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ABSTRACT

An abstract of the dissertation of Sida Zhou for the Doctor of Philosophy in Systems

Science: Engineering Management presented December 1, 1995.

Title: THE DEVELOPMENT AND EVALUATION OF AGGREGATION METH

ODS FOR GROUP PAIRWISE COMPARISON JUDGMENTS

The basic problem of decision making is to choose the best alternative from a set

of competing alternatives that are evaluated under conflicting criteria. In general,

the process is to evaluate decision elements by quantifying the subjective judgments.

The Analytic Hierarchy Process (AHP) provides us with a comprehensive framework

for solving such problems. As pointed out by Saaty, AHP "enables us to cope

with the intuitive, the rational, and the irrational, all at the same time, when we

make multicriteria and multiactor decisions". Furthermore, in most organizations

decisions are made collectively, regardless of whether the organization is public or

private. It is sometimes difficult to achieve consensus among group members, or for

all members of a group to meet.

The purpose of this dissertation was two-fold: First, we developed a new aggre-

gation method - Minimum Distance Method (MDM) - to support group decision

process and to help the decision makers achieve consensus under the framework of

AHP. Second, we evaluated the performance of aggregation methods by using ac-

curacy and group disagreement criteria. The evaluations were performed through

simulation and empirical tests.
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MDM

o employs the general distance concept, which is very appealing to the compro

mise nature of a group decision making.

e preserves all of the characteristics of the functional equations approach pro

posed by Aczel and Saaty.

• is based on a goal programming model, which is easy to solve by using a

commercial software such as LINDO.

• provides the weighted membership capability for participants.

• rtllows for sensitivity analysis to investigate the effect of importance levels of

decision makers in the group.

The conclusions include the following:

• Simulation and empirical tests show that the two most important factors in the

aggregation of pairwise comparison judgments are the probability distribution

of error terms and the aggregation method.

• Selection of the appropriate aggregation method can result in significant im

provements in decision quality.

o The MDM outperforms the other aggregation methods when the pairwise com

parison judgments have large variances.
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• Some of the prioritization methods, such as EV[AA'], EV[A'A], arithmetic and

geometric mean of EV[AA'] and EV[A'A], can be dropped from consideration

due to their poor performance..
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Chapter 1

INTRODUCTION

1.1 Objectives of This Dissertation

Decision making is the process of selecting a possible course of action from all

available alternatives. In almost all such selections, the multiplicity of criteria for

judging the alternatives is pervasive. This decision making domain encompasses

so many forms of problems that no single decision making procedure can possibly

be sufficient. In fact, formal decision making methods are so numerous and di

verse that they constitute the core of disciplines ranging from statistics, operations

research/management science, and decision theory itself.

Despite many forms that decision problems exhibit, one of the fundamental tasks

is to provide judgments about relative merits of choices that are available. For ex

ample, the grocery shopper chooses a preferred package, presumably considering

such factors as price, flavor, packaging, and quantity. Businesses establish budget

priorities; personnel departments evaluate potential employees; and corporate man

agers make program planning and program evaluations. All of these decisions can
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be described as fundamental comparison tasks. The pairwise comparisons technique

is a technique used in judgment quantification for the evaluation of important re

lationships among decision elements. The process of qualifying judgments by using

the pairwise comparison technique includes evaluating the importance of the rela

tionship between a pair of decision elements. This is done for each pair, one at

a time, without the distraction of the other elements. When all comparisons are

completed, the results are expressed on a ratio scale as a reciprocal matrix via the

pairwise comparison matrix. Then, by evaluating the reciprocal matrix in some

representative way, the relative contribution of decision elements to the problem

objective can be evaluated in the form of a normalized vector, and the methods

that quantify the relative merits of each decision elements are called prioritization

methods.

Within the above described process of qualifying judgments, this dissertation

focuses on the methods for group judgment aggregation and the characteristics of

judgment aggregation methods. Therefore, the following two objectives will be

achieved:

1. to develop a new method for aggregating the judgments for group decision

making, and

2. to make a comparison study of the aggregating methods.

These objectives form separate chapters in this dissertation, but they are linked

together under the framework of the Hierarchical Decision Model (HDM) [1] via

the Analytic Hierarchy Process (AHP) [2] [3]. The framework of AHP is discussed
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in detail in the next chapter. In the following sections, these two objectives are

explained, and their expected research results are described.

