increase in the conditional quantiles for

time t + 1 and therefore an increase in the likelihood that we will observe additional volatility spikes

(that is, volatility that exceeds a time-invariant threshold) at time t + 1.

Figure 2. Rolling analysis for f pct−1.

Referring to f pc5t−1, the HAR coefficient reported in Figure 3 has a volatile pattern until late 2008,

when it reaches its peak. After that, the surface flattens, but another jump is recorded in mid-2011,

mainly in the region of high τ values. Therefore, the relationship between the f pct quantiles and

f pc5t−1, which reflects the perspectives of investors who have medium time horizons, is volatile over

time, mainly in the region of high τ values. Again, this result can be associated with crises that affect

the persistence and the probability that extreme volatilities will occur.

Figure 3. Rolling analysis for f pc5t−1.

Figure 4 shows two periods in which the vixt−1 coefficient has high values: between the end

of 2008 and early 2010 and a shorter period from the end of 2011 to the first half of 2012. While, in

the first period, the impact of vixt−1 significantly increases for all τ levels; in the second period, the
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increase in the coefficient affects just the surface region in which τ takes high values. Unlike the

HAR coefficients described above, the vixt−1 coefficient does not have a clear and stable increasing

trend over τ. In addition, the relationship between the f pct conditional quantiles and vixt−1 is highly

sensitive to the subprime crisis when pessimism among financial operators, reflected in the implied

volatility of the S&P 500 index options, was acute. This result is again somewhat expected because we

focus on U.S.-based data, and the subprime crisis had a high impact on the U.S. equity market. Our

results are evidence that the perception of market risk has a great impact on the evolution of market

volatility (as proxied by f pct), particularly during financial turmoil. The impact is not so clear-cut

during the European sovereign crisis, which had less effect on the U.S. equity market.

Figure 4. Rolling analysis for vixt−1.

Figure 5 shows how the impact of sp500t−1 evolves over time and over τ. The surface given is

almost always flat, the exception being the months between late 2008 and the end of 2010, when the

effects of the subprime crisis were particularly acute; during this time, the coefficient values decrease as

τ grows, mainly for values of τ above the median. The lagged value of the S&P 500 index return affects

the entire conditional distribution of f pct and is statistically significant in almost all the quantiles

considered. Moreover, Figure 5 shows that the effect is negative and particularly pronounced during

the subprime crisis when negative returns exacerbated market risk, increasing the upper quantiles’

volatility and increasing the likelihood of large and extreme volatility events.

Figure 5. Rolling analysis for sp500t−1.
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Finally, Figure 6 shows the surface associated with the jump component. At the beginning of

the sample, the jumpt−1 coefficient takes on small values over the τ levels; however, it starts to grow

in 2007, reaching high peaks at high τ levels during the subprime crisis. Although the coefficient

reaches considerable values in this region, their statistical significance is limited. After the second half

of 2009, the surface flattens out again until the end of the sample, with the exception of some peaks of

moderate size that were recorded in 2011 during the sovereign debt crises.

Figure 6. Rolling analysis for jumpt−1.

To summarize, using the rolling analysis, we show that two special and extreme market events

(the U.S. subprime crisis and the European sovereign debt crisis) affected the relationships between the

realized volatility quantiles and a set of covariates. Our results show that coefficients can reasonably

vary, with a potential and relevant impact on the forecasts of both the mean (or median) volatility and

the volatility distribution (starting from the quantiles). The effects differ across quantiles and change

with respect to the volatility upper tails, as compared to the median and the lower tail. Therefore, when

volatility quantiles are modeled, the impacts of covariates might differ over time and over quantiles,

being crucial during certain market phases. This result further supports the need for quantile-specific

estimations when there is an interest in single volatility quantiles.

5.3. Evaluation of the Predictive Power

We evaluate the volatility density forecasts using the tests of Berkowitz [32], Amisano and

Giacomini [33] and Diebold and Mariano [34]. We carry out the three tests by estimating a larger

number of f pct conditional quantiles with respect to those analysed in Section 5.2. This allows

recovering more precise volatility distribution functions. In particular, we consider 49 values of τ,

ranging from 0.02 to 0.98, with steps of 0.02. Given the findings of the previous subsection, we must

use a rolling procedure to build density forecasts. However, we modify the rolling scheme previously

adopted to keep a balance between the reliability of the estimated coefficients and computational times.

