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1 A historical introduction

Diplon, deuton, deuteron: under different names, the nucleus of deuterium, or
diplogen, has been the subject of intense studies since its discovery in 1932.
As the only two-nucleon bound state, its properties have continuously been
viewed as important in nuclear theory as the hydrogen atom is in atomic theory.
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Yet, ambiguities remain in the relativistic description of this system and the
two-nucleon picture is incomplete: meson exchange and nucleon excitation into
resonances should be considered in the deuteron description. The question of
rare configurations where the two nucleons overlap and loose their identity is
still under debate. We are still looking for the elusive effects of quarks in the
nuclear structure.

In this year of the millenium, the present article will first attempt to recall
the early discoveries, measurements and theories. It will then boldly jump over
decades of continuous efforts, building upon these, to present not an exhaustive
review but an up-to-date status of our understanding of the deuteron, with a
special emphasis on its electromagnetic form factors. To do justice to some
seventy years of activity in this field is an immense task which is more easily
approached by quoting here several reviews along this path [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13]. The important subject of electro- and photo-disintegration
of the deuteron will be only partly covered, referring the reader to [14].

1.1 Discovery of the deuteron

The existence of the first isotope of hydrogen was suggested in 1931 by Birge and
Menzel [15] in order to remove discrepancies between two different measurements
of the atomic mass of hydrogen. A first estimate of an abundance ratio 1H/2H =
4500 was inferred from this hypothesis, close indeed to the actual value of 6700.
The stable isotope was discovered by Urey and collaborators [16] a few months
later, investigating distilled samples of natural hydrogen for the optical atomic
spectrum of 2H in a discharge tube. Isotopic separation to study the properties
of deuterium quickly became an intense activity. Its mass was measured by
Bainbridge [17]. While Chadwick was discovering the neutron, several tens of
papers were written, in one years time, devoted to the study of deuterium.
An illuminating summary of this early research was made by Bleakney and
Gould [18]. In 1933, “deutons” were used as accelerated projectiles first at
Berkeley [19], then at Caltech and at Cavendish. Chadwick and Goldhaber [20]
measured the first photodisintegrations γd → pn in 1934.

1.2 Early theories

In 1932, there was no satisfactory theory of the nucleus. The nucleus was
thought to be composed of protons and electrons since these were the only
known charged particles and nuclei were seen to emit electrons (β decay). The
electrons were needed to cancel the positive charge of some of the protons in
order to account for nuclei with identical charges, but with different masses, and
to allow for the possibility of binding of the nucleus by means of electric forces.
This was clearly unsatisfactory because the Coulomb force could not account
for the binding energies of nuclei and the attempt to construct the nuclei from
the incorrect number of spin-1/2 particles could not produce the correct nuclear
spins.
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The discovery of the neutron, shortly after that of the deuteron, did not im-
mediately eliminate the confusion since the previous model persisted by simply
describing the neutron as a bound system of a proton and an electron. Based on
this faulty assumption, Heisenberg produced the first model of proton-neutron
force [21]. Since it was not possible to actually construct a description of the
neutron with the ep model, Heisenberg simply assumed that the pn force could
be described by a phenomenological potential and that the neutron was a spin-
1/2 object like the proton. Based on an analogy with the binding of the H+

2

ion by electron sharing, Heisenberg proposed that the force must involve the
exchange of both spin and charge in the form of σ(1) · σ(2)τ (1) · τ (2). Forces con-
taining the remaining forms of spin and isospin operators were soon introduced
by Wigner [22], Majorana [23] and Bartlett [24]. In all cases the spatial form
of the potentials was to be determined phenomenologically to reproduce the
deuteron properties and the available nucleon-nucleon (NN) scattering data.
In 1935Bethe and Peierls [25] wrote the Hamiltonian of the “diplon” with an
explicit introduction of a short range interaction. This approach became the
mainstay of nuclear physics which has produced considerable success in describ-
ing nuclear systems and reactions. The ep model of the neutron was not com-
pletely abandoned until after the Fermi theory [26] of β decay became widely
accepted.

The progress in discoveries and understanding was then so great that, in spite
of an otherwise bleak social or political situation in many countries involved, this
period is recalled as “The Happy Thirties” from a physicist’s point of view [27].

One of the other great theoretical preoccupations of the late 1920’s and the
1930’s was the development of quantum field theory starting with the first works
of Dirac on quantum electrodynamics (QED) [28], the Dirac equation for the
electron [29] and the Dirac hole theory [30] with field theory reaching its final
modern form with Heisenberg [31]. QED at this time was very successful at
tree-level but the calculation of finite results from loops was not really tractable
until the introduction of systematic renormalization schemes in the late 1940’s.
The first attempt to apply quantum field theory to the strong nuclear force was
Yukawa’s suggestion [32] that the force was mediated by a new strongly cou-
pling massive particle which became known as the pion. This started another
strong thread in the theoretical approach of the nucleus by using meson-nucleon
theory to obtain nuclear forces consistent with the phenomenological potential
approach. The primary attraction of this approach is that a more microscopic
description of the degrees of freedom of the problem is provided and that addi-
tional constraints are imposed on the theory by the necessity of simutaneously
describing nucleon-nucleon and meson-nucleon scattering. Ultimately, as it be-
came clear that the mesons and nucleons were themselves composite particles,
meson-nucleon theories were replaced as fundamental field theories of the strong
interactions by quantum chromodynamics (QCD). However, the meson-nucleon
approach is still a strong element in nuclear physics as a basis for phenomenol-
ogy and is making a potentially more rigorous comeback in the form of the
effective field theories associated with chiral perturbation theory. This situa-
tion is unlikely to change until it becomes possible to at least describe the NN
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force and the deuteron directly from QCD.

1.3 Spin

Breit and Rabi [33] first suggested the use of magnetic deflection of an atomic
beam in an inhomogeneous field to measure nuclear spins. The coupling of
electronic (Je) and nuclear (J) spins is not totally negligible compared to the
coupling of the electronic spin to the external magnetic field, provided the latter
is weak enough. One then observes (2Je +1)×(2J +1) lines with a predicted in-
tensity pattern. The atomic and molecular beam studies were to be implemented
with great success (see Sec. 3), but the first determination of the deuteron spin
used other methods.

Farkas and collaborators [34] demonstrated the ortho-para conversion in the
diplogen (as they called the deuterium molecule) and determined the spin and
statistics of the nucleus from the equilibrium ratio between these two states at
different temperatures. They concluded that the diplogen nucleus must obey
Bose-Einstein statistics, that the most probable value of its spin was 1, and that
its magnetic moment was about one fifth of that of the proton.

Using photographic photometry, the alternating intensities in the molecular
spectrum of deuterium were investigated by Murphy and Johnston [35], who
concluded that indeed J = 1 for the “deuton”.

1.4 Connection with OPE

The deuteron thus quickly appeared as a loosely bound pair of nucleons with
spins aligned (spin triplet state). The existence of a small quadrupole moment
(see Sec. 3.1.3) implies that these two nucleons are not in a pure S state of rela-
tive orbital angular momentum, and that the force between them is not central.
Taking into account total spin and parity, an additional D wave component is
allowed. Such a D wave can be generated by the tensor part of the one-pion
exchange (OPE) potential [4, 36].

2 The nonrelativistic two-nucleon bound state

2.1 The potential model of the deuteron

The potential model of the deuteron is described by the Hamiltonian

Ĥ = T̂1 + T̂2 + V̂ (1)

where T̂i is the kinetic energy operator for particle i and V̂ is the two-body
potential. Successful NN potentials must have several basic characteristics in
order to satisfactorily describe the deuteron static properties and the NN scat-
tering data. The long distance part of the potentials is described by one-pion
exchange while the intermediate and short range parts may be either param-
eterized in terms of simple functional forms, or obtained from models involv-
ing meson exchanges. The very strong anticorrelation of nucleons requires that
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these potentials be repulsive at short distances. The potentials must have terms
involving scalar, spin-spin, tensor and spin-orbit forces. The tensor force is of
particular importance in producing the single spin-1, iso-singlet deuteron bound
state. The long range tensor force is provided automatically by the exchange
of the pseudoscalar pion. Modern phenomenological potentials also include ad-
ditional nonlocalities by means of terms quadratic in the relative momentum
and/or quadratic spin-orbit terms. Improved fits to scattering data also require
that isospin symmetry breaking be imposed via the inclusion of electromag-
netic interactions between nucleons and by additional explicit isospin symmetry
breaking terms in the potential. By fitting the potentials directly to the scat-
tering data, several phenomenological potentials have been contructed that fit
the scattering database with χ2 very close to 1.

An discussion of the most commonly used NN potentials may be found in
the review [13]. These include the so-called Reid-SC [37], Paris [38], Bonn [39],
CD-Bonn [40], Nijmegen [41], Reid93 [41] and Argonne v18 [42] potentials.

Given a potential, the resolution of the Schrödinger equation in the T =
0, J = 1 np channel leads to the bound state wave function discussed hereafter.

2.2 The deuteron wave function

The tensor force requires that the deuteron wave function be a mixture of 3S1

and 3D1 components, so the deuteron wave function is of the form

ψM (x) =
u(r)

r
YM

101(θ, φ) +
w(r)

r
YM

121(θ, φ) , (2)

where

YM
JLS(θ, φ) =

∑

mL,mS

〈J,M |L,mL;S,mS 〉 YLM(θ, φ) |S,ms〉 (3)

are the spin-spherical harmonics. The reduced radial wave functions u(r) and
w(r) correspond to the S and D waves respectively. The S and D state proba-
bility densities are defined as

ρS(r) = u2(r) and ρD(r) = w2(r) . (4)

The corresponding S and D state probabilities are then

PS =

∫ ∞

0

ρS(r)dr and PD =

∫ ∞

0

ρD(r)dr (5)

and the normalization of the wave function requires that

PS + PD = 1 . (6)

The reduced radial wave functions for the Argonne v18 potential are shown in
Fig. 1. The wave functions for other modern potentials are very similar.
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Figure 1: The deuteron reduced radial wave functions u (solid line) and w
(dashed) for the Argonne v18 potential, as a function of the relative coordinate.
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Figure 2: The deuteron S wave function in configuration space and in momen-
tum space: u(r)/r and pu(p) (calculated from the Argonne v18 potential).

From the wave function, a characteristic size of the deuteron rm is defined
as the rms-half distance between the two nucleons :

r2m =
1

4

∫ ∞

0

[
u2(r) +w2(r)

]
r2dr (7)

A conspicuous feature of the nucleon-nucleon interaction is the short range
repulsion, which leads the radial S wave function u(r)/r to be significantly re-
duced at distances smaller than approximately 1 fm (see Fig. 2). This introduces
a distance scale in the wave function in addition to the overall deuteron size.
This small distance behaviour is the subject of most of the experimental and
theoretical studies which will be presented in Secs. 4 and 5. As a result of this
dip at small r, the Fourier transform u(p) contains a node at approximately 2
fm−1, as seen also in Fig. 2. The u and w wave functions are given in momentum
space by :

u(p) =

∫ ∞

0

u(r)j0(pr)rdr and w(p) = −
∫ ∞

0

w(r)j2(pr)rdr . (8)

To conclude this presentation of the size and shape of the deuteron, the densities
|ψ0(x)|2 and |ψ1(x)|2 are illustrated in Fig. 3.
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Figure 3: Deuteron densities in M = 0 (left) and M = 1 (right) magnetic
substates. The red spots correspond to the maximal nucleonic densities, while
the dark volumes correspond to lower densities (outer surface is for 10% of
maximal density). See [9, 43] for equivalent representations.

In this simple potential model of the deuteron, the magnetic moment of the
deuteron is determined entirely by the D state probability PD :

µd = µs −
3

2

(
µs −

1

2

)
PD , (9)

where µs = µn + µp is the isoscalar nucleon magnetic moment. The deuteron
electric quadrupole moment is also determined from the wave functions:

Qd =
1√
50

∫ ∞

0

w(r)

[
u(r) − 1√

8
w(r)

]
r2dr . (10)

In both cases, these quantities are modified by extensions to the basic potential
model (see Sec. 5). In particular the direct relationship between the magnetic
moment and the D state probability will be broken by such extensions and,
therefore, this probability is not an observable [44].

Since the nuclear force is of finite range, it is easy to determine the asymp-
totic form of the wave functions

u(r) ∼ ASe
−γr and w(r) ∼ ADe

−γr

[
1 +

3

γr
+

3

(γr)2

]
as r → ∞ (11)

where γ ≃ √
εm, with m being the reduced np mass and ε the deuteron binding

energy (see Ref. [45] for a relativistic definition of γ). AS and AD are the
asymptotic normalization factors, determined by matching the asymptotic form
(11) to the calculated wave functions in the interior region where the potential
is nonvanishing. AS and the ratio

ηd =
AD

AS
(12)

are directly related to observables as discussed in the next section.
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Table 1: Experimental determinations of the deuteron static properties
Quantity Most recent Value

determination

Mass Md [47, 48] 1875.612762 (75) MeV
Binding energy ε [49] 2.22456612 (48) MeV

Magnetic dipole moment µd [48] 0.8574382284 (94) µN

Electric quadrupole moment Qd [46, 50, 51] 0.2859 (3) fm2

Asymptotic ratio ηd = AD/AS [52] 0.0256 (4)
Charge radius rch [53] 2.130 (10) fm
Matter radius rm [54, 55] 1.975 (3) fm

Electric polarizability αE [56, 57] 0.645 (54) fm3

3 Static and low energy properties

A review of the measured static properties of the deuteron, together with the
low energy neutron proton (np) scattering parameters, was given by Ericson
and Rosa-Clot [6, 46], who studied in detail their connection with NN potential
models. An updated status of the experimental information on the deuteron is
given in Table 1 and discussed hereafter.

3.1 Deuteron static properties (experiment)

3.1.1 Mass and binding energy

In the past ten years, significant progress in the precision of the measurement
of some atomic masses has been made by comparing cyclotron frequencies of
different pairs of ions in a Penning trap. In this way, the deuterium atomic mass
is known with a relative precision of 10−8 [47].

The deuteron binding energy is best determined by measuring the energy of
the gamma-rays coming from radiative np capture with thermal neutrons. This
energy is now measured to a relative accuracy of 2×10−7, using a crystal diffrac-
tion spectrometer [49]. At this precision, even for such a low energy process,
some of the earlier work may have to be corrected for relativistic kinematics and
the Doppler effect [58].

The binding energy and the mass measurements can be combined for the
most precise determination of the neutron mass [49]. The errors on the val-
ues reported in Table 1 include the uncertainty in the atomic mass unit u =
931.494013(37) MeV [48]. They are well beyond the accuracy of nuclear models.

3.1.2 Magnetic dipole moment

The first measurement of the deuteron magnetic moment was performed by Rabi
in 1934 [59], based on a principle [33] already alluded to. From the deflection
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of an atomic beam in an inhomogeneous magnetic field to the use of molec-
ular beam resonance and other methods, these techniques were continuously
improved [60]. Precise measurements of nuclear magnetic resonance frequencies
of the deuteron and proton in the HD molecule give the ratio of deuteron to
proton magnetic moments. However, the adopted value in Table 1 results from
a simultaneous determination of the electronic and nuclear Zeeman energy lev-
els splittings in the deuterium atom, yielding the ratio of deuteron to electron
magnetic moments [48].

