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The Determination of Galois Groups

By Richard P. Stauduhar

Abstract. A technique is described for the nontentative computer determination of the
Galois groups of irreducible polynomials with integer coefficients. The technique for a
given polynomial involves finding high-precision approximations to the roots of the poly-
nomial, and fixing an ordering for these roots. The roots are then used to create resolvent
polynomials of relatively small degree, the linear factors of which determine new orderings
for the roots. Sequences of these resolvents isolate the Galois group of the polynomial.
Machine implementation of the technique requires the use of multiple-precision integer and
multiple-precision real and complex floating-point arithmetic. Using this technique, the
writer has developed programs for the determination of the Galois groups of polynomials of
degree N á 7. Two exemplary calculations are given.

Introduction. The existence of an algorithm for the determination of Galois
groups is nothing new; indeed, the original definition of the Galois group contained,
at least implicitly, a technique for its determination, and this technique has been
described explicitly by many authors (cf. van der Waerden [8, p. 189]). These sources
show that the problem of finding the Galois group of a polynomial p(x) of degree n
over a given field K can be reduced to the problem of factoring over K a polynomial
of degree n\ whose coefficients are symmetric functions of the roots of p(x).

In principle, therefore, whenever we have a factoring algorithm over K, we also
have a Galois group algorithm. In particular, since Kronecker has described a factoring
algorithm for polynomials with rational coefficients, the problem of determining the
Galois groups of such polynomials is solved in principle. It is obvious, however,
that a procedure which requires the factorization of a polynomial of degree n ! is not
suited to the uses of mortal men.

In the next sections we describe a practical and relatively simple procedure which
has been used to develop programs for polynomials of degrees 3 through 7.

Restrictions. The algorithm to be described will apply only to irreducible monic
polynomials with integer coefficients. Since any polynomial with rational coefficients
can easily be transformed into a monic polynomial with integer coefficients equivalent
with respect to its Galois group, these latter two adjectives create no genuine restric-
tion. The irreducibility restriction is genuine, however. For supposep(x) = pi(x)-p2(x),
and suppose K¡ and K2 are the splitting fields of px and/?2, respectively. If Kx C\ K2 =
the rationals, then the Galois group of p(x) is the direct sum of the Galois groups
of pi(x) anàp2(x), and there is no difficulty. If, on the other hand, Ki P\ K2 is larger
than the rationals, then the group of p(x) is not easily determined from those of
Pi(x) and p2(x) without explicit knowledge of the relations which exist between the
roots of pi and the roots of p2.
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982 RICHARD P. STAUDUHAR

As will become clear, the irreducibility restriction is not essential, but it greatly
simplifies the work of implementing the algorithm for polynomials of a given degree.

There is another restriction. Application of the algorithm to polynomials of
degree n requires knowledge of all transitive permutation groups of that degree.
However, the memory size of computers currently available will limit use of the
algorithm in the near future to cases for which such knowledge already exists. Conse-
quently, this restriction is not practically important.

Representation of the Galois Group. In the classical development of Galois
theory, the Galois group of a polynomial is regarded as a group of permutations on
the roots of the polynomial. From the standpoint of computation, this concrete,
finite representation of the group seems to offer the best hold on the problem of its
determination. Consequently, the Galois group will here be regarded as a group of
permutations.

More specifically, let Sn be the symmetric group on n letters and it, a £ Sn be maps
of {1, 2, ■ • • , n] onto itself. Multiplication of permutations is composition, so that
(ir-ajk) = *(a(k)).*

Letp(x) be a polynomial with rational coefficients and roots ru r2, • • • , /•„. Let K
be the splitting field of p(x). Let g be the group of automorphisms of K. Suppose
s G 8- Then s induces a permutation on ru • • • , rn, which can be set forth as follows:

\s(ri), • • • , s(rn)/ V,,, • • • , /•,„/ \iu • • • , ij

Letting it, denote the final expression here, it is clear that the map s —> tt, defines an
isomorphism from g onto a subgroup G of Sn. It is important to observe that the
group G depends on the chosen labelling of the roots of p(x). For if a new labelling
t'i = JVu>»•••> K — rT(«) i8 chosen, then the isomorphism given above will carry g
onto t~1Gt. Consequently, when the Galois group of a polynomial is given as a group
of permutations, an ordering of the roots of the polynomial must also be given.