In particular, we recover the forecasts based on conditional quantiles estimated from subsamples of

100 observations, and we roll over the sample every 10 days. Within each 10-day window, we use fixed

coefficients but produce one step-ahead forecasts updating the conditioning information set.

With regard to the Berkowitz test, in the case of Model (5), we checked that zt is normally

distributed, as the likelihood ratio test LRb equals 5.26 and the null hypothesis of the Berkowitz test,

that is, zt ∼ N (0, 1) with no autocorrelation, is not rejected at the 5% significance level, thus validating

the forecast goodness of Model (5). To determine whether the predictive power of our approach is

affected by the U.S. subprime and the European sovereign debt crises, the series zt is divided into two

parts of equal length: the first referring to a period of relative calm, from the beginning of 2003 to the

first half of 2007, and the second referring to a period of market turmoil that was due to the two crises
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between the second half of 2007 and the first half of 2013. In the first part, LRb equals 2.34, and in the

second it equals 5.39. Nevertheless, the null hypothesis of the Berkowitz test is not rejected at the 5%

level in both cases. Therefore, the conditional quantile model and the approach that we adopt to

recover the conditional density forecasts are appropriate even during financial turbulence. An analysis

of the results reveals that, as in the analysis of the full sample, f pc5t−1, vixt−1 and jumpt−1 are not

significant to explain the volatility quantiles at high values of τ in many of the subsamples. Therefore,

we must determine whether this result affects the output of the Berkowitz test using a restricted

model in which the regressors are only f pct−1 and sp500t−1. LRb equals 2.60, a smaller value than

in the previous cases. The last findings reported above suggest that the inclusion of non-significant

explanatory variables penalizes the predictive power of Model (5). The restricted model gives the

lowest value of LRb, but the predictive power could be improved by selecting only those variables

that are significant for each value of τ and for each subsample to forecast the conditional distribution

of the volatility. Thus, the structure of Model (5) would change over time and over τ. However,

this approach is not applied in the present work because it would require using only the significant

variables in 49 models, one for each specific value of τ, while it should be considered across all the

rolling subsamples.

So far, we have focused on an absolute assessment of our approach. Now, we compare it with

a competing model that is fully parametric. We recover the predictive conditional distribution of

the realized range volatility using a HARX model in which the mean dynamic is driven by a linear

combination of the explanatory variables f pct−1 and f pc5t−1 (the HAR terms) and the exogenous

variables vixt−1, sp500t−1 and jumpt−1 (the X in the model’s acronym). In addition, to capture the

volatility-of-volatility effect argued by Corsi et al. [31], a GJR-GARCH term [30] is introduced to the

innovation (we name the model HARX-GJR). The error term is also assumed to follow a normal-inverse

Gaussian (NIG) distribution with a mean of 0 and a variance of 1. Thus, the conditional variance is

allowed to change over time, and the distribution of the error is flexible in relation to features like fat

tails and skewness. We start by using the Berkowitz test to evaluate the density forecast performance

of the HARX-GJR model. The likelihood ratio test LRb equals 113.88, a high value that suggests a clear

rejection of the null hypothesis. We also determined whether the HARX-GJR model works better when

we use the logarithm of the volatility as a response variable, following the evidence in Corsi et al. [52],

and found that the likelihood ratio test LRb provides a much lower value (20.27). Even so, the test

signals a rejection of the null hypothesis with a low p-value. As a first finding, our approach provides

more flexibility than the parametric HARX-GJR model does and is better in terms of the Berkowitz test.

To provide more accurate results, we move to a comparison of our approach to the HARX-GJR

using the Amisano and Giacomini [33] and the Diebold and Mariano [34] tests. With regard to the

Amisano and Giacomini [33] test, we use four weights to compute the quantity given in Equation (12):

wCE

(

f pcst
t

)

, wRT

(

f pcst
t

)

, wLT

(

f pcst
t

)

and wNW

(

f pcst
t

)

. The associated likelihood ratio tests are

denoted by AGCE, AGRT , AGLT and AGNW , respectively. Overall, our approach provides better

results than the HARX-GJR because WLR is always positive; in fact, AGCE = 1.6521, AGRT = 2.2766,

AGLT = 1.2961 and AGNW = 1.8810. Given that the critical values at the 5% level are equal to −1.96

and 1.96 (we are dealing with a two-sided test), the null hypothesis of equal performance is rejected

only when we give a higher weight to the right tail of the volatility conditional distribution.

Similar results are obtained when we consider the single quantile loss function and the Diebold

and Mariano [34] test statistic. Our approach provides lower losses because dDM,τ is negative for all the

τ levels we considered (0.1, 0.5, 0.9). However, the differences are statistically significant only at τ = 0.9,

given that DM0.1 = −1.7283 (0.0839), DM0.5 = −1.7332 (0.0831) and DM0.9 = −2.6884 (0.0072).

To summarize, the results demonstrate the good performance of our approach, in particular when

we focus on the right tail of the FPC (a kind of market risk factor) distribution. We note that the right tail

assumes critical importance in our framework, as it represents periods of extreme risks. Our findings

indicate another relevant contribution of this study, as the quantile regression approach that we

propose can be used to recover density forecasts for a realized volatility measure. These forecasts
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improve on those of a traditional approach because of the inclusion of quantile-specific coefficients.

This feature of our approach might become particularly relevant in all empirical applications where

predictive volatility density is required.

5.4. Single-Asset Results

The results in Sections 5.1–5.3 were based on a summary of the 16 asset volatility movements,

which was itself based on the FPC. Now, we search for confirmation of the main findings of Model (5)

by running Model (6) at the single-asset level for all 16 assets. For simplicity, only the results associated

with τ = {0.1, 0.5, 0.9} are shown (additional tables and figures relating to the single-asset estimates

are available on request). Table 3 provides the estimated parameters and their p-values. We first focus

on the relationships between Qrrvi,t
(τ|xi,t−1) and rrvi,t−1, for i = 1, ..., 16. When τ equals 0.1, rrvi,t−1 is

not significant at the 5% level to explain the conditional volatility quantiles of eight assets: ATT, CAT,

HON, IBM, PEP, PRG, TWX and TXN. At τ = 0.5, rrvi,t−1 is not significant only for PRG, whereas,

at τ = 0.9, rrvi,t−1 is not significant for PEP and PRG. Compared with the other regressors and in

line with the results obtained for the FPC, rrvi,t−1 is one of the most significant explanatory variables

at high levels of τ, so it assumes critical importance in the context of extreme events. The rrvi,t−1

coefficient takes a negative value only for PEP at τ = 0.1, but here it is not statistically significant. In

all the other cases, it is always positive. Moreover, the magnitude of the impact that rrvi,t−1 has on

Qrrvi,t
(τ|xi,t−1) is a positive function of τ, for all 16 assets.

The differences among the assets increase as τ grows, and at τ = 0.9 the financial companies

(BAC, CTG, JPM and WFC) record the highest coefficient values, highlighting the crucial importance

of the extreme events in the financial system. f pct−1, the homologous regressor included in Model (5),

has a weaker impact on the conditional volatility quantiles than rrvi,t−1 does only for the financial

companies BAC (τ = 0.1), JPM (τ = 0.5) and CTG (τ = 0.9). Therefore, the relationships between

the conditional volatility quantiles and the lagged value of the response variable are stronger for the

FPC than for the single assets. rrv5i,t−1 is not significant (significance level of 0.05) at τ = 0.1 for CTG,

JPM and PRG, as the p-values of its coefficient indicate. At τ = 0.5 it is not significant only for PRG,

whereas when τ equals 0.9 it is not significant for CTG, JPM and PRG. The rrv5i,t−1 coefficient is

always positive and, with the exception of CTG and JPM, it is a positive function of τ. Moreover, the

differences among the rrv5i,t−1 coefficient values are more marked at high τ levels for all 16 assets.

As for the comparison with the results obtained from Model (5), at τ = {0.1, 0.5}, rrv5i,t−1 has a

stronger impact on the conditional volatility quantiles with respect to f pc5t−1 for most of the 16 assets.

When τ equals 0.9, it is pointless to compare the coefficients’ values because f pc5t−1 is not statistically

significant at that level. Therefore, when we take into account the explanatory variables f pc5t−1 and

rrv5i,t−1, we record stronger relationships for Model (6) than for Model (5).

