
MATHEMATICS OF COMPUTATION
VOLUME 40, NUMBER 162
APRIL 1983, PAGES 647-665

The Determination of the Value
of Rado's Noncom puta ble Function 2(k)

for Four-State Turing Machines
By Allen H. Brady

Abstract. The well-defined but noncomputable functions 2(/c) and S(k) given by T. Rado as
the "score" and "shift number" for the Ä-state Turing machine "Busy Beaver Game" were
previously known only for k < 3. The largest known lower bounds yielding the relations
2(4) s* 13 and S(4) 5s 107, reported by this author, supported the conjecture that these lower
bounds are the actual particular values of the functions for k = 4.

The four-state case has previously been reduced to solving the blank input tape halting
problem of only 5,820 individual machines. In this final stage of the k = 4 case, one appears
to move into a heuristic level of higher order where it is necessary to treat each machine as
representing a distinct theorem. The remaining set consists of two primary classes in which a
machine and its tape are viewed as the representation of a growing string of cellular automata.
The proof techniques, embodied in programs, are entirely heuristic, while the inductive proofs,
once established by the computer, are completely rigorous and become the key to the proof of
the new and original mathematical results: 2(4) = 13 and S(4) = 107.

"In any case, even though skilled mathematicians and experienced
programmers attempted to evaluate 2(3) and 5(3), there is no evidence
that any known approach will yield the answer, even if we avail ourselves
of high-speed computers and elaborate programs. As regards 2(4), 5(4),
the situation seems to be entirely hopeless at present."—Tibor Rado,
1963.

1. Background and Introduction. The "Busy Beaver Game" was devised by Tibor
Rado [8] for the purpose of illustrating the notion of noncomputability. Given the
set of Turing machines of exactly k states which operate with the minimum alphabet
of two symbols (a space and a mark or 0 and 1) one considers the problem of
behavior of these machines on a tape which is initially all blank (all 0's). This is a
finite set of machines, there being exactly (4k + l)2k distinct machines, where, with
two table entries per state, each table entry may consist of printing 0 or 1, moving
right or left, branching to state 1,2,... ,k or simply an entry to declare a halt.*

Since the input tape is blank, each machine faces one of two possible fates: either
it eventually halts, or else it continues running forever. After a particular machine

Received July 22, 1981; revised June 28, 1982 and September 7, 1982.
1980 Mathematics Subject Classification. Primary 03D10, 03B35; Secondary 68C30, 68D20.
Key words and phrases. Busy Beaver Game, cellular automata, computability, mechanical proofs, Turing

machines.
*Rado treated a halt as a branch to a state "0" within a normal entry, so that in such a case there

would be (4k + 4)2k machines.
©1983 American Mathematical Society

0O25-5718/82/OOOO-O989/$03.75
647

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

648 ALLEN H. BRADY

halts, a certain number of l's will be marked upon its tape. This will be the score of
that machine. The object of the "game" for a given k states is to find a machine
which will produce the largest possible score. This score is referred to as the "Busy
Beaver Number" for k states. It defines in the "strongest possible way" an integer
function 2(&) which Rado demonstrated to be noncomputable.

Related to 2(/c) is another noncomputable function S(k) called the maximum
shift number: the greatest number of moves that a A>state machine with a blank input
tape can make before halting.

Rado and others became intrigued with the actual problems of determining as
mathematical fact the values of 2(/c) and S(k) for reasonably small k. (See
Appendix A.) He also proposed this and related problems as important to artificial
intelligence [4].

Using computer programs, Lin [5] finally determined that 2(3) = 6 and 5(3) = 21.
(See also Lin and Rado [6].) Acceptance of that result in the ordinary manner of
seeing a mathematical proof presents difficulties. For this author it was a case of
making a completely independent and, as it turns out, a somewhat different attack
on the three-state problem [1].

The Four-State Problem. One formidable obstacle to solving the four-state case
appears to be the large number of four-state machines. From the expression
(4k + l)2k, giving the number of all possible fc-state machines, one may exclude the
set of &-state machines without any halts giving

(4k + lfk - (4k)2k.

Furthermore, one can also impose the requirement (cf. Lin and Rado [6]) that no
machine need be considered which does not have the initial entry (in state 1
scanning 0) to print 1, move right, and enter state 2 ("1 R 2"). This yields the
expression

(4k+l)2k^-(4k)2k'X.

While a reasonable number is now produced for k = 2 and 3 (217 and 122,458,
respectively), the situation still has a doubtful appearance for k — 4 (141,903,217)
and seems totally impossible for k — 5 (282,525,287,122).

The most significant reduction (see only after the fact) is obtained by extending
the argument for the quintuple (1,0,1, R, 2) into a tree generation of all of the
quintuples for the machines to be considered (Brady [2]). With the tree generation
scheme (in current terminology a form of back tracking) coupled to a programmed
" solution" to the halting problem, little more than a minute of computer time was
required on a second generation computer, generating fewer than 4,000 three-state
machines and producing only 27 holdouts** for direct inspection. For k — 4,
approximately 550,000 four-state machines were generated and 5,820 holdouts
ultimately remained.