The material presented in the following two sections is well known from classical
Galois theory. A few of the theorems and definitions are presented in a slightly unusual
form, one which has been dictated by the numerical character of their application.
The others are set forth simply for completeness and for clarity of exposition of the
main algorithm.

Groups and Functions. Let F(xu ■ • ■ , xn) be a polynomial in the indeterminants
Xi, ■ ■ ■ , xn. The course of the Galois algorithm requires that the action of permuta-
tions on the arguments of such functions be considered.

Definition. Let F(xu • ■ ■ , xn) be a polynomial in the indeterminants xu ■ ■ ■ , xn.
Let ir G S„. Then k(F)(xi, ■■■ , x„) = F(yu ■■■ , yn) where j, = *»<.)•

If two permutations are applied sequentially to a function, we obtain the following:
Proposition.   <t(t(F)\xu ■■■ , x„) = o--w(F)(xi, • • ■ , xn).
It may be that a function F(x1} ■ ■ ■ , xn) is left unchanged by the action of certain

permutations. For example, F(x¡, x2, x3, x4) = XiX3 + x2x* is unchanged by any of the
permutations {identity, (1234), (1423), (13)(24), (12)(34), (14)(23), (13), (24)}.

* The order of application, right to left, used here in defining multiplication of permutations,
should be carefully noted.
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The collection of all permutations on n letters which leave a function F(xu ■ ■ ■ ,xn)
unchanged clearly forms a group. (The permutations in the above example form the
group of the square.)

Definition. Let F(x¡, • • • , xn) be a polynomial with integral coefficients in the
indeterminants x1} • • ■ , xn. Let G be a group of permutations on 1, • • • , «. If Fis left
unchanged by precisely the permutations of G, we say that F belongs to G.

In this definition we restrict the coefficients of F to be integers for reasons that
will be apparent later.

Theorem 1. Let G be a subgroup of Sn. Then there is a function F(xu ■ ■ ■ , xn)
which belongs to G.

Proof. Let F*(xu ■•■ , xn) = x\x22 ■■■ xnn. Define F(xu ■■• , xn) =
2'so <r(^*X*i> " * • > *»)• Clearly, F belongs to G. For if tr G G, then the application
of r merely permutes the terms of F among themselves, but if it (£ G, then the terms
of F are moved onto terms corresponding to the right coset** irG of G.   Q.E.D.

Definition. Given a function F(xu • • • , xn) and a permutation ir G Sn, the
function ir(F) is called a conjugate value or a conjugate function of the function F.

Now we can ask the question: Given a polynomial F(xu ■ ■ ■ , xn), and a group
H C Sn, how many distinct conjugate values does F take under the permutations
of HI This is answered by the following:

Theorem 2. Let H be a subgroup ofS„. Suppose F(xu • ■ ■ ,xn) belongs to G C Sn.
Then F takes exactly [H: H C\G] distinct conjugate values under the permutations ofH.

Proof. Suppose *u ir2 G H. We will show that iri(F) = ir2(F) iff iti and tr2 lie
in the same right coset of H í\ G.

iri(F) = tt2(F)

iff   t21(ti(F)) = F

iff   ir^-ir^F) = F

iff   tJ'-t, g h DG

iff   tvi(H C\G) = ir2(H r\ G).        Q.E.D.

Definition. Suppose G and H are subgroups of S„ and F(xu • • • , xn) belongs
to G. Let G' = G C\ H. We say then that F belongs to G' in H. That is, among the
permutations in H, exactly those of G' leave F unchanged.

Theorem 3. Suppose G and H are subgroups of S„, with G d H, and suppose
F(xi, • • • , *„) belongs to G in H. If ir G H, then ir(F) belongs to tGt'1 in H.