The p-values of the vixt−1 coefficient are less than 0.05 at τ = {0.1, 0.5} for all 16 assets. When τ

equals 0.9, vixt−1 is significant in the cases of HON, HPQ, PRG, TWX and TXN. Unlike the coefficients

previously mentioned, that of vixt−1 does not have a particular trend over τ; it takes positive values

for all 16 assets, therefore, as in the context of the FPC, it has a positive impact on the conditional

volatility quantiles. In addition, at τ = {0.1, 0.5}, the coefficient of vixt−1 is larger in Model (5) than it

is in Model (6) for all 16 companies. Therefore, vixt−1 has a more marked impact on the conditional

volatility quantiles of the FPC. The comparisons made at τ = 0.9 are useless given the high p-values of

the coefficients of interest.

sp500t−1 is always significant (α = 0.05) for the 16 assets, with the exception of BAC, CTG and

JPM at τ = 0.1. Its coefficient is always negative, as expected, so sp500t−1 has a negative impact on

the conditional volatilities’ quantiles. In addition, the magnitude of the impact is a negative function

of τ for all the assets, and those relationships become more marked at high τ levels. With the exception

of one case (TXN at τ = 0.1), the impact of sp500t−1 at τ = {0.1, 0.5, 0.9} is more pronounced for the

conditional volatility quantiles of the FPC than it is when the assets are considered individually, as

comparing the absolute values of the related coefficients shows.
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Table 3. Quantile regression results for each asset.

Stocks Intercept rrvi,t−1 rrv5i,t−1 vixt−1 sp500t−1 jumpi,t−1

τ = 0.1

ATT −0.002 (11.24) 4.589 (70.99) 28.691 (0.12) 0.002 (0.27) 0.055 (0.09) 3.515 (21.81)
BAC −0.012 (0.02) 25.007 (0.00) 14.869 (1.09) 0.005 (0.01) −0.033 (18.18) −0.202 (99.31)
BOI −0.008 (0.09) 15.852 (0.96) 21.132 (0.01) 0.004 (0.01) −0.081 (0.01) 4.509 (37.15)
CAT −0.012 (0.00) 10.649 (19.31) 25.142 (0.00) 0.006 (0.00) −0.067 (0.695) −0.001 (99.97)
CTG −0.030 (0.00) 18.252 (3.74) 12.645 (8.61) 0.012 (0.00) −0.081 (8.24) 95.128 (0.09)
FDX −0.013 (0.00) 18.287 (0.46) 23.422 (0.00) 0.006 (0.00) −0.065 (0.34) −7.955 (11.99)
HON −0.012 (0.00) 7.855 (36.51) 26.336 (0.01) 0.005 (0.00) −0.097 (0.05) 1.054 (70.67)
HPQ −0.004 (1.75) 16.799 (0.85) 15.327 (0.33) 0.003 (0.00) −0.082 (0.21) −0.039 (99.12)
IBM −0.003 (0.09) 13.709 (19.22) 22.922 (0.09) 0.002 (0.01) −0.050 (0.39) 23.369 (3.12)
JPM −0.019 (0.02) 23.775 (2.59) 14.460 (10.22) 0.008 (0.01) −0.047 (13.31) 2.273 (89.03)

MDZ −0.005 (0.00) 8.280 (1.17) 19.490 (0.00) 0.002 (0.00) −0.027 (0.49) −0.297 (82.09)
PEP −0.005 (0.03) −2.564 (76.78) 26.404 (0.00) 0.003 (0.00) −0.036 (6.06) 6.751 (32.14)
PRG −0.006 (0.08) 1.883 (86.89) 0.483 (91.48) 0.003 (0.00) −0.025 (0.72) 10.243 (49.12)
TWX −0.005 (1.15) 13.005 (19.93) 29.034 (0.00) 0.003 (0.16) −0.072 (0.03) 18.752 (0.85)
TXN −0.003 (19.32) 9.522 (16.87) 32.663 (0.00) 0.002 (0.38) −0.137 (0.00) 0.907 (82.14)
WFC −0.012 (0.00) 20.878 (0.269) 20.321 (0.02) 0.005 (0.00) −0.064 (0.25) −0.044 (99.77)

τ = 0.5

ATT −0.002 (12.24) 30.163 (0.67) 52.921 (0.00) 0.001 (4.07) −0.079 (0.00) −0.400 (91.67)
BAC −0.012 (0.19) 38.505 (0.00) 40.227 (0.00) 0.005 (0.14) −0.167 (0.00) 14.596 (66.46)
BOI −0.011 (0.01) 36.842 (0.00) 36.566 (0.00) 0.005 (0.00) −0.112 (0.00) 7.570 (35.86)
CAT −0.013 (0.00) 40.863 (0.00) 40.806 (0.00) 0.005 (0.00) −0.141 (0.00) −0.043 (99.25)
CTG −0.031 (0.06) 44.363 (0.00) 25.602 (0.04) 0.013 (0.05) −0.109 (0.41) 71.026 (2.39)
FDX −0.011 (0.00) 33.461 (0.00) 44.110 (0.00) 0.005 (0.00) −0.133 (0.00) −4.139 (11.64)
HON −0.009 (0.01) 33.249 (0.02) 42.692 (0.00) 0.004 (0.00) −0.126 (0.00) −2.821 (34.55)
HPQ −0.006 (0.07) 33.324 (0.00) 39.040 (0.00) 0.003 (0.00) −0.135 (0.00) −1.217 (69.97)
IBM −0.004 (0.14) 33.790 (0.01) 42.321 (0.00) 0.002 (0.03) −0.084 (0.00) 39.259 (15.63)
JPM −0.016 (0.01) 50.524 (0.00) 26.286 (0.00) 0.007 (0.01) −0.161 (0.00) −2.738 (92.41)

MDZ −0.006 (0.00) 30.852 (0.00) 36.733 (0.00) 0.003 (0.00) −0.050 (0.00) −1.370 (70.27)
PEP −0.004 (0.01) 31.618 (3.74) 39.554 (0.57) 0.002 (0.00) −0.047 (0.00) 3.569 (60.58)
PRG −0.010 (0.22) 11.543 (65.76) 21.804 (20.76) 0.005 (0.13) −0.050 (0.55) 120.000 (10.11)
TWX −0.007 (0.01) 37.437 (0.00) 39.468 (0.00) 0.003 (0.00) −0.098 (0.00) 18.763 (2.51)
TXN −0.002 (24.69) 27.555 (0.00) 49.860 (0.00) 0.002 (0.63) −0.168 (0.00) −0.497 (91.84)
WFC −0.011 (0.59) 37.207 (0.00) 43.713 (0.00) 0.005 (0.52) −0.133 (0.00) −0.109 (99.18)

τ = 0.9

ATT −0.003 (32.72) 70.584 (0.00) 69.582 (0.00) 0.002 (14.33) −0.179 (0.00) 0.282 (98.09)
BAC −0.005 (60.02) 104.077 (0.00) 48.227 (0.39) 0.002 (60.64) −0.339 (0.02) 156.280 (21.58)
BOI −0.008 (17.55) 60.555 (0.01) 79.933 (0.00) 0.004 (14.54) −0.254 (0.00) −0.471 (97.86)
CAT −0.005 (40.02) 79.303 (0.00) 61.374 (0.00) 0.003 (22.98) −0.321 (0.00) −0.103 (99.14)
CTG −0.003 (86.81) 158.940 (0.11) 19.051 (54.87) 0.001 (83.97) −0.376 (0.02) −73.284 (15.63)
FDX −0.006 (16.06) 57.441 (0.00) 78.243 (0.00) 0.004 (6.12) −0.290 (0.00) −12.050 (44.62)
HON −0.009 (9.87) 69.621 (0.00) 60.597 (0.00) 0.005 (3.83) −0.321 (0.00) −0.630 (92.34)
HPQ −0.008 (12.83) 72.014 (0.00) 66.113 (0.00) 0.004 (4.62) −0.344 (0.00) −3.320 (47.36)
IBM −0.001 (84.22) 55.602 (2.08) 101.283 (0.02) 0.000 (89.26) −0.218 (0.00) 41.659 (55.83)
JPM −0.014 (6.25) 134.345 (0.00) 17.516 (5.77) 0.006 (6.81) −0.349 (0.00) 155.650 (8.94)

MDZ 0.000 (97.15) 86.207 (0.00) 53.696 (0.18) 0.001 (50.69) −0.155 (0.00) -3.639 (23.02)
PEP 0.000 (91.96) 36.885 (36.23) 117.046 (2.80) 0.000 (86.11) −0.107 (0.28) −0.578 (96.86)
PRG −0.010 (2.21) 59.766 (16.98) 47.298 (13.89) 0.004 (1.35) −0.154 (0.01) 152.132 (37.35)
TWX −0.010 (0.48) 86.695 (0.00) 52.144 (0.00) 0.004 (0.42) −0.232 (0.00) −1.217 (94.69)
TXN −0.015 (0.22) 56.407 (0.00) 80.214 (0.00) 0.007 (0.03) −0.381 (0.00) 4.170 (60.83)
WFC −0.004 (57.68) 94.470 (0.00) 64.679 (0.00) 0.002 (53.26) −0.309 (0.00) −0.292 (99.59)

The table reports, for each stock, the coefficients (%) and the p-values (%) for Model (6), given τ = {0.1, 0.5, 0.9}.
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At τ = 0.1, jumpi,t−1 is significant, at the 5% level, for CTG, IBM and TWX. It is significant

only for CTG and TWX at τ = 0.5, whereas it is never significant when τ equals 0.9. jumpi,t−1’s

coefficient takes both negative and positive values and, with the exception of a few assets, it does not

have a particular trend over τ. Comparing these results with those obtained for the f pct conditional

quantiles, we find that, with the exception of CTG (τ = 0.1) and PRG (τ = 0.5), the lagged value of

the component associated with jumps has more impact in Model (5) than in Model (6) at τ = {0.1, 0.5}.

It is pointless to compare the coefficients at τ = 0.9 given their high p-values.

To summarize, the explanatory variables rrvi,t−1, rrv5i,t−1, vixt−1 and sp500t−1 are sufficient

to explain the conditional volatility quantiles of the 16 assets in most of the cases studied.

Their coefficients tend to take the same sign for the 16 assets: positive in the cases of rrvi,t−1, rrv5i,t−1

and vixt−1 and negative in the case of sp500t−1. Moreover, the coefficients of rrvi,t−1, rrv5i,t−1 and

sp500t−1 have a clear trend over τ, providing evidence against the location-shift hypothesis, which

assumes homogeneous impacts of the regressors across quantiles. However, jumpi,t−1 is significant in

only a few cases. Furthermore, with the exception of rrv5i,t−1, we find that, in most of the studied cases,

the relationships between the explanatory variables and the conditional volatility quantiles are more

pronounced in the context of the FPC than when the assets are individually considered. This result

shows that the FPC captures a kind of systematic effect, where the relationship between macro-level

covariates, such as the VIX and the S&P 500 index, and volatility quantiles is clearer. At the single-asset

level, the impact of covariates is more heterogeneous than for the FPC, perhaps suggesting the need

for company- (or sector-) specific covariates.

Table 4. Berkowitz test for the single asset analysis.

Asset LRb LRb,HARX-GJR

ATT 10.23 (0.0167) 150.26 (0.0000)
BAC 3.00 (0.3916) 125.11 (0.0000)
BOI 7.90 (0.04812) 93.09 (0.0000)
CAT 9.31 (0.0254) 88.11 (0.0000)
CTG 4.28 (0.2327) 142.99 (0.0000)
FDX 12.62 (0.0055) 95.63 (0.0000)
HON 5.95 (0.1140) 115.59 (0.0000)
HPQ 5.33 (0.1491) 83.80 (0.0000)
IBM 4.25 (0.2357) 157.06 (0.0000)
JPM 3.26 (0.3532) 124.01 (0.0000)

MDZ 5.49 (0.1392) 159.86 (0.0000)
PEP 9.97 (0.0188) 164.45 (0.0000)
PRG 2.25 (0.5222) 130.88 (0.0000)
TWX 11.09 (0.0112) 99.10 (0.0000)
TXN 1.90 (0.5934) 79.09 (0.0000)
WFC 7.04 (0.0706) 143.04 (0.0000)

The table reports for each stock (the ticker is given in the first column) the values of the likelihood
ratio test (the p-values are given in brackets) proposed by Berkowitz [32], generated by Model (6),
LRb, and the HARX-GJR model, LRb,HARX−GJR.

The last point of our analysis refers to the assessment of the predictive power of Model (6),

which we apply for each of the 16 assets. As in the case of the model for the FPC, we use the tests

Berkowitz [32], Amisano and Giacomini [33] and Diebold and Mariano [34] proposed. With regard to

the Berkowitz test, Table 4 provides the values of the likelihood ratio defined by Equation (11) and the

results generated by Model (6), showing that the null hypothesis of the test, that is, zt ∼ N (0, 1) with

no autocorrelation, is not rejected for 10 assets: BAC, CTG, HON, HPQ, IBM, JPM, MDZ, PRG, TXN

and WFC. The results from the other six cases stem from the fact that some variables, mainly jumpi,t−1,

are not significant in many subsamples for several τ levels. As indicated in Section 5.3, which focused

on the FPC, the predictive power of our approach could be improved by selecting for each subsample

and each τ only the regressors that are significant in order to explain the individually evaluated
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conditional quantiles. Thus, the structure of Model (6) would change over time. Now, we compare

our approach with the HARX-GJR model. The results that arise from using the HARX-GJR model are

given in Table 4. As in the FPC context, the likelihood ratio test (11), denoted by LRb,HARX−GJR, takes

high values for all 16 assets, suggesting that the null hypothesis is rejected with low p-values.

Table 5 reports the results of the Amisano and Giacomini [33] test and shows that overall our

model provides better results: the test statistic values (13) are in most cases positive, and the null

hypothesis of equal performance is almost always rejected at the 5% level. Similar results are obtained

for the Diebold and Mariano [34] test, as we can see from Table 6.

Table 5. Amisano–Giacomini test for the single asset analysis.

Asset AGNW AGCE AGRT AGLT

ATT 3.8957 (0.0001) 4.3336 (0.0000) 2.8878 (0.0039) 4.6406 (0.0000)
BAC 4.0325 (0.0001) 4.3822 (0.0000) 3.0110 (0.0026) 5.4706 (0.0000)
BOI 13.9648 (0.0000) 9.3975 (0.0000) 18.9700 (0.0000) 9.4658 (0.0000)
CAT 4.3298 (0.0000) 4.5230 (0.0000) 2.9384 (0.0033) 5.1361 (0.0000)
CTG 3.6318 (0.0003) 3.7586 (0.0002) 2.8238 (0.0047) 4.1108 (0.0000)
FDX 3.0102 (0.0026) 2.9183 (0.0035) 3.9842 (0.0001) 2.0103 (0.0444)
HON 2.9055 (0.0037) 3.0381 (0.0024) 2.4728 (0.0134) 2.8784 (0.0040)
HPQ 16.6222 (0.0000) 7.4219 (0.0000) 2.7958 (0.0052) 5.3210 (0.0000)
IBM −0.2210 (0.8251) 0.3105 (0.7562) −0.6036 (0.5461) 0.5044 (0.6140)
JPM 0.7630 (0.4455) 0.6326 (0.5270) 1.0247 (0.3055) 0.4642 (0.6425)

MDZ −0.3915 (0.6954) −0.3848 (0.7004) −0.3545 (0.7230) −0.4181 (0.6759)
PEP 1.0614 (0.2885) 2.1311 (0.0331) 0.0232 (0.9815) 2.8849 (0.0039)
PRG 3.2625 (0.0011) 3.2615 (0.0011) 3.3250 (0.0009) 3.2064 (0.0013)
TWX 0.4999 (0.6171) 0.0756 (0.9397) 1.7995 (0.0719) 0.1434 (0.8860)
TXN 3.1661 (0.0015) 3.1672 (0.0015) 2.4961 (0.0126) 3.0988 (0.0019)
WFC 3.0723 (0.0021) 3.1620 (0.0016) 2.4755 (0.0133) 3.2976 (0.0010)

The table reports, for each stock (the ticker is given in the first column), the values of the likelihood
ratio test (the p-values are given in brackets) proposed by Amisano and Giacomini [33], for different
weights. Each weight places greater emphasis on particular regions of the distribution: center (AGCE),
right tail (AGRT) and left tail (AGLT). AGNW coincides with the unweighted likelihood ratio test.

Table 6. Diebold–Mariano test for the single asset analysis.

Asset DM0.1 DM0.5 DM0.9

ATT −1.9227 (0.0545) −2.9818 (0.0029) −3.0612 (0.0022)
BAC −1.6373 (0.1016) −1.9346 (0.0530) −1.8357 (0.0664)
BOI −1.8368 (0.0662) −3.2551 (0.0011) −3.3817 (0.0007)
CAT −2.2598 (0.0238) −3.2398 (0.0012) −2.8698 (0.0041)
CTG −1.8642 (0.0623) −1.9876 (0.0469) −1.7358 (0.0826)
FDX −2.0123 (0.0442) −2.6834 (0.0073) −3.1223 (0.0018)
HON −1.8906 (0.0587) −2.3123 (0.0208) −3.2590 (0.0011)
HPQ −1.4229 (0.1548) −3.5429 (0.0004) −2.5960 (0.0094)
IBM −2.6321 (0.0085) −4.2343 (0.0000) −5.7195 (0.0000)
JPM −1.9990 (0.0456) −2.0265 (0.0427) −2.3821 (0.0172)

MDZ −2.8359 (0.0046) −4.2537 (0.0000) −4.6886 (0.0000)
PEP −2.4810 (0.0131) −4.7986 (0.0000) −4.1165 (0.0000)
PRG −3.3287 (0.0009) −5.0239 (0.0000) −5.9189 (0.0000)
TWX −1.6401 (0.1010) −2.7771 (0.0055) −2.0985 (0.0359)
TXN −1.4331 (0.1518) −3.0835 (0.0020) −2.0368 (0.0417)
WFC −1.6855 (0.0919) −1.7348 (0.0828) −2.3336 (0.0196)

The table reports, for each stock (the ticker is given in the first column), the values of the
likelihood ratio test (the p-values are given in brackets) proposed by Diebold and Mariano [34],
at τ = {0.1, 0.5, 0.9}.
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The sign of the test statistic (15) is always negative, suggesting that our approach implies a

lower loss. Moreover, the performances are in most cases statistically different, given that the null

hypothesis is often rejected at the 5% level. Therefore, the three tests provide clear evidence of the

better performance of our method with respect to the benchmark and also in the case of single-asset

realized volatilities.

To conclude, we found similar results for Models (5) and (6). In particular, for both models, the

lagged value of the response variable and the lagged value of the S&P 500 return were fundamental

explanatory variables at high τ levels, which are the most critical. In contrast, the lagged value of

the jump component is significant in a few cases. We determined that the relationships between four

explanatory variables (rrvi,t−1, vixt−1, sp500t−1 and jumpi,t−1) and the conditional volatility quantiles

are almost always stronger in Model (5) than in Model (6). However, in the case of rrv5i,t−1, the

relationships are stronger in Model (6) than in Model (5). Finally, even in the single-asset analysis, the

goodness of the predicted power of our approach is validated using the three tests.

6. Conclusions

We proposed a semi-parametric approach to model and forecast the conditional distribution

of asset returns’ volatility. We used the quantile regression approach, considering as predictors,

variables built from the lagged values of the estimated volatility, following the HAR structure Corsi [9]

developed, and macro-level variables, such as the VIX and the S&P 500 index.

We estimated volatility using the realized range-based bias corrected bipower variation introduced

by Christensen et al. [12], which is a consistent estimator of the integrated variance in the presence of

microstructure noise and jumps in the context of high-frequency data. Our analyses considered 16

companies that operate in a variety of sectors in the U.S. market, and the results provide evidence

of relevant impacts by the explanatory variables. In particular, the lagged values of the estimated

volatility and the S&P 500 return were critical indicators in the context of extreme events, where

volatility can reach considerably high levels. These two regressors were highly significant in terms

of their ability to explain the high quantiles of volatility. Moreover, the test Koenker and Bassett [54]

introduced allowed us to reject the location-shift hypothesis, highlighting the heterogeneous impacts

of the regressors across quantiles.

To assess the evolution of the relationships among the variables over time, we carried out a rolling

analysis with steps of one day and subsamples consisting of 500 observations. Thus, we verified that

two special events, the U.S. subprime crisis and the European sovereign debt crisis, have affected those

relationships. In particular, acute sensitivity was recorded at high levels of quantiles. Finally, the tests

developed by Berkowitz [32], Amisano and Giacomini [33] and Diebold and Mariano [34] validated

the forecast performances, even in periods of financial turmoil. We compared our approach with a

HARX-GJR model, which combines a HAR structure of the realized volatility mean with additional

exogenous variables, and a GJR-GARCH model [30] for the mean innovation variances. The results

give evidence of the superior performance of our approach.

Our findings provide supporting evidence for the use of quantile regression methods for the

quantile forecasts and for the density forecast of the realized range volatility. The improvement over

traditional methods is marked and will be relevant in all areas where volatility quantile values and

volatility density forecasts play a role. The use of predicted volatility levels is central, for instance,

in the pricing of equity derivatives, in the development of equity derivative trading strategies and

in risk measurement when risk is associated with volatility. The volatility distribution is of interest

when trading/pricing volatility derivatives, when designing volatility hedges for generic portfolios

and when accounting for the uncertainty of volatility point forecasts.

In the present paper, we worked with multiple assets’ volatilities inside a univariate framework.

We left to future works the generalization of our approach to a multivariate version and its integration

in returns-based volatility models where realized volatility measures represent further conditioning

information sources.
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