Among the four-state machines, two were discovered [2] which yield the score of
13. Their tables are as follows.

**A holdout [8] refers to a Turing machine for which the blank input tape halting problem remains
undecided after analysis by the computer.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

THE VALUE OF RADO'S NONCOMPUTABLE FUNCTION 2(A) 649

(Scanned Symbol)
0 1

(Scanned Symbol)
0 1

(State) 1
2
3
4

IR2 0R3
ILl IR\
(halt) 1 R 4
1L4 0L2

(State)

Score = 13 (96 shifts)

IR2 \L2
\L\ 0L3
(halt) 1L4
IR4 0R\

Score = 13 (107 shifts)

(In order to achieve the scores and shift numbers claimed, the halt entry must be
replaced by a triple which prints a mark, moves, and branches to a zero state
following Rado's convention.)

The remaining 5,820 machines were all run for at least 500 moves with none
observed to halt, and a 100 machine sample was inspected for a general picture of
machine behavior. It was then conjectured [2] that 2(4) = 13 and 5(4) = 107.

The remainder of this paper describes the final reduction of the 5,820 holdouts to
only 218 through the use of new heuristic computer programs especially devised for
the problem. Direct inspection of each of the 218 holdouts from these programs
reveals that none will ever halt, and it can be stated as known that 2(4) = 13 and
5(4) = 107.

2. Heuristic Classification of the Machines.
Proofs by Induction. Among the 27 "holdout" machines of three states the

following two machines represent in a simple way their general classes of behavior:

0 1 0 1

\R2
IL2

0L3
\R\
ILl

IR2
0LI
ILl

0L3
0R2

3-State Holdout No. 6
(Xmas Tree)

3-State Holdout No. 2
(Counter)

Machine no. 6 demonstrates an oscillatory pattern as it sweeps across the written
tape (Figure 1), growing at each end as it continues the extension of its pattern. S.
Lin (private conversation) refers to such machines as "Christmas Trees," an ap-
propriately graphic term which we will use throughout our discussion.

A proof by mathematical induction that the Xmas Tree pattern of machine no. 6
grows continually is not at all difficult, but the behavior is fairly obvious. Machine
no. 2 demonstrates a pattern which is considerably less apparent. Its history of
operation may be used to establish an inductive proof based upon the observations
of its actual behavior shown in Figure 2 and the hypothesis that after 3 • 2"~x — 2n
— 1 moves the machine will arrive at the configuration

0 0 111 11100
2 n — 1 marks

having started on a blank segment of tape of length In + 1 squares.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

650 ALLEN H. BRADY

0000000000000 1 0001111110000 21 0011111010000 41
* 1 * 2 * 1

0000010000000 2 0001111110000 22 0011101010000 42
* 2 * 1 * 3

0000011000000 3 0001111100000 23 0011101010000 43
* 2 * 3 * 1

0000011000000 4 0001111100000 24 0010101010000 44
* 1 * 1 * 3

0000010000000 5 0001110100000 25 0010101010000 45
* 3 * 3 * 1

0000010000000 6 0001110100000 26 0110101010000 46
* 1 * 1 * 2

0000110000000 7 0001010100000 27 0110101010000 47
* 2 * 3 * 1

0000110000000 8 0001010100000 28 0111101010000 48
* 1 * 1 * 2

0000111000000 9 0011010100000 29 0111101010000 49
* 2 * 2 * 1

0000111100000 10 0011010100000 30 0111111010000 50
* 2 * 1 * 2

0000111100000 11 0011110100000 31 0111111010000 51
* 1 * 2 * 1

0000111000000 12 0011110100000 32 0111111110000 52
* 3 * 1 * 2

0000111000000 13 0011111100000 33 0111111110000 53
* 1 * 2 * 1

0000101000000 14 0011111100000 34 0111111111000 54
* 3 * 1 * 2

0000101000000 15 0011111110000 35 0111111111100 55
* 1 * 2 * 2

0001101000000 16 0011111111000 36 0111111111100 56
* 2 * 2 * 1

0001101000000 17 0011111111000 37 0111111111000 57
* 1 * 1 * 3

0001111000000 18 0011111110000 38 0111111111000 58
* 2 * 3 * 1

0001111000000 19 0011111110000 39 0111111101000 59
* 1 * 1 * 3

0001111100000 20 0011111010000 40 0111111101000 60
* 2 * 3 * 1

Figure 1. Behavior of failure number six (Xmas Tree)

After the inductive proof was devised it was observed [1] that machine no. 2 is in
essence a binary counter. The observation was triggered by the similarity of the
expression 3 • 2"~l — 2n — 7 to the computed rate of growth of a simple binary
counter which had been constructed as an exercise.

Studying the tape configurations in Figure 2 one can see that a "zero" is
represented by the code pair (0 0), while a "one" is represented by (1 0) as the
machine counts continuously, adding "one" on the right and accumulating to the
left. During the carry sweep (to the left), a "one" goes through an intermediate code
(11), finally being converted to "zero" on the return sweep to the right as seen in the
49th "move" (Figure 2):

(0 0) (0 1) (0 0) (0 1) (11) (0 0)

2
It appeared that what was needed for handling this problem was some sort of

"mechanical induction" capability. Techniques involving symbolic and algebraic
manipulation were considered, but the algebraic analysis of machines did not seem
to be a sufficient approach. Algebraic characteristics did, however, turn out to yield
a fruitful method for first order identification.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

THE VALUE OF RADO'S NONCOMPUTABLE FUNCTION 2(fc) 651

0000000000000 1 0000001000000 21 0000100011100 41
* 1 * 1 * 2

0000000000100 2 0000001000100 22 0000100001100 42
* 2 * 2 * 2

0000000000100 3 0000001000100 23 0000100000100 43
* 1 * 1 * 2

0000000000100 4 0000001000100 24 0000100000000 44
* 3 * 3 * 2

0000000001100 5 0000001001100 25 0000100000000 45
* 1 * 1 * 1

0000000011100 6 0000001011100 26 0000100000100 46
* 2 * 2 * 2

0000000010100 7 0000001010100 27 0000100000100 47
* 2 * 2 * 1

0000000010000 8 0000001010000 28 0000100000100 48
* 2 * 2 * 3

0000000010000 9 0000001010000 29 0000100001100 49
* 1 * 1 * 1

0000000010100 10 0000001010100 30 0000100011100 50
* 2 * 2 * 2

0000000010100 11 0000001010100 31 0000100010100 51
* 1 * 1 * 2

0000000010100 12 0000001010100 32 0000100010000 52
* 3 * 3 * 2

0000000011100 13 0000001011100 33 0000100010000 53
* 1 * 1 * 1

0000000011100 14 0000001011100 34 0000100010100 54
* 3 * 3 * 2

0000000111100 15 0000001111100 35 0000100010100 55
* 1 * 1 * 1

0000001111100 16 0000001111100 36 0000100010100 56
* 2 * 3 * 3

0000001011100 17 0000011111100 37 0000100011100 57
* 2 * 1 * 1

0000001001100 18 0000111111100 38 0000100011100 58
* 2 * 2 * 3

0000001000100 19 0000101111100 39 0000100111100 59
* 2 * 2 * 1

0000001000000 20 0000100111100 40 0000101111100 60
* 2 * 2 * 2

Figure 2. Behavior of failure number two (Counter)

Rates of Growth of the Scanned Tape. For the simple "sweep across" or Xmas Tree
pattern, the rate of growth is inversely proportional to the tape excursion, y, plus a
constant,

dy/dx= l/(ky + cx),
yielding the relation

(1) x = ay2 + by + c.

For a counter, experience has shown that a sequence of the form

(2) a2" + bn + c
identifies the characteristic extremum. In particular, for a simple binary counter (one
bit code) it can be seen that the sequence identifying the start of counting on an
exact power of two will have the relationship

Sn = 2S„_x+2.
Through integration of the differential equation

dx/ (x + 2) = dy,
suggested by the difference equation

5„ - 5„_, = 5„_, + 2,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

652 ALLEN H. BRADY

one obtains
x = aiy - 2.

(The same form can be obtained using known difference equation methods.)
From our derived expressions it can be seen that the characteristic (or necessary

feature) identification is readily discernable through a table of differences formed
from the sequence of maximum excursions occurring on the left (at /, moves) and on
the right (r¡ moves) during machine operation.

If the second differences are constant, the maximum excursions follow a parabolic
sequence (1) which is indicative of the Xmas Tree. A table of differences formed
from (2) would yield

Dx = (a2"+x + b(n + 1) + c) - (a2" + bn + c) = a2" + b

and
D2 = (a2n+x + b)~ (a2" + b) = a2".

Therefore, if the second differences yield a simple geometric sequence progressing by
a power of two, a binary counter is indicated (but not demonstrated) so long as the
extreme on the opposite side is constant.

A Heuristic Filter. Observations of a small sample of Xmas Trees and Counters
will make apparent the fact that the table of differences is applicable only to an
enveloping sequence, since machine "gyrations" on the growing edge of the traversed
region of tape can be quite complex.

Figure 3. Sequence filtering algorithm

Various techniques for extracting the envelope were considered, including even
numerical curve fitting. Ultimately, the following simple algorithm for extracting an
enveloping ascending sequence was devised: Start with a sequence of maximum
excursions (for instance, r¡) and form a table of first differences (£>, = ri+x — r¡).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

THE VALUE OF RADO'S NONCOMPUTABLE FUNCTION 2(k) 653

Then trace forward through the table of first differences extracting a strictly
increasing sequence while discarding all the rest. The extracted sequence can then be
used to form the table of first and second differences which we want to inspect. A
flowchart for the algorithm is shown in Figure 3.

The filtering scheme and difference computations were embodied in a program
along with some other parameter dependent heuristics and applied to the 5,820
4-state holdouts. This computer program separated the holdouts into three tentative
or probable classes: XMAS (4,849); COUNTER (402); and UNKNOWN (569).

3. The Cellular Representation of Xmas Trees.
The Basic Picture. Initial attempts to handle the Xmas Trees using a tediously

constructed program were unsatisfactory, so after the failure of this first program to
make a significant reduction, a careful study was made of the resistant holdouts of
the Xmas Tree sample. From the thought that had already gone into the Counter
problem, a cellular picture had evolved in "hardware" terms. It then became
apparent that (1) a cellular representation for Xmas Trees also had merit, and (2) the
inductive pattern should be sought relative to the growing chain of perceived cells
and not fixed absolutely to the tape of the Turing machines.

A Xmas Tree can be represented by a chain of tape segments (cells) which go
through metamorphic changes in the process of reproducing themselves. At some
point in the metamorphic and reproductive cycle, say, when the machine has reached
a new right extremum in its tape excursion, we observe that the tape is made up of a
left segment, a right segment, and a sequence of identical interior segments:

/ L / - / X / - / X / - / X / - / R /

,, „.._. -, c. _ .. , scan position of TM(initial configuration) v

As we will learn later, it is not so important that we identify the L and R cells as it is
for us to identify the X cell. (The reader may find it helpful to observe the behavior
of the four-state example no. 1 in Appendix B.)

If we operate the machine until it reaches the next major right extremum
(determined by the filtering process) we will see that a new X cell has been
produced:

/ L / - nrj - ŒJ - OH - LU - / r /
(final configuration) scan

What happens in the general case is that the L and R segments act as parent cells
and generate partial cells Z, and Z2 which, when juxtaposed, form an Xcell.

Starting with the initial configuration, as the machine proceeds to process the right
segment, it eventually emerges, sweeping from right to left converting the X cells to
Y cells, their metamorphic successors.

/ L / - / Y / - / Y / - / Y / - / R' /
scan

The machine then enters the left segment, takes it through its reproductive transfor-
mation and emerges from where it entered, sweeping from left to right converting

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

654 ALLEN H. BRADY

the Y cells to Z cells. The machine enters the right segment and eventually reaches a
new extreme at which point we observe the chain

/ L / - rrj - m - m - m - ¡jri -1 r /
1 2

s can(alternate view of final configuration)

The Z cells, which were the metamorphic successors to the Y cells, are in fact
complementary images of the original X cells, so that the cell wall boundaries simply
shift if (as is usually the case)

LLJ - l z / ~ LLJ = / x / - / x /
1 2

It is apparent by inductive extension (since the X and Z cells are the same size)
that a chain of n Z cells,

LLJ ~ LU - • • • - LU -LLJ
1 2

bounded by a Z, cell on the left and a Z2 cell on the right is identical to a chain of
n + 1 X cells:

/ X / - / X / - ... - / X /

The actual situation, however, is made much more complicated by the fact that
the metamorphic transformation of a cell is intertwined with the transformation of
its neighboring cells. As will be seen, this interdependence is (fortunately) not
inextricable.

Furthermore, the transformations of the L and R segments are frequently not
simply described, but problems with their behavior are easily circumvented by
incorporating several X cells into these end segments to act as buffers.

The Detailed Metamorphic Cycle. Assume, then, that at least one X cell is in the
right end of the left segment, L0, and at least one X cell is in the left end of the right
segment, R0:

Left (LQ) Right (RQ)

/X/-/X/- ... -/X/-/X/

^0

Let the controlling Turing machine be in state q0 at the extreme right. Operate the
machine until it emerges from the right segment to the left. Call the emerging state
la-

(right segment)

/ XV_/

1,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

THE VALUE OF RADO'S NONCOMPUTABLE FUNCTION 2(A:) 655

The X cell on the left end will now be in an intermediate metamorphic stage, A". We
must next demonstrate that the machine will operate on a two cell segment

LÜ - LU
%

resulting in the transformation to the segment

m - m

with the machine emerging on the left in the same state qa.
If this has occurred as described, then obviously by extension we can see that any

chain of X cells entered on the right in the same state qa with an X' cell to the right
of the chain

/~xT - /~xT - ••• - LLJ - LLJ - ŒJ
qa

must undergo transformation into a string of Y cells with an A" cell on the left and
the controlling machine emerging in state qa:

i x-/ - / y / - ... - i~n - /~yt - m

In other words, a chain of X cells of any length is transparent to the passage of the
controlling machine as it travels from the right segment to the left segment.

As our next step in the inductive proof, we operate on a partially changed left
segment (its X cell converted to an X' cell) to the left of the X' cell in state qa:

(left segment)

/ / XV

qa

We run the machine until it emerges to the right. Call the emerging state qh. The cell
on the right end will now be in an intermediate metamorphic stage Y':

(left segment)

/ / Y'/

%

We must next show that a chain of Y cells is transparent to passage of the
machine to the right. Forming a segment consisting of a Y' and a Y cell, we
demonstrate that

rjjj - i~n
qb

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

656 ALLEN H. BRADY

becomes

/ Z / - / Y'/

qb

by simulating the controlling machine under the implied restrictions.
As the final simulation step in the establishment of our proposition, we operate on

a partially changed right segment (the right segment as we left it but with its Y cell
converted to a F cell) positioned to the right of its Y' cell in state qh:

(right segment)

/ YV /

qb

We run this configuration until the machine reaches the new extremum on the right
in state q0:

(right segment, R ')

/ /

qo

The metamorphosed left segment with its Y' cell converted to a Z cell (which we
have proved will happen) we will call L'0. The right segment above we will call R'0.
We determine that under these transformations "birth" has taken place. I.e.,

/_L -_/ = /_L _/ - /Z _/
0 0 1

and

/ R ' / = IT~J - I R 7
0 2 0

— the L'q segment is identical to the original L0 with a partial cell Z, on the right,
while the R'0 segment is identical to the original R0 with a partial cell Z2 on the left.

As already mentioned, we must finally show that

/z / - / z / - /z~7 - /T7 - /~T7
1 2

The original premise is the existence of the initial configuration. Since this was
already established by the feature extraction process, the inductive proof for the
particular machine is then complete.

It should be pointed out that should any particular step fail there is no proof.
There are also heuristically established limits placed upon any simulation to prevent
the possible occurrence of a loop. Wherever we have in effect said " until anticipated
condition arises" it should be assumed that we mean "until anticipated condition
arises or limiting condition occurs." The occurrence of a limiting condition implies
failure of the proof procedure for a given Turing machine.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

THE VALUE OF RADO'S NONCOMPUTABLE FUNCTION 2(A) 657

Heuristic Extraction of Xmas Tree Features. Extraction of the features of a Xmas
Tree is a simple process which was arrived at after several experiments.

The machine is run for a thousand moves or so, and the enveloping sequences of
extreme (max. and min.) excursions are filtered out. The last extreme point (on the
right) occurs at what we shall refer to as i2 moves (shifts). The preceding filtered
extreme occurs at i, moves.

We rerun the machine from scratch to the point /',. We then "snip" the tape
(Figure 4) in the middle of its range of excursion creating and saving the segments
L0 and R0. We then run the machine from /', to i2. We match L0 from the left on the
new tape configuration at i2 and R0 from the right. (If no match occurs, the test fails
at this point.) The residual segment in the center of the tape after removal of L0 and
R0 is taken to be the X cell.

Sc;iiiii«-<I lap«- at ¡.

lip]

UsimmII

Scanm-il tap«'al ¡2:

0

Figure 4. Extraction of Xmas Tree cells

It is important to note that while the success of the extraction process is necessary
to the proof, it is not sufficient. The precise demonstration of the independence of
the L0 and R0 transformation must be made along with the demonstration of the
transparency of the chain of X cells to passage of the machine back and forth
through them. These demonstrations, as already described, are then made step by
step from move i, to move i2.

Xmas Tree Variants. Two variants of Xmas Trees occur which were easily
accomodated by minor modifications in the extraction heuristics and the mechanical
proofs. These we will refer to as Leaning Trees and Trees with a Shadow. (See
Appendix B.) In both of these variants, the segment R0 gives birth to an extra X cell
while the L0 segment consumes a portion of an X cell. The Tree with a Shadow in
addition remains attached to a trail of skeletons left behind.

The other variant is the Xmas Tree with a double sweep, which we will refer to as
the Alternating Xmas Tree. This variant was handled in a manner similar to that
used for the standard Xmas Tree. The Alternating Xmas Tree becomes a generaliza-
tion of the Xmas Tree, and the mechanical proof for Alternating Xmas Trees is
applicable to Xmas Trees.

The minor variants analogous to the Leaning Trees and the Trees with Shadow
show up in the Alternating Xmas Trees. Minor changes were made in the programs
to accomodate the (alternating) Leaning Trees. Only eight "Alternating Trees with
Shadow" appeared in the 218 final holdouts.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

658 ALLEN H. BRADY

From the set of 4,829 holdouts tentatively separated into XMAS, 4,841 were
proved never to halt, while 8 holdouts remained. From the set of 569 holdouts
tentatively separated as UNKNOWN, 389 were proved never to halt, while 180
holdouts remained.

4. Cellular Representation of Counters.
The Hardware Analog. For a Counter one can picture a semi-infinite chain of

registers, initially all in the ZERO state,

/ E / - / 0 / - / 0 / - / 0 /

driven from an END cell or register labeled E. Carry and return signals are
propagated through this chain. When a carry signal enters a cell or register in the
ZERO state, the cell goes into the ONE state and sends back a return signal:

c -> / 0 / =-> r <- / 1 /

When a carry enters a cell in the ONE state, the cell goes into the transition or 1'
state and sends the carry on:

c -> / 1 / ==> / IV -> c

When a return signal enters a cell (in the 1' state), the cell goes into the ZERO
state and the return signal is continued back:

/ IV <- r ==> r <- / 0 /

Finally, when the return signal is detected by the END cell, the carry is
regenerated and sent into the register chain:

/ E / <- r ==> / E / -> c

Another possible cell state (which does arise) is the blank or unwritten state. In
such a cell, the code for zero is not all Turing machine 0's. In this case, a blank (B)
cell is first converted to a ONE:

c -> / B / —> r <- / 1 /

For input signals of interest we may now look at the complete state diagram of a
cell with state B, 0, V and 1 shown in Figure 5(a).

Heuristic Extraction of Counter Components. The initial difficulty in analyzing a
counter rests completely in the recognition of its components. Cell size is taken to be
the increase in tape excursion from one filtered extreme to the next. At an extreme

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

THE VALUE OF RADO'S NONCOMPUTABLE FUNCTION 2(A) 659

point we have a blank cell, B, being converted into a ONE cell:

(i moves)—

/ E / - /"TV - /~TV - ... - rjj - ¿TJ ~ ¿Tj - ...

At the first relative minimum point (prior to reaching i2, the next extreme of carry
propagation) the end cell, E, is in the process of regenerating (or reflecting) a carry
signal:

/ z' i - i o / - /~o~7 - ••• - m - m - /T7 - ...
m

From the tape configuration at this point we attempt to extract the code for a
ONE and for a ZERO, based upon cell-size alignment and the unfiltered excursion
extreme occurring between /', moves and this point of operation. From alignment of
the configuration at /,, we extract the code for 1', and tentatively for E. We augment
the tentative end cell with two 1' cells for a margin of safety. (Once a counter is in
operation, it is evident that the addition of a fixed number of counter cells to the
END cell does not change its defined operation as depicted in the state diagram of
Figure 5(b).)

«•

[■] [b]

Figure 5. (a) and (b) State diagram of counter cells

With the alignment of cells now determined, we snip the chain of the /',
configuration at a cell boundary:
(i. moves)—1_ _ _ I _ _ _

/ E / - / IV - ... - / IV -I- / IV - ... - / IV - / B /
(snip) qc

and run the partial configuration on the right until the controlling Turing machine
emerges at the cut:

I _ _ _
- / 0 / - ... - / 0 / - / 1 /

The emerging state at the cut, qr, is assumed to be the return signal.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

660 ALLEN H. BRADY

As the first step in our inductive proof, we now establish the premise that a
counting state exists, i.e. the right segment is indeed a chain of ZEROS with a ONE
on the right:

I _ _ _ _ _
-/ o / - / o / - ... - / o / - / o / - / 1 /

I
and the left segment is a chain of transitional cells (1') with the END cell on the left:

_ _ I/ e / - / i'/ - i~n -... - lLW - Eût -
I

Final Steps in the Proof. We are finally left with the straightforward task of
demonstrating the state conversions of our heuristically extracted cells.

First we run the Turing machine on the restricted configuration representing a 1'
cell, starting on the right end in state qr to demonstrate that the Turing machine
emerges from the left end in state qr, and that the tape configuration is identical with
the extracted code for ZERO:

/ IV ==> / 0 /

q qr i

Next we demonstrate that

/ E / ==> / E /

q q

(This determines qc, the carry signal, but we must show that E is unchanged.)
Then we demonstrate that the carry will be propagated by ONE cells:

/ 1 / ==> LU ^
qc qc

Finally, we demonstrate that ZERO reflects the carry as it changes to a ONE:

/ 0 / •">> / 1 /

q q

We must also determine whether or not

/ 0 / = / B / ,

and if the ZERO code differs from the BLANK code, we must also demonstrate that

/ B / ==> / 1 /

q qMc Hi

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

THE VALUE OF RADO'S NONCOMPUTABLE FUNCTION 2(A) 661

The Counter proving program was run on the set of 402 machines which had been
classified as counters. All but 73 machines were demonstrated never to halt.

A Modification to the Program. At this point it was no surprise to observe an
interdependence of counter cells, i.e. the conversion from one cell state to the next
can be dependent upon the preceding cell. Such behavior is exactly what occurs with
what one could term "two-shot" carry and return signals.

Another difficulty which plagues counters is their rather slow rate of growth. It
was not always possible to extract the features and establish existence of a counting
state in only 1,000 moves!

The new cell conversion tests were incorporated into the program. The modified
counter program was run with a 2,000 move limit on the 73 Counter holdouts. It
found 26 more counters leaving 47 holdouts. But, additionally, the modified counter
program was run on the miscellaneous holdouts from the Xmas Tree runs. It found
17 Counters. The Counter proofs were therefore effective in eliminating 372 ma
chines. A total of'218 holdouts remained from all programs.

Other Counter Behavior. Several other counter variants were observed among the
holdouts, but it was decided that further programming to devise the necessary cell
extraction heuristics was not worth the trouble.

5. Final Steps in the Solution of the Four-State Problem.
The Computer Reduction Runs. A total of eight programs were used directly in the

process of reducing the final set of four-state holdouts. (See Figure 6.) BBFILT was
used to separate heuristically the 5,820 holdouts into "Xmas Trees", "Counters,"
and "Unknown," while BBFXX, a modification of BBFILT separated the "Alternat-
ing Xmas Trees" from the "Unknown" set.

4.849 - | XMASr|

BBX2

404

BBSHAD

236
♦

BBALTX

26

BBALTX1

8 Holdouts

5.820 Original Holdouts

102 - | COUNTER? |

BBC

J_
BBCIVI

196
L

BBALTX

47 Holdout» 173
!

569 - | UNKNOWN? |
L

BBFXX

373
I

BBALTX

Holdouts

BBALTX1

173 - | No Effect |

BBCM

1 56 Holdouts

Figure 6. The computer reduction runs

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

662 ALLEN H. BRADY

BBX2 was the Xmas Tree prover which used the cellular automata approach.
BBSHAD was a modification to handle "Trees with Shadow", BBALTX was an
extension of BBX2 to handle "Alternating Xmas Trees", while BBALTX 1 was a
minor modification of BBALTX to handle double sweeps in which the extremum
was reached on alternate sweeps only.

BBC was the counter prover, while BBCM was a modification of BBC to handle
" two-shot" carries and some cases of cell interdependence.

More than 18 other programs were written for various housekeeping purposes,
simulating and displaying machine behavior, exploring other reduction and filtering
possibilities, etc. In all, at least 53 files were created and maintained for the project.
Keeping track of what resembled a large scientific experiment became a major task
in itself.

While not all of the exploratory activities are reproducible, the runs shown in
Figure 6 can be reproduced, so that by utilizing the techniques described in this
paper the proof can be corroborated.

All of the programs utilized all or part of the filtering techniques of the program
BBFILT. However, it must be remembered that the filtering was a heuristic
technique based upon experimental observation. The reasons why it was not always
effective were not explored in every case, since the ultimate proofs were mechanized
independently of the heuristic separation. Furthermore, the heuristic separation was
dependent upon such parameters as the length of behavior histories (number of
moves or shifts). E.g., a 1,000 move limit picked up fewer Counters than a 2,000
move limit due to anomalous behavior in the early portion of the maximum
excursion sequences.

The 218 Remaining Holdouts. The general behavior of some of the 218 holdout
machines has already been described. Three of the machines escaped detection by
programs which should have proved they would never halt. One of these machines
was in fact a simple "left traveling loop," but it required 422 moves to display a
repetition in its sequence. Several machines showed up which are forms of ternary
(base 3) and quaternary (base 4) counters.

A new generic type which may be described as "Tail-Eating Dragons" dominates
the "Other" set. This type displays either a rapid growth approximating Xmas Trees
or else an extremely slow growth approximately quaternary counters. Tail-Eating
Dragons are almost the converse of "Trees with Shadow". Starting with a long string
of characters (their "tail") these machines sweep back and forth like a Xmas Tree
while nibbling a bit off their tail on each swing. Once the tail is consumed, they
create a much larger tail and begin the process anew. The "rapid growth" machines
add to the size of their tape on each swing, while the "slow growth" machines add to
their scanned tape only when they create a new tail. Their behavior is precariously
similar to that of the "champion" lower bound machines devised by Green [3].

All of the remaining holdouts were examined by means of voluminous printouts
of their histories along with some program extracted features. It was determined to
the author's satisfaction that none of these machines will ever stop.

6. Conclusion. It was mentioned in the introduction that these results should be
independently verified. Proofs of "correctness" of the programs used are not
practical. Independent verification is the only means we currently have at our
disposal.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

THE VALUE OF RADO'S NONCOMPUTABLE FUNCTION 2(A) 663

This attack on the k = 4 problem has produced the bonus of creating the
components of an "intelligent machine" which will accept any three-state binary
Turing machine and render a decision on its blank input tape halting problem
without any resort to an enumeration of specific machines supplied by its human
creators. I.e., all of the 27 holdouts for k = 3 were recognized by the new programs
as either Xmas Trees or Counters and were mechanically proved never to halt. An
effort to solve the problem for k = 5 might similarly produce enhancements verify-
ing the four-state problem.

By fitting an expression of the form (ak + b)ck to the number of tree normal
machines for k — 2,3,4 one obtains values for a, b, and c of 1.72, -0.513, and 1.80,
respectively, yielding a projection of 150,000,000 for k = 5. Using nothing more
than a small computer one could probably generate this entire set and reduce the
five-state case to perhaps a few milhon holdouts. These five-state holdouts should
present an interesting and reasonable challenge to persons interested in mechanical
proof techniques.

The final steps in the solution to this problem for k = 4 have resulted in a
successful effort in applying a form of mechanized mathematical induction. (The
computer programs could have been designed to print out individual proofs for each
machine expressed in English and mathematical prose.) There are no doubt other
classes of new and interesting automata problems which could be attacked success-
fully by similar methods. The pursuit of such techniques is important in bringing
about the day when mathematical research may, as a matter of course, produce
results using automated proofs with these results being communicated, understood,
and accepted.

APPENDIX A. Current Known Results. The best known results for Rado's
problem insofar as the author is able to determine are the following.

k 2(fc) S(k) Source
1=1 =1 T. Rado et al.
2=4 =6 T. Rado et al.
3 =6 =21 S.Lin
4 = 13 = 107 A. Brady
5 S* 112 ^7,707 D.Lynn
6 > 117 > 13,488 D.Lynn
7 > 22,961 M. Green
8 >3-(7-392- l)/2 M.Green

n (cf. [3]) M. Green

The results for k = 5 and k = 6 have not been published. The results for k = 5
have been communicated to the author by Donald S. Lynn and are an extension of
work beyond that reported in [7]. The results for k = 6 have been generated by the
author using the 5-state machines discovered by Lynn.

APPENDIX B. Machine Examples. Since the generic machine types discussed are
relatively rare among all four-state machines, some examples are given here which
may be used to illustrate the discussion in the paper.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

664 ALLEN H. BRADY

Among the proved set:

1. Xmas Tree-
0 1

IR2 0L3
ILl 0R4
0L2 0L2
IRl —

4. Alternating Tree-

0 1

IR2 0L3
ILl 0R3
IL4 ORl
ILl -

2. Leaning Tree-
0 1

1*2 0L3
OLÍ IR4
ILl IL2
ORl -

5. Counter
(3-square cell)-

0 1

IR2 IL3
OLl 0R2
IRl 1L4
ILl -

3. Shadow Tree-
0 1

IR2
OLl
IR4
ILl

ILl
0R3
IR3

6. Counter
(Nonblank zero)-

0 1

\R2
OLl
IRl

IL3
IR4
ILl
0R2

Among the holdouts:

7. Ternary Counter-

0 1

IR2 0L3
ILl \R\
ORl 0L4
— IL3

Tailing-eating Dragon 9. Tailing-eating Dragon
(fast growth)- (slow growth)-

0 1 0 1

1
2
3
4

IR2
IR3
OLl
IL3

0R4

IRl
IR4

1
2
3
4

IR2 ILl
IR3 0R4
ILl -
OLÍ IR4

Examination of the behavior of these machines without the aid of a computer is
somewhat tedious. A simple Turing machine simulator written in a machine inde-
pendent form of BASIC is available from the author upon request.

Acknowledgements. The author wishes to acknowledge the support of the Univer-
sity of Nevada System for that portion of this work carried out during a sabbatical
leave. He also desires to thank Professor Harry E. Goheen of Oregon State
University for his continuing interest and encouragement.

Department of Mathematics
University of Nevada
Reno, Nevada 89557

1. A. H. Brady, Solutions to Restricted Cases of the Halting Problem, Ph.D. thesis, Oregon State Univ.,
Corvallis, December 1964.

2. A. H. Brady, "The conjectured highest scoring machines for Rado's 2(&) for the value k = 4",
IEEE Trans. Comput., v. EC-15, 1966, pp. 802-803.

3. M. W. Green, A Lower Bound on Rado's Sigma Function for Binary Turing Machines, 5th IEEE
Symposium on Switching Theory, November 1964, pp. 91-94.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

THE VALUE OF RADO'S NONCOMPUTABLE FUNCTION 2(A) 665

4. R. W. House & T. Rado, An Approach to Artificial Intelligence, IEEE Special Publication S-142,
January 1963.

5. S. Lin, Computer Studies of Turing Machine Problems, Ph.D. thesis. The Ohio State University,
Columbus, 1963.

6. S. Lin & T. Rado, " Computer studies of Turing machine problems," J. Assoc. Comput. Mach., v. 12,
1965, pp. 196-212.

7. D. S. Lynn, "New results for Rado's sigma function for binary Turing machines," IEEE Trans.
Comput., v. C-21, 1972, pp. 894-896.

8. T. Rado, "On non-computable functions", Bell System Tech.J., v. 41, 1962, pp. 877-884.
9. T. Rado, " On a simple source for non-computable functions," Proceedings of the Symposium on

Mathematical Theory of Automata, Polytechnic Institute of Brooklyn, April 1963, pp. 75-81.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