Proof.   Omitted.
Now suppose F(xu ■ ■ ■ , xn) belongs to G in H, and [H : G] = k. Then we can

choose permutations x¿ G H so that H = ir¡G VJ • • • VJ 7rtG, and hence, as we have
shown, so that the functions F = tti(F), ir2(F), ■ • ■ , irk(F) are formally distinct. It
should be noted, however, that the values of these functions are not necessarily
distinct on a fixed n-tuple of numbers. For example, let F(xu x2, x3, x4) = XiX22 +
x2x23 + x3x\ + xtx2, so that F belongs to the cyclic group generated by (1234), with
right coset representatives {identity, (12), (13), (23), (123), (132)} in S4. Now if we

** The convention adopted here, following Marshall Hall and some others, is that right cosets
of a group G are sets of the form irG.
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984 RICHARD p. STAUDUHAR

evaluate F and its conjugates on the four roots of p(x) = x* — 2, with the ordering

i/i, r2, r3, r4) = (y/2, — y/2, i y/2, —i y/2),

we observe that (23)F(ru r2, r3, r4) = (\23)F(ru r2, r3, r4) = 0.

Functions and the Galois Group. In this section, we consider the relation
between the Galois group of an irreducible «th degree polynomial p(x) and the values
taken on the roots of p(x) by functions belonging to subgroups of Sn.

Theorem 4. Let p(x) be a monk irreducible polynomial of degree n with integer
coefficients. Let ru r2, • • ■ , rn be a fixed ordering of the roots ofp(x). Suppose H is a
transitive subgroup ofSn, and suppose that, with respect to the given ordering of the roots,
the Galois group T ofp(x) is a subgroup ofH. Let G be a subgroup of H and F(xu • • •, x„)
a function belonging to G in H. Let vu • • ■ , rk be representative for the right cosets
of G in H. Then the resolvent polynomial

k

Qar.oÁy) = II (y - *ÁF(ri, ■■■ , /•„)))
t = l

has integer coefficients.
Proof. For each i, 1 3» / £* fc, *i(F(ru ■•■ , /■„)) is an algebraic integer. Hence,

the coefficients of Q {H ,c )(y) are algebraic integers. Now suppose o- G T. Then er G H,
and hence

k

"(Q(y)) =  IT (y ~ v(tr,(F(ri , ■■■  , rn))))•=i
k

=  U(y - (vTri)(F(ri , •••  ,r„))).

But the set o- • it,, cr • ir2, • • ■ , a • irk is also a set of right coset representatives for G in H.
Thus, the application of o- has merely permuted the roots of Qm .G)(y), leaving the
coefficients fixed. The coefficients of Q are then algebraic integers left fixed by r
and are therefore rational integers.   Q.E.D.

At this point it is worth mentioning that the roots of Q may not be distinct, as
the example following Theorem 3 shows.

Theorem 5. Let all the assumptions of Theorem A hold. F(ru ■ ■ ■ , /•„) is a root of
Q(H ,G)(y), since one of the coset representatives of G in H lies in G itself. Assume
F(ru ■ ■ ■ , rn) is not a repeated root of QiH ,G)Cv). Then T C G iff F(r¡, ■ ■ ■ , r„) is a
rational integer.

Proof.   First, observe that F(ru ■ • • , rn) is an algebraic integer.
Now assume T C G. Let a G T. Then a G G, hence <r(F) = F. Consequently,

F(ru ■ ■ ■ , rn) is fixed under the action of all elements of the Galois group, hence it
is a rational number. Since it is an algebraic integer, it is a rational integer.

Conversely, assume F(ru ■ ■ ■ , rn) is a rational integer. Then F(ru ■ ■ ■ , r„) is fixed
by the Galois group of p(x). But among the permutations of H only those of G fix
F(r¡, ■ ■ ■ , rn), since it is not a repeated root of Qu,,G). Hence (r C\ H) C G. But by
assumption Y <Z H. Thus T C G.    Q.E.D.

Corollary. Assume iti(F(ru ■ ■ ■ , /•„)) is not a repeated root of Qw ,G)(y). Then
T C iriGir'1 iff trt(F(r¡, ■ ■ ■ , rn)) is a rational integer.