1.2 A Judgment Aggregating Method

Aggregation of judgments is a critical aspect of the judgment quantification pro-

cess for group decision making. In the typical situation, m individuals! provide

quantifiable judgments such as pairwise comparison judgments. After all the infor-

mation is considered and all efforts at changing each other's opinion are exhausted,

either a consensus is reached or different judgments have to be aggregated. This

is done either by a systematic group decision procedure, bringing consensus among

the individuals, or by an aggregating method external to the decision makers. The

focus of Chapter 3 in this dissertation is on the external method for aggregating the

pairwise comparison judgments. Several aggregating methods are also reviewed in

section 3.2, which include simple average and geometric mean.

A new aggregation approach is proposed in Chapter 3. This new method is based

on the following concepts:

1. general distance concept that developed by Yu [4] and Cook et al.[5]

2. the group disagreement can be expressed as a distance function of individual

judgments v.s. the aggregated group judgments

In this new aggregation method, we treat the aggregated group judgments in the

form of weighted geometric mean of the individual's judgment. In this approach,

1In this dissertation, individual, person, estimator and decision maker are used interchangeably.

All mean the same that a human makes a pairwise comparison judgment in a decision situation
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the absolute distance appears to be the adequate distance function, which is also

supported by the work of Cook et al. [5J. The objective is to find the weights of

the weighted geometric mean which minimize the group disagreement in terms of

distance function. We call this approach the Minimum Distance Method (MDM).

The aggregation method leads itself to a goal programming formulation, which can

be solved by using commercial software such as LINDO. The simulation and empir-

ical test explained in Chapter 4 and 5 reveal that this new approach gives the best

results in terms of accuracy when the variance of the judgments is high.

1.3 A Simulation and Empirical Test of Methods

for Aggregating Judgments

The arithmetic mean and geometric mean methods have been used for judgment

aggregations for a long time. Aczel and Saaty's [6, 7, 8J contribution have been to

provide a mathematical justification for geometric mean approach. However, very

little has been done to test the different approaches by researchers. In Chapters 4

and 5, a simulation and empirical test are designed and conducted to evaluate the

performance of aggregation methods which will be discussed in Chapter 3. Aggrega-

tion methods under study include the geometric mean, arithmetic mean and MDM

proposed in this dissertation. The performance is evaluated by two criteria:

1. accuracy measurement, which is proposed to measure how close the aggregated

group judgments is to the "real" value.

2. group disagreement, which is used to measure the deviation between the group

members' judgments and the aggregated group judgments.
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Due to the need of transferring the pairwise comparison matrix to priority vector,

the prioritization methods (see Appendix A for detail) are also involved in the

simulation and empirical test. Fifteen prioritization methods are tested in this

dissertation. As the result, the simulation and empirical test not only answer which

aggregation method has good results in terms of measurements, but also determines

the prioritization methods for which the aggregation method produces the best

results in terms of measurements. The simulation uses various distributions for an

error term in generating input data for the pairwise comparison matrix.

1.4 Dissertation Outline

Chapter 2 of this dissertation presents a literature review. Chapter 3, 4 and

5 explain the concepts and research questions involved in each of the two objec

tives presented in this chapter, and answer those questions in detail. Each chapter

presents background information and a literature review on its discussed objective,

then describes the proposed approach and analyzes the results. Chapter 5 discusses

conclusions and the main results of this dissertation. Suggestions for future work

are also included in Chapter 5. Appendix A presents background information on

prioritization methods. Appendix B - E contains the data used in the dissertation.



Chapter 2

BACKGROUND AND

LITERATURE REVIEW

Applied decision analysis is concerned with the study of techniques to aid de-

cision makers faced with complex decision problems, i.e. problems that challenge

or exhaust the decision maker's capability to comprehend the consequences of any

action he Imay take to solve them. Today's decision makers and problem solvers

in government, business and industry - in any area of our society - encounter a

variety of problems. "These problems are highly complex, often interdisciplinary or

transdisciplinary, with social, economic, political, and emotional factors intertwined

with more quantifiable factors of physical technology [9J". When attempting to

solve a problem, all important factors of the problem should be considered, which

in turn requires the decision makers to exercise the judgments on matters with

more important consequences and complexity as a group. Moreover, decision mak-

ers are increasingly being called upon to make important judgment in unfamiliar

circumstances. At the same time, decision support system (DSS) and group decision

support system (GDSS) are emerging as very interesting tools to help and support

the complexity of the individual and group decision process. As pointed out by

IThird singular is used to denote both genders in this dissertation. This approach is taken to

avoid the inconvenience of using terms such as "he/she" and "his/her".
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DeSanctis and Gallupe, "A GDSS is an interactive, computer-based system that fa-

cilitates the solution of unstructured problems by a set of decision makers together

as a group" [10J. In general, there is a need "for better support of deliberation and

judgment to enable more structured problem solving and decision making" [11 J.

In this dissertation, there are two objectives. One focus is to develop methoGs

to combine the group judgments for the group decision process, and adaptable for

incorporation into any group decision support system (GDSS). Another objective

is to evaluate the performance of the methods developed in this dissertation and

other existing methods proposed in the literature. All of the work presented in

this dissertation is under the decision analysis framework of the Analytic Hierarchy

Process (AHP). The details of work are presented in Chapters 3, 4 and 5. In this

chapter, the background information and literature research are presented, covering

the following items:

It History of AHP

Gl AHP and its procedure

• Characteristics of group decision making

• Techniques of group decision making

• The research areas of AHP
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2.1 History of AHP

AHP, as a general theory of measurement, had its beginnings in the fall of 1971

while Saaty was working on problems of contingency planning for the Department of

Defense [3J. The application maturity of the theory came with the Sudan Transport

Study in 1973, which Saaty was directing [12, 13J. Its theoretical enrichment was

happening all along the way, with greatest intensity between 1974 and 1980 [3, 14,

15, 2, 16, 17, 18, 19J. During this period, the theoretical works are focused on the

foundation of the AHP paradigm, broadly speaking, rest upon two concepts:

• a theory of measurement and prioritization, known as eigenvector prioritiza

tion.

• a theory of hierarchical composition.

Ever since Saaty's development of the Analytic Hierarchy Process (AHP) in

the 1970s, the research area have been greatly extended since 1980s. The most

significant advance in the AHP include establishing the axiomatic foundation of

AHP [20J and the relationship between priority theory (AHP) and utility theory

[21, 22J. Other research areas include:

• Prioritization Method deals with translating qualitative judgment in pairwise

comparison matrix into priority vector [23, 24, 25, 26, 27, 28J.

• Incomplete Pairwise Comparison deals with incomplete judgments [29,30,31,

32].



9

• The Composition Principle deals with approaches for combining the priority

vectors through the hierarchy [15, 33, 31]

• Group Judgment and Consensus deals with the approaches for aggregating

judgment for group decision making [6, 7, 8].

All of those research areas will be further reviewed in the section 2.6.

2.2 AHP and Its Procedures

As Saaty [3] points out, complex decision problems generally require systematic

structuring and decomposition before the rudiments of the problem are understood

an dealt with decisively. Ideally, the analysis of complex problems should incorpo

rate both the qualitative and quantitative aspects of the problem into a framework

capable of generating priorities for the proposed solution strategies. The Analytic

Hierarchy Process (AHP) is a method that can be used to establish measures in

both the physical and social domains. It has become increasingly popular in diverse

areas of application. As its name indicates, this decision method is characteristically

analytic, i.e. its basic philosophy stresses the decomposition and recomposition of

complex problems as a fundamental solution approach.

The AHP is a general theory of measurement. It is used to derive ratio scales

and choices for multi-criteria decision problems. The building-block of the AHP

is pairwise comparison, which is used to derive the preferences of decision makers.

Pairwise comparisons may be taken from actual measurements or from a funda-
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mental scale which reflects the relative strength of preferences and feelings. In its

general form, the AHP is a nonlinear framework for carrying out both deductive and

inductive thinking. It takes multiple factors into consideration simultaneously and

allows for dependence, for feedback, and for making numerical tradeoffs to arrive at

an aggregation or conclusion.

In order to put research objectives in perspective, this section begins with a

background description of AHP to discuss foundations and axioms involved in the

AHP and is followed by application procedures for multi-criteria decision problems.

2.2.1 The AHP

The AHP is a problem-solving framework. It is a systematic procedure for rep

resenting the elements of multi-criteria decision problems. It organizes the basic

rationality by breaking down a problem into its smaller constituent parts, which

Saaty believes better fits the human cognitive style because of the way it decom

poses and synthesizes the decision problems and then calls for only simple pairwise

comparison judgments to develop priorities in each level of the hierarchy. Three

principles guide one in problem solving using the AHP [28].

Principle of Decomposition: It calls for structuring the hierarchy to cap

ture the essential elements of the multi-criteria decision problem. The hierarchy is

constructed in such a way with the elements at a level being "independent" from

those at succeeding levels, working downward from the focus in the top level, to

criteria bearing on the focus in the second level, followed by subcriteria in the third
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level, and so on, from the more general to the more particular and definite. The

hierarchical structure also can start from the bottom from particular alternatives

and move up to more general objectives and goals. Saaty [20] makes a distinction

between two types of relationships or dependence among the elements of hierarchy,

which he calls functional and structural. The former is the familiar contextual de

pendence of elements on the other elements in performing their function, whereas

the latter is the dependence of the priority of elements on the priority and number

of other elements. Absolute measurement, sometimes called scoring, is used when

it is desired to ignore such structural dependence among elements, while relative

measurement is used otherwise.

Principle of Comparative Judgments: It calls for setting up a matrix to

carry out pairwise comparisons of the relative importance of elements in some given

level with respect to a shared criterion or property in the level above. In the case

where no quantitative measurement exists, the judgment is made by the individual

or group of individuals who are engaged in solving the decision problem. The scale

for entering judgments is mentioned in Step 2 of section 2.1.2. The process could

be started either at the bottom level and move upward or at the top level and move

downward. An entry of each matrix belongs to a fundamental scale employed in the

comparisons. These are used to generate a derived ratio scale.

Principle of aggregating the priorities: In the AHP, priorities are synthe

sized from the second level down by multiplying local priorities by the priority of

their corresponding criterion in the level above and then adding them together for

each element in a level according to the criteria it affects. This gives the composite
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or global priority of that element, which in turn is used to weigh the local priorities

of the elements in the level below compared to each other with it as the criterion,

and so on to the bottom level. When a group uses the AHP, its judgments should

be combined.

Keeping these principles in mind, Saaty [20J proposes four axioms on which the

AHP is based. The theory of the AHP is derived from these axioms. The axioms

are as follows:

Axiom 1: (Reciprocal Comparison). The decision maker must be able to make com

parisons and state the strength of his preferences. The intensity of these

preferences must satisfy the reciprocal condition: If A is x times more

preferred than B, then B is 1/x times more preferred than A.

Whenever we make a paired comparison we need to consider both members of the

pair to judge their relative values. For example, if one ball is judged to be four times

larger than another, then the other one is automatically one fourth as large as the

first because it participated in making the first judgment. The comparison matrices

that we considered are formed by making paired reciprocal comparisons, and this is

a powerful means of solving multi-criteria problems, which is the basis of the AHP.

An important aspect of the AHP is the idea of consistency. If one has a scale

for properties possessed by some objects, and the properties are measured by the

scale, then their relative weights with respect to those properties are fixed. In this

case, there is no judgmental inconsistency. But when comparing with respect to a

property for which there is no established scale or measure, we are trying to derive a
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scale through comparing the objects two at a time. Since the objects may be involved

in more than one comparison and we have no standard scale, and the objects are

assigned relative values as a matter of judgment, inconsistencies may well occur.

There are several consistency measurements are presented in the literature, which

will be discussed in section 2.4.0.

Axiom 2: (Homogeneity). The preferences are represented by means of a bounded

scale.

Homogeneity is essential for meaningful comparisons, as the mind tends to make

large errors when comparing widely disparate elements. For example, we cannot

compare a mouse with an elephant according to size. When the disparity is great,

elements should be placed in separate clusters of comparable size, or at different

levels altogether.

Axiom 3: (Independence). When expressing preferences, criteria are assumed to be

independent of the properties of the alternatives.

Axiom 4: (Expectations). For the purpose of making a decision, the hierarchical

structure is assumed to be complete.

This axiom simply says that the decision makers who have reasons for their beliefs

should make sure that their ideas are adequately represented in the model. All

alternatives, criteria and expectations (explicit and implicit) can be and should be

represented in the hierarchy. It neither assumes rationality of the process nor that

the process can only accommodate a rational outlook. People often have expecta

tions that are irrational.
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The relaxation of Axiom 1 indicates that the question used to elicit the judgments

or paired comparisons is not clearly or correctly stated. If Axiom 2 is not satisfied,

then the elements being compared are not homogeneous and clusters may need to

be formed. Axiom 3 implies that the weights of criteria must be independent of the

alternatives considered. A way to deal with a violation of this axiom is to use a

generalization of the AHP known as the supermatrix approach. Finally, if Axiom 4

is not satisfied, then the decision maker is not using all the criteria and/or all the

alternatives available or necessary to meