
International Journal of Computer Vision 24(3), 271–300 (1997)

c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

The Development and Comparison of Robust Methods

for Estimating the Fundamental Matrix

P.H.S. TORR AND D.W. MURRAY

Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK

phst@robots.ox.ac.uk

dwm@robots.ox.ac.uk

Received August 17, 1995; Revised July 19, 1996; Accepted

Abstract. This paper has two goals. The first is to develop a variety of robust methods for the computation of

the Fundamental Matrix, the calibration-free representation of camera motion. The methods are drawn from the

principal categories of robust estimators, viz. case deletion diagnostics, M-estimators and random sampling, and

the paper develops the theory required to apply them to non-linear orthogonal regression problems. Although a

considerable amount of interest has focussed on the application of robust estimation in computer vision, the relative

merits of the many individual methods are unknown, leaving the potential practitioner to guess at their value. The

second goal is therefore to compare and judge the methods.

Comparative tests are carried out using correspondences generated both synthetically in a statistically controlled

fashion and from feature matching in real imagery. In contrast with previously reported methods the goodness of fit

to the synthetic observations is judged not in terms of the fit to the observations per se but in terms of fit to the ground

truth. A variety of error measures are examined. The experiments allow a statistically satisfying and quasi-optimal

method to be synthesized, which is shown to be stable with up to 50 percent outlier contamination, and may still be

used if there are more than 50 percent outliers. Performance bounds are established for the method, and a variety of

robust methods to estimate the standard deviation of the error and covariance matrix of the parameters are examined.

The results of the comparison have broad applicability to vision algorithms where the input data are corrupted

not only by noise but also by gross outliers.
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1. Introduction

In most computer vision algorithms it is assumed that a

least squares framework is sufficient to deal with data

corrupted by noise. However, in many applications,

visual data are not only noisy, but also contain outliers,

data that are in gross disagreement with a postulated

model. Outliers, which are inevitably included in an

initial fit, can so distort a fitting process that the fitted

parameters become arbitrary. This is particularly se-

vere when the veridical data are themselves degenerate

or near-degenerate with respect to the model, for then

outliers can appear to break the degeneracy.

In such circumstances, the deployment of robust esti-

mation methods is essential. Robust methods continue

to recover meaningful descriptions of a statistical pop-

ulation even when the data contain outlying elements

belonging to a different population. They are also able

to perform when other assumptions underlying the es-

timation, say the noise model, are not wholly satisfied.

Amongst the earliest to draw the value of such meth-

ods to the attention of computer vision researchers were

Fischler and Bolles (1981). Figure 1 shows a table of

x, y data from their paper which contains a gross outlier

(Point 7). Fit 1 is the result of applying least squares,

Fit 2 is the result of applying least squares after one ro-

bust method has removed the outlier, and the solid line

is the result of applying their fully robust RANSAC

algorithm to the data. The data set can also be used to

demonstrate the failings of naı̈ve heuristics to remove
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Figure 1. A data set with an outlier comparing least squares and robust fitting.

outliers. For example, discarding the point with largest

residual after least squares fitting removes Point 6 not

Point 7. Indeed repeated application of this heuristic

until convergence results in half the valid data being

discarded, and Point 7 remaining as an inlier to a com-

pletely erroneous fit.

The statistical literature reports a wide variety of ro-

bust estimators (Maronna, 1976; Mosteller and Tukey,

1977; Cook and Weisberg, 1980; Devlin et al., 1981;

Fischler and Bolles, 1981; Huber, 1981; Critchley,

1985; Hoaglin et al., 1985; Hampel et al., 1986;

Rousseeuw, 1987; Chaterjee and Hadi, 1988; Roth,

1993; Torr and Murray, 1993; Zhang et al., 1994;

Kumar and Hanson, 1994; Shapiro and Brady, 1995;

Stewart, 1995). The first aim of this work is to develop

a variety of methods from several categories—namely

M-estimators, case deletion diagnostics and random

sampling—and apply them to the computation of the

fundamental matrix. This in turn requires novel exten-

sions of some of the robust estimation techniques to

handle non-linear problems involving orthogonal re-

gression.

The fundamental matrix provides a general and com-

pact representation of the ego-motion captured in two

views by a projective camera, requiring no knowledge

of the camera calibration (Faugeras, 1992; Hartley,

1992). In the computation of the fundamental ma-

trix, outliers typically arise from gross errors such as

correspondence mismatches or the inclusion of move-

ment inconsistent with the majority. The latter might

be caused by features being on occluding contours,

shadows or independently moving objects. Robust es-

timation impacts therefore not only on estimation, but

also on data segmentation. Degeneracies in the funda-

mental matrix also occur frequently.

The second aim of the work is to compare the perfor-

mance both of non-robust least squares methods and the

range of robust methods, making both intra- and inter-

category comparisons on large controlled data sets and

on data from real imagery. This has allowed the cou-

pling of several robust techniques to arrive at an empir-

ically optimal, and statistically satisfying method. The

techniques used and conclusions drawn have applica-

bility to the broad sweep of computer vision problems

troubled by outlying data.

Recovery of motion, and then structure, using the

fundamental matrix and its calibrated analogue, the

essential matrix, has a long history. Spetsakis and

Aloimonos (1991) divided research in the area into

three epochs. The first was spent finding out whether

the problem in the broadest terms had a solution. Once

it was ascertained it had, the next epoch saw researchers

devising constructive proofs of the uniqueness of the

solution involving the minimum number of points (e.g.,

Longuet-Higgins, 1981; Tsai and Huang, 1984). Un-

fortunately these ‘minimalist’ algorithms were highly

sensitive to noise, leading to an erroneous belief that

recovery of structure and motion was essentially an ill-

posed problem and that only qualitative solutions were

possible. The third epoch was then directed towards

minimizing the effects of noise by using more corre-

spondences (Weng et al., 1989) and more images (Spet-

sakis and Aloimonos, 1991; Weng et al., 1993). This

has usually been done within a least-squares frame-

work, with the concomitant difficulties highlighted

above. A fourth epoch is required, where the empha-

sis is on robust estimation that provide as output not

only the inlying solution, but also a list of data that

are in gross disagreement with it. Some previous work

has been carried out using robust estimators within the
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context of structure from motion recovery by Torr and

Murray (1993), Kumar and Hanson (1994) and Zhang

et al. (1994). Their conclusions and ours will be dis-

cussed later.

The paper is organised as follows. Section 2 reviews

best practice in least squares estimation methods for

the fundamental matrix, and discusses the variety of

error measures used. Section 3 describes our method

for comparing both non-robust and robust estimators,

together with the method of generating synthetic data.

Theory for the M-estimators, Case deletion diagnos-

tics, and Random Sampling is developed in Sections

4–6, and Section 7 comments briefly on the impracti-

cability of Hough transforms for problems with large

parameter spaces. A requirement of all robust meth-

ods is an estimation of the standard deviation, and a

method to achieve this which is itself robust is given in

Section 8.

The best estimators from the intra-category compe-

titions are compared in an inter-category competition

described in Section 9. Several techniques are blended

into an quasi-optimal method, the results of which is

demonstrated on real imagery in Section 10. Finally in

Section 11 we discuss our results and draw conclusions.

2. Linear Least Squares Methods

2.1. The Example Application:

The Fundamental Matrix

Consider the movement of a set of point image projec-

tions from an object which undergoes a rotation and

non-zero translation between views. After the motion,

the set of homogeneous image points {xi }, i = 1, . . . n,

as viewed in the first image is transformed to the set

{x′
i } in the second image, positions related by

x′⊤
i Fxi = 0 (1)

where x = (x, y, ζ )⊤ is a homogeneous image coordi-

nate and

F =





f1 f2 f3

f4 f5 f6

f7 f8 f9





is the fundamental Matrix (Faugeras, 1992; Hartley,

1992). Although 3 × 3, the matrix has only seven

degrees of freedom because only the ratio of parameters

is significant and because det F = 0. Throughout,

underlining a symbol x indicates the perfect or noise-

free quantity, distinguishing it from x = x + 1x , the

value corrupted by noise (assumed Gaussian).

2.2. Orthogonal Least Squares Regression:

Method OR

Ignoring for the moment the problem of enforcing the

rank 2 constraint, given n ≥ 8 correspondences this

system appears an archetype for solution by linear least

squares regression. Linear here refers to linearity in the

parameters fi —Eq. (1) written out is just

f1x ′
i x i + f2x ′

i y
i
+ f3x ′

iζ + f4 y′
i
x i + f5 y′

i
y

i

+ f6 y′
i
ζ + f7x iζ + f8 y

i
ζ + f9ζ

2 = 0.

Because errors exist in all the measured coordinates

x, y, x ′, y′, orthogonal least squares (Pearson, 1901)

rather than ordinary least squares should be used, min-

imizing the sum of the squares of the distances shown

in part (a) rather than (b) of Fig. 2.

Consider fitting a hyperplane f = ( f1, f2, . . . , f p)

through a set of n points in Rp with coordinates

zi = (zi1
, zi2

, . . . , zi p
), taking the centroid of the data

as origin. (Centring is a standard statistical technique

that involves shifting the coordinate system of the data

points so that the centroid lies at the origin. The best fit-

ting hyperplane passes through the centroid of the data

(Pearson, 1901).) Assuming that the noise is Gaussian

and that the elements of z have equal variance1 , the

hyperplane f with maximum likelihood is estimated by

minimizing the perpendicular sum of Euclidean dis-

tances from the points to the plane (Pearson, 1901;

Kendall and Stuart, 1983)

min
f

n
∑

i=1

(f⊤zi )
2

Figure 2. The (a) orthogonal and (b) ordinary least squares dis-

tances.
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subject to f⊤f = 1. The constraint ensures that the es-

timate will be invariant to equiform transformation—

rotation, translation and scaling—of the inhomoge-

neous coordinates. For example, the best fitting line

to a 2 dimensional scatter (xi , yi ), i = 1 · · · n is esti-

mated by minimizing
∑n

i=1(axi + byi + c)2 subject to

the constraint a2 + b2 = 1 (Pearson, 1901).

To reformulate as an eigen-problem, let Z be the

n × p measurement matrix with rows zi , and let M =
Z⊤Z be the p × p moment matrix, with eigenvalues

λ1 · · · λp in increasing order, and the corresponding

eigenvectors u1 · · · up forming an orthonormal system.