Corollary.   Suppose r,(F(r¡, ■ ■ ■ , rn)) is a rational integer, and not a repeated
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root ofQ(h ,Q)(y), so that T C riGit~li. If the roots ofp(x) are reordered according to
the rule r'¡ = r,<H), then F(r[ , ■ • ■ , r£) is a rational integer, and with respect to this
new ordering, T C G.

There is a well-known theorem (van der Waerden [8, p. 155, Exercise 4]) which is
very useful in trying to determine the Galois group of a polynomial.

Theorem. Let p(x) be a monk irreducible polynomial of degree n with integer
coefficients. Then the Galois group of p(x) is a subgroup of the alternating group An
iff the discriminant D(p(x)) is a perfect square.

The Determination of Galois Groups. Suppose that a monic irreducible poly-
nomial p(x) of degree n with integer coefficients is given. Assume that the discriminant
D(p(x)) and its square root are known. (There is a simple recursive technique for
computing the discriminant of a polynomial, given its coefficients. See Brillhart
[0, p. 51].)

Assume further that high-precision approximations to the roots of p(x) are known.
Place these roots in an (arbitrary) initial ordering ru ■ • ■ , rn. Let Y denote the Galois
group of p(x) with respect to this ordering. Now suppose that M is a maximal transi-
tive subgroup of Sn, M 9^ An,*** and [Sn : M] = k. We know, a priori, that r C Sn.
To determine if Y d M, or some conjugate of M, calculate a resolvent polynomial
of degree k, Q(S„,M)(y) numerically, using a function F(xu ■ ■ ■ , x„) belonging to
M in S„, and a set «•„ • • • , -irk of right coset representatives for M in S„.

According to Theorem 4, this resolvent is monic with integer coefficients. Test
the resolvent for integer roots. If it has none, then r is not contained in any of the
conjugates of M, and similar resolvents may be computed, corresponding to other
conjugacy classes of maximal transitive subgroups of S„.

Suppose, however, that ô(S„,M)O0 has an integer root. Then this root is
tTi(F(ri, ■ • , r„)), where it, is one of the chosen coset representatives, and in conse-
quence of the first corollary to Theorem 5, Y C ir.AfirT1.

The roots of p(x) must now be reordered, so that r'¡ = rTf(0. After the reordering,
according to the second corollary to Theorem 5, we have Y <Z M.

Now, assuming that Y <Z M, suppose M* is a maximal transitive subgroup of M,
and F* is a function belonging to M* in M. Then a resolvent polynomial Q (Af iM. >(y)
of degree [M : M*] is calculated, and this new polynomial is tested for integer roots.
(This resolvent is, again by Theorem 4, monic with integer coefficients.) If an integer
root of ß(iif,Af») is found, the roots of p(x) are again reordered to insure that Y C M*.

Searching continues in this way until either none of the resolvents at a given level
yield an integer root, or a minimal transitive subgroup of Sn is located. We need
consider only transitive subgroups of Sn in the course of the search, since p(x) is
assumed irreducible. At each level of the search, clearly, only groups not previously
eliminated need be considered. Suppose, for example, that S„ has maximal subgroups
Mi and M2, and it is discovered that Q{sn.M,)(y) has no integer roots, but that
Ô(s».at.)Cv) d°es> so that T (TJ Mu and r C M2. Then, for the remainder of the
search, groups which lie within Mi (~\ M2 are automatically ruled out as possibilities
for r.

In the above discussion it is assumed that those integer roots of resolvents with
respect to which reordering is taking place are not repeated roots. In the case that all

*** The case M = An will be considered later in this section.
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986 RICHARD P. STAUDUHAR

the integer roots of a resolvent have multiplicity greater than one, the resolvent can
be recalculated with respect to a new function, or the input polynomial can be operated
upon with a Tschirnhaus transformation, in order to obtain a resolvent without
repeated roots.

We have not yet described how the discriminant is used. It is used in two ways.
First, if none of the resolvents associated with the maximal transitive subgroups of S„
yield an integer root, then Y = An or Y = Sn, depending on whether or not D(p(x))
is a perfect square. Second, if D(p(x)) is a square, and we have determined that r C M,
then we know that r C M D An. Use of this fact simplifies the search procedure to
some extent.

Something now should be said about how integer roots of resolvent polynomials
are identified.

Since at each stage of the search procedure the resolvents being dealt with are
known to have integer coefficients, it is only necessary to calculate the coefficients
of resolvents to within an accuracy of ±\ in order to determine them exactly. To
insure this accuracy, the roots of a typical resolvent

*
QiM,.M,)(y) = IT (y — *i(F(ri, ■ ■ ■ , /•„)))

can be calculated to high precision, using the given approximations to r¡, ■ ■ ■ , rn,
and the product can then be expanded to obtain approximations to the coefficients.
Multiple-precision complex floating-point arithmetic routines are generally required
to obtain the necessary accuracy.

If a given (approximate) root of the resolvent Q<.m, ,m,) seems to be an integer to
within some reasonable tolerance, it can be rounded to that integer and a synthetic
division can be performed with Q(m1,m,i to test whether the integer is indeed a root
of the resolvent.

The following tables and diagrams contain the data needed to find the Galois
groups of polynomials of degree N ^ 7. The tables contain descriptions of repre-
sentatives of the conjugacy classes of transitive groups of the various degrees, and,
when required, functions belonging to these groups, as well as the necessary coset
representatives. The alternating and symmetric groups of the various degrees are
not included in the tables. No functions are given belonging to the groups for which
no resolvent is computed. For example, in the degree five case, if the Galois group Y
of a polynomial p(x) is a subgroup of G20, and D(p(x)) is a perfect square, then
T C G10, otherwise Y = G20. Consequently, it is never necessary to compute a resolvent
of the form ß(ff ,0lo), when D(p(xj) is known.

The groups of degree six have been divided into three categories: the groups
imprimitive on two sets of three letters, the groups imprimitive on three sets of two
letters but not two sets of three letters, and the primitive groups. They are given in
this order in the tables. The diagrams indicate, for each degree, the order in which
searching can be carried out (i.e., the order in which resolvents should be computed),
so that optimal use is made of accumulated information. For these diagrams, the
following conventions have been adopted: (1) at any particular node, searching
proceeds from left to right on the branches leaving that node; (2) nodes isolated
through examination of the discriminant are identified by a leading "A" (for alter-
nating); an example is the node G\ in the tree for n = A; (3) the alternating group
A„ is not shown in tree n.
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THE  DETERMINATION  OF  GALOIS GROUPS 991

For n = 3, the only transitive groups are S3 and A3. Hence the Galois group of
an irreducible polynomial of this degree is determined entirely by the value of the
discriminant of the polynomial. Consequently, no tree is shown for this degree.

Table 2 gives right coset representatives for the groups of the various degrees,
as indicated.

Remark. Information used in constructing the tables and trees presented here
has been gleaned from [1], [2], [3], [4]. The author has constructed a similar table and
tree for the degree-eight case, using, in addition to the above sources, [5], [6], [7].

Degree 4

Table 2

Gg c S4 I, (23), (34)

G, c 0Q I, (12)(34)

Degree 5

G20 c S5 I, (12)(34), (12435), (15243)

(12453), (12543)

G5  c G10 I, (12)(35)

Degree 6

Gy2 c S6 I, (2543), (236)(45), (25436)

(25)(34), (2453), (25), (2345)

(24536), (3645)

G236cG72 1,(56)

G18 c G?2 I, (12)(45), (56), (12)(465)

Gg  c G18 I, (123), (132)

g\     c Glg I, (123), (132)

G12 c G?2 I, (123), (132), (56), (123)(56)

(132)(56)

GA8 c S6 I, (24635), (26)(35), (354), (2345)

(253), (345), (256)(34), (26435)

(2346), (234), (25)(36), (2435)

(24)(35), (26543)

G24cG48 X> (12)

G24cG48 I, (13M24)

G2U  c G24 I, (13)(24)

G12Qc S6 I, (13), (23), (123), (132), (12)
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1, (356), (365), (34)(56),C354), (364), (456), (345),

(36)(45), (465), (35)(46), (346), (47)(56), (35)(47),

(36)(47), (243756), (243675), (243)(57), (2475),

(247536), (247563), (246375), (246)(57), (246753),

(24)(375), (24)(36)(57), (24)(567), (245)(37),

(245736), (245673)

Let A be the set consisting of the even coset

representatives for G  „ in S  . Let B be the
loo      /

set of all coset representatives for G   in G   .21      168

Then the required 120 coset representatives here

are given by A • B .