3.1.3 Electric quadrupole moment

The deuteron was found to possess an electric quadrupole moment in 1939 [61].
This discovery had far reaching consequences: it meant that nuclear forces were
not central and were more complex that previously thought. It was to become
the best qualitative and quantitative evidence for the role of pions in nuclear
physics [6].

In contrast to the case of the magnetic moment which is determined through
its coupling to an external applied magnetic field, the quadrupole moment does
not couple to an external electric field. One measures instead, in HD or D2

molecules, the interaction of the deuteron quadrupole moment with the elec-
tric field gradient created along the molecular axis by the neighbouring atom.
The experiment provides an electric quadrupole interaction constant [50] which
must be divided by the theoretically calculated field gradient [51] to obtain the
quadrupole moment.

3.1.4 Asymptotic ratio D/S

The ratio (12) is deduced from measurements of tensor analyzing powers in
sub-Coulomb (d, p) reactions on heavy nuclei by comparison with calculations
in the distorted wave Born approximation (DWBA) [52]. The value of ηd is then
directly proportional to the analyzing powers. Other determinations based on
dp elastic scattering rely on pole-extrapolation and are somewhat less precise.

3.1.5 Radius and size

The deuteron size may be characterized by a charge radius rch and by a matter
radius rm. The latter is defined from the deuteron wave function (7).

Elastic electron scattering has been used since the early fifties [62] to mea-
sure the shape of nuclei. This topic will be discussed at length in Sec. 4. At low
momentum transfer, the cross section data yield the charge rms-radius of the
target nucleus through the relation r2ch = −6 dGC/dQ

2
∣∣
Q2=0

(see Sec. 4.1 for

the definition of GC). It was demonstrated recently that a precision extraction
of the deuteron rms charge radius from electron scattering data requires taking
into account the Coulomb distortion of the incoming and outgoing electrons [53].
A new analysis of the world data was then performed, yielding the value in Ta-
ble 1. The quoted uncertainty combines quadratically the fit statistical error
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and the dominant systematic error, the latter coming mostly from experimental
normalization uncertainties. The usual radiative corrections to electron scatter-
ing do not include the contribution of hadronic vacuum polarization, but that
effect should be smaller than the present uncertainties when extracting charge
radii [63].

The rms charge radius rch is related to the matter (or rather nucleonic)
rms-radius rm [64] by

r2ch = r2m + ∆r2m + r2p + r2n +
3

4

(
h̄

mp

)2

, (13)

where rp = 0.862(12) fm is the proton charge rms-radius [65] and r2n = −0.113(5)
fm2 is the neutron charge ms-radius [66]. ∆r2m is a contribution from non-
nucleonic degrees of freedom, close to 0 but with an uncertainty estimated to
±0.01 fm2. The quantity rd given by r2d = r2m + ∆r2m is usually defined as the
deuteron radius. The last term in (13) is of relativistic origin [67]. Note that
the above quoted value of rp, as extracted from ep elastic scattering, is in slight
disagreement (2σ difference) with recent Lamb shift measurements [68]. Finally,
the theoretical uncertainty in the deuteron radius associated with the correction
due to the nucleon finite size has been estimated to about 0.002 fm [69].

The nuclear-dependent correction to the Lamb shift in hydrogen and deu-
terium atoms is directly proportional to the nuclear mean-square radius. From
the isotope shifts in the pure optical frequency of 1S−2S two-photon transitions
in atomic hydrogen and deuterium, the difference r2ch−r2p of mean-square charge
radii for the deuteron and proton is accurately determined [54]. Small correc-
tions due to the deuteron polarizability seem to be under control [55]. Then
from (13) and the value of r2n, rm is extracted with a better precision than rch

from ed scattering. Our quoted uncertainty is larger than in Ref. [54] because
of the use of a larger uncertainty in r2n and the addition of the uncertainty due
to ∆r2m.

Taking into account additional small corrections summarized in Ref. [53], the
two results given in Table 1 are quite compatible, in the sense that they satisfy
Eq.(13). Furthermore, the value of rm follows the expectations from modern
NN potentials.

3.1.6 Electric polarizability

The electric polarizabilityαE characterizes how the deuteron charge distribution
can be stretched and acquire an electric dipole moment under the influence of an
external electric field. It was determined through elastic scattering of deuterons
from 208Pb well below the Coulomb barrier [56] and extracted from low energy
photoabsorption [57]. The two results are slightly incompatible (2σ difference).
The value in Table 1 is our average.
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3.2 Low energy np scattering parameters

The deuteron may also be viewed as a pole in the S-matrix describing the
np scattering in the coupled 3S1 and 3D1 channels. This S-matrix can be
experimentally determined from a phase-shift analysis of the scattering data.
An extrapolation to negative energies down to the measured deuteron binding
energy, either by an effective range expansion [6] or a P -matrix approach [70],
allows to extract ηd andAS . The asymptotic ratio ηd = 0.0254(2) is given by the
extrapolated mixing parameter ε1 while the asymptotic S state normalization
AS = 0.8847(8) fm−1/2 is essentially related to the effective range and thus to
the triplet scattering length at (numerical values from [71]).

3.3 Static properties and the NN potential

All deuteron static properties discussed above are well reproduced by NN po-
tential calculations such as Argonne v18, Nijmegen II, Reid93 or CD-Bonn, with
the notorious exception of the quadrupole moment, which is always a few per-
cent too low (see also Sec. 5.1). Meson exchange contributions, to be discussed
later, must be taken into account for a better agreement with data. The binding
energy ε is taken as a constraint in the determination of all potentials.

Compilations of deuteron static properties caculated with recent NN inter-
action models appear in [13, 72]. Note that most potentials result in a D wave
probability PD between 5.6 and 5.8%, except for the CD-Bonn potential where
PD = 4.83%.

Various correlations were established between the calculated static proper-
ties, independently of the NN potential used. For example, linear relationships
between AS and rm [6], or A2

S(1+η2) and r2m [55], and Qd/A
2
S and η [6] were es-

tablished, the latter depending on the value of the πNN coupling constant used
in the potential calculation. For more recent potentials, linear relationships be-
tween µd and η on one hand, Qd and η on the other hand, are illustrated in [72].
Finally the electric polarizability αE is directly proportional to r2m [55].

4 Elastic electron-deuteron scattering

4.1 Deuteron electromagnetic form factors

Invoking Lorentz invariance, current conservation, parity and time-reversal in-
variance, the general form of the electromagnetic current matrix element for
elastic electron scattering from the spin-1 deuteron can be shown to have the
general form [73]:

Gµ
λ′

d
λd

(P ′, P ) = −
{
G1(Q

2)(ξ∗λ′

d

(P ′) · ξλd
(P ))(P ′ + P )µ

+ G2(Q
2)

[
ξµ
λd

(P )(ξ∗λ′

d

(P ′) · q) − ξµ∗
λ′

d

(P ′)(ξλd
(P ) · q)

]

11



− G3(Q
2)

1

2M2
d

(ξ∗λ′

d

(P ′) · q)(ξλd
(P ) · q)(P ′ + P )µ

}
(14)

where Md is the deuteron mass, P and P ′ are the initial and final deuteron
four-momenta, q = P ′ − P is the virtual photon four-momentum, ξµ

λd
(P ) and

ξµ∗
λ′

d

(P ′) are the polarization four-vectors for the inital and final deuteron states.

The Gi(Q
2) are form factors depending only upon the virtual photon four-

momentum; assuming hermiticity, they are real. Since the virtual photon four-
momentum is always spacelike for electron scattering, we use the convention
Q2 ≡ −q2 = q2 − ν2.

The current may be expressed in terms of charge monopole, magnetic dipole
and charge quadrupole form factors. These are related to the Gi(Q

2)’s by:

GC(Q2) = G1(Q
2) +

2

3
ηGQ(Q2)

GM (Q2) = G2(Q
2)

GQ(Q2) = G1(Q
2) −G2(Q

2) + (1 + η)G3(Q
2) (15)

with

η =
Q2

4M2
d

. (16)

These form factors are normalized such that

GC(0) = 1 ,

GM(0) =
Md

mp
µd ,

GQ(0) = M2
dQd . (17)

The experimental values of GM(0) and GQ(0) are respectively 1.714 and 25.83
(see Table 1).

4.2 Observables

In the Born approximation of a one-photon exchange mechanism and neglect-
ing the electron mass, the cross section for elastic scattering of longitudinally
polarized electrons from a polarized deuteron target can be calculated from the
current to give in the laboratory frame [74]:

dσ

dΩ
=

σM

1 + 2E
Md

sin2 θ
2

[vLRL + vTRT + vTTRTT + vTLRTL

+ 2hvT ′RT ′ + 2hvTL′RTL′ ] , (18)

where

σM =

[
α cos θ

2

2E sin2 θ
2

]2

(19)
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is the Mott cross section, E the electron beam energy, θ the electron scattering
angle and h = ±1

2
the electron helicity. The Rl are response functions and the

vl kinematical factors are:

vL =

(
Q2

q2

)2

vT =
1

2

Q2

q2
+ tan2 θ

2

vTT = −1

2

Q2

q2

vTL = − 1√
2

Q2

q2

[
Q2

q2
+ tan2 θ

2

] 1

2

vT ′ =

[
Q2

q2
+ tan2 θ

2

] 1

2

tan
θ

2

vTL′ = − 1√
2

Q2

q2
tan

θ

2
. (20)

For elastic scattering,
Q2

q2
=

1

1 + η
. (21)

Each of the response functions can be written as

Rl(Q
2) =

9∑

i=1

Rl(Q
2, τi)τi (22)

where l = {L, T, TT, LT, T ′, LT ′} and the τi are members of the set of the
unique deuteron density matrix elements expressed in terms of elements of a
spherical tensor ρkq. This set is represented by

τi =

{
ρ00,

√
3

2
ρ10,

1√
2
ρ20,

√
3Reρ22,

√
3Imρ22,

√
3

2
Reρ11,

√
3

2
Imρ11,

√
3

2
Reρ21,

√
3

2
Imρ21

}
. (23)

The nonvanishing reponse functions for elastic scattering may be written in
function of the deuteron form factors :

RL(Q2, ρ00) = (1 + η)
2

[
G2

C(Q2) +
8

9
η2G2

Q(Q2)

]

RL(Q2,
1√
2
ρ20) = −8

3
(1 + η)

2

[
ηGC(Q2)GQ(Q2) +

1

3
η2G2

Q(Q2)

]

RT (Q2, ρ00) =
4

3
η (1 + η)G2

M (Q2)
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RT (Q2,
1√
2
ρ20) = −2

3
η (1 + η)G2

M (Q2)

RTT (Q2,
√

3Reρ22) =
2

3
η (1 + η)G2

M (Q2)

RTL(Q2,

√
3

2
Reρ21) =

8

3

(
η + η2

) 3

2 GM(Q2)GQ(Q2)

RT ′(Q2,

√
3

2
ρ10) = −2

3
η (1 + η)G2

M (Q2)

RTL′(Q2,

√
3

2
Reρ11) = −8

3
η

1

2 (1 + η)
3

2 GM(Q2)
[
GC(Q2) +

η

3
GQ(Q2)

]
(24)

It is conventional to write the cross section as

dσ

dΩ
=

σM

1 + 2E
Md

sin2 θ
2

×
[
A(Q2) + B(Q2) tan2 θ

2

]

×
[
1 + ρ20 · t20(Q

2, θ) + 2Reρ21 · t21(Q
2, θ) + 2Reρ22 · t22(Q

2, θ)

+hρ10 · t10(Q
2, θ) + 2hReρ11 · t11(Q

2, θ)
]

(25)

where the unpolarized elastic structure functions A(Q2) and B(Q2) are defined
as

A(Q2) ≡ vLRL(Q2, U) +
1

2(1 + η)
RT (Q2, U)

= G2
C(Q2) +

2

3
ηG2

M (Q2) +
8

9
η2G2

Q(Q2) (26)

and

B(Q2) ≡ RT (Q2, U)

=
4

3
η (1 + η)G2

M(Q2) . (27)

Note that the dependence of the cross section on the target polarization is
conventionally given by analyzing powers denoted Tkq; we implicitly use here
the equivalence between analyzing powers and recoil deuteron polarizations:
tkq = Tkq . Defining

R0 ≡ A(Q2) +B(Q2) tan2 θ

2
, (28)

the tensor polarization observables are

t20(Q
2, θ) ≡ 1√

2R0

[
vLRL(Q2,

1√
2
ρ20) + vTRT (Q2,

1√
2
ρ20)

]

= − 1√
2R0

{
8

3
ηGC(Q2)GQ(Q2) +

8

9
η2G2

Q(Q2)

+
1

3
η

[
1 + 2(1 + η) tan2 θ

2

]
G2

M(Q2)

}
(29)
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t22(Q
2, θ) ≡

√
3

2R0
vTTRTT (Q2,

√
3Reρ22)

= − 1

2
√

3R0

η G2
M(Q2) (30)

t21(Q
2, θ) ≡ 1

2R0

√
3

2
vTLRTL(Q2,

√
3

2
Reρ21)

= − 2√
3R0

η

√
η + η(1 + η) tan2 θ

2
GM (Q2)GQ(Q2) (31)

t10(Q
2, θ) ≡ 1

R0

√
3

2
vT ′RT ′(Q2,

√
3

2
ρ10)

= − 1

R0

√
2

3
η (1 + η) tan

θ

2

√
1

1 + η
+ tan2 θ

2
G2

M (Q2) (32)

t11(Q
2, θ) ≡ 1

2R0

√
3

2
vTL′RTL′(Q2,

√
3

2
Reρ11)

=
2√
3R0

√
η + η2 tan

θ

2
GM (Q2)

[
GC(Q2) +

η

3
GQ(Q2)

]
(33)

There are only two unpolarized elastic structure functions, but three form
factors. Since B(Q2) depends only on G2

M(Q2), this form factor can be deter-
mined by a Rosenbluth separation of A(Q2) and B(Q2), or by a cross section
measurement at θ = 180◦. A(Q2) depends on all three form factors so that only
a quadratic combination of GC(Q2) and GQ(Q2) (the longitudinal part of A)
can be determined from the unpolarized cross section. A complete separation
of the form factors therefore requires the measurement of at least one tensor
polarization observable. The possible candidates are t20, t21 and t11, since t22

and t10 depend only upon G2
M (Q2) and the unpolarized structure functions. t21

and t11, being both proportional to GM (Q2), are of smaller magnitude than
t20 and provide in practice a smaller “lever arm” to determine either GC(Q2)
or GQ(Q2) [75]. In addition, the measurement of t11 requires intense polarized
electron beams, which became available only recently, but offers the simplifica-
tion of a vector polarization measurement. In all cases so far, this leaves t20 as
the observable of choice to extract GC(Q2) and GQ(Q2).

Note that all of the polarization observables depend upon the scattering an-
gle θ through kinematical factors and R0(Q

2, θ). Consequently, the polarization
observables measured in different experiments under different kinematical con-
ditions can only be compared if some convention is assumed. Since the first
t20 measurement [76] was performed close to θ = 70◦, it has been customary
to quote the observables at that angle. For experiments not performed at 70◦,
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the observable is extrapolated to this angle, using the known A(Q2) and B(Q2).
Another convention is to use the alternate quantity:

t̃20(Q
2) ≡ 1√

2

RL(Q2, 1√
2
T20)

RL(Q2, U)

= −
8
3
ηGC(Q2)GQ(Q2) + 8

9
η2G2

Q(Q2)
√

2
[
G2

C(Q2) + 8
9η

2G2
Q(Q2)

] . (34)

The choice of t̃20, which is not strictly speaking an observable, has several
advantages. t̃20 is independent of θ, and thus depends only on Q2. It is a purely
longitudinal quantity, and as such is independent of the magnetic form factor.
It has simple properties related to those of the charge and quadrupole form
factors (see Sec. 4.4 and Refs. [77, 78]). In particular, the position of nodes in
these form factors may be determined directly from a plot of t̃20. Numerically,
t̃20(Q

2) can be determined from A(Q2), B(Q2) and t20(Q
2, θ) through

t̃20(Q
2) =

t20(Q
2, θ) + δ

2
√

2

1 − δ
with δ = vT

B(Q2)

R0(Q2, θ)
. (35)

As illustrated in Sec. 4.3, in all measurements to date, the ratio δ is small, so
that t̃20(Q

2), t20(Q
2, θ) and t20(Q

2, 70◦) are not very different from each other.
For all these reasons we will use this quantity along with A(Q2) and B(Q2) for
comparison of theoretical predictions to data.

In closing this introduction to ed elastic scattering observables, we refer to
App. A for a short discussion of a possible two-photon exchange contribution,
especially in view of the large Q2 range of available data.

4.3 Review of elastic ed data

The first experiment to measure elastic scattering of electrons on the deuterium
was performed at the Stanford Mark III accelerator [79]. Since then, many
cross section data points have been measured at various accelerators over the
world, with ever increasing precision and at larger and larger momentum trans-
fers [80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99].
Quite spectacular is the recent achievement of Jefferson Lab to measure A(Q2)
up to Q2 ≃ 6 (GeV/c)2, making use of a record luminosity of about 5 × 1038

cm−2s−1 to reach cross sections as low as 10−41 cm2/sr [98]. New measurements
of B(Q2) for Q2 = 0.7 to 1.3 (GeV/c)2 from the same experiment will soon be
available [100]. The kinematics of all these experiments are illustrated in Fig. 4.
Forward angle scattering yields the elastic structure function A, while back-
ward angle scattering allows the determination of the elastic structure function
B. The dashed lines in Fig. 4 indicate what fraction of the cross section cor-
responds to the contribution of B(Q2) tan2(θ/2). Other experiments measured
cross section ratios ed/ep [101, 102].
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Figure 4: Kinematical settings (θ vs Q) for various cross section measure-
ments in ed elastic scattering. The small angle data from SLAC [90] (open
circles) and JLab/HallA [98] (filled circles) extend respectively to 10.1 and 12.4
fm−1, beyond the scale of the horizontal axis. The dashed lines correspond to
B tan2(θ/2)/R0 =0.01, 0.1, 0.5, 0.9, 0.99, respectively from bottom to top.
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As already mentionned, the separate determination of the deuteron charge
monopole and quadrupole form factors necessitates the measurement of a polar-
ization observable. The observable of choice is t20, which is a measure of the rel-
ative probabilities of finding the deuteron in magnetic substates M = −1, 0,+1
after the ed scattering. The Bates Linear Accelerator Center was the first to
measure t20 [76] and to provide an experimental evidence for the existence of
a node of the charge form factor [77]. These double scattering experiments
were recently brought to the (up to now) highest possible momentum transfers
at Jefferson Lab [103]. For this last experiment as well as for the previously
mentioned A measurement [98], electron beams of 100 to 120 µA were used in
conjunction with liquid deuterium targets up to 15 cm long, capable of dissipat-
ing 600 W of power deposited by the beam. The combination of a record inte-
grated luminosity, in excess of 109 pbarn−1, and of a large acceptance magnetic
channel focusing recoil deuterons onto the high efficiency polarimeter POLDER
(see Fig. 5 and App. B) allowed the measurements of t20 to be extended up
to Q2 ≃ 1.7 (GeV/c)2. The alternative measurement of the tensor analyzing
power T20, using a polarized target intercepting a stored electron beam, was ini-
tiated at Novosibirsk [104, 105, 106], and improved at NIKHEF [107, 108]. New
preliminary results from Novosibirsk [109] are also included in this review. On
the other hand, the use of a solid cryogenic target (ND3) in an external electron
beam at Bonn resulted in a too low luminosity [110]. The kinematical settings
of all these experiments are illustrated in Fig. 6. In all cases, the magnetic
contribution to t20 is small. A further comparison between these polarization
measurements is contained in App. B.

The other tensor polarization observables t21 and t22 (or T22) were also
measured [77, 103, 107].

Figure 7 shows a good part of the existing data. The A data at low and high
Q2 will be better illustrated in the figures of Sec. 5, in particular in Figs. 28
and 26. The t21 data appears in Fig. 27. In closing this section, let us mention
a few inconsistencies in this data set in the light of recent measurements.1 The
A(Q2) Cambridge [87] and Bonn [94] data are very probably too low, since both
recent measurements at Jefferson Lab [98, 99] agree with the “higher” trend al-
ready given by the SLAC data [90]. Still, as apparent in Fig. 28, these two
JLab measurements differ from each other (10-15%) in the region Q2 = 1 to 2
(GeV/c)2. For a comparative discussion of these two independent experiments,
see [111]. The t20 (or T20) data are necessarily less precise than cross section
measurements and naturally exhibit some scatter. Although all data points
are compatible with parameterizations such as discussed below, there are some
trends between different data sets. No parameterization or model can accomo-
date both the Bates [77] and NIKHEF [108] data sets: one or the other is too
low, or both are. The same Bates data are also systematically lower than both
the JLab [103] and the preliminary Novosibirsk data [109], and the precise low

1 At the time of print of this paper, a better determination of the beam energies at
JLab/Hall C results in some corrections, within quoted errors. The A(Q2) values [99] should
decrease by 1 to 3% with increasing Q2, while the first t20 point [103] should move down by
about one third of its error. These numbers are subject to confirmation.
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Figure 5: Experimental set-up for the recent t20 double scattering experi-
ment [103] in the Hall C (50 m diameter) of Jefferson Lab: e + d (LD2) →
e′ (HMS) + d (Deuteron channel) followed by d + p → (pp)n in the POLDER
polarimeter.

Q2 NIKHEF point [107] is lower than many theoretical expectations. Though
these scatters are compatible with the quoted experimental errors, they demon-
strate (together with the theoretical models to be discussed) a need for a more
accurate measurement in the region Q = 3 to 4.5 fm−1. Finally, the Bates t22

data point at Q ≃ 3.8 fm−1 [77] is obviously wrong, but the authors did not
find a correlation between t20 and t22 in their analysis .

4.4 Empirical features of form factors

The three deuteron electromagnetic form factors may be calculated at a fixed
value of Q2 from measurements of A, B and t20. The magnetic form factor GM

is readily available from the B measurements, while the two charge form factors
GC and GQ are determined from vLRL(Q2, U) ≡ AL = A − B/2(1 + η) (26)
and t̃20 (34,35). The resolution of these equations is most simply described in
Ref. [78], together with a discussion of possible ambiguities in the choice of dif-
ferent solutions in the Q-regions where t̃20 reaches its extrema. This procedure
allows a direct comparison of theoretical models with the form factors, instead
of observables, but it is limited to the domain where the three observables are
measured, which is Q = 0 − 7 fm−1(Q2 ≤ 1.8 (GeV/c)2).

The most striking result is an experimental determination of the node of
GC , at Q = 4.21±0.08 fm−1 [78], which corresponds to t̃20= −1/

√
2 . This

behaviour of GC , though expected from most models, could not have been seen
with cross section measurements only. The exact location of this node is sensitive
to the strength of the NN repulsive core (in the impulse approximation, it is
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Figure 6: Kinematical settings for measurements of elastic ed tensor polarization
observables. Filled symbols for t20 measurements of Bates/Argonne [76] (cir-
cles), Bates/AHEAD [77] (squares) and JLab/POLDER [103] (diamonds), each
at a fixed recoil deuteron angle. Open symbols for T20 measurements of Novosi-
birsk [104, 105] (triangles up), [106] (triangles down), NIKHEF [107] (circle),
[108] (squares) and Bonn [110] (star), each at a given electron beam energy. The
tilted bars indicate the detector acceptances. The dashed lines are a measure
of the small magnetic contribution to t20: they correspond to t̃20 − t20 = 0.05,
0.1, 0.15, respectively from bottom to top.
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Figure 7: Elastic ed scattering observables. The A data are from Cambridge [87]
(triangles), SLAC [90] (open circles), Bonn [94] (stars), Saclay [97] (open dia-
monds), JLab/HallA [98] (full circles) and JLab/HallC [99] (full diamonds).
The B data are from Saclay [95] (diamonds), SLAC [96] (circles), Bonn [94]
(stars). For t20 data legend, see Fig. 6.
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connected to the node of u(p) in Fig. 2) and to the size of relativistic corrections
and of the isoscalar meson exchange contributions. A secondary maximum is
also determined from the data [103]. Thus, like any other nucleus, the deuteron
appears to have a charge form factor with an oscillatory diffractive pattern.
Unlike other nuclei, the sign of this form factor is determined as well.

The quadrupole form factor GQ exhibits a monotonous exponential fall-off,
and its first node, corresponding to the yet unobserved second node of t̃20, is
expected beyond Q = 7 fm−1.

Finally the magnetic dipole form factor GM has a node at Q = 7.2±0.3
fm−1, determined by B data [96] and in a lesser extent by t21 data [103]. The
position of this node is very sensitive to small non-nucleonic components in the
deuteron wave function, to nucleon-nucleon components of relativistic origin, as
well as to the description of the ρπγ contribution to be discussed in the next
section.

The three form factors were parameterized in three different ways: rational
fractions (I), sum of Lorentzian functions in an helicity basis (II) and sum of
Gaussian functions (III) [78], fitting directly the measured observables, i.e. dif-
ferential cross sections and polarizations. Figure 8 gives a representation of the
form factors with an updated version of parameterization I, taking into account
the preliminary T20 data of Ref. [109]. The data base and the parameterizations
are available in [112]. Another representation of the experimental knowledge of
the deuteron form factors is given in Fig. 9, where the contributions from each
of them to the elastic structure function A are given, calculated using parame-
terization I.

5 Theoretical issues

The different classes of theoretical models of the deuteron electromagnetic form
factors are presented here, illustrated with the most recent calculations on the
subject. A summary of earlier theoretical work on the subject may be found for
instance in [77, 97]. In all figures of this section, the data legend is the same as
in Sec. 4.3.

5.1 Deuteron elastic form factors in the simple potential
model

Once the wave functions for a given potential model are obtained as discussed
in Sec. 2, the electromagnetic form factors may readily be calculated in the
nonrelativistic impulse approximation (NRIA) using a well established formal-
ism [113, 114]. The virtual photon can couple to any of the two nucleons, so
that the isoscalar combinations GS

E,M of the nucleon form factors (NEMFF),
defined in App. C, factorize to yield [3, 115]:

GC(Q2) = GS
E(Q2) × CE(u, w;Q2)

GQ(Q2) = GS
E(Q2) × CQ(u, w;Q2)
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Figure 8: Deuteron form factors GC, GQ and GM as a function of Q (updated
from Fig. 1 of Ref. [78]). The data for GC and GQ correspond to t20 (or
T20) measurements (see legend of Fig. 6), including new preliminary results
from [109] (triangles right). The open diamonds correspond to a second solution
of the equations GC, GQ = f(A,B, t20) [78]. The GM data correspond to the B
measurements indicated in Fig. 7, with the addition of [93] (full circles). The
curves are from parameterizations I (solid line), II (dot-dashed) and III (short
dashed) discussed in the text.
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Figure 9: A(Q2) (solid curve) and the contributions from GC (long dashed),
GQ (dashed) and GM (dotted), from parameterization I. Above 1.3 (GeV/c)2,
the statistical significance of the data is such that the crossing of the GC and
GQ contributions, corresponding to t̃20 = 1/

√
2, is not firmly established.

GM(Q2) = GS
E(Q2) × CL(u, w;Q2) +GS

M (Q2) × CS(u, w;Q2) (36)

The C functions are integrals of quadratic combinations of u and w. In this
NRIA, the ratio GQ/GC , and thus t̃20, are independent of the nucleon form
factors. The coupling of the virtual photon to the moving nucleon charges and
to the nucleon spins both contribute the magnetization in GM , giving rise to the
two terms in (36). The elastic structure functions A(Q2), B(Q2) and t̃20(Q

2) are
illustrated in Fig. 10 for a variety of phenomenological potentials [116, 117, 42],
using the MMD parameterization of the nucleon form factors (see App. C).

In all cases the calculations agree with one another and with the data up to
Q2 ∼ 0.5 (GeV/c)2 but diverge at higher Q2. The low Q2 behaviour of the form
factors is not determined with the same precision for each of them. Since the
forward cross sections at low Q2 depend mostly on GC , the slope of this form
factor at Q2 = 0 is determined to about 1% (see Sec. 3.1.5). The slope of GM

at the origin is determined by backward cross sections and is known to about
5%. In contradistinction, the slope of GQ is known to only 15%, in the absence
of very precise t20 measurements at low Q2. Still this slope is model dependent.
To illustrate this point, we define the reduced quantity

t̃20R(Q2) = − 3√
2QdQ2

t̃20(Q
2) (37)

and show its low Q2 behaviour in Fig. 11. At Q2 = 0, one gets

t̃20R(0) =
GQ(0)

QdM2
d

and
t̃′20R(0)

t̃20R(0)
=
G′

Q(0)

GQ(0)
−G′

C(0) +
GQ(0)

12M2
d

. (38)

24



10
−5

10
−4

10
−3

10
−2

0.5 1.0 1.5 2.0

            Q
2
 (GeV/c)

2

−1.5

−1.0

−0.5

0.0

0.5

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

A

t
20

~

G
C
=0

B

Figure 10: Elastic ed scattering observables for a variety of phenomenologi-
cal potentials in the NRIA: Bonn-A (dotted curve), Bonn-B (dashed), Bonn-C
(long-dashed), Bonn Q (dot-dashed), Reid-SC (thick dotted), Paris (solid) and
A-v18 (thick dashed). NEMFF: MMD.
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Figure 11: t̃20R from (37) for a variety of phenomenological potentials in the
NRIA. Same legend as Fig. 10. The solid right triangle results from the definition
of t̃20R.

Table 2: Dependence upon various potentials of the quantities appearing in
Eq.(38). Slopes in (GeV/c)−2.

Potential GQ(0) t̃20R(0) G′
Q(0) G′

C(0) t̃′20R(0)

Bonn A 24.8 .960 -506 -18.1 -1.69
Bonn B 25.1 .972 -464 -18.1 0.25
Bonn C 25.4 .983 -464 -18.1 0.47
Bonn Q 24.7 .956 -464 -18.1 -0.06
Reid SC 25.2 .976 -464 -18.1 0.32

Paris 25.2 .976 -453 -18.5 1.09
A-v18 24.1 .932 -444 -18.1 0.28

GQ(0) is the model calculation of the quadrupole moment. The slope t̃′20R(0) is
rather small, due to an approximate cancellation between the first two terms,
the third one being significantly smaller. In this connection, it is instructive to
list in Table 2 the model dependences of these various slopes. The value of the
quadrupole form factor varies substantially for these calculations and is always
smaller than the experimental value of 25.8 (17). All of the Bonn calculations
and the Reid-SC calculation yield the same value for the derivative of the charge
form factor and the same of is true of the derivative of the quadrupole form factor
with the exception of Bonn A. Therefore the spread in t̃′20R(0) for this latter
set comes only from the variation in the value of the quadrupole form factor.
However, this may not be the case in general.

The increasing disagreement between these simple calculations and the data
at higher Q2 indicates that this approach does not contain all of the neces-
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sary physical degrees of freedom and/or that since the momentum transfer ap-
proaches and then surpasses the mass of the nucleon, it is necessary to consider
the impact of special relativity on the calculation of the deuteron elastic struc-
ture functions. We will now consider the first of these possibilities.

5.2 Limitations of the simple potential model

For many applications in nuclear physics, the phenomenological potential ap-
proach is completely adequate and provides a good description of various phe-
nomena. Its limitations were seen, however, by considering the calculation of
electromagnetic properties of the deuteron in the preceding section.

The inclusion of electromagnetic interactions with the two-nucleon system
imposes the requirement that the electromagnetic current matrix elements sat-
isfy the continuity equation

∇· < Ψf |Ĵ(x)|Ψi > +
∂

∂t
< Ψf |ρ̂(x)|Ψi >= 0 (39)

where Ĵ(x) and ρ̂(x) are the current and charge density operators. The operators
must then satisfy

∇ · Ĵ(x) − i
[
ρ̂(x), Ĥ

]
= 0 . (40)

Since either of the nucleons can be charged, the charge density operator is

ρ̂ = ρ̂1 + ρ̂2 , (41)

while the current density takes the general form

Ĵ = Ĵ1 + Ĵ2 + Ĵex , (42)

where ρ̂i and Ĵi are the charge and current densities for particle i and Ĵex is a
possible additional contribution to the current density.

The current of a free charged particle must satisfy the continuity equation,
which implies

∇ · Ĵi(x) − i
[
ρ̂i(x), T̂i

]
= 0 . (43)

Using this with (40), (41) and (42) gives

∇ · Ĵex(x) − i
[
ρ̂(x), V̂

]
= 0 . (44)

Since ρ̂i is proportional to (1 + τ
(i)
3 ) and the two-nucleon potential V̂ has terms

proportional to τ (1) ·τ (2), the second term in (44), proportional to (τ (1)∧τ (2))3,

does not vanish and Ĵex must be nonzero. In addition, since V̂ involves the
coordinates of both nucleons, the current Ĵex must also depend upon both sets
of coordinates and is therefore a two-body operator. The physical origin of this
contribution to the current comes from the fact that the two-nucleon potential
contains terms corresponding to the exchange of charge between the nucleons,
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which must in turn give rise to an associated current. These two-body currents
are called exchange or interaction currents.

Equation (44) is a symmetry constraint on the theory. It cannot, however, be

used to uniquely determine Ĵex since divergenceless pieces can be added to any
current satisfying (44) without modifying the constraint. A unique prediction of
the current therefore requires that the underlying dynamics of the interaction be
specified. Viewing the nuclear force in a meson-exchange model, these two-body
currents are naturally associated with contributions that involve the exchange of
mesons [118]. Now that it is generally accepted that quantum chromodynamics
(QCD) is the correct description of the strong force at the scales of interest here,
these currents must ultimately be associated with the exchange of quarks.

This discussion leads to a consistent treatment in the context of a non-
relativistic treatment of the two-nucleon problem. However, any attempt to
implement this approach in a manner that is applicable to the existing data,
for instance to the case of elastic electron-deuteron scattering, leads directly to
consistency problems. One of the most elementary indications of this problem
arises from the necessity of including electromagnetic form factors for the nu-
cleons. At low momentum transfers, these form factors differ from their static
values by terms of order Q2/m2

D. Since the dipole mass mD is of similar mag-
nitude as the nucleon mass, this is of leading relativistic order v2/c2. Whenever
the presence of the nucleon electromagnetic form factors has an appreciable
effect on the calculations of the deuteron form factors, some effects of relativis-
tic order are already included. It then becomes necessary to consider whether
there are other relativistic effects of similar size that can appreciably modify the
calculations. In fact, there are many such effects arising from Lorentz boosts
and exchange currents that become increasingly important in the calculations
of deuteron form factors as the four-momentum transfer increases. For this rea-
son it is necessary to consider how relativity can be introduced consistently in
models of the deuteron. For this purpose, we will assume that the deuteron is
adequately described by nucleons and mesons.

5.3 Construction of relativistic models

The requirement of any truly relativistic model is that it must satisfy Poincaré
covariance: it must be covariant with respect to Lorentz boosts, spatial rotations
and space-time translations. This can be imposed by requiring that the the
operators which act as generators of these transformations satisfy the Lie algebra
of this group:

[
J i, Jj

]
= iǫijkJk,

[
Ki, Kj

]
= −iǫijkJk (45)

[
J i, Kj

]
= iǫijkKk (46)

[P µ, P ν] = 0 (47)
[
Ki, P 0

]
= −iP j ,

[
J i, P 0

]
= 0 (48)

[
Ki, P j

]
= −iδijP 0,

[
J i, P j

]
= iǫijkP k (49)
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where J i are the three angular momentum operators that generate rotations, Ki

are the generators of the three Lorentz boosts and P µ is a four-vector contain-
ing the energy and momentum operators that generate space-time translations.
This differs from the corresponding algebra for the Galilean transformations in
only two commutators. The differing commutators for the Galilean transforma-
tions are: [

Ki
G, K

j
G

]
= 0 (50)

and [
Ki

G, P
j
]

= −iδijM (51)

where Ki
G are the generators of the Galilean “boosts” and M is the mass oper-

ator. The first of these implies that Galilean boosts commute whereas Lorentz
boosts do not. The second is the source of the dynamical complexity of rela-
tivistic models and theories. While the commutators for the Galilean boosts
and the three-momentum operators are proportional to the mass, the corre-
sponding commutators for the Poincaré group are proportional to the energy
operator, that is the Hamiltonian. Since the Hamiltonian contains the inter-
actions between the constituents of the system, the first commutator of (49)
implies that the Lorentz boost operators or three-momentum operators must
also be dependent upon the interaction.

There are two basic approaches to constructing Poincaré invariant models.
We will start with the most familiar of these, quantum field theory.

5.3.1 Quantum field theory

The starting point of a quantum field theory is a Lagrangian that is constructed
to satisfy all of the required symmetries, including Poincaré invariance. By
nature field theories have an infinite number of degrees of freedom. Canonical
quantization is performed by constructing the Hamiltonian, finding the gener-
alized position and momentum in terms of the fields, writing the fields as an
expansion in terms of creation and annihilation operators, and then imposing
canonical equal time commutation (anticommutation) relations on the canonical
variables. This yields commutation (anticommutation) relations for the creation
and annihilation operators. An immediate consequence is that the fields com-
mute (anticommute) for all spacelike intervals, implying that events occuring
at spacelike separations cannot be causally connected. This is the property of
microscopic causality or microscopic locality. It should be noted here that micro-
causality results from imposing the commutation (anticommutation) relations
on any spacelike hypersurface.

The structure of field theories is very complex due to the presence of an
infinite degrees of freedom. Since the Hamiltonian of an interacting system
links states containing different numbers of particles, and the time-evolution
operator of the system is given by the imaginary exponential of the interacting
Hamiltonian, the interacting system contains contributions with any number
of particles, from zero to infinity. Practical calculations in field theory, with
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the exception of numerical approaches such as lattice QCD, must then intro-
duce some method of truncating the collection of configurations contributing
to the calculation. The most familiar approach to this problem is Feynman
perturbation theory. Here, various configurations are carefully arranged such
that all quantities contributing to a process, such as free propagators and ver-
tex functions, are individually covariant with respect to noninteracting Lorentz
transformations. The truncation then requires that there be some plausible
scheme for systematically organizing contributions in order of their relative im-
portance. For example, in the classic case of quantum electrodynamics where
the coupling constant is small, the terms are ordered in powers of the coupling
constant and truncated at some finite order.

The drawbacks of quantum field theory for constructing models such as for
NN interactions are related to complexities and calculational difficulties. Most
of our knowledge of field theory is based on perturbation theory and there
is no a priori method for determining the radius of convergence (if any) for
a given field theory. For strong coupling theories, it is no longer plausible
to construct a perturbation scheme in terms of simple counting of coupling
constants and infinite sets of contributions must be summed. In practice, the
coupling of the infinite sets of states, or n-point functions, must be truncated if
there is to be any hope of calculation. Thus some physically reasonable scheme
for truncation must be proposed. However, the truncation of the theory will
usually violate some symmetries of the full theory such as crossing symmetries,
covariance or current conservation. Local effective theories with the appropriate
symmetries may also be nonrenormalizable. Model calculations may also include
phenomenological elements such as form factors that are not calculated within
the context of the field theory. This also leads to problems of consistency within
the model and may also violate symmetries.

5.3.2 Hamiltonian dynamics

Although Dirac was one of the founders of quantum field theory, he soon be-
came disillusioned with its complexity and the difficulties associated with the
unavoidable infinities. He continued for most of the rest of his life to seek an
alternative to quantum field theory. He assumed that the problems with field
theory were related to starting from an unsatisfactory relativistic classical the-
ory. He pointed to an alternate approach, starting with a theory with a fixed
number of degrees of freedom, as is done with the nonrelativistic Schrödinger
equation. This led to relativistic constraint dynamics [119]. In this approach,
the dynamics of a model system is determined by choosing a mass operator
which contains an instantaneous interaction as in the nonrelativistic potential
theory. This basic dynamics contains a finite number of particles and has a
corresponding Hilbert space when quantized. Covariance is imposed by con-
structing a unitary representation of the inhomogenous Lorentz transformations
with generators that satisfy the commutation relations of the Poincaré group.
The wave functions have the same probabilistic interpretation as in nonrelativis-
tic quantum mechanics, but microscopic causality is not respected: the theory
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must be constructed to respect the physical requirement of cluster separability
or macroscopic locality.

There are at least three different approaches for the quantization of such
models. The first is the traditional method of quantizing along constant time
surfaces (called instant form) where the evolution of the system is the usual time
evolution which is normal to the constant-time hypersurface. The second is to
quantize along spacelike surfaces with constant interval (called point form). The
evolution of the system is then along a new coordinate normal to these surfaces.
The third of these is to quantize along the light cone with evolution along the
coordinate x+ = x0 +x3. Since all these choices describe surfaces with spacelike
separations (or the infinite momentum limit of such a surface in the light-cone
case), they are also consistent with microscopic causality for field theories, which
may also be quantized along these surfaces.

Particularly useful in the Hamiltonian dynamics is the fact that a careful
construction of the mass operator can lead to equations of motion of the same
form as the two-body Schrödinger equation. It is therefore possible to use,
without modification, nonrelativistic potentials that have been fitted to describe
NN scattering .

The drawbacks are related to the choice of the interaction without speci-
fication of any underlying dynamical content. As a result, quantities such as
electromagnetic currents can be constrained by the structure of the theory, but
can not be uniquely determined from the interaction dynamics.

We will now proceed to a discussion of various approaches used in construct-
ing relativistic calculations of the elastic electromagnetic form factors for the
deuteron.

5.4 v/c expansions

This approach is actually a hybrid of field theory and Hamiltonian dynamics.
It assumes that the basic dynamical content of the deuteron is nonrelativistic
and that the necessary relativistic effects can be described as corrections to the
nonrelativistic current matrix elements as an expansion in v/c [120, 121, 122].

The nucleon-nucleon interaction is taken to be a standard nonrelativistic po-
tential with parameters determined by fitting to the nucleon-nucleon scattering
data and to the deuteron binding energy. It is assumed that the potential is,
at least in part, represented by a one-meson-exchange model, since the meson
degrees of freedom are necessary to construct two-body exchange currents from
simple Feynman diagrams and for constructing corrections due to retardation of
meson propagators. Examples of the required two-body interaction currents are
represented in the diagrams of Fig. 12. Diagram (a) represents a contribution
due to coupling of the photon to the current of an exchanged meson, which,
because of G-parity, does not apply to isoscalar transitions such as ed elastic
scattering. Diagram (b) is a so called pair current that arises due to the pro-
jection of the interactions onto the positive-energy space only. Contributions
that couple to the negative energy part of the nucleon propagator must then be
included in the current. Diagram (c) is a retardation correction. Since nonrel-
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Figure 12: Two-body currents arising in the v/c expansions (see text for expla-
nations).

ativistic wave functions are single-time wave functions, diagrams corresponding
to the absorption of a photon while the meson is in flight are not included in
the impulse approximation and must be included in the current. Retardation
corrections can also be associated with retarded meson propagation in any of
the other diagrams in this figure. Derivative couplings of the mesons to the
nucleons can also give rise to contact interactions of the type shown in diagram
(d), which is isovector and does not apply to ed elastic scattering. It is also pos-
sible for a photon that is absorbed by an exchanged meson to excite the meson.
An example is the ρπγ exchange current which is commonly included in calcu-
lations of elastic electron-deuteron scattering. Such a current is represented by
diagram (e).

Relativity is imposed by requiring that the currents and interactions are
consistent with operator commutators of Poincaré invariance to some order in
v/c. The dependence of the boost operators on the interaction also gives rise
to interaction currents in addition to those characterized above. This approach
guarantees that the interaction model can be very well constrained by data but
its application can become technically complicated. In addition, the expansion
in v/c must fail at some value of momentum transfer.

The calculations shown here are from a recent paper by Arenhövel, Ritz
and Wilbois (ARW) [123]. This paper is an extension of earlier work [116,
124] that included relativistic corrections for the charge and quadrupole form
factors, but not the magnetic. Although there is an extensive literature on
the subject, as nicely summarized in [123], only that paper and the earlier
work of Tamura [125] take into account all leading order terms including the
Lorentz boost of the deuteron center of mass. The need for a realistic one-
boson-exchange potential leads ARW to use the Bonn OBEPQ models, which
may however not have the same precision in describing NN scattering data
as more recent, but more phenomenological, potentials. Finally the Galster
dipole parameterization for the nucleon electromagnetic form factors was used.
Figure 13 shows the observables A(Q2), B(Q2) and t̃20(Q

2) for this model.
Three curves are shown for each observable, the impulse approximation (NRIA),
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Figure 13: Elastic ed scattering observables calculated with the v/c expan-
sion [123]: NRIA with the Bonn OBEPQ-B potential (dotted curve); same plus
all relativistic corrections to leading order (dashed); all of the former plus the
ρπγ exchange current (solid). NEMFF: Galster.
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the impulse approximation plus all relativistic corrections to leading order, and
all of the former plus the ρπγ exchange current. The ρπγ exchange current is
purely transverse and is not required or constrained by the interaction model,
but is the longest range isoscalar current of this type.

The elastic structure function A(Q2) for the impulse approximation is sub-
stantially below the data. The inclusion of the various relativistic corrections
brings the calculation into much better agreement with the data, while the
addition of the ρπγ exchange current has only a very small effect.

In the case of the magnetic structure function B(Q2), the NRIA again is
below the data and has a diffraction minimum at lower Q2 than indicated by
the data. The addition of the relativistic corrections increases the size of the
calculated structure function and appears to move the diffraction minimum
above the value indicated by the data. The addition of the ρπγ exchange current
again increases the size of the structure function to a value considerably above
the data and presumably pushes the diffraction minimum to even higher values.
We will return later to the question of the effect of this exchange current on the
magnetic structure function, in the context of field-theoretical models.

For the polarization structure function t̃20(Q
2), the NRIA is above the data

for small Q2 below its minimum, and below at Q2 above the minimum. The
addition of the relativistic corrections brings the calculation into much better
agreement with the observed node of GC and consequently with the data. The
ρπγ exchange current only has a very small effect on this observable which is
purely longitudinal.

The examination of the figures in Ref. [123] shows that the various correc-
tions to the NRIA are not small, they tend to be of similar magnitude, and they
contribute to the deuteron form factors with varying signs. As a result, any
calculation that includes some, but not all, of these corrections, is questionable.

These calculations clearly indicate that relativistic effects, that is meson-
exchange contributions and genuine relativistic corrections, are important even
for relatively small momentum transfers. The domain of validity of this approach
is thus limited, probably to Q2 ≤ 1 (GeV/c)2, though it may lead in some
instances to a satisfactory description of the data up to 2 (GeV/c)2 [42]. The
study of the validity of the two-nucleon description of the deuteron down to very
small internucleon distances, together with new data becoming available from
Jefferson Lab, make mandatory the consideration of fully relativistic models.

5.5 Relativistic constraint dynamics

Figure 14 shows three recent calculations the deuteron elastic structure func-
tions. Note that in this and following figures, the different observables are not
shown in the same Q2 range, following the available data. This should be kept
in mind for a meaningful comparison of models to data. The calculation of
Allen, Klink and Polyzou (AKP) [126] uses the Argonne v18 potential for an
interaction and is quantized in point form. The calculation of Lev, Pace and
Salmè (LPS) [72, 127] uses the Nijmegen II potential and is quantized in front
form. The calculation of Forest and Schiavilla (FS) [128] uses the Argonne v18
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Figure 14: Elastic ed scattering observables calculated with the Hamiltonian
constraint dynamics. AKP [126], NEMFF: MMD (solid curve); LPS [127], GK85
(dashed); FS [128], H (dot-dashed).

potential and is quantized in instant form. These three calculations involve
three different approaches to construct currents. AKP and LPS use different
procedures for constructing currents from the single-nucleon current without
including any interaction dependent two-body currents. FS assume that the
potential is of one-boson-exchange origin and construct the various currents as
in the v/c expansions, but without performing this expansion. These calcu-
lations show considerable variation in all three observables. Although the FS
calculation works quite well for all of them, it is clear that no consensus has
been reached concerning consistent techniques for the construction of currents
in this framework.
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Figure 15: Feynman diagrams respresenting the two-body scattering matrix M.

5.6 Field theoretical models

5.6.1 The Bethe-Salpeter equation

The oldest of the field-theoretical treatments of the two body-problem is due
to Bethe and Salpeter [129]. The physical content of the Bethe-Salpeter equa-
tion can be easily understood by considering the two-body scattering matrix
M. Figure 15 represents the Feynman expansion of the scattering matrix M
where the nucleons are represented by solid lines and the mesons are represented
by the dashed lines. Note that diagrams (b), (d), (e) and (f) can be reduced
to simpler diagrams by cutting across two nucleon lines as represented by the
dotted lines. These diagrams are said to be two-body reducible diagrams and
the remaining ones two-body irreducible diagrams. The ability to classify all of
the contributing diagrams as members of one or the other of these two classes
suggests that the multiple scattering series can be resummed by separating the
irreducible diagrams into an interaction kernel and then using an integral equa-
tion to produce the reducible diagrams. The Feynman diagrams representing
the two-nucleon irreducible kernel are shown in Fig. 16. The Bethe-Salpeter
equation for the scattering matrix can then be written as

M(p′, p;P ) = V (p′, p, P )− i

∫
d4k

(2π)4
V (p′, k;P )G0(k, P )M(k, p;P ) (52)

where P is the total four-momentum of the two-body system; p′, k and p are the
final, intermediate and initial relative four-momenta of the two particles; G0 is
the free two-body propagator; and V is a kernel consisting of a sum of all possible
two-body irreducible diagrams. The Bethe-Salpeter equation is represented by
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(a) (b) (c) (d) (e)

. . .

Figure 16: Feynman diagrams representing the two-nucleon irreducible kernel
V .

M M= +V V

Figure 17: Diagrammatic representation of the integral equation for the scat-
tering matrix.

the diagrams in Fig. 17.
Since the Feynman series is organized such that all of the individual propa-

gators and vertices are covariant with respect to the free-particle Lorentz trans-
formations, the sum is manifestly covariant as well. The currents can be con-
structed by combining the free one-nucleon currents with exchange currents
obtained by attaching a photon to every possible place within the irreducible
interaction kernel, as shown in Fig. 18. These currents will then satisfy the
Ward-Takahashi identities [130].

The two-body bound state is represented by the Bethe-Salpeter vertex func-
tion O, which satisfies

O(p, P ) = i

∫
d4k

(2π)4
V (p, k;P )G0(k, P )O(k, P ) . (53)

This vertex function for the deuteron can be written [131] as

Oλd,ba(p, P ) = (Γ(p, P ) · ξλd
(P )C)ba . (54)

P is the deuteron four-momentum, p the relative momentum of the external nu-
cleons, ξλd

(P ) the polarization four-vector for the deuteron, C the Dirac charge
conjugation matrix. The subscripts a and b are indices in the Dirac spinor space,

. . .

Figure 18: The two-body irreducible current diagrams.
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and Γµ can be determined by basic symmetry arguments to have the general
form:

Γµ(p, P ) = g1(p
2, p · P )γµ + g2(p

2, p · P )
pµ

m

+
6 p2 −m

m

(
g3(p

2, p · P )γµ + g4(p
2, p · P )

pµ

m

)

+

(
g5(p

2, p · P )γµ + g6(p
2, p · P )

pµ

m

) 6 p1 +m

m

+
6 p2 −m

m

(
g7(p

2, p · P )γµ + g8(p
2, p · P )

pµ

m

) 6 p1 +m

m
, (55)

where p1 = P
2 + p and p2 = P

2 − p. A generalization of the Pauli symmetry
requires that

Γµ(p, P ) = −CΓµT (−p, P )C−1. (56)

which places constraints on the scalar functions gi. Note that for given values
of p and P , the vertex function depends upon eight scalar functions whereas the
Schrödinger wave function of the deuteron is determined by the two functions
u and w.

The Bethe-Salpeter equation is a complete representation of all possible con-
tributions to the two-body amplitudes for a given field theory. As such it re-
tains all of the complexities of field theories in that there is an infinite number
of contributions as represented by Feynman diagrams. The problem of particle
dressing and renormalization is present, and for strong coupling theories there
is no general scheme for organizing the renormalization program. As a practi-
cal matter, model calculations generally assume that all propagators represent
dressed particles with physical masses. This still leaves an infinite number of
contributions to the irreducible kernel. Again, there is no a priori means of es-
tablishing a reasonable truncation procedure in order to obtain a tractable set
of contributions. However, the phenomenology of nuclear systems suggests that
the importance of contributions to the nuclear force depends upon the range
of the contributions due to the strong repulsion of nucleons at short distance.
As a result, models of the deuteron using field-theoretical techniques usually
assume that contributions can be ordered by range. In practice this reduces
to the use of one-boson-exchange potentials. This is referred to as the ladder
approximation to the Bethe-Salpeter equation.

The ladder approximation violates the crossing symmetry of the two-body
scattering amplitudes, which is a property of the full Bethe-Salpeter equation.
This results from the elimination of the higher-order crossed-box contributions
to the kernel. A related problem is that the two-body equation no longer re-
duces to a one-body wave equation at the limit of infinite mass for one of the
constituents (defined as the static limit) [132].

A further difficulty for producing models of the deuteron using the field-
theoretical methods is that phenomenology often requires the introduction of
nonrenormalizable couplings such as the derivative coupling of the pion and
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tensor coupling of vector mesons. The loop integration of the Bethe-Salpeter
equation must then be cut off to eliminate unphysically large or infinite contri-
butions. This is usually done by introducing form factors for strong coupling
vertices, which also attempts to include finite-size effects for the hadrons. In
addition, the hadrons have a finite electromagnetic size so that electromagnetic
form factors are also required by the phenomenology. The introduction of form
factors can, however, result in violations of gauge invariance.

The solution of the Bethe-Salpeter equation is also a calculational challenge
since it is a four-dimensional integral equation with a complicated analytical
structure. It has however been solved for the two-nucleon system in Euclidean
space [133] and applied to the calculation of electron-deuteron scattering [134,
135].

5.6.2 Quasipotential Equations

The Bethe-Salpeter equation is a four-dimensional integral equation. As such
it is much more difficult to solve numerically than the comparable nonrelativis-
tic three-dimensional Lippmann-Schwinger equation. To simplify the solution
of the relativistic equations, one resorts to the infinite class of quasipotential
equations [4, 136, 137, 138, 139, 140, 141, 142, 143]. These equations are re-
lated to the Bethe-Salpeter equation (52) by replacing the free propagator G0

by a new propagator g. The scattering matrix equation can now be formally
rewritten as

M(p′, p;P ) = U(p′, p;P )− i

∫
d4k

(2π)4
U(p′, k;P )g(k;P )M(k, p;P ) , (57)

where U is the quasipotential defined as

U(p′, p;P ) ≡ V (p′, p;P )− i

∫
d4k

(2π)4
V (p′, k;P )(G0(k;P )− g(k;P ))U(k, p;P ) .

(58)
This pair of equations is equivalent to (52) and represents a re-summation of the
multiple scattering series. The new propagator g is usually chosen to include
a constraint in the form of a delta function involving either the relative energy
or time in such a way as to reduce (57) to three dimensions. In addition g
must be chosen such that it has the same residue as G0 along the righthand
elastic cut. This guarantees that the discontinuity of U produces only inelastic
contributions as in the case of (52).

Although it appears that the reduction of (57) to three dimensions is of great
practical advantage, it should be noted that (58) is still a four-dimensional
integral equation of difficulty comparable to (52). The real utility of these
equations comes about when (58) is approximated by iteration and truncation.
Then U can be obtained by quadrature of (58) and used in the three-dimensional
equation (57).

It would appear that we have achieved a reduction in the difficulty of solution
of the problem at the expense of introducing considerable additional ambiguity
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since there is an infinite number of possible choices for g which satisfy the above
specified requirements. However, this freedom is turned to an advantage when
noting that g can be chosen to maximize the convergence of (58). In essence,
the parts of the ladder and crossed box diagrams which tend to cancel are being
summed in the quasipotential equation (58) rather than in the equation for the
scattering matrix (57). Indeed, the lowest order calculations using a variety of
quasipotential prescriptions have been calculated for scalar particles [144] and
shown to be closer to the results of the complete Bethe-Salpeter equation than
is the result from the ladder approximation to the Bethe-Salpeter equation. In
addition, it has been shown that there exists an infinite number of quasipotential
equations which have the correct static limit. This is also a reflection of the
improved convergence of these quasipotential equations [145].

The results from three different quasipotential models are presented here.
The first of these is the calculation of Hummel and Tjon (HT) [146] based on the
BSLT equation [136]. In this case, the propagator gBSLT contains a term δ(p0)
which forces the relative energy of the two nucleons to zero. One can say that
the two nucleons are equally off mass-shell. The vertex functions are calculated
using the BSLT equation with a one-boson exchange interaction. They still
have eight components. The current matrix elements are then calculated by
replacing the Bethe-Salpeter vertex functions with the BSLT vertex function,
assuming that it is energy independent. In the examples shown here the nucleon
electromagnetic form factors are taken to be the Höhler 8.2 parameterization.

The second model is that of Phillips, Wallace and Devine (PWD) [147,
148, 149] where a one-boson-exchange interaction is used with the single-time
equation that introduces a constraint that the relative time be zero. This is very
close to the HT approach since this choice means that the propagator gET is
independent of the relative energy of the two nucleons. The single-time deuteron
vertex functions still have eight components. A consistent treatment of the
current is constructed to guarantee current conservation, but Lorentz covariance
is violated. The MMD parameterization of the nucleon electromagnetic form
factor are used.

The third model is that of Van Orden, Devine and Gross (VODG) [150, 151,
152], based on the Gross equation [141, 142]. One of the nucleons is placed on
its positive energy mass shell, which gives:

gGross ∝ 1

p2
2 −m2 + iε

δ(+)(p2
1 −m2) (59)

Since this constraint is itself manifestly covariant, the Gross equation ampli-
tudes are manifestly covariant. But it is not symmetric in the nucleons and the
exchange symmetry must be recovered by symmetrizing the interaction kernel.
This procedure introduces unphysical singularities, which are treated in princi-
pal value to avoid unitarity problems and have little numerical effect in a weakly
bound system such as the deuteron. As a result of placing one nucleon on shell
in (55), the Gross equation deuteron vertex function has four-components that
can be represented in terms of an S wave, a D wave and singlet and triplet P
wave functions.
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A systematic procedure for constructing the effective current operators for
the Gross equation exists [153] and has been shown to be rigorous to all orders
and remarkably robust under trucation [154]. The result is that Ward identities
for the Gross equation are maintained and the calculation is gauge invariant.

A one-boson-exchange interaction is used, that has been fit to NN scatter-
ing data up to a lab kinetic energy of about 300 MeV [155, 156]. The fit is
reasonable, but not at the level of precision obtained with modern fully phe-
nomenological potentials.

Several unique features appear in this model. All of the strong vertices are
multiplied by a product of three form factors,

h(p′2)h(p2)f((p′ − p)2) . (60)

Here p and p′ are the initial and final four-momenta of the nucleon and p′ − p
is the four-momentum of the meson. The meson form factor is taken to be

f(ℓ2) =
(Λ2

µ − µ2)2 + Λ4
µ

(Λ2
µ − ℓ2)2 + Λ4

µ

(61)

and the nucleon form factor

h(p2) =
2(Λ2

n −m2)2

(Λ2
n − p2)2 + (Λ2

n −m2)2
. (62)

The prescription of Gross and Riska [153] is used to construct a single-
nucleon electromagnetic current which is consistent with the strong-vertex form
factors and phenomenological single-nucleon electromagnetic form factors. This
current is constructed in such a manner that the one- and two-body Ward
identities are of the same form as for the local field theory. The simplest form
that this single-nucleon current can take is

J(i)µ(p′, p) = F1(Q
2)f0(p

′2, p2) γµ +
F2(Q

2)

2m
h0(p

′2, p2) iσµνqν

+F10(Q
2)g0(p

′2, p2)
6 p′ −m

2m
γµ 6 p−m

2m
, (63)

where the nucleon form factors are

Fi(Q
2) =

1

2

(
F S

i (Q2) + F V
i (Q2) · τ3

)
. (64)

The factors that depend upon the nucleon momenta are

f0(p
′2, p2) ≡ h(p2)

h(p′2)

m2 − p′2

p2 − p′2
+
h(p′2)

h(p2)

m2 − p2

p′2 − p2
, (65)

and

g0(p
′2, p2) ≡

(
h(p2)

h(p′2)
− h(p′2)

h(p2)

)
4m2

p′2 − p2
. (66)
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Figure 19: Elastic ed scattering observables calculated with Quasipotential
equations. HT-RIA, NEMFF: H (dotted curve); PDW-RIA, NEMFF: MMD
(dashed); VODG-CIA, NEMFF: MMD (solid).
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The function h0(p
′2, p2) must be equal to one when both nucleons are on mass

shell, but is otherwise unconstrained. For simplicity, the calculations shown here
use h0 = f0. The form factor F10(Q

2) must obey F10(0) = 1, but is otherwise
unconstrained and is chosen to be of a dipole form.

Figure 19 shows the elastic structure functions for these models calculated
in the relativistic impulse approximation (RIA). As expected from the nature of
the quasipotential approximations, the calculations of HT and PWD lead to very
similar results for all three observables (in spite of the fact that they use different
NEMFF). The VODG calculation uses the MMD form factors. For A(Q2), it
is systematically larger than the others due to additional contributions that
are necessary to conserve the current within the context of the Gross equation.
These additions yield to the so-called Complete Impulse Approximation (CIA).

For B(Q2), the HT and PWD calculations are systematically below the
data and have a minimum at a lower Q2 than is indicated by the data. The
VODG calculation is higher and has a minimum at higher Q2 than the other
two calculations. This difference has been shown to be due to a small P wave
component of relativistic origin that contributes to the normalization of the
vertex function at the level of 0.01% [152]. This clearly indicates the sensitivity
of the position of the GM node to small components.

Finally, in the case of t̃20(Q
2), the three models have a very similar behavior.

The sensitivity of the observables to the choice of single-nucleon form factors
is shown in Fig. 20, using the VODG calculation in the CIA approximation. All
but the VO2 parameterization are standard form factors that appear in the
literature. The VO2 form factor is modeled after the MMD form factor but
adjusted to fit the new data on Gp

E/G
p
M from Jefferson Lab [157]. As expected

from the discussion in App. C, A(Q2) and B(Q2) are very sensitive to the choice
of single nucleon form factor while t̃20(Q

2) is almost totally insensitive to it. The
various A(Q2) curves in Fig. 20 may be directly related to the corresponding
GS

E curves in Fig. 33. Note that for the relativistic approaches, in contrast to
the NRIA, the nucleon form factors cannot simply be factorized, so that there is
no reason that t̃20(Q

2) be completely independent of the NEMFF. Much more
accurate data on the single-nucleon form factors that will be forthcoming from
experimental facilities around the world will, hopefully, provide much greater
constraints on these form factors.

Figure 21 shows the effect of the addition of ρπγ exchange currents to the
three calculations. HT were the first to implement the calculation of the ρπγ
contribution to the deuteron form factors in a relativistic model. They also
included a ωσγ exchange current, which compensates their large effect of the
ρπγ. This last contribution is not present in the calculation presented here,
because there is considerable uncertainty about the σ meson, and consequently
about its couplings and vertex form factors (see [158] for a recent discussion of
the gωσγ coupling constant). Two sets of calculations for the VODG structure
functions are shown, one with the MMD form factors as before, and one with
the VO2 form factors. Comparing to Fig. 19, it is clear that this exchange
current can result in considerable variation in A(Q2). The variation in B(Q2)
is much smaller, in part because of the smaller Q2 range considered. The ρπγ
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Figure 20: Deuteron elastic structure functions calculated using the CIA of
VODG with various parameterizations of the nucleon form factors: Galster (dot-
ted curve), Höhler (long dashed), GK85 (dot-dashed), GK92 (dashed), MMD
(solid), VO2 (thick dotted).
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exchange current shifts the node of GM to lower values of Q2 for all calculations,
in contrast with the nonrelativistic calculations using the v/c expansion where
this current has the opposite effect. This is the result of the tensor coupling
of the ρ to the nucleon, which appears to be a higher order contribution in
the v/c expansion, but weighted by a large coefficient. In this way, expansion
schemes may lead to wrong estimates without a careful examination of higher-
order contributions. Finally, the addition of the ρπγ contribution has a small
effect on t̃20(Q

2), but brings the calculations in a somewhat better agreement
with the available data.

The variation in the ρπγ contributions from the various models [146, 159,
160, 161] is associated with ambiguities in these contributions. Although the
coupling constant for the ρπγ vertex is constrained by the decay width Γ(ρ →
πγ), little is known about the fall off of the associated form factor. Figure 22
shows a number of different form factors for this vertex. HT use the VMD
form factor which is the hardest of the available form factors while VODG use
the Rome 2 form factor which is the softest one. PWD use an intermediate
parameterization. The A(Q2) data favor the use of the softest possible form
factor. In contradistinction, a recent theoretical reexamination of the ρπγ form
factor [162] results in a dependence close to the VMD one. Whether the ρπγ
contribution to the deuteron form factors is really small, or suppressed by other
contributions is still an open question.

Another source of ambiguity, explicitly present in the the VODG calculation,
is the choice of the form factor F10(Q

2) in (63). In these calculations, F10(Q
2)

is adjusted to optimize the fit of the calculation to the data for the deuteron
structure functions. By using a very hard form factor it is possible to obtain
an extremely good fit to the data. This along with ambiguities in the ρπγ
form factor means that no absolute predictions of the structure functions can be
obtained unless some means can be found to physically constrain the ambiguities
in the models.

5.6.3 Light-front field theory

The above approaches based on the Bethe-Salpeter equation are generally dis-
cussed in the context of Feynman perturbation theory with equal time quanti-
zation. Microcausality, however, only requires that the theory be quantized on
a spacelike hypersurface. A special limiting case of such a surface is the light
cone where the spacetime interval approaches zero. Quantizing field theories
on the light cone has long been common practice in describing deep inelastic
scattering where the large four-momenta kinematically favor contributions to
scattering very near the light cone. Typically, the light-cone approach is or-
ganized as a “time-ordered” perturbation expansion in terms of the light-front
time x− = x0 − x3. The wave functions are then Fock-space wave functions
with a probabilistic interpretation as in the case of Schrödinger wave functions.

A particular problem with light-front field theory is that the conventional
choice of a fixed light-front orientation violates manifest covariance, although
matrix elements remain covariant. One solution to this problem [163] is to de-
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Figure 21: Elastic ed scattering observables calculated with Quasipotential
equations, including the ρπγ contribution. HT (dotted curve), PDW (dashed),
VODG-MMD (solid), VODG-SO2 with F10 off-shell form factor adjusted (thick
dotted).
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Gross-Ito [159] (dashed), Rome 1 [160] (long dashed), Mitchell-Tandy [161] (dot-
dashed), Rome 2 [160] (solid).

scribe the quantization surface in terms of an arbitrary direction on the light
cone given by a light-like four-vector ωµ and require that the quantization sur-
face be described by ω · x = 0. This renders the theory manifestly covariant, at
the expense of the additional complication that the wave functions and opera-
tors become dependent on the vector ω. This is covariant light-front dynamics
(LFD). Matrix elements and observables, in a complete calculation, do not de-
pend on ω. In a practical calculation, a definite procedure to eliminate the non
physical ω-dependent terms is applied.

The deuteron elastic structure functions from this approach [163, 164, 165]
are shown in Fig. 23.

In these calculations, the deuteron wave function has six components (fi),
two of which (f1 and f2) correspond to the usual S and D components in the
nonrelativistic limit. These components are calculated perturbatively from the
usual nonrelativistic wave function. Schematically [166],

ψ(k,n; f1, f2, f3, f4, f5, f6) ∼
∫
V (k′,k,n,Md)ψNR(k; u, w)d3k′ , (67)

where k is the relative momentum of the two nucleons and n a unit vector along
the three-vector ω. The NN interaction kernel V is of a one-boson-exchange
type, calculated within the framework of LFD using the parameters (such as
coupling constants) of the Bonn potential. The single-nucleon electromagnetic
form factors are the MMD parameterization (the effect of various NEMFF was
considered in [165]). This calculation produces a reasonable description of the
data for A(Q2) and t̃20(Q

2) but the minimum in B(Q2) occurs well below the
position indicated by the data. Given the sensitivity of the magnetic form factor
to small effects, this may simply be the result of the perturbative treatment of
the small components of the wave functions in this calculation.
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Figure 23: Elastic ed scattering observables calculated within light-front dy-
namics.
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Indeed, work is in progress to improve the calculation of the interaction
kernel V and of the complete wave function [167]. Meson exchange contributions
are only partially included in the original calculations. The addition of recoil
terms and of the ρπγ contribution was also initiated: the recoil terms move
the node of GM to higher Q2, while the ρπγ contribution does not modify
appreciably any observable up toQ2 ∼ 2 (GeV/c)2 [168]. A complete calculation
using LFD seems at hand and very promising.

5.6.4 Effective field theory

In principle, all these field theoretical techniques should yield the same results,
given the same dynamical input. This statement applies to the calculated matrix
elements which are the physical observables of the field theory. The identifica-
tion of wave functions and operators varies from formulation to formulation
and do not have unique meanings. Furthermore, within any given formulation,
unitary transformations of the Lagrangian, such as field redefinitions, can also
move contributions between the wave functions and operators. Such ambigu-
ities are already present in nonrelativistic models, which may be shown to be
equivalent, at least in part, up to a unitary transformation [44, 169]. None of
this would be of particular concern if it were not necessary to truncate all of the
approaches for reasons of practicality. Consequently, the physical content of the
various formulations varies, resulting in a variety of ambiguities, some of which
have been discussed above. A major problem then is that there is, in general,
no organizing principle present in these calculations which indicates the relative
importance of various physical contributions to guide the choice of truncation
schemes.

A promising development that could help to resolve this problem is the
application of effective field theories to nuclear systems [170, 171, 172, 173, 174,
175, 176, 177, 178]. The basic idea of effective field theory is that at low energies
the observables of a theory are largely insensitive to the details of short-range
contributions to the interactions. The long-range degrees of freedom are then
treated in detail and the short range pieces are replaced by contact interactions.
The Lagrangian is written as a sum of terms containing contact interactions with
increasing numbers of derivatives of the fields. This constitutes an expansion of
the theory in terms of momenta which are small compared to some scale chosen
to separate the short and long range physics. Contributions to observables
are then ordered according to this small momentum, providing a well defined
counting scheme that controls approximations to the theory.

For nuclear systems, the appropriate effective field theory is Chiral Pertur-
bation Theory (χPT) since the long-range part of the nuclear force is associated
with the pion, a Goldstone boson. A considerable amount of effort is being ex-
pended in the application of χPT to low energy nucleon-nucleon scattering and
to the deuteron. The NN system is particularly challenging in that its scat-
tering lengths are large, although its bound state, the deuteron, is only weakly
bound. This implies that there is a dynamical scale in the problem in addition
to the chiral scale. The application of χPT to the deuteron has followed two
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approaches. The first [170] applies the chiral counting scheme at the level of
the interaction kernel. This approach appears to converge, but is cutoff depen-
dent at each order. The second [173, 174] applies the counting scheme at the
level of the scattering matrix and current matrix elements and treats the pions
perturbatively while iterating the contact interactions. It gives results that are
cutoff independent, but does not appear to be converging [179]. The problem
of maintaining a consistent counting scheme in the infinite sums of diagrams
necessary to describe the bound states has not yet been resolved. From the
standpoint of the various models used at higher momentum transfers, it is to be
hoped that effective field theory will provide some insight into the organization
of the various approaches.

5.7 Deuteron models with nucleon isobar contributions

In all of the approaches and models discussed to this point, the assumption
has been made that the only relevant degrees of freedom are the nucleons and
mesons. However, excitations of the nucleons to isobar states may produce con-
tributions to the interactions of the same range as the heavier mesons. The
deuteron wave function is in this case modified to include, in addition to the S
and D wave NN components, ∆∆ and NN∗components. A neutrino experi-
ment, though subject to interpretation, indicates an upper limit of 0.4 % to the
amount of ∆∆ components in the deuteron [180].

Examples of two calculations including these additional isobaric components
are shown here. In both cases, the basic model involves interactions due to one
meson exchange which can couple the nucleon-nucleon channel with channels
containing isobars. The quark model is used to relate isobar-meson couplings
(for instance ∆∆π) to the corresponding nucleon-meson couplings. The fully
coupled (nonrelativistic) system is then solved for the deuteron bound state
and the nucleon-nucleon scattering states. Figure 24 shows the calculations of
Dymarz and Khanna (DK) [181] and Blunden et al. (BGL) [182]. In both cases
presented here, only the ∆(1232) isobar is included, and the ∆ electromagnetic
form factors are assumed to be proportional to the NEMFF. The DK calculation
contains ∆∆ components 3S1,

3D1,
7D1,

7G1 with a total probability of 0.36%.
The elastic form factors include contributions from single-nucleon currents with
the GK form factors, nucleon pair and ρπγ exchange currents and the isobar
current contributions. Two models are shown for BGL, both with only 3D1

and 7D1 ∆∆ components.. Two different quark models are assumed to fix at a
given radius r0 the boundary conditions used in the determination of the wave
functions. Model C’ has r0 = 0.74 fm and yields an isobar contribution of 1.8%,
while model D’ uses the Cloudy Bag Model to fix r0 at 1.05 fm and results in
an isobar contribution of 7.2%. Meson exchange contributions are included as
well.

Within these models, t̃20 is very sensitive to the amount of ∆∆ components
and favors the smallest probability. Although the BGL model C’ with the Höhler
NEMFF seems to give an adequate description of the data, there is considerable
ambiguity in these calculations due to a lack of knowledge of the isobar magnetic
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moments and form factors along with the difficulty of completely constraining
the isobar contributions from the NN scattering data. It is clear, however, that
isobar components must ultimately be considered in any complete calculation
of deuteron electromagnetic properties in the context of hadronic models.

5.8 Quarks and gluons

5.8.1 Nonrelativistic quark models

Ultimately, many of the ambiguities associated with the hadronic model calcu-
lations can only be removed by describing the deuteron in terms of the funda-
mental quark and gluon degrees of freedom. In the absence of the capability to
directly solve the QCD Lagrangian at low energies for the deuteron, we are left
to explore possible QCD effects in the context of quark models. This greatly
increases the difficulty of treating the NN system since what is a two-body
problem in the hadronic models, becomes at least a six-body problem for quark
models. Calculations for two examples of quark cluster models are presented
here. These calculations are very similar in concept and are based on a quark
cluster model using the resonating group method to describe the interaction
of the two three-quark clusters. The quarks interact via a quadratic confining
potential and a one-gluon-exchange potential. Long range interactions are also
provided via π and ρ exchange between quarks. The calculation of Buchmann,
Yamauchi and Faessler (BYF) [183] contains only the π exchange interaction,
while that of Ito and Kisslinger (IK) [184] contains both meson-exchange con-
tributions. This approach naturally contains currents associated with the in-
dividual clusters as well as exchange currents associated with quark exchange
between clusters. Since the cluster wave functions are derived using oscillator-
like confining forces, the cluster form factors tend to have a Gaussian form. This
is clearly not consistent with the data for single-nucleon form factors and in both
cases the electromagnetic cluster form factors are replaced by phenomenological
NEMFF. The results are shown in Fig. 25. Neither of these calculations provides
an adequate description of the data, but given their necessary simplicity, they
are remarkably close to the data. In the BYF calculation, the impulse approx-
imation is not as reliable as in NN models because of the simple modeling of
the intermediate range interaction, but the size of the genuine quark exchange
contributions, due to the antisymmetrization of the six-quarks wave function,
is significant enough to affect a comparison with the data.

5.8.2 Perturbative QCD

This subject was reviewed recently [12]. The success and shortcoming of pertur-
bative quantum-chromodynamics (PQCD) applied to the asymptotic behaviour
of form factors may be better illustrated now with recent data from Jefferson
Lab. We will only recall briefly the main predictions:

• Dimensional scaling [185]: this property can be derived within QCD, but
is more general and was established before this theory. It is based on
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Figure 24: Elastic ed scattering observables for models including nucleon isobar
components. DK, NEMFF: GK [181] (solid curve); BGL-C’, NEMFF: H [182]
(dotted); BGL-C’, NEMFF: GK (dashed); BGL-D’, NEMFF: GK (dot-dashed).
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Figure 25: Elastic ed observables calculated with quark-cluster models. IK [184]
(dotted curve); BYF [183]: IA (dashed); BYF: IA + MEC (dot-dashed); BYF:
former + quark exchange contributions (solid).
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the hypothesis that the momentum transfer is shared among all the con-
stituent quarks of the system. In the case of a hadron composed of n
quarks, one would expect the leading form factor to behave asymptoti-
cally as Q−2(n−1). Qualitatively, this can be viewed as the probability
of having n − 1 quarks within a transverse distance of 1/Q of the quark
struck by the virtual photon. Since this must be true both in the initial
and final states, one expects F 2 ∼ Q−4(n−1) and for the deuteron (n = 6),
A ∼ Q−20.

• Logarithmic corrections to the leading amplitude, together with the fac-
torization of the nucleon form factors in the weak binding limit, yield [186]:

√
A ∼ F 2

N

(
Q2

4

)
· 1

Q2
·
(

ln
Q2

Λ2

)−1+ǫ

(68)

where FN is the nucleon form factor, Λ an energy scale characteristic of
QCD (Λ ≃ 200 MeV) and ǫ a calculable number much smaller than 1. An
attempt to directly compute A and its normalization in PQCD was not
successfull [12, 187].

• Helicity conservation at each photon/gluon-quark vertex implies that the
dominant contribution to elastic electron deuteron scattering should come
from the configuration where the deuteron has helicity zero in both ini-
tial and final states [188]. Expressing the form factors in an helicity basis
in the light-cone frame, this is equivalent to the prediction that G+

00, the
“+” component of the current matrix element between states of helicity
0, is the leading amplitude. It was argued [189] that this helicity conserv-
ing amplitude should dominate the ed scattering for Q2 ≫ 2Λmd ≃ 0.8
(GeV/c)2. Other components G+

+0 (single helicity flip) and G+
+− (double

helicity flip) should be suppressed by respectively one and two powers of
Q:

G+
+0 = a

(
Λ

Q

)
G+

00 and G+
+− = b

(
Λ

Q

)2

G+
00 when Q → ∞ (69)

Since the usual form factors are linear combinations of the G+
hh′ ’s, the

asymptotic behaviour of observable ratios such as B/A, t20 and t21 can
easily be calculated. Note that the logarithmic corrections such as appear-
ing in (68) may only be calculated for the dominant, helicity conserving,
form factor. Equation (69) thus assumes the same logarithmic corrections
for all helicity amplitudes.

How do these predictions compare with recent ed data ? The A data, now
extending up to Q2 = 6 (GeV/c)2 [98], is suggestive of the expected Q−20

behaviour, though a Q−16 behaviour is still not excluded (see Fig. 26): a fit
using the five highest Q2 data points in Ref. [98] to the dependence A ∼ Q−2m

yields m = 8.0± 0.6. Excluding the less precise last point yields m = 8.7± 0.7.
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straight lines illustrate a Q−16 (dashed) and a Q−20 (long-dashed) dependence.
The solid line represents Eq.(68). All curves are normalized to the point at
Q2 = 4.95 (GeV/c)2.

More interestingly, using the dipole form factor for FN in (68), the Q2 behaviour
of A is reproduced between 2 and 6 (GeV/c)2. As for the helicity amplitudes,
their behaviour is tested only up to Q2 ≃ 2 (GeV/c)2, which is the range of the
available B [96] and t2j [103] data. The pure dominance of the helicity 0 → 0
transition (a = b = 0 in (69) [189]) does not account for this data (see Fig. 27).
The prescription a = 5 and b = 0 [190] was built to generate a node in GM , but
in order to qualitatively reproduce the t2j data as well, one is led to a = 1.8
and b = 38 [191]. This implies that the double helicity flip amplitude is as large
as the non helicity flip amplitude and contradicts the applicability of PQCD in
the momentum range considered. Fits to data using these helicity amplitudes
lead to the same conclusion [78, 192]. All these simple ansatz lead to a sharp
increase of the ratio B/A for Q2 ≥ 2.5 (GeV/c)2, which may be an interesting
feature for planned experiments at JLab.

5.9 Further comparison between models and data

To conclude this section, we recapitulate some of the theoretical results, in com-
parison with observables (Fig. 28) and data on separated form factors (Fig. 29).
In the case of A and B, deviations with respect to an average representation of
the data (parameterization I) are presented. A summary of remaining ambigu-
ities and foreseable progress will be given in Sec. 8.
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+ MEC (Sec. 5.6.2) updated from [151] (solid), LFD (Sec. 5.6.3) [165] (dot-
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6 The nucleon momentum distribution in the
deuteron

Several processes have been investigated for which the cross sections, in the
nonrelativistic impulse approximation, are proportional to the distribution of
the internal momentum p in the deuteron,

ρ(p) = u2(p) +w2(p) , (70)

with u(p) and w(p) defined by Eq.(8). Note that p, the conjugate variable
of the relative coordinate r, is half the relative momentum between the two
nucleons, so that an experiment probing a momentum pmay be related to elastic
electron scattering at a momentum transfer q = 2p. These processes include
quasi-free scattering on one of the nucleons, d(p, 2p)n, d(e, e′p)n and d(e, e′),
or equivalently the detection of the spectator proton in high energy deuteron
hadronic break-up, A(d, p) . Indeed, they all are proportional to ρ(p) up to
p ≃ 200 MeV/c , but deviations from the impulse approximation occur for higher
values of p . Final state interaction, dynamical excitation of the ∆ resonance
and in inclusive reactions pion production have then to be taken account, thus
rendering the interpretation of the experiments less straightforward.

Another interesting feature of these processes is the possibility to access the
ratio w(p)/u(p) with the measurement of deuteron tensor polarization observ-
ables. A simple relationship between the analyzing power T20 and the ratio
w(p)/u(p) can be derived in the (nonrelativistic) impulse approximation, and
again deviations are seen, or are to be expected, above p ≃ 200 MeV/c .

6.1 d(e,e’p)n measurements at high missing momenta

The study of the single-particle properties of nuclei through (e, e′p) reactions
are the subject of an excellent review [7]. Concerning the deuteron, the (neu-
tron) missing momentum is identified, in the plane-wave impulse approximation
(PWIA), with the internal momentum p . The experiments reaching the highest
missing momenta have been carried out at Saclay (500 MeV/c) [193], NIKHEF
(700 MeV/c) [194] and MAMI (950 MeV/c) [195], but in kinematical conditions
which are not always optimal to study the high momentum components in the
deuteron wave function. Deviations from the PWIA are of the order of 50 % at
500 MeV/c and can reach a factor 10 at 1 GeV/c (see Fig. 30). They can be
understood, if only qualitatively at the highest missing momenta, in terms of
final state interactions, meson exchange currents and ∆ excitation.

Other d(e, e′p)n measurements (see the reviews [196, 197] and, among the
most recent experiments, Ref. [198]) do not address specifically the subject of
the nucleon momentum distribution in the deuteron. Their theoretical under-
standing is however crucial for a comprehension of this subject.

The first (e, e′p) measurements using a tensor polarized target have been
carried out at Novosibirsk [199] and NIKHEF [200] . They were limited to
low values of missing momenta because of the available luminosity and of the
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Figure 30: Ratio of the experimental d(e, e′p)n to the calculated PWIA (using
the Paris potential) cross sections, corresponding to the data of Ref. [195]. Sys-
tematic errors are of the order of 10 %. Note the change of vertical scale at
p = 400 MeV/c .

detector acceptance. This situation will improve with the planned experiments
using the BLAST detector in the Bates stretcher ring [201]. In the PWIA, these
experiments are directly sensitive to the ratio w(p)/u(p) (see below Eq.(71)).

6.2 d(e,e’) measurements and y-scaling

The concept of nuclear y-scaling gives a significant insight in the determination
of momentum distribution in nuclei [202]. In the inclusive electron scattering off
deuterium, for sufficiently large values of momentum transfer and in the PWIA,
the cross sections are expected to be proportional to the electron-nucleon cross
sections and the proportionality factor f(y) = 2π

∫ ∞
|y| pρ(p)dp represents the

longitudinal (along q) momentum distribution. Properly taking into account
final state interactions (a correction of about a factor 2 above 300 MeV/c),
a momentum distribution was extracted in a nonrelativistic formalism up to
p = 600 MeV/c [203]. It is remarkably close to the one calculated from the Paris
potential, but the authors caution about the absence of relativistic corrections.

6.3 Hadronic deuteron break-up at high energy

Several reactions using high energy (polarized) deuteron beams should allow a
study of the dpn vertex, provided the deuteron dissociates “cleanly”, that is
with only one nucleon participating in the process. In the exclusive reactions
p(d, p)d, p(d, pp)n as well as in the inclusive A(d, p)X, in some kinematical
conditions, the dominant process is the one where the fast forward proton (or
one of the detected protons) can be treated as a spectator. The energies of the
deuteron beams available at SATURNE and at Dubna (several GeV), together
with the relatively high hadronic cross sections, have provided a handle on these
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processes involving high momentum components in the deuteron wave function.
Moreover, the tensor analyzing power of these reactions, in the nonrelativistic
impulse approximation, depends only on the D/S ratio at a given momentum:

T20 ∝ w(w − 2
√

2u)

u2 + w2
. (71)

Note the similarity between Eqs.(34) and (71). The former is a function of
2ηGQ/3GC, while the latter depends on w/u, resulting (in the impulse ap-
proximation) in similar shapes for T20 in ed elastic scattering and in deuteron
break-up.

A relativistic treatment using the deuteron in an infinite momentum frame
allows to define a new variable k [204] used as the argument of u and w instead
of p for the calculation of the observables. In other words, the argument of the
wave function is no longer equal to the momentum of the spectator nucleon.
Once this transformation is performed, all inclusive data A(d, p)X (see the re-
view [205] and Refs. [206, 207]), for different beam energies and target nuclei,
scale approximatively as a momentum distribution ρ(k). T20 however deviates
significantly from expectations within the impulse approximation as of k ≃ 200
MeV/c. This fact has sometimes been interpretated as the signature of non
conventional components in the deuteron wave function, but this interpretation
is not compatible with the behaviour of t20 in elastic ed scattering. In reality,
final state interactions and pion production alter significantly the interpreta-
tion of these experiments (see e.g. [208]). The polarization transfer from vector
polarized deuterons to the fast protons has also been measured up to k ≃ 600
MeV/c. The exclusive channels p(d, p)d [8, 205] and p(d, pp)n [209, 210] are like-
wise difficult to interpretate unambiguously for internal momenta larger than
300 MeV/c.

7 The deuteron as a source of “free” neutrons

The neutron being loosely bound in the deuteron, deuterium has often been
used as a substitute for a neutron target and deuteron beams as a source of
neutron beams. We briefly mention the list of these applications :

1. ed elastic scattering to extract the neutron charge form factor Gn
E ,

2. Quasi-elastic
−→
d (−→e , e′n)p or d(−→e , e′−→n )p to measure Gn

E/G
n
M ,

3. Quasi-elastic d(e, e′n)p and d(e, e′p)n to measure Gn
M/G

p
M ,

4. Deep inelastic scattering of leptons to extract the neutron structure func-
tions.

5. At intermediate to high energies, the break-up of a vector polarized deuteron
beam can be used to obtain a beam of polarized neutrons. A high inten-
sity may be achieved using the inclusive reaction

−→
d +9Be→ −→n +X. For
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a better definition of the neutron energy, the beam may be tagged by the
detection of the spectator proton: p(

−→
d , p−→n )p.

In all cases but the first one [97, 211], corrections due to the deuteron structure
and to the reaction mechanism were shown to be either negligible or reliably
calculable (see [135] for example as an application of relativistic techniques
discussed in Sec. 5.6.1). When a polarized target is used (cases 2 and 4) or when
using polarized deuteron beams (case 5), the effective neutron polarization is
equal to the deuteron vector polarization multiplied by (1−3PD/2) . This factor
accounts for the fact that, because of the deuteron D state, the neutron spin is
not always aligned the deuteron spin.

8 Prospects for the future

The study of the electromagnetic properties and form factors of the deuteron,
from the birth of nuclear physics to the advent of hadronic physics, taking
into account the internal structure of the nucleons and their excitations, has
been very rich. Yet it is not completed. Ambiguities have been and still are
pointed out along this path: although the descriptions of processes involved
can be satisfactory, the calculations and observables do not in general allow
for a unique determination of the NN interaction, of the neutron charge form
factor, of the isoscalar meson exchange currents and of the precise dynamics
of the system. As already pointed out, some characteristics like the off-shell
behaviour of the NN interaction are not strictly speaking observables, and as
such cannot be determined unambiguously. As for the manifestation of the
underlying quark substructure in the nuclear properties, it is as elusive as ever.
However the progress in experiment and theory, as summarized in this paper,
is impressive and allows for promising perspectives:

• The nucleon electromagnetic form factors are being measured with a re-
newed precision. In particular, the poorly known neutron electric form
factor Gn

E is being determined at various laboratories with polarization
techniques which make this measurement independent of the deuteron
structure. In a few years, all four NEMFF will be better known up to
Q2 ≃ 2 (GeV/c)2. The description of the the deuteron form factors to
higher four-momentum transfers is now affected by measurements of Gp

E .
Once these are completed, a small remaining ambiguity due to the poor
knowledge of Gn

E above 2 (GeV/c)2 will still be present. Yet new param-
eterizations of the NEMFF, guided by theoretical models, should become
available soon and be taken into account in future calculations of the
deuteron form factors.

• Modern NN interaction models are now fitted directly to the NN elastic
scattering data and reach a high degree of precision. But, when compared
to some models of the 1980’s, these are more empirical. The lack of knowl-
edge (or assumption) of the underlying dynamics prevents the calculation
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of such effects as the Lorentz boost of the deuteron wave function. It
would be highly desirable to have potentials of the one-boson exchange
type brought to the degree of precision of the modern phenomenological
potentials. This is also true for OBE potentials used in completely rel-
ativistic calculations. In addition, these potentials should reproduce the
elastic NN scattering data up to 600 MeV of kinetic laboratory energy in
order to match the Q2-range of the existing ed elastic scattering data.

• There is a definite procedure to construct relativistic corrections, starting
from a nonrelativistic model. Still, most calculations in the past have
neglected one correction or another.

• From a theoretical point of view, the most satisfying success in the past
twelve years is the implementation of various fully relativistic calcula-
tions. Quasi-potentials approximations to the Bethe-Salpeter equation
have been applied with success to the calculation of the electromagnetic
deuteron form factors. The comparative validity of each of these approx-
imations should be studied further. Likewise, light-front dynamics yields
results which compare very favourably with data and will still be im-
proved. Concerning Hamiltonian constraint dynamics, calculations using
the three different forms of quantization invoked by Dirac have been de-
veloped. The success of QPE/BSE and LFD has reaching consequences
beyond the structure of the deuteron. The relevance and applicability of
relativity in nuclei can now be explored in the A=3 systems. The same
techniques are also applied to qq configurations.

• The ρπγ isoscalar meson exchange contribution, and possibly the ωσγ or
other shorter range processes, still remain difficult to evaluate reliably,
because of the lack of constraints on the associated form factors. Within
the nucleon-meson picture of the deuteron, ed elastic scattering may pro-
vide a way to determine these form factors, provided all points above are
addressed in a systematic way.

• The role of nucleon isobaric excitations is still very much model dependent.
Still, within the existing models, the ed elastic scattering data does not
favour very sizeable ∆∆ components in the deuteron wave function.

• The recent ed elastic scattering data from Jefferson Lab, reaching now the
highest possible four-momentum transfers for the t20 and A observables
(respectively 1.7 and 6 (GeV/c)2), are still compatible with the descrip-
tion of the deuteron in terms of nucleons and mesons. This is somewhat
surprising since internucleonic scales of 0.1-0.4 fm are being probed. These
distances are smaller than the size of the nucleons themselves, and pre-
sumably of the same order of magnitude as the nucleon quark cores. Still
no distinctive experimental or theoretical signature of the manifestation
of quarks in this process was identified.
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• Quarks degrees of freedom may be explicitly taken into account at inter-
mediate four-momentum transfers via models, and at high Q2 via pertur-
bative QCD. If the recent A(Q2) data seem to follow the Q2-dependence
expected from PQCD, it is not so for B(Q2) and t20(Q

2), albeit at lower
Q2. An absolute determination of the leading PQCD amplitude would
clearly be desirable but this depends on a reliable description of the soft
parts of the amplitude which are not calculable in PQCD. As for quark
models of the deuteron, they seem to indicate a specific role played by
quark exchange processes between the nucleons at short distances. Un-
fortunately, these models are nonrelativistic by nature and the predicted
effects occur at a scale where relativity should be taken into account. Due
to the explicit appearance of the quark-gluon degrees of freedom, this a
much more difficult problem than for the meson-nucleon models. Appre-
ciable progress in quark models of the deuteron will require substantial
improvements in the technology of relativistic many-body physics.

• The planned measurements of t20 at Bates and Novosibirsk will locate
more precisely the position of the node of the charge monopole form factor.
while the ones of B(Q2) at Jefferson Lab will be performed around and
beyond the node of the magnetic dipole form factor.

• The recent focus on intermediate and high Q2 should not be detrimental
to the required precision in accounting for the low Q2 data and static
properties. An updated experimental status of the latter was given. The
low Q2 behaviour of any given calculation should be checked carefully, for
example in such representations as in Figs 11 and 28.

Going beyond elastic ed scattering, the same systematic expansions in v/c, or
fully relativistic models, will be applied to the calculation of the electromagnetic
form factors of the A=3 nuclei, and of the deuteron electrodisintegration. This
will provide additional contraints on the remaining ambiguities inherent in the
meson-nucleon models and will lead to a more coherent understanding of the
relativistic structure of few-body nuclei.
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A Beyond one photon exchange at high Q2 ?

Since the ed elastic cross sections are now measured up to very high momentum
transfers, the question of the validity of the one-photon exchange approximation
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(used throughout this review) has to be examined. As shown in Sec. 4.4, the
set of ed elastic scattering data, as parameterized up to Q2 ≃ 2 (GeV/c)2, is
compatible with Eqs. (25-31), thus providing evidence for the validity of the
one-photon exchange approximation, at least within experimental errors. A
two-photon exchange contribution would affect the definition of all observables
presented in Sec. 4.2, introducing additional kinematical factors and structure
functions [3].

Several papers have addressed this question in the early 1970’s [212, 213,
214, 215]: the two-photon exchange process may be viewed in Glauber theory
as the double scattering illustrated in Fig. 31. Estimates of this amplitude
were made with the assumption that each of the exchanged photons carries
half of the momentum transfer. With such approximations, and depending
on the relative phase of the two amplitudes, the double scattering amplitudes
could change the ed forward cross sections by as much as 10% for Q2 ≃ 1 − 2
(GeV/c)2. A complete calculation would involve an integration over all possible
four-momenta of the exchanged photons and over all possible intermediate pn
states. This has not been attempted yet, except for small Q2 and for a spinless
deuteron [216]. In this particular case, definite corrections to the deuteron
charge radius could be made. Finally, the high Q2 experimental data on the
structure function A [90, 98, 99] were recently compared, but no conclusive
evidence for a two-photon exchange contribution could be reached [217]. New
dedicated experiments and calculations would certainly clarify this important
question.

B Polarized deuteron targets - Polarimeters

The parallel development of polarized atomic beam sources and solid polarized
targets originated in the late 1950’s. The use of adiabatic transitions between
hyperfine energy levels of atomic hydrogen or deuterium for the former and the
dynamic polarization of nuclei for the latter were decisive improvements due in
good part to the work of A. Abragam [218]. Their use in electron scattering
experiments is however much more recent.

The polarized sources led to the acceleration of polarized deuteron beams,
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Figure 32: The polarimeter POLDER [221] as used in the Jefferson Lab t20

experiment [103].

which in turn were used to conceive and calibrate deuteron polarimeters. There
are however very few exemples of efficient deuteron tensor polarimeters at inter-
mediate energies (in ed elastic scattering, the recoil deuteron energy is related
to the four-momentum transfer by Td = Q2/2Md). The most recent ones were
developed at the synchrotron SATURNE-2 [219]: the AHEAD polarimeter [220]
was based on dp elastic and inelastic scattering in the 100-200 MeV range, while
POLDER (Fig. 32 and [221]), using the charge exchange reaction p(d, pp)n, was
operated between 160 and 520 MeV. There is at present no good concept to
develop a tensor polarimeter for deuteron energies above 500 MeV. In con-
tradistinction, vector polarimeters are available [219], but they are less useful
for the determination of the deuteron form factors (see Sec. 4.2 and [75]). A
peculiar feature of the double scattering experiments using a tensor polarime-
ter is related to the nature of the t20 moment : contrarily to other moments
and to the more familiar vector polarization, it does not induce any azimuthal
dependence in the distribution of counts in the polarimeter, which goes like

N0(θ
pol) × [1 + t20T

pol
20 (θpol) + 2t21T

pol
21 (θpol) cosϕpol + 2t22T

pol
22 (θpol) cos 2ϕpol] .

One then needs to know the absolute response of the polarimeter to both po-
larized and unpolarized deuterons in order to extract t20. This requires the
separate polarimeter calibration with a deuteron beam of known polarization.
In some instances, the angular dependence of T pol

20 , if large enough, may be used
to avoid or check the determination of an absolute normalization [75, 77, 103].

Atomic beams have also been used as internal targets in storage rings. In
this case the thinness of the target is compensated by the multiple passage of
the circulating electron beam. The target thickness was later increased by a
factor of about 100 by accumulating the polarized atomic beam in a cell [222].
Alternative plans to use an internal target based on the spin-exchange optical

66



pumping technique [223] were developed at Argonne and Novosibirsk, but not
implemented [224].

Cryogenic solid polarized targets (ND3 or deuterated buthanol) cannot with-
stand much electron beam intensity, but this has significantly improved in
the past few years [225]. The target tensor polarization or alignment (Pzz

or A) is generally rather small: it is related to the vector polarization by
Pzz = 2 −

√
4 − 3P 2

z [110] and the obtained values of Pz are at best of the
order of 0.5.

All these techniques were applied to ed elastic scattering for the measure-
ment of t20 or T20. They are compared quantitatively in Table 3, using a figure
of merit defined for polarimeter experiments as F = E2LΩelε(T

pol
20 )2 and for

polarized target experiments as F = E2LΩeA
2/2. All quantities are defined in

Table 3. The factor E2 accounts for the approximate energy dependence of the
ed cross section for a fixed value of Q. We have also indicated in that table our
estimation of the presently achievable (but not planned) highest figure of merit
with polarized targets, either internal in the upgraded HERMES [226] configura-
tion at HERA, or external at Jefferson Laboratory. With present day technology
and ideas, it seems very difficult to extend the tensor polarization measurements
beyond the four-momentum transfer values reached in the JLab/POLDER ex-
periment [103]. But upcoming experiments [109, 201] will cover an intermediate
Q-range with different systematic uncertainties than in the past polarimeter
experiments [77, 103], and in some cases better statistical precision.

C Nucleon electromagnetic form factors

We present here the most commonly used parameterizations of the nucleon form
factors (NEMFF) in various deuteron form factors calculations. In this case the
quantities of interest are the isoscalar combinations GS

E,M = Gp
E,M +Gn

E,M . We
recall that in the NRIA, the deuteron charge form factors are proportional to
GS

E ; in this case, the AL elastic structure function (Sec. 4.4) is proportional to(
GS

E

)2
while t̃20 is independent of any nucleon form factor.

The dipole parameterization

The proton form factors and the neutron magnetic form factor can be written
approximatively as

Gp
E =

Gp
M

µp
=
Gn

M

µn
= GD =

(
1 +

Q2

0.71

)−2

(72)

while the neutron electric form factor is taken to be zero or following the Galster
parameterization [88]:

Gn
E = − aη

1 + bη
µnGD (73)

where a and b are two free parameters adjusted on data. Frequently used values
of these parameters are given in Table 4.
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Table 3: Figure of merit and maximum four-momentum transfer for different
polarization experiments in ed elastic scattering.
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Table 4: Neutron electric form factor parameters for Eq.(73).
a b Ref.

1. 5.6 [88]
1.25 18.3 [97]
1. 3.4 [227]

An alternative parameterization ofGD is a product of two different monopole
form factors [228]. Gp

E and Gp
M can also be described as a sum of four monopole

form factors [65].

The IJL-G parameterization

The IJL parameterization [229] rests on the vector meson dominance (VMD)
model: the interaction of the photon with the nucleon is mediated by the ρ
(isovector) and by the ω and φ (isoscalar) mesons. The parameters are adjusted
on data available in 1972 and the form factors do not have the asymptotic be-
haviour anticipated from PQCD, so that this parameterization should not be
used beyond 1 (GeV/c)2. In several calculations of the deuteron form factors,
a parameterization using IJL for Gp

E ,Gp
M and Gn

M , and the Galster parameter-
ization (73) for Gn

E was often used. It is denoted by IJL-G.

The Höhler parameterization

This parameterization [230] also rests on VMD, but uses a larger and corrected
data set, as well as additional heavier mesons.

The GK parameterization

In addition to the VMD model (with the ρ and ω mesons), this parameterization
(GK85) [231] incorporates scaling laws at high momentum transfer compatible
with PQCD. A later version (GK92) [232] includes the φ meson but is in worse
agreement with recent precise data on Gp

E/Gp
M [157].

The MMD parameterization

This more recent parameterization [233] includes four isovector and three isoscalar
mesons and offers in addition a more precise description of the low Q behaviour
of the form factors.

Very recent data (see for example the reviews in [234]) on the proton and
neutron form factors have not yet been incorporated into any of these parame-
terizations, which differ appreciably from each other. At the present time, the
MMD parameterization seems the most satisfactory, but more precise data and
parameterizations of the NEMFF are certainly needed. Finally, in Fig. 33 are
plotted the isoscalar nucleon form factors, which are the relevant combinations
for the deuteron form factors calculations.

69



0 1 2 3 4 5 6

Q
2
 (GeV/c)

2

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

(G
M

p
 +

 G
M

n
)/

G
D

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

(G
E

p
 +

 G
E

n
)/

G
D

Figure 33: Ratios of the isoscalar nucleon form factors (electric and magnetic)
to the dipole form factor. The parameterizations are the dipole-Galster of
Eqs.(72,73) (dotted line), IJL-G (dashed), Höhler (long dashed), GK85 (dot-
dashed) and MMD (solid). See text for notations and references.
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[162] E. Truhĺık, J. Smejkal and F.C. Khanna, nucl-th/0010080 (2000).

[163] J. Carbonell et al., Phys. Rep. 300 (1998) 215.

[164] V.A. Karmanov and A.V. Smirnov, Nucl. Phys. A546 (1992) 691.

[165] J. Carbonell and V.A. Karmanov, Eur. Phys. J. A 6 (1999) 9.

[166] J. Carbonell and V.A. Karmanov, Nucl. Phys. A581 (1995) 625.

[167] J. Carbonell, private communication.
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