The best fitting hyperplane is given by the eigenvector

u1 corresponding to the minimum eigenvalue λ1 of the

moment matrix. It is evident that

λ1 =
n

∑

i=1

(

u⊤
1 zi

)2 =
n

∑

i=1

r2
i

which is the sum of squares of residuals ri , which in this

case are the perpendicular distances to the hyperplane.

For the fundamental matrix,

z = (x ′
i xi x ′

i yi x ′
iζ y′

i xi y′
i yi y′

iζ xiζ yiζ ζ 2)⊤

and the measurement matrix is

Z =

W









x ′
1x1 x ′

1 y1 x ′
1ζ y′

1x1 y′
1 y1 y′

1ζ x1ζ y1ζ ζ 2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

x ′
n xn x ′

n yn x ′
nζ y′

n xn y′
n yn y′

nζ xnζ ynζ ζ 2









where W is a diagonal matrix of the weights given to

each feature correspondence, corresponding to the in-

verse standard deviation of each error. (This is assumed

to be homogeneous at present. In the next section its

estimation by iteratively re-weighted least squares is

explained.) If the variances of the image coordinates

are different along the two axes, σ 2
x and σ 2

y say, the

image coordinates are weighted by dividing them by

their respective variances.

The estimate f = u1 actually minimizes

f⊤Mf

but now subject to f⊤Jf = constant, where J =
diag(1, 1, 1, . . . , 1, 0) is the normalization chosen to

realize a solution from the equivalence class of solu-

tions with different scalings. Again, for best numerical

stability, the origin of coordinate system should be

placed at the data centroid. Centring the moment ma-

trix is achieved by subtracting 1 z̄ j from each col-

umn of Z, where 1 is an n dimensional vector 1 =
(1, 1, 1, . . . , 1)⊤ and z j is the mean of column j .

2.3. Iteratively Re-weighted Least Squares:

Methods S1 and S2

The orthogonal least squares method (OR) will in fact

produce a sub-optimal estimate of F because the resid-

uals in the minimization

ri = f1x ′
i xi + f2x ′

i yi + f3x ′
iζ + f4 y′

i xi + f5 y′
i yi

+ f6 y′
iζ + f7xiζ + f8 yiζ + f9ζ

2 (2)

are not Gaussianly distributed. The cause of this is

now outlined, and different residuals which are more

nearly Gaussianly distributed are discussed. These re-

quire a working knowledge of the solution, and so an

iteratively re-weighted least squares minimization is

required (Bookstein, 1979; Sampson, 1982).

The expression for ri given in Eq. (2) is known as the

algebraic distance. It has no geometrical significance,

and does not, for example, measure the perpendicular

distance of a feature to the quadric variety represented

by F in 4D image coordinate space (x, y, x ′, y′). The

variance of ri is said to be heteroscedastic, meaning

that it depends on the location of the feature corre-

spondences.

Sampson (1982) discovered a similar heteroscedas-

tic property when fitting algebraic residuals to conics.

If each point is perturbed by Gaussian noise, minimiza-

tion of the algebraic distance using the eigenvector of

the moment matrix was found to be sub-optimal. It

was shown by Kendall and Stuart (1983) that the best

fitting, maximum likelihood, quadratic curve is such

that the sum of squares of the perpendicular geomet-

ric distances of points to the curve is a minimum2 , as

illustrated in Fig. 3(b). Furthermore, this solution is

invariant to Euclidean transformations of the coordi-

nate system. The reason this problem does not arise

when fitting a hyperplane to residuals that are linear in

the measurements is that the algebraic and geometric

distances coincide (Fig. 3(a)). The joins of the differ-

ent points to the conic in Fig. 3(b) are neither parallel

nor unique, and a closed form solution is unobtain-

able. In his work, Sampson proposed using a first order

approximation to the distance.
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Figure 3. For both line and conic fitting minimizing the perpendic-

ular geometric distances is optimal. For the line this is equivalent

to minimizing the algebraic residual of the centred data, but for the

conic, as for the quadric surface of F, it is not.

Method S1. Noting that the expression for the residu-

als for the fits to a conic and to the fundamental matrix

were both bilinear in the measurements, Weng et al.

(1989) adapted Sampson’s method to the computation

of the fundamental matrix. They estimated f by com-

puting

f = min
f

n
∑

i=1

(

wSi
f⊤zi

)2

where wSi
is the optimal weight, the variance of

the residual. Dropping subscripts i , and following

Sampson and Weng et al., the optimal weighting is

wS =
1

∇r

where the gradient is

∇r =
(

r2
x + r2

y + r2
x ′ + r2

y′

)1/2

and where the partial derivatives rx , and so on, are

found from Eq. (2) as rx = f1x ′ + f4 y′ + f7ζ , and so

on. This is a first order approximation to the standard

deviation of the residual.

Because calculation of the weights requires a value

for the fundamental matrix, and vice versa, an itera-

tive method is called for. We have modified the method

proposed for conics by Sampson (1982), exploiting the

fact that the fundamental matrix defines a quadratic in

the image coordinates. The method computes an alge-

braic fit to f by an eigenvalue method, then re-weights

the algebraic distance from each sample point {x, x′}
by 1/∇r−(x, x′), where ∇r− is the gradient computed

at the previous iteration, using unit weights on the first

iteration.

The fundamental matrix should have zero determi-

nant, but in the presence of noise this constraint has

to be imposed on the minimization. If it were not,

the epipolar lines would not all intersect at a unique

epipole. To force the estimated fundamental matrix to

be rank 2, at each iteration F is replaced by the near-

est rank 2 matrix before calculating the weights. The

procrustean3 approach adopted here proceeds as fol-

lows. Let the singular value decomposition (Golub and

van Loan, 1989) of the recovered F be

F = VΛU⊤.

Due to noise F will have full rank with non zero singular

values: Λ = diag(
√

λ1,
√

λ2,
√

λ3). To approximate

F by a rank two matrix, let Λ
+ = diag(

√
λ1,

√
λ2, 0)

whence the reduced rank approximation of the funda-

mental matrix is

F = VΛ
+U⊤.

The optimal weights convert the algebraic distance of

each point into the statistical distance in noise space,

which is equivalent to the first order approximation of

the geometric distance, as shown by Sampson (1982)

and Pratt (1987). The weighting breaks down at the

epipole, as the numerator and the denominator both

approach zero, indicating that there is less informa-

tion about correspondences the closer they are to the

epipole. In practice to remove unstable constraints all

points within a pixel of the estimated epipole are ex-

cluded from that iteration of the calculation. We note

that Kanatani (1996) recently proposed a modification

to Sampson’s distance for estimating the essential ma-

trix, the calibrated analogue to F. We have found both

distances yield almost identical results for the funda-

mental matrix on our test data, and we continue to use

Sampson’s distance.

Method S2. Luong and Faugeras (1993) examined

Sampson’s weighting, wS = 1/∇r , and suggested that

marginally better results could be obtained by using the

distance of a point to its epipolar line as the error to be

minimized. As already noted, the fundamental matrix

F defines the epipolar geometry, and any point corre-

sponding to x in image one must lie on the epipolar

line Fx in image two. Noisy measurements will how-

ever not lie on their associated epipolar lines exactly.

The perpendicular distance of a point x to the predicted

epipolar line x′⊤F in the first image is

e1 =
xrx + yry + rζ
(

r2
x + r2

y

)1/2
=

r
(

r2
x + r2

y

)1/2
.
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and the distance of a point x′ to the epipolar line Fx in

the second image is

e2 =
r

(

r2
x ′ + r2

y′

)1/2
.

In order to minimize the geometric distance of each

point to its epipolar line within an image the root mean

square over the two image planes of each point to

its epipolar line is used. This ensures that each im-

age receives equal consideration. The distance e =
(e2

1 + e2
2)

1/2 is referred to as the epipolar distance. It

is assumed that the errors in the measured location of

each point are Gaussian with variance σ 2. If the coor-

dinate system were rotated so that one axis aligned with

the epipolar line, the distance of each point to its (true)

epipolar line has Gaussian distribution with variance

σ 2 equal to the variance on the image point locations,

hence e2 approximately follows a χ2 distribution with

two degrees of freedom.

As in S1, Method S2 uses iterative re-weighted least

squares to estimate the solution, and again F must be

forced to be rank 2. The quantity minimized is equiv-

alent to weighting the algebraic distance r by wE , so

that e = rwE . Effectively then the epipolar weighting

is

wE =

(

1

r2
x + r2

y

+
1

r2
x ′ + r2

y′

)1/2

,

which is not dissimilar to the Sampson weighting

wS =

(

1

r2
x + r2

y + r2
x ′ + r2

y′

)1/2

.

In summary, three least squares methods with differ-

ent error terms have been discussed:

1) Method OR uses the sum of squares of algebraic

distances:

R2 =
∑

r2
i , where ri = x′⊤

i Fxi .

2) Method S1 uses the sum of squares of the Sampson

distances:

D2 =
∑

(wSiri )
2 =

∑

(ri/∇ri )
2 =

∑

d2
i .

3) Method S2 uses the sum of squares of the epipolar

distances:

E2 =
∑

(wEiri )
2 =

∑

(

e2
1i + e2

2i

)

=
∑

e2
i .

In terms of probability distributions, the first corre-

sponds to something intractable, the second is a first

order approximation to a χ2 distribution, and the third

is a χ2 distribution.

We do not show all the comparisons made between

least squares methods (Torr, 1995) here. In summary,

the error criteria D2 and E2 of methods S1 and S2 are

indeed similar in performance and superior to OR, the

more so when D2 and E2 were used as cost function

in a non-linear gradient descent minimization, such as

that of Gill and Murray (1978). More important is the

result that even the best least-squares method performs

feebly in the presence of outliers.

Given that both the mean square Sampson distance

D2 and the mean square epipolar distance E2 are both

well-used measures of the accuracy of a solution, both

measures will be evaluated in the comparison of the ro-

bust estimators. But which measure is more justifiable?

Although the epipolar distance has the merit of being

immediately physically intuitive, the adoption of the

Sampson distance has several things to recommend it.

First it represents the sum of squares of the algebraic

residuals divided by their standard deviations, whereas

the standard deviations of the epipolar distances are un-

known. Secondly, Kendall and Stuart (1983) suggested

that the set of parameters that minimize the orthogonal

distance of each point to a curve/surface are the max-

imum likelihood solution. This distance turns out to

be expensive to compute, but D2 provides a first order

approximation to it.

Thirdly, as discussed more fully in (Torr, 1996),

d = wSr is the first order approximation of the dis-

tance of a correspondence in the 4D space defined by

(x, y, x ′, y′) to the manifold defined by F in that space,

an approximation good to 4 or 5 significant figures. It is

also shown there that d is a similarly good approxima-

tion of the distance of point to its optimally estimated

correspondence as given by Hartley and Sturm (1994).

Fourthly, the value D2/(n − 7) provides a maxi-

mum likelihood estimate of the variance of the error

on each coordinate. Experiment has confirmed this. If

the data are perturbed by noise σ = 1.0, the estimate

of σ provided is near 1. Given the ground truth, which

is known in our tests using synthetic data, the r.m.s.

distance D of the noise-free points x from F estimated
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using the noise-corrupted points x tends to zero as the

fit improves.

3. The Method for Comparing

Robust Estimators

Although considerable work appears in the statistical

literature on the detection of outliers in the context

of ordinary, non-orthogonal, regression (see Chaterjee

and Hadi (1988) for a review), little work has been

done on outlier detection in orthogonal regression—

the work of Shapiro and Brady (1995) on hyperplane

fitting appears an exception both in the statistical and

computer vision literature. Moreover, it appears that

no large scale comparative studies have been reported

on the robust estimation of general hyper-surfaces, into

which category the estimation of the fundamental ma-

trix falls now that we are to minimize the geometric

rather than algebraic distance.

We have therefore developed and evaluated a number

of robust methods to this last problem. Our evaluation

places emphasis on two performance criteria: (i) rel-

ative efficiency and (ii) breakdown point, defined as

follows.

(i) The relative efficiency of a regression method is

defined as the ratio between the lowest achievable

variance for the estimated parameters (the Cramér-

Rao bound (Kendall and Stuart, 1983) and the ac-

tual variance provided by the given method. An

empirical measure of this is achieved by calculat-

ing the distance (either di or ei ) of the actual noise

free projections of the synthetic world points to

F provided by each estimator. Traditionally the

goodness of fit has been assessed by seeing how

well the parameters fit the observed data. But we

point out that this is the wrong criterion as the aim

is to find the set of parameters that best fit the (un-

known) true data. The parameters of the funda-

mental matrix themselves are not of primary impor-

tance, rather it is the structure of the corresponding

epipolar geometry. Consequently it makes little

sense to compare two solutions by directly compar-

ing corresponding parameters in their fundamental

matrices; one must rather compare the the differ-

ence in the associated epipolar geometry weighted

by the density of the given matching points. The

inadequacy of using the fit to the observed data to

assess efficiency, in the presence of outliers, will

be demonstrated in the results section.

(ii) The breakdown point of an estimator is the small-

est proportion of outliers that may force the value

of the estimate outside an arbitrary range. For a

normal least squares estimator one outlier is suffi-

cient to arbitrarily alter the result, therefore it has a

breakdown point of 1/n where n is the number of

points in the set. An indication of the breakdown

point is gained by conducting the tests with varying

proportions of outliers.

The overall plan for comparison involves two

levels—an initial simple test to weed out methods that

are completely ineffective, followed by a more detailed

testing of the remaining methods, involving evaluation

on a range of real and synthetic data. We return to char-

acterize the tests below, but first describe the generation

of synthetic data.

Data X are randomly generated in the region of R3

visible to two positions of a synthetic camera having

intrinsic coordinates

C =





1.00 0.00 0.36

0.00 1.50 0.36

0.00 0.00 0.0014



 ,

equivalent to an aspect ratio of 1.5, an optic centre at the

image centre (256, 256), and a focal length of f = 703

(notionally pixels), giving a field of view of 40◦, and

giving 0 ≤ x, y ≤ 512. These values were chosen to be

similar to the camera used for capturing real imagery.

The projection of a point X in the first position is x =
C[I | 0]X and in the second is x′ = C[R | t]X where

the camera makes a rotation [R] and translation t. The

motion is random and different in each test. In order to

simulate the effects of the search window commonly

employed in feature matchers, and to limit the range

of depths in 3D, correspondences were accepted only

if the disparity lay between 4 ≤ δ ≤ 30 pixels. (Some

notion of the limits depth Z can be obtained for pure

translation as |t| f/δmax ≤ Z ≤ |t| f/δmin.)

In Fig. 4 we show a typical set of point correspon-

dences as image motion vectors arising from some ar-

bitrary random motion. The blob end is the position

(x, y) and the other end is at (x ′, y′). Overlaid are the

epipolar lines computed in image one using the motion,

camera intrinsics and positions (x ′, y′).

The initial weeding was achieved by testing on 10

sets of 200 synthetic correspondences. In each set,

180 point correspondences were generated in accor-

dance with the synthetic camera motion and an addi-

tional 20 correspondences were outliers. Each image
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Figure 4. A set of synthetically generated correspondences per-

turbed by noise; superimposed is the true epipolar geometry of the

synthetic camera pair.

point x was perturbed to x by Gaussian noise with

standard deviation 1.0. The standard deviation of the

actual noise free projections of the synthetic world

points to the estimated epipolar lines were calculated.

If the standard deviation exceeded 4.0 (four times the

noise on the point positions), that method was rejected

outright.

Those methods that passed this initial test were then

tested more exhaustively using increasing outlier con-

tamination, up to 50% in steps of 5%. The outliers (or

mismatches) were generated so as to be in a random

direction on the image plane between minimum and

maximum allowable disparity in pixels from their po-

sition in image one. Each experiment, with a different

percentage of outliers, was repeated on 100 different

data sets, each of size 200, giving 20,000 correspon-

dences for each proportion of outliers, and 200,000

correspondences over all.

As mentioned at the end of Section 2, to assess the

performance of a method, the variance of the weighted

distances (di , ei etc.) from the noise-free (i.e., ground

truth) projections of the synthetic world points was tab-

ulated as a function of the fraction of outliers.

4. Category I: M-Estimators

We now turn to the first category of robust estimators,

that of M-estimators. Our description will be for the

Sampson distance measure—to use the epipolar dis-

tance measure D and d are replaced by the E and e

derived earlier.

Given a set of correspondences xi ↔ x′
i , suppose we

wish to find F which has maximum likelihood given

the data. If there is no preferred a priori value of F

this is equivalent to maximizing Pr(D | F). This joint

probability is identical to the noise distribution, which

assuming the noise is Gaussian, has zero mean, is in-

dependent at each datum, and has the same standard

deviation σ , is

Pr(D | F) =
1

(
√

2πσ)n
exp(−D2/2σ 2).

Maximizing this is equivalent to minimizing the nega-

tive of its logarithm

D2

2σ 2
+ constant terms,

which of course is the proof that least squares is the

maximum likelihood estimator when the errors are

Gaussian.

Under real conditions this Gaussian assumption

is rather poor. The aim of M-estimators (Maronna,

1976; Huber, 1981; Hampel et al., 1986) is to fol-

low maximum-likelihood formulations by deriving

optimal weighting for the data under non-Gaussian

conditions. Outlying observations have their weights

reduced rather than being rejected outright. The es-

timators minimize the sum of a symmetric, positive-

definite function ρ(di ) of the errors di , with a unique

minimum at di = 0. That is, the parameters are sought

that minimize

n
∑

i

ρ(di ).

The form of ρ is derived from the particular chosen

density function in the manner shown for the case of

Gaussian errors. Usually the density function is chosen

so that ρ is some weighting, ρ(di ) = (γi di )
2, of the

squared error that reduces the effects of outliers on

the estimated parameters. A typical weighting scheme

in the statistics literature is that proposed by Huber

(1981):

γi =







1 di < σ

σ/|di | σ < di < 3σ

0 di > 3σ .

The standard deviation of the error (scale) σ is either

known a priori or is found as a maximum likelihood

estimate using the median

σ =
medi di

0.6745
.
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(a) (b)

Figure 5. Variance of the distance measures (measured from projections of the noise free points) as a function of the percentage of outliers for

the M-estimators of Huber and Maronna. In (a) the distance measure is Sampson’s, but in (b) it is the epipolar distance. Each curve is derived

from 100 trials each with 200 data.

Further discussion of the estimation of σ is deferred

until Section 8.

Within computer vision M-estimation has been used

by Luong (1992), Olsen (1992), and Zhang et al.

(1994) for the estimation of epipolar geometry. Within

the statistics literature most of the analytical work

on M-estimators has been applied to ordinary least

squares. The only work done for orthogonal regression

has been in the area of Principal Component Analysis

where Devlin et al. (1981) conducted a comparison of

a number of robust techniques for estimating the prin-

cipal components of data (i.e., the eigenvectors). Of

the several weightings explored, they concluded that

Huber’s weighting and a weighting due to Maronna

(1976)

γi =
1 + di

1 + d2
i

gave the best estimates of the principal components.

For large and small di this tends to weighting by the

inverse residual and to unity, respectively.

Numerical calculation of M-estimators is problem-

atic at best and, so far, no closed form solutions exist—

indeed the problem appears intractable. Note that the

weights cannot be computed without an estimate of

the residuals, which in turn requires knowledge of the

solution. Huber (1981) suggests an iterative computa-

tional scheme in which the weights are held constant at

values equal to those found at the last iteration, whilst

the set of parameters are estimated. Huber proves that

if these iterations are repeated a local (possibly global)

minimum of the objective function (4) is reached. The

algorithm, presented in the Appendix, is a modifica-

tion of the iterative least squares method of Sampson

(S1), combining the Sampson distance weighting wS

with the robust weighting of the M-estimators. An ini-

tial solution is obtained using orthogonal regression

(Method OR).

Figure 5 gives the results of test using synthetic data

on two M-estimators, using the weightings of Huber

and Maronna, and assuming σ is known (i.e., the best

possible case). Figure 5(a) shows the results when the

sum of squares of the Sampson distance D2 is mini-

mized. The graph shows the variance of Sampson’s

distance for the true or noise free correspondences to

the epipolar geometry found from the estimated F. Al-

though Huber wins, both M-estimators are similar and

typically poor for more than 20–25% outliers in the

data set with variance on the error term in excess of

4.0 (recall the initial Gaussian noise used has variance

4.0). Figure 5(b) shows the results when the epipo-

lar distance measure E2 is minimized. It can be seen

that Huber provides a more graceful degradation with

outliers than Maronna which totally fails beyond 20%

outliers. This is because M-estimators are highly vul-

nerable to poor starting conditions—the algorithm con-

verges to a local minimum. Unfortunately, the lin-

ear least squares estimator used for initialization will

almost certainly produce poor starting conditions in

the presence gross outliers! The observed variance of

the estimate is very high when compared with what

we would expect given that the added Gaussian noise

has a variance of σ 2 = 4.0. In fact many of the tri-

als produced a much lower standard deviation, but the

overall standard deviation of the error was inflated by
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a small proportion of estimates that totally failed to

converge.

Some other weighting functions have been explored,

notably the biweight function of Mosteller and Tukey

(1977):

ρ(di ) =
{

d2
i /2 − d4

i /2a2 + d6
i /6a4 if di < a

a2/6 otherwise

with a = 1.96σ, as used by Kumar and Hanson (1994).

This error function has the advantage of performing

locally like a Gaussian for small errors, and tapering off

to a constant for large errors, thus limiting their effect.

Our tests failed to reveal any significant improvement

for the use of this error function, and indeed in most

cases Huber performed marginally better.

Two other implementations were tried, both produc-

ing poorer results. First, M-estimator routines for or-

dinary least squares (with the error presumed in one

variable) were taken from the Numerical Algorithm

Group’s (1988) library. The performance of these was

poorer than Huber based on orthogonal regression.

Second, gradient descent methods were tried with the

Huber error function, using OR as the staring point.

The frequency with which the algorithm became en-

trapped within local minima led to this approach being

rejected outright using a non-robust initialization, but

a robust initialization provided exceptionally good re-

sults, as will be seen.

In conclusion, it seems that the computation of

M-estimators is highly intractable involving the solu-

tion of n non-linear equations, where n is the number

of correspondences. Even Huber’s suggested approach

to computing them, iterated least squares, is only suit-

able if there is a priori knowledge of the parameters

or if there are a few gross outliers which are easily

identified.

5. Category II: Case Deletion Diagnostics

This section describes the methods based on influ-

ence measures, particularly case deletion diagnostics

(Chaterjee and Hadi, 1988). The basic concept un-

derlying influence is simple. Small perturbations are

introduced into some aspect of the problem formulation

and an assessment made of how much these change the

outcome of the analysis. The important issues are, first,

the determination of the type of perturbation scheme;

secondly, the particular aspect of the analysis to moni-

tor; and, thirdly, the method of assessment.

Case deletion methods in particular monitor the ef-

fect on the analysis of removing data. For instance, we

might ask how the epipolar geometry would change

given the deletion of one of the correspondences. Sev-

eral different measures of influence have been proposed

within the statistical literature for case deletion. They

differ in the particular regression result on which the

effect of the deletion is measured, and the standardiza-

tion used to make them comparable over observations.

For the methods discussed below, the influence can be

computed within the regression process, and are inex-

pensive relative to the cost of the regression itself.

In the case of ordinary least squares the interested

reader is referred to Chaterjee and Hadi (1988) for a

rigorous analytical coverage of the theory and meth-

ods. Much less attention has been given to orthogonal

regression. Critchley (1985) suggested the use of eigen-

perturbation to arrive at influence functions assessing

the first or higher order effect on the principal eigen-

values and eigenvectors. Torr and Murray (1993b) ex-

tended Cook’s D to orthogonal regression, and this is

discussed in more detail below. Shapiro and Brady

(1995) proposed an influence measure that monitors

the effects of the deletion on the minimum eigenvalue.

Torr and Murray (1992, 1993a) gave examples of the

use of a variety of such diagnostics for the estimation

of affine instantaneous flow.

In the next section the case deletion diagnostic is

developed for orthogonal regression, and then it is

adapted to estimate the fundamental matrix.

5.1. Extending Cook’s D to the Case

of Orthogonal Regression

We now derive a formula for the influence of a point on

orthogonal regression is derived, extending the works

of Cook and Weisberg (1980), Critchley (1985) and

Shapiro and Brady (1995). An early version was pre-

sented in (Torr and Murray, 1993b).

Consider the set of points lying on a hyperplane f

and let their measured values be zi , i = 1 · · · n, after

perturbation by Gaussian noise with uniform4 standard

deviation σ . If Z is the matrix whose rows are z⊤
i then

the least squares estimate f of f is given by the eigen-

vector of the moment matrix M = Z⊤Z corresponding

to the minimum eigenvalue. By analogy with Cook’s

D (Cook and Weisberg, 1980) which was developed

for ordinary least squares, we monitor the effect of

deleting an observation on the estimated parameters f.

As exact solutions cannot be found in closed form, the
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change in the solution is calculated using eigenvector

perturbation theory (Torr, 1995; Golub and van Loan,

1989). (As noted above, examination of the effects of

perturbation on some other aspect of the model could

be made, e.g., the covariance matrices or the minimum

eigenvalue (Shapiro and Brady, 1995), but as our inter-

est is in f it appears best to test eigenvector perturbations

directly.)

Let M be the p-dimensional symmetric moment ma-

trix, having eigenvalues, in increasing order, λ1 · · · λp

with u1 · · · up the corresponding eigenvectors forming

an orthonormal system. If matrix M is perturbed into

M′ = M + δM,

and if the multiplicity of λ j is 1, i.e., the data is not

degenerate, then the eigenvector u j is perturbed into

(Golub and van Loan, 1989)

u′
j = u j +

∑

k 6= j

u⊤
k δMu j

λ j − λk

uk + O(δM)2.

In this case the deletion of the i th observation means

that δM = −zi z
⊤
i . This allows calculation of what

would have been the estimate of the parameters with

the i th element had been excluded

f(i) = −z⊤
i u1

∑

k 6=1

u⊤
k zi

λ1 − λk

uk + u1, (3)

where f(i) is the estimate of f with the i th element

deleted. As f = u1 then

f(i) − f = −z⊤
i u1

∑

k 6=1

u⊤
k zi

λ1 − λk

uk . (4)

In Section 5.4 some comments are made on how to

improve the estimate of f(i), but the above form is used

for the analysis below as it provides some intuition into

the nature of how the outliers effect the solution.

To be most useful, influence should be a scalar quan-

tity. It is therefore necessary to use a norm to character-

ize influence; this norm will map the p vector, f(i)−f, to

a scalar. The norm is defined in terms of a symmetric,

positive definite p × p matrix L, to give an influence

measure

Ti (L)
def=

(

f(i) − f
)⊤

L
(

f(i) − f
)

.

Using Eq. (4) this is

Ti (L) =

(

z⊤
i u1

∑

k 6=1

u⊤
k zi

λ1 − λk

uk

)⊤

× L

(

z⊤
i u1

∑

l 6=1

u⊤
l zi

λ1 − λl

ul

)

and noting that z⊤
i u1 = ri , the residual for the i th ob-

servation,

Ti (L) = r2
i

(

∑

k 6=1

u⊤
k zi

λ1 − λk

uk

)⊤

× L

(

∑

l 6=1

u⊤
l zi

λ1 − λl

ul

)

. (5)

Contours of constant Ti (L) are ellipsoids of dimension

equal to the rank of L, centred at f or equivalently at

f(i). Clearly the character of Ti (L) is determined by

L, which may be chosen to reflect specific concerns.

The norm is chosen to make Ti both scaleless and in-

variant to non-singular linear transformations of the

data.

Now suppose the matrix M is used for L. In (Torr,

1995) it is shown that Mσ−2 is approximated by the

pseudo inverse of Γ f , the covariance matrix of the pa-

rameter estimate: an improved estimate is given in Sec-

tion 5.4. Choosing the covariance matrix as the norm

in which to measure change in the solution allows the

alterations in each element of the parameter vector to

be given equal weight, so that changes in the parame-

ters approximate the changes in the error measure D2.

Furthermore, when L ← M, Ti (L) defines a conic in

parameter space with principal axes determined by the

eigenvalues and eigenvectors of M. That is, if f(i) is f

computed without zi , then from Eq. (5)

Ti (M) = f⊤(i)Mf(i) − 2f⊤Mf(i) + f⊤Mf

= f⊤(i)Mf(i) − 2λ1f⊤f(i) + λ1.

Equation (5) leads to

Ti (M) =
1

σ 2

(

z⊤
i u1

∑

k 6=1

u⊤
k zi

λ1 − λk

uk

)⊤

× M

(

z⊤
i u1

∑

l 6=1

u⊤
l zi

λ1 − λl

ul

)

.
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Noting that u⊤
j Z⊤Zuk = λku⊤

j uk = λkδ jk , the

influence measure becomes

Ti (M) =
1

σ 2

(

u⊤
1 zi

)2
∑

k 6=1

(

u⊤
k zi

λ1 − λk

√

λk

)2

=
r2

i

σ 2

∑

k 6=1

(

u⊤
k zi

λ1 − λk

√
λk

)2

. (6)

The singular value decomposition (Golub and van

Loan, 1989; Thisted, 1988; Teukolsky et al., 1988)

is used to derive a computationally simple form for

Eq. (6). Let the singular value decomposition of Z be

Z = VΛU ⊤,

where V is a n × p matrix whose columns are the left

hand singular vectors of Z, U is a p × p matrix whose

columns are the right hand singular vectors of Z and

Λ is the diagonal matrix of the corresponding singular

values of Z : Λ = diag(
√

λ1,
√

λ2, . . . ,
√

λp) in as-

cending order such that
√

λ1 is the smallest singular

value. Then if Vik is the ikth element of V, it is easy to

see that

u⊤
k zi = Vik

√

λk,

and so

Ti (M) =
r2

i

σ 2

∑

k 6=1

(

Vikλk

λ1 − λk

)2

The leverage factor is defined as

li
def=

∑

k 6=1

(

Vikλk

λ1 − λk

)2

.

This leverage factor will be large only if the orthogonal

projection of the observation zi onto uk , k 6= 1, is large

and the corresponding eigenvalue λk is small. The

leverage gives a measure of the influence of each point

and is large for outliers even when the residual is small.

The leverage is a key factor distinguishing use of Ti (M)

from consideration of the algebraic residual ri alone.

For an outlier ri might be small but Ti (M) will tend to

be large.

Note that the scale σ need not be known to calcu-

late the relative values of Ti . Temporarily ignoring

the scaling, the measure Ti has both a revealing and

computationally efficient form

Ti = r2
i li

which is the residual multiplied by the leverage factor.

The statistic Ti (M) gives the relative influence of each

point in the regression, and to remove outliers the point

with maximal influence is deleted and the regression

recomputed, repeating this procedure until the data falls

below a χ2 threshold determined by σ .

5.2. A Worked Example

Here, the case deletion outlier detection scheme is ap-

plied to the x, y data set of Fischler and Bolles (1981)

given in the introduction.

The data is first centred, giving u1 = (u11, u12) =
(0.18, −0.98) and sum of squares λ1 = 8.19. The sin-

gular value decomposition for the centred data matrix

is

Z = VΛU ⊤

which on inserting values is





















−3.28 −2.00

−2.28 −1.00

−1.28 0.00

−0.28 0.00

−0.28 1.00

0.71 2.00

6.71 0.00





















=





















0.48 −0.44

0.20 −0.30

−0.08 −0.15

−0.017 −0.03

−0.36 −0.01

−0.64 0.13

0.41 0.81





















×
[

8.08 0.00

0.00 2.86

] [

0.18 −0.98

0.98 0.18

]

.

Using Eq. (3) with these values gives the the perturbed

results (u11(i), u12(i)) which are given in Table 1 and

plotted in Fig. 6.

Also shown in Fig. 6 are concentric ellipses corre-

sponding to increasing values of the influence measure

Ti determined from the covariance matrix of the param-

eter estimate. In parameter space ellipses of constant

Ti are

63.43u2
11 + 20u11u12 + 10u2

12 − 2.91u11 + 16.04u12

= Ti − 8.19

where the values (from inwards out) Ti = 1, 2, 3, and 4.

Figure 6 shows clearly that Point 7 is exerting undue

influence on the fit.

In Table 2 we compare the Ti diagnostic with the

naı̈ve residual diagnostic and the diagnostic of Shapiro

and Brady which measures the perturbation of the
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Table 1. The perturbed results

arising from the deletion of each

point estimated to a first order ap-

proximation using Eq. (3).

Point i u11(i) u12(i)

1 0.092530 −0.999503

2 0.153986 −0.988378

3 0.183134 −0.983101

4 0.178383 −0.983961

5 0.179975 −0.983673

6 0.144509 −0.990094

7 0.314437 −0.959331

Figure 6. Ellipses of constant Ti in parameter space which are

concentric about u1 = (0.178136, −0.984006). The ellipses are de-

termined by the covariance matrix of the parameter estimate. The

perturbed solutions that have arisen from the deletion of points are

also plotted. It can be seen that points 1 and 7 lie furthest from the

centre of the ellipses.

smallest eigenvalue. The generalized distance Ti cor-

rectly identifies Point 7 as outlying, whereas the alge-

braic residual ri and the perturbation of the smallest

eigenvalue δλ1(i) indicate Point 6 as most outlying.

Table 2 also shows the leverage

li =
(

Vi2λ2

λ1 − λ2

)2

,

and that for Point 7 is large. (Note that the rather sim-

pler expression for leverage hzii = V2
i1 + V2

i2 which is

sometimes used is not as discriminating.) It might be

noted that while not indicating outliers directly, lever-

ages do give a good indication of what points are influ-

ential in the regression.

To understand why the diagnostic based on the

change in the eigenvalue fails in this case, note that the

Table 2. The Ti measure correctly identifies point 7 as an out-

lier, but the algebraic residual ri and the smallest eigenvalue

perturbation δλ1(i) do not. Columns 4 and 5 show values of the

leverages hzii and li .

Point ri δλ1(i) Ti hzii li

1 1.38 −2.34 0.49 0.43 0.26

2 0.58 −0.37 0.039 0.13 0.12

3 −0.23 −0.054 0.0017 0.031 0.032

4 −0.051 −0.0026 0.0 0.0015 0.0016

5 −1.035 −1.071 0.00023 0.13 0.00021

6 −1.84 −3.45 0.076 0.43 0.022

7 1.20 −2.53 1.25 0.84 0.87

eigenvectors are much more sensitive to perturbations

than the eigenvalues, especially when the eigenvalues

might be quite close. This leads to the speculation that

the diagnostic Ti might be good for detecting degener-

acy within small data sets.

Shapiro and Brady (1995) overcame this problem

by explicitly recomputing the regression for each point

deleted when there are only a few outliers left, to de-

termine which gives a minimal sum of squared residu-

als. This approach is prohibitively expensive for large

datasets.

5.3. Application to Computing

the Fundamental Matrix

The method above was derived under the assumption

of linear regression. However the fundamental matrix

gives rise to a quadratic in the image coordinates. In

order to minimize the correct measure a modification

to the S1 iterative least squares method described in

Section 2.3 is used. At each iteration, as well as re-

weighting all the data to convert the algebraic residuals

into the correct statistical distance in noise space, the

point with maximum influence is deleted. Furthermore

the fundamental matrix is projected onto the nearest

singular fundamental matrix using the singular value

decomposition, as described in Section 2.3.

All the case deletion algorithms successively delete

points until the sum of squares of residuals lies below

a χ2 test. An outline of the new algorithm is presented

in the Appendix.

Figure 7 gives the average sum of squares of distance

of actual points to estimated epipolar geometries for

three influence measures—those of Torr, Shapiro and

the “deleting the largest residual at each iteration”. Part
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(a) (b)

Figure 7. Variance of the distance measures (measured from projections of the noise free points) as a function of the percentage of outliers for

the case deletion methods. In (a) the distance measure is Sampson’s, but in (b) it is the distance to predicted epipolar line. Each is derived from

100 trials each with 200 data.

(a) uses the Sampson measure and part (b) the epipolar

distance measure. Overall, for this large (n = 200) data

set the performances are similar, with no significant sta-

tistical difference between the estimators. On smaller

data sets (n ≤ 40), Ti was found to give much better re-

sults than just deleting the largest residual. We found

that with n = 40 the variance was between 30–50%

lower than both Shapiro and the residual methods for

up to 25% outliers. For example, with 10% outliers

the variance of d for the noise-free points was 3.4, 5.4,

and 7.2 for the Ti , Shapiro and residual methods re-

spectively. The variance for all the methods varies as

1/
√

n. Using Ti also gave a better performance for

linear data (e.g., when fitting hyperplanes).

Convergence of the case deletion diagnostics was su-

perior to the convergence of the M-estimators, and the

solution was typically more accurate. This is because

in the M-estimation process all the data are reweighted

at each iteration, whereas in the case deletion schemes

only one datum is considered at each iteration. This

leads to increased accuracy at the expense of more iter-

ations (generally one per outlier). The disadvantage of

the case deletion schemes is that they require a fairly

good estimate of σ .

5.4. On Improving the Estimate of Ti

Although not used in the experiments reported in this

paper, we have recently adopted three techniques that

have been found to increase the accuracy of the es-

timation process. The first is an improvement in the

estimate of f(i) using iterative methods. The second

improvement uses the calculated f(i) to remove bias in

the solution, and the third improvement uses the calcu-

lated f(i) to re-estimate the covariance matrix.

Improving the Estimate of f(i). Although a closed

form solution cannot be obtained for f(i) the first order

approximation can be improved upon. Golub (1973)

provides a method for computing the eigenvalues and

eigenvectors of a matrix C = D+uu⊤ in O(n2) opera-

tions, where D is diagonal. A more general analysis is

presented but Gu and Eisenstat (1995), and the meth-

ods have been implemented and used for case deletion

by Shapiro and Brady (1995), providing a marked im-

provement in the result.

Non-parametric Removal of Bias. Luong et al.

(1993) show that linear methods produce a biased so-

lution for the fundamental matrix, analogous to that

in conic fitting found by Kanatani (1991). Kanatani

(1996) gives the bias for linear estimation of the essen-

tial matrix. Kanatani follows a parametric approach for

the removal of bias under the assumption of Gaussian

noise.

Here however we suggest a non-parametric approach

that should be more robust to outliers or the failure of

Gaussian assumptions. The jackknife is a well-known

and extensively studied statistical non-parametric tech-

nique to gain an unbiased estimate of f together with

its covariance. If fJ is the jackknife estimate it can

be shown that its bias decreases as a polynomial func-

tion of the number of observations n (Kendall and Stu-

art, 1983). Using the original sample of n data, all n

subsamples of n − 1 data are formed, by systemati-

cally deleting each observation in turn. The jackknife
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is given by

fJ = nf −
n − 1

n

n
∑

i=1

f(i),

the bias in each parameter being (Sprent, 1989)

(

1 −
1

n

) n
∑

i=1

(f(i) − f ).

It can be seen that there is only a small amount of extra

computation necessary to get the bias-free estimates,

as the quantities f(i) have already been calculated. One

problem is that the removal of bias might sometimes

increase the error, whereas the biased solution has a

lower error. A full analysis of bias removal is com-

plicated and beyond the scope of this paper. Our tests

found on average about 1% reduction in the error of fit

to the true points, dependent on the type of motion (the

nearer the image to orthographic conditions the less

bias there is to remove, due to the fact that the problem

becomes linear in the orthographic case). This aver-

age hides the fact that some correspondences (such as

those near high curvature points of the fundamental

matrix consider as a quadric manifold in the 4-space

of the image coordinates) have much greater bias than

others.

Non-parametric Estimation of the Covariance. Our

further experimentation has revealed that the estima-

tion of the covariance by the pseudo-inverse of the mo-

ment matrix to be a poor one. An improved estimate

(really beneficial only for large values of n) may be

gained at little extra computational cost by the jack-

knife estimate of the covariance matrix

ΓJ =
1

n − 7

n
∑

i=1

(f(i) − f)(f(i) − f)⊤.

6. Category III: Random Sampling Algorithms

An early example of a robust algorithm is the random

sample consensus paradigm (RANSAC) of Fischler

and Bolles (1981). Given that a large proportion the

data may be outlying, the approach is the opposite to

conventional smoothing techniques. Rather than using

as much data as is possible to obtain an initial solution

and then attempting to identify outliers, as small a sub-

set of the data as is feasible to estimate the parameters

is used (e.g., two point subsets for a line, seven corre-

spondences for a fundamental matrix), and this process

is repeated enough times on different subsets to ensure

that there is a 95% chance that one of the subsets will

contain only good data points. The best solution is that

which maximizes the number of points whose residual

is below a threshold. Once outliers are removed the set

of points identified as non-outliers may be combined

to give a final solution.

An initial exploration of the RANSAC method to

estimate the epipolar geometry was reported in Torr and

Murray (1993b). To estimate the fundamental matrix

seven points are selected to form the data matrix Z:

Z =

W









x ′
1x1 x ′

1 y1 x ′
1ζ y′

1x1 y′
1 y1 y′

1ζ x1ζ y1ζ ζ 2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

x ′
7x7 x ′

7 y7 x ′
7ζ y′

7x7 y′
7 y7 y′

7ζ x7ζ y7ζ ζ 2









The null space of the moment matrix M = Z⊤Z is

dimension two, barring degeneracy (Z is 7 × 9). It

defines a one parameter family of exact fits to the 7

correspondences: αF1 + (1 − α)F2. Introducing the

constraint det |F| = 0 leads to a cubic in α

det|αF1 + (1 − α)F2| = 0 (7)

which has 1 or 3 real solutions for α. The total number

of consistent features for each solution is recorded.

In order to determine whether or not a feature pair is

consistent with a given fundamental matrix, the Samp-

son distance for each correspondence in the image is

compared to a threshold, which will be described later

in Section 8.

Ideally every possible subsample of the data would

be considered, but this is usually computationally in-

feasible, so an important question is how many subsam-

ple of the dataset is required for statistical significance.

Fischler and Bolles (1981) and Rousseeuw (1987) pro-

posed slightly different means of calculation, but both

give broadly similar numbers. Here we follow the lat-

ter’s approach. The number m of samples is chosen

sufficiently high to give a probability ϒ in excess of

95% that a good subsample is selected. The expres-

sion for this probability ϒ is

ϒ = 1 − (1 − (1 − ǫ)p)m,

where ǫ is the fraction of contaminated data, and p the

number of features in each sample. Table 3 gives some



286 Torr and Murray

Table 3. The number m of subsamples required to ensure ϒ ≥
0.95 for given p and ǫ, where ϒ is the probability that all the data

points selected in one subsample are non-outliers.

Fraction of contaminated data, ǫ
Features

p 5% 10% 20% 25% 30% 40% 50%

2 2 2 3 4 5 7 11

3 2 3 5 6 8 13 23

4 2 3 6 8 11 22 47

5 3 4 8 12 17 38 95

6 3 4 10 16 24 63 191

7 3 5 13 21 35 106 382

8 3 6 17 29 51 177 766

sample values of the number m of subsamples required

to ensure ϒ ≥ 0.95 for given p and ǫ. Generally it is

better to take more samples than are needed as some

samples might be degenerate. It can be seen from this

that, far from being computationally prohibitive, the ro-

bust algorithm may require fewer repetitions than there

are outliers, as it is not directly linked to the number but

only the proportion of outliers. It can also be seen that

the smaller the data set needed to instantiate a model,

the fewer samples are required for a given level of con-

fidence. If the fraction of data that is contaminated is

unknown, as is usual, an educated worst case estimate

of the level of contamination must be made in order

to determine the number of samples to be taken. This

can be updated as larger consistent sets are found e.g.,

if the worst guess is 50% and a set with 80% inliers is

discovered, then ǫ could be reduced from 50% to 20%.

In general if the seven correspondence sample has

an insufficient spread of disparities then the estimate of

F obtained from that sample might not be unique. This

(a) (b) (c)

Figure 8. (a) A typical set of seven points selected during RANSAC, alongside two epipolar geometries that exactly fit the data, (b) is the true

epipolar geometry, and (c) is spurious.

is an example of degeneracy. Consider the seven corre-

spondences shown in Fig. 8(a). Two epipolar geome-

tries that fit this data are shown, for one view, in (b)

and (c). The veridical epipolar geometry is (b) and (c)

is erroneous solution nonetheless consistent with the

cubic in Eq. (7).

Clearly the result estimated from this sample will

not have many other consistent correspondences that

conform to the underlying motion. It is desirable to

devise a scheme to determine whether any subsam-

ple is degenerate. The detection of degeneracy within

RANSAC is the subject of (Torr et al., 1995a).

RANSAC originated in work on computer vision,

and it was some years until a similar highly robust

estimator was developed independently in the field of

statistics, namely Rousseeuw’s least median of squares

(LMS) estimator (Rousseeuw, 1987). The algorithms

differ slightly in that the solution giving least median

is selected as the estimate in (Rousseeuw, 1987). Both

algorithms have been implemented with the Sampson

and epipolar distances, not on the algebraic distance,

and are presented in the Appendix.

The variances of the distances as a function of the

percentage of outliers are presented in Fig. 9, again for

both Sampson and epipolar measures. Both LMS and

RANSAC perform similarly well, with LMS giving a

slightly better performance for under 50% contamina-

tion.

A more recent random sampling algorithm is MIN-

PRAN (minimize probability of randomness), de-

scribed by Stewart (1995). Like LMS, this does not

require a priori knowledge of the variances. However,

we do not use it here as it appears to make assumptions

about the error distribution that are inappropriate for es-

timation of the fundamental matrix. This is discussed

in (Torr et al., 1996).
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(a) (b)

Figure 9. Variance of the distance measures (measured from projections of the noise free points) as a function of the percentage of outliers for

the RANSAC and LMS random sampling method. In (a) the distance measure is Sampson’s, but in (b) it is the epipolar distance. Each curve is

derived from 100 trials each with 200 data. The results show that generally LMS gives a slightly better result.

7. A Note on Hough Transforms

In our study, techniques that fall into the three cat-

egories described already have proved the most suc-

cessful. It is worth however mentioning the Hough

transform (e.g., Ballard and Brown, 1982) as it has

long history of valuable service to computer vision.

The parameter space is divided into cells, and each

datum adds a vote to every cell of the parameter space

whose parameters are consistent with that datum. After

voting, cells in the parameter space that have a number

of votes greater than a given threshold are marked as

representing possible solutions.

The Hough transform runs into problems when the

dimension of the parameter space is high, because its

space requirement is exponential in the dimensionality

and the computational expense of even the Fast Hough

Transform (Li et al., 1986) rises exponentially with

the dimension of the parameter space (McLauchlan,

1990). The dimensionality of the Fundamental Matrix

is 7, and even the coarsest quantization of the parameter

space, say into 10 cells per dimension, would demand

107 cells!

8. Robust Determination

of the Standard Deviation

Robust techniques to eliminate outliers are all founded

upon some knowledge of the standard deviation σ of

the error, as outliers are typically discriminated from

inliers using

i ∈
{

set of inliers if di ≤ 1.96σ

set of outliers otherwise,

where we recall that di = wSiri is the Sampson dis-

tance. This section describes a robust method for esti-

mating σ .

The standard deviation is related to the characteris-

tics of the image, the feature detector and the matcher.

Often the value of σ is unknown, in which case it must

be estimated from the data. If there are no outliers in

the data the σ can be estimated directly as the stan-

dard deviation of the residuals of a non-linear least

squares minimization. If there are outliers and they

are in the minority, a first estimate of the variance can

be derived from the median squared error of the cho-

sen parameter fit (Rousseeuw, 1987). It is known that

medi |di |/8−1(0.75) is an asymptotically consistent es-

timator of σ when the di are distributed like N (0, σ 2),

where 8 is the cumulative distribution function for the

Gaussian probability density function.

It was shown empirically by Rousseeuw (1987) that

when n ≈ 2p (recall that n is the number of data,

and p the number of parameters) the correction factor

of (1 + 5
n−p

) improves the estimate of the standard

deviation. Noting 1/8−1(0.75) = 1.4826 the estimate

of σ is then

σ = 1.4826

(

1 +
5

n − p

)

√

medi |di |.
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The LMS algorithm is used to obtain the estimate of the

median and a first estimate of the standard deviation.

Once the final result is obtained (after non-linear min-

imization) the estimate of the standard deviation can

be improved by using the EM algorithm (Dempster,

1977). If the inlier and outlier distribution are Gaus-

sian but with different parameters, the EM algorithm is

guaranteed to increase the likelihood of the estimated

standard deviation given the data.

The standard deviation can be estimated between

each pair of images and the results filtered over time.

Under Gaussian assumptions it can be shown (Bar-

Shalom and Fortmann, 1988) that about 800 correspon-

dences are required to ensure that there is a 95% chance

that the variance is within 10% of its actual value. Im-

age pairs that give rise to unusually high standard de-

viations might possess independently moving objects,

the detection of which is discussed in (Torr et al., 1994,

1995b).

Given random perturbations of the image correspon-

dences with unit standard deviation then the estimate

of the standard deviation of F was found to be 1.07,

this being a conflation of the image error and the error

in the estimator.

9. Comparison of Robust Categories I–III

Figure 10 is a graph comparing the best method from

the Least Squares category and the robust categories

I-III described in this paper.

(a) (b)

Figure 10. (a) and (b) Variance of the noise free points to the estimated F for the best of each category of estimator, using Sampson’s distance

measure D2 and the epipolar distance measure E2 respectively. Each curve was derived from some 100 tests on 200 points. It can be seen that

Random Sampling (here using LMS) give the best result, the case deletion method performs well but requires an exact estimate of σ to achieve

such a good result, limiting its use in practice. The near optimal estimator that we suggest is shown, using the LMS method to initialize and

M-estimator is significantly better than the use of the Random Sampling method alone.

As expected, the least squares method is non-robust,

giving a standard deviation of 4.7 when only 5% of

the data are outliers. The M-estimator using the Huber

error provides rather inaccurate results up to figures of

35% outliers and then breaks down. The case dele-

tion diagnostics work very well when provided with

an accurate estimate for the standard deviation, which

we assumed was known for these experiments. But if

the standard deviation is unknown they perform very

badly. The LMS algorithm gives the best performance

for both error measures. RANSAC gave an equivalent

or slightly worse performance when the standard devia-

tion of the error term was known, but it has been shown

that RANSAC can perform well even when there are

90% outliers (Roth, 1993). This tallies with our ex-

perience in using RANSAC for motion segmentation

(Torr and Murray, 1994).

Earlier it was noted that iterative estimation of the

M-estimators is only successful if the starting estimate

was good. By using the output of the random sampling

rather than linear regression as the starting estimate for

M-estimation, here using an iterative Huber algorithm,

a further improvement can be made, as shown for a

range of contaminations in Fig. 10. Although the im-

provement appears small, it has a significant effect on

the computed epipolar geometry, as shown in Fig. 11.

Part (a) of the figure shows the epipolar geometry es-

timated by the LMS method, and (b) shows that es-

timated after iterative improvement of the result us-

ing Huber’s M-estimator. The latter is closer to the
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(a) (b)

Figure 11. A comparison of epipolar geometry estimated by LMS alone (a) with LMS followed by Huber (b). The data are corrupted from

Fig. 4, where the true epipolar geometry can be seen.

(a) (b)

(c) (d)

Figure 12. Synthetically generated correspondences (a) with 80 inliers and 20 outliers. The veridical epipolar geometry is shown in (b). Part

(c) shows the epipolar geometry recovered by the non-robust algorithm S2 and (d) shows that from the robust LMS plus Huber combination.

veridical geometry derived from the uncorrupted data

shown earlier in Fig. 4.

The previous experiment highlights the sensitivity

of the recovered epipolar geometry to fitting differ-

ences between robust methods. It is worth showing

the difference between the best non-robust and best

robust methods. Figure 12(a) shows the 80 correct

correspondences and the 20 mismatches used as data.

Figure 12(b) shows the veridical epipolar geometry, (c)

shows that recovered by iterative least square method

S2 and (d) gives that recovered by the robust symbi-

otic combination of LMS with Huber. The difference

is obviously substantial.

10. Towards an Empirically Optimal Algorithm

Our key conclusions thus far are that

1. Of the major categories of robust estimator, random

sampling gives the best results.
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2. It is possible further to improve performance

by mixing robust methods. We have found that

the use of random sampling to initialize iterative

M-estimators yields an empirically optimal combi-

nation.

These observations have allowed us to create an em-

pirically optimal combination of algorithms, as sum-

marized below.

The algorithm first determine the set of putative

correspondences using “unguided matching”—that is,

image-based matching without using the epipolar

geometry—storing for each point an ordered list of the

more likely correspondences.

The correspondences are supplied to RANSAC,

which is initialized with an approximate guess at the

standard deviation. For instance on the calibration ex-

ample shown later the initial estimate of the standard

deviation σ is made at 0.7. After LMS is run, the algo-

rithm provides an updated estimate of σ = 0.213 from

the median, running EM reduces this estimate to 0.204.

After the iterated M-estimator the EM algorithm gives

σ = 0.1682, and after the non-linear gradient descent

part of the algorithm σ is 0.1146.

The best estimates of F and σ are handed on to the

M-estimation algorithm for refinement. Here we use

iterative re-weighted least squares with Huber’s robust

weighting function. In practice, around five iterations

are adequate.

Finally, a non-linear gradient descent algorithm re-

places the least-squares algorithm in the M-estimation

scheme. The non-linear minimization is conducted us-

ing the method described in Gill and Murray (1978).

This minimization uses a parameterization that en-

forces the det F = 0 condition.

Note first that all the correspondences are included at

every stage. By stages 2 and 3, gross outliers are effec-

tively removed as the Huber function places a ceiling

on the value of their errors, but if the parameters move

during the iterated search, marginal outliers can be re-

classified as an inliers. This avoids RANSAC unduly

biasing the M-estimation stages.

Note too that at each stage, and at each iterated step,

the algorithm re-assesses the putative correspondences,

using the epipolar geometry implicit in the running es-

timate of F. If it found that the point correspondence

is an outlier, but that another reasonable match on the

point’s list of potential matches is an inlier, the algo-

rithm alters the match so as to locally minimize di .

Empirically Optimal Algorithm

1. Generate matches: Using unguided matching gen-

erate for each point feature in Image 1 an ordered list

of the best matching points in Image 2, and similarly

for Image 2.

2. Random sampling: Apply the estimator to the best

set of matches from Image 1 to 2 and vice versa.

Use RANSAC if σ is known otherwise LMS.

3. Re-assess the matches, and re-estimate σ using the

EM algorithm.

4. M-estimation (1): Refine using iterative least

squares incorporating the Sampson weights mod-

ified by the Huber robust weighting, iteratively re-

weighted least squares.

5. Re-assess the matches, and re-estimate σ using the

EM algorithm.

6. M-estimation (2): Replace the iterative least squares

by a non-linear method, using a parameterization

that ensures the det F = 0 (see Luong, 1992).

7. Re-assess the matches, and re-estimate σ using the

EM algorithm.

10.1. Real Images

We now demonstrate the performance of the combi-

nation of random sampling and M-estimators on real

imagery, using the results to aid corner matching.

Whereas at Step 4 we used the LMS algorithm for

the synthetic data, here instead we use the RANSAC

method with an initial estimate of σ = 0.5, unless it is

certain that there are under 50% outliers.

Guided Feature Matching. Figure 13 shows two im-

ages of a calibration grid. The similarity of the fea-

tures makes matching difficult, and Fig. 13(c) shows

187 correspondences postulated by a feature matcher

based purely on intensities. There are a considerable

numbers of mismatches. Part (d) of the figure shows

the results of using RANSAC with Huber to eliminate

outliers from computation of the fundamental matrix,

and thence to use the associated epipolar geometry to

guide matching. Part (e) of the figure shows the esti-

mated epipolar geometry for the calibration grid, along

with initial set of matches.

The standard deviations and number of inliers for

each method are summarized in Table 4, for this ex-

ample and those in Figs. 15 and 16. It can be seen
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(a) (b)

(c) (d)

(e)

Figure 13. (a) and (b) are two view of an object which creates matching difficulties for an impoverished matcher, as shown by the number of

mismatches in (c). (d) Shows the matches consistent with the epipolar geometry after eliminating outliers. Part (e) shows the estimated epipolar

geometry, together with the matches that have been rejected and re-matched.
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Table 4. The performances of the best of each class of estimator, as well as our suggested

empirically optimal method, on the real images, given in terms of the number of inliers

found and the standard deviation of the error on the inlying set. The initial estimate of the

standard for inliers was 0.5.

M-estimators Case deletion RANSAC Optimal method

Fig. σ Inliers σ Inliers σ Inliers σ Inliers

13/14 0.36 143 0.32 143 0.30 145 0.30 137

15 0.29 450 0.34 435 0.34 451 0.34 459

16 0.43 168 0.40 149 0.45 148 0.43 164

(a) (b)

Figure 14. (a) and (b) shows the matches consistent with the epipolar geometry after eliminating outliers. (a) is for the Huber M-estimator,

initialized using OR, which has converged to an incorrect solution. (b) is for the case deletion diagnostic which, despite gross outliers, has

converged to a reasonable solution.

that random sampling performs best, followed by Case

Deletion, both of which are provide much better esti-

mates than M-estimation when poorly initialized (here

by OR).

The results of poorly-initialized M-estimation and

Case Deletion Diagnostics are compared in Fig. 14,

where, using Table 4, it can be seen that although the

standard deviations of the inliers are similar for the two

estimators, the M-estimator has clearly failed to elimi-

nate many outliers. This result demonstrates that use of

the goodness of fit to the observed data is not always a

good criterion with which to judge the estimator, bear-

ing out our earlier decision to reject this as the measure

of relative efficiency.

Football Sequence. Figures 15(a) and (b) show two

images of a sequence taken at a football match, with

the motion computed by matching image corner fea-

tures shown in the (b). The dominant image motion is

the result of camera panning. Figure 15(c) shows the

inliers, and (d) shows the outliers, lying predominantly

on the independently moving footballers; (e) shows the

results of the M-estimator, note that the results are fairly

good except for two major outliers. The reason that the

M-estimators do not perform too badly in this case is

because the outliers are only a small proportion of the

data. (f ) shows the inliers for the case deletion diag-

nostic. The data here is almost degenerate, most of the

football supporters lie approximately on a plane and

are thus consistent with many solutions. Hence differ-

ent solutions have almost the same goodness of fit but

with different correspondences indicated as inliers off

the plane. As observed by Kumar and Hanson (1994),

RANSAC performs less well when the data are near

degenerate, but we have found that the subsequent use

of an M-estimator after RANSAC helps stabilise the

situation.

Walking Sequence. Figures 16(a) and (b) are two im-

ages from a sequence showing a person towards the

camera as the camera moves to keep him in view.
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Figure 15. In (a) and (b) two consecutive images of a football match where the camera is panning. The inliers, mainly on the crowd “texture”

are shown in (c), and the outliers, many of which are attached to the independently moving players, are given in (d). (e) inliers from M-estimator.

(f) inliers from case deletion diagnostic.
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(a) (b)

(c) (d)

(e) (f )

Figure 16. Two images from a sequence showing the movement of a person towards the camera as the camera moves to keep him in view, with

the resulting correspondences from corner matching in (b). The combined RANSAC/Huber M-estimator segments the set of correspondences

into (c) inliers and (d) outliers. (e) Inliers from M-estimator. (f ) Inliers from case deletion diagnostic.
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Figure 16(c) shows the inliers and (d) the outliers.

By inspection it can be seen that most of the grossly

incorrect correspondences have been classified as out-

lying, (e) and (f ) show the corresponding results.

Again because the data are near degenerate, contain-

ing several large planes, the fit is not stable, and some

outliers are included. Thus robust estimation is not the

whole story, unless stability is also considered. This

will be discussed below.

11. Discussion and Conclusions

11.1. Actual Versus Expected Performance

Although the robust estimation techniques are far supe-

rior to non-robust methods such as least squares, they

are still of course imperfect. The use of synthesized

data allows an objective measure of performance to

be obtained, and this is shown for the combination of

random sampling and Huber M-estimation in Fig. 17.

There are two types of error possible: Type I—an out-

lier is wrongly classified as an inlier; and Type II—an

inlier is wrongly classified as an outlier. It can be seen

that over 90% of outliers are correctly classified for

contaminations as great as 50%—i.e., there are less

than 10% Type I errors.

Is this better or worse than expected? The estimation

of the standard deviation σ obviously plays a key rôle

here, as it determines the threshold at which an error

might be considered outlying. In estimating σ it is

necessary to steer between Charybdis and Scylla: a

higher estimate of σ will increase the number of Type

I errors whilst decreasing the number of Type II errors,

and vice versa. The expected bounds on the proportion

of each type of error is estimated as follows.

Figure 17. The percentage of outliers and inliers correctly discov-

ered for given percentages of contamination using the best robust

estimator combining random sampling and Huber.

Under Gaussian assumptions, 95% of the population

lie within 1.96σ of the mean. If this is the confidence

interval established on the error, it follows that at most

95% of the inliers would be identified correctly and that

there would be ≥5% Type I errors.

A higher percentage of Type II errors is expected.

This is because the epipolar constraint only allows dis-

ambiguation in one dimension, and so a mismatch that

happens to lie along the epipolar line cannot be iden-

tified. Here we present an argument when minimizing

distance e; a similar argument can be constructed for

d . If the search window size is l × l pixels then the

maximum area that is swept out within a distance e of

an epipolar line is below 2
√

2el. The chance of a mis-

match being within this area at random is thus 2
√

2e/ l.

Here, this value is approximately 8%, and so we expect

at most 92% of the inliers would be correctly identified.

It can be seen in Fig. 17 that the algorithm comes

close to attaining these values over a wide range of

contaminations.

After the EM algorithm was applied to real image

data, it was found that the difference between the inlier

and outlier standard deviations was substantial, allow-

ing a clear discrimination between inliers and outliers

in most cases. For the images in Fig. 13 the initial

estimate of the standard deviation was 0.5, but after

application of the EM algorithm the standard deviation

of inliers was 0.146 and that of outliers was 19.306.

Generally the RANSAC algorithm was robust to the

initial estimate of σ because the inlier and outlier dis-

tributions are so distinct.

11.2. Improving Efficiency and Accuracy

using Taubin’s Method

Taubin (1991) has proposed a generalized eigenvector

fit for implicit curves and surfaces, which is invariant

to the choice of coordinate system. He chooses to min-

imize the following objective function

DT =
∑

i ri
∑

i ∇ri

which may be found by solving the generalized eigen-

vector system:

Mf = λ

(

∑

rxr⊤
x + ryr⊤

y + rx
′ r⊤

x
′ + ry

′ r⊤
y

′

)

f

and setting f equal to the eigenvector corresponding

to the smallest eigenvalue. Taubin’s method may be
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iterated by weighting r by ∇r at each iteration in a

similar manner to that of Sampson.

His method has the advantages that it has the same

computational complexity as the linear method (OR)

and, in recent experimentation, we have found that for

some trials it gave a 40–50% lower error. Although the

improvement was not apparent in all trials, the large

gains in efficiency and sometimes accuracy are suffi-

cient to prompt future study.

11.3. Conclusion

In this paper we have surveyed the range of the well-

used robust estimators, and have applied them to the

computation of the fundamental matrix. We have ex-

tended several results obtained in the statistical litera-

ture for ordinary regression to orthogonal regression,

where the computation of the fundamental matrix is

a linear problem and a hyperplane is being fitted, and

thence to use of the geometric distance, where com-

puting the fundamental matrix is a non-linear (actually

bilinear) problem, and a hyper-surface is fitted.

Intra-category comparisons were made using large

synthetic data sets and the best in each category com-

pared in an inter-category competition. Methods were

evaluated on relative efficiency and breakdown point.

Random sampling techniques were shown to provide

the best solution. In our tests LMS generally gave a

better fit than RANSAC, except in the following cir-

cumstances. First, when there are more than 50% out-

liers LMS cannot provide a good solution—this might

occur in cases of independent motion. Secondly, if half

the data are well fitted by multiple solutions for F (i.e.,

half the data are on a plane), the LMS fit will be un-

stable. RANSAC is a more generally robust algorithm

than LMS, and should be applied when the input data

might fall into the above categories.

M-estimators, which are more satisfying from a

statistical standpoint, were shown to suffer if the

initial estimate was poor, as when initialization is per-

formed using non-robust least squares. However, if the

M-estimator method was initialized using robust ran-

dom sampling, the combination provided better results

than random sampling alone. Even small improve-

ments have a marked effect on the resulting epipolar

geometry.

For the M-estimation itself an iterative least squares

scheme was developed. Of itself it can not enforce

the constraint that the determinant of the fundamental

matrix must be zero, and so in a final step, a non-linear

minimization replaces the iterative least squares, using

a parameterization that enforces det F = 0. This en-

sures unbiased recovery of the epipole, as described by

Luong et al. (1993). We have found that this tripartite

approach—random sampling, iterative M-estimation,

and M-estimation with gradient descent—gives very

satisfactory results. The experiments on real imagery

showed that overall estimation could be further im-

proved by using the robust estimation to provide epipo-

lar constraint to the matcher.

The above method functions even with a high degree

of outlier contamination, but at the expense of compu-

tation time. If there are few outliers and cost is an issue

then case deletion diagnostics provide an efficient way

of judging the relative merit of correspondences. Case

deletion methods work well on smaller data sets.

We have not considered here structural constraints

here, in particular the visibility constraint. Some out-

liers, although consistent with the epipolar geometry,

might appear behind the camera, allowing them to be

identified as outlying. Nor have we considered the

natural extension of the estimation process to motion

segmentation: this is explored in (Torr and Murray,

1993, 1994; Torr et al., 1995).

There have been some other notable comparisons of

robust estimators in computer vision, and we now com-

pare our findings with those of the other studies. Meer

et al. (1991) compared M-estimators and LMS for data

smoothing and found that LMS more than halved the er-

ror, giving clearly superior results. Kumar and Hanson

(1994) compared M-estimation and random sampling

using both the LMS and RANSAC error criteria for the

problem of pose determination. The conclusion they

reach is equivocal, and they quote from Li (1985): “No

one robust regression technique has proven superior to

all others in all situations, partly because of handling

many forms of influential observations”.

Our results force us to disagree with this pessimistic

view, and we now explore the reasons for this difference

in opinion. They reject random sampling in certain

cases due to the following rationale. “Given the obser-

vations for the inliers are noisy, it is conceivable that

the pose returned by the consensus algorithm explains

a significant set of observation with low leverage quite

well and makes an inlier with high leverage an outlier”.

This indeed might occur if 50 percent of the data are

consistent with multiple solution for LMS, in which

case the median will be near zero for wildly different

solutions to the data. But our suggested approach of
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RANSAC combined with an M-estimator will typically

overcome this problem. We suggest using RANSAC

together with some first reasonable guess at the stan-

dard deviation σ (possibly even obtained from LMS),

and as noted the final result is reasonably insensitive to

the first guess at σ .

The work of Zhang et al. (1994) was developed inde-

pendently of ours. They too explored the use of robust

estimators to estimate the fundamental matrix. Al-

though there is little comparative work between estima-

tors in their paper, they suggest using LMS to estimate

F. Generally we prefer RANSAC followed by an M-

estimator, unless the input is controlled to exclude inde-

pendent motion etc., as noted previously. Our method

requires somewhat less sampling in the random sam-

pling phase, using only 7 points rather than 8 as they

require. This leads to a speedier convergence. Further-

more, any F obtained from 7 points automatically has

det F = 0 whereas that obtained from 8 points will

not. This is useful if the final result of RANSAC is

fed directly into a non-linear minimizer. Another dif-

ference is that Zhang et al. use the epipolar distance

e, which we have rejected in favour of the Sampson

(a) (b)

(c) (d)

Figure 18. In (a) and (b) two consecutive images of a buggy rotating on a turntable. (b) has 167 matches superimposed on the second image. (c)

and (d) show two epipolar geometries generated by two distinct fundamental matrices, 139 correspondences are consistent with the fundamental

matrix in (a), 131 are consistent with the fundamental matrix in (b) yet the two epipolar geometries obviously differ.

measure. The latter is theoretically more satisfying as

it is a closer approximation to the maximum likelihood

estimator, and in our trials produces slightly better re-

sults. Their paper points out that linear methods carry

bias. In this paper, we have discussed a robust non-

parametric method for removing this bias. Our work

has carried the analysis further by assessing the fit to

the true data set when the ground truth is known. We

also note that our test databases are larger than in previ-

ous studies, giving a greater indication of the reliability

of the result.

11.4. A Postscript on Degeneracy

It has already been noted that when using random sam-

pling there might be degeneracy in any seven point

samples. In fact there is a broader problem here, one

that has been long neglected in the statistics literature.

It is how are the possible solutions to be determined

if the true inlying data as a whole are degenerate, but

degeneracy is broken by a handful of rogue outliers?

Figure 18 gives an example. Parts (a) and (b) show two

frames and the resulting point correspondences from a
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sequence where a toy truck is rotated on a turntable.

The majority of 167 data are degenerate, and Figs. 18(c)

and (d) shows two epipolar geometries consistent with

the veridical inlying data. Running random sampling

can generate approximations to either the first has 139

inliers, the second 131. When random sampling is per-

formed on this set, either solution can be found.

The question arises as to how to determine which so-

lution is valid, or whether the data are degenerate. This

question becoming more problematic the more outliers

there are in the data. An account of when degeneracy

might arise, how to detect it and how to conduct esti-

mation in the presence of degeneracy is given in (Torr

et al., 1995a).

Appendix

The M-Estimator Algorithm

1. Initialize the weights wi = 1, γi = 1 for each cor-

respondence.

2. For a number of iterations (we used 5):

2.1 Weight the i th constraint by multiplying it by

wiγi .

2.2 Calculate F by orthogonal regression.

2.3 Project the estimated F onto the nearest rank 2

matrix using the singular value decomposition.

2.4 Calculate the algebraic residuals ri .

2.5 For each correspondence (dropping the sub-

script i) calculate weighting

wS =

(

1

r2
x + r2

y + r2
x ′ + r2

y′

)1/2

2.6 Calculate the distance di = wSiri .

2.7 Calculate γi , e.g., for Huber:

γi =







1 di < σ

σ/|di | σ < di < 3σ

0 di > 3σ .

The Case Deletion Algorithm

1. Set weights wi = 1, for each correspondence.

2. Until
∑

i d2
i < χ2 where i ∈ {inliers}, do:

2.1 Weight the i th constraint by multiplying it by

wi .

2.2 Calculate F by orthogonal regression using all

correspondences that are still inlying.

2.3 Project the estimated F onto the nearest rank 2

matrix using the singular value decomposition.

2.4 Calculate the algebraic residuals ri .

2.5 Calculate the influence of each correspon-

dence Ti .

2.6 Cast out correspondence with largest Ti .

2.7 For each correspondence (dropping the sub-

script i) calculate the weighting

wS =

(

1

r2
x + r2

y + r2
x ′ + r2

y′

)1/2

.

2.8 Calculate the distance di = wSiri .

The Random Sampling Algorithm

1. Repeat for m samplings as determined in Table 3:

1.1 Select a random sample of the minimum number

of data points to make a parameter estimate F.

1.2 Calculate the distance measure di for each fea-

ture given F.

1.3 If using RANSAC, calculate the number of in-

liers consistent with F, using the method pre-

scribed in Section 8

Else if using the LMS estimator calculate the

median error.

2. Select the best solution—i.e., the biggest consistent

data set. In the case of ties select the solution which

has the lowest standard deviation of inlying residu-

als.

3. Re-estimate the parameters using all the data that has

been identified as consistent. A more effective, and

possible computationally expensive estimator such

as Powell’s method (Teukolsky et al., 1988; NAG,

1988) may be used at this point.
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Notes

1. If the points have unequal variance each element may be weighted

by its standard deviation.
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2. Kanatani (1994) page 322 provides an interesting discussion

about this assertion.

3. The robber Prokroustes was fabled to fit victims to his bed by

stretching or lopping. Hartley (1995) has suggested a precon-

ditioning that should be used before the fundamental matrix is

replaced by its nearest rank 2 equivalent.

4. In the case when different axes have different variances we trans-

form the data by scaling all the coordinates (e.g., each column of

Z) by their standard deviation, in order to obtain uniform variance.
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