I, (37)(56), (23)(74), (2347)(56), (24)(56),

(24)(37), (2743K56), (27)(34)

I, (235X476), (253X467)

I, (235) (476), (253X467)

The degree-eight information is not given in this paper, since it has not been checked
by actual computation.

Example 1.    Let p(x) = x6 - 42x4 + 80x3 + 441.x2 - 1680* + 4516. p(x) can
be shown to be irreducible over the rationals. Let Y denote the Galois group of p(x).

D(p(x)) = -2994775465327199186944,
clearly not a perfect square.

The roots of p(x) are (approximately)
r, = 4.392 - 1.570/; r2 = r,,
r3 =  -5.490 - 0.780i;        r4 = f3,
r5 = 1.098 - 2.355Í; r6 = f5.

Let this be the initial ordering of the roots. The maximal subgroup G72 of Sñ has
the ten right coset representatives

xj = identity, ir6 = (2453),

t2 = (2543), r7 = (25),

t3 = (236)(45), 7r8 = (2345),

r4 = (25436), 7T9 = (24536),

7r5 = (25X34), jr10 = (3645).

When the resolvent ß(.Sr., a,2)(y) is computed using the above data and the function
F(xi, ■ ■ • , xa) = x¡x2x3 + x4Xr0xs given in Table l, we obtain

Degree 7

G168 C S7

G42 C S7

G21 C G168

G14 c G42

G7 CG21
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Ges.. o,.)(«) = /° + 80/ - 59166/ - 4390320/

+ 1200615393/ + 88076918880/

- 7198940057856/ - 388801984512000/

+ 20193311991398400/

+ 595967000182784000.V
- 4689149328097280000.

[The actual calculation of the resolvent was made carrying 192 bits of precision. With
this precision, the coefficients of the resolvent were integers to within 2"96.] The resol-
vent has a single integer root, — 80, corresponding to the conjugate value tr3(F), and
no repeated roots. Consequently, r C i^G^t"1 and, after reordering the roots
ofp(x) according to the rule r'¡ = rr,U), we know that r C G72. G72 has two maximal
subgroups of order 36, GJ„ and G26. Since GJ6 C As, and since we know that D(p(x))
is not a perfect square, Y (£ Gà6. Computing the resolvent Q(o„.ol,i(y), we find

ß<0„.0;.,Cv) = (y + 137376)(.y - 137376)

and therefore Y C G23a. Now, G23& contains two isomorphie versions of G1S which are
conjugate in G72 but not in G23&. Therefore, to test whether r is contained in some
conjugate of G18, one can either compute a single quartic resolvent, Ô(G,,,<?,.), or
a pair of quadratic resolvents ß((j',.<?,.). Adopting the first course, G1S has the four
right coset representatives {identity, (12)(45), (56), (12X465)} in G72. We then find

Qio,„o,.)(y) - O + 3600Cv - 360/)(.y + 648)(j> - 648)
and we have Y C (56)G1S(56).

Reordering the roots of p(x) again, using the interchange (56), we have r G G18.
Finally, Gi8 has the transitive subgroup Gl6, and the resolvent associated with this
subgroup turns out to be

G(ö,.,G:,Cv) = / - 1323.V + 7722 = (y - 33)(y - 6)(y + 39).

Thus, T C G\, and since G\ is a minimal transitive subgroup of S6, Y = G\. Therefore,
with respect to the final ordering

n = 4.392 - 1.570/;        r2 =  -5.490 - 0.780/;
r3 = 1.098 + 2.355/;        rt =      1.098 - 2.355/;
r5 = 4.392 + 1.570/;        r6 =  -5.490 + 0.780;

the Galois group of p(x) is
identity

(123X465)
(132X456)
(14)(25)(36)
(15)(26)(34)
(16)(24)(35),

a group isomorphic to S3.
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K = 5 T*5

« = 4

n = 6

'20

*AG10

120
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Example 2. Let p(x) = x6 - 32x4 + 160.x3 - 320x2 + 384.x - 256. Again,
p(x) is irreducible over the rationals, and again we let Y denote the Galois group of
p(x).

D(p(x))  - 403780252137947136 = (635437056)2.

An initial ordering for the roots of p(x) is

n - 1.587;        r2 = 0.517 - 1.342/;

r3 = f2; r4 = 2.534 + 1.927/;

r» = h ; r, «  -7.690.

This time, we obtain the resolvent

Qis..e,.M = /° + 160/ + 12544/ + 761856/ + 35586048/

+ 1375731712/ + 39845888000/

+ 935765999616/ + 15169824489472/

+ 172073569746944^ - 30786325577728
which proves to have no integer roots. Hence Y is not contained in any of the con-
jugates of G72.

We next compute a resolvent with respect to the maximal subgroup G48 of index
15 in Sn,

G<a..G..>00 = /5 + 96/4 + 4992/3 + 171520/2

+ 4546560/1 + 99237888/°

+ 1895104512/ + 31195136000/

+ 448874414080/ + 5653059376768/

+ 63843346677760/ + 606767209775104/

+ 4504321181876224/ + 28162341078040576/

+ 71405583642656768V + 0.
This resolvent has the single integer root 0 corresponding to the conjugate value

(23456XF) of the function F(xu • ■ ■ , x6) = x¡x2 + x3x4 + x5x6. After reordering the
roots of p(x) according to (23456), we have Y C G48. Since D(p(x)) is a perfect square,
Y C G48 r\ A, = G34.

There is only one transitive subgroup of G24 which is not also a subgroup of G72.
This group is G22, and computing the resolvent Q<.ol<.o'12)(y) = / — 103424, we
find that r = G24, since this resolvent has no integer roots. Thus, with respect to the
final ordering

r, = 1.587, r2 = -7.690,

r3 = 0.517 - 1.342/,        rt = f3 ,

rb = 2.534+ 1.927/,        r. = h
of the roots of p(x), the Galois group Y of p(x) is a group of 24 even permutations,
isomorphic to St. Generators for this group are given in Table 1.
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Quadratic Factors of Resolvents. Suppose M¡ and M2 are nonconjugate maxi-
mal transitive subgroups of Sn, and p(x) is an irreducible polynomial of degree n with
Galois group Y. It has been shown, above, that a resolvent polynomial Q(.s^.M,)(y)
can be used to determine if Y is a subgroup of some conjugate of Mx. This is done by
searching, in effect, for linear factors of ß ( s „, Ml,. It is sometimes possible to determine
if r is a subgroup of another maximal transitive subgroup M2 by searching for higher
degree factors of ß(SniM, >■ There are obvious practical advantages to this approach
if [Sn : Mi] is substantially smaller than [SH : M2]. For example, S7 has two maximal
transitive subgroups: G168, of index 30, and G42, of index 120. It turns out that by
looking for quadratic factors of the resolvent ß<s,,Glcs) of degree 30, one can avoid
ever dealing with a resolvent of degree 120. (A similar situation occurs in the degree
eight case.) A difficulty is encountered, however, in using quadratic factors of resol-
vents. Under certain circumstances a quadratic factor of Q{S„,Ml) will guarantee
that T is a subgroup of some conjugate of M2, but will fail to specify exactly which
conjugate. To put it another way, it is sometimes impossible to extract from the
quadratic factor the information necessary to reorder the roots of p(x). As it turns out,
this unpleasant situation can always be avoided in the degree seven and degree eight
cases. Even so, the procedure for obtaining reordering information from a quadratic
factor is somewhat complicated and will not be discussed here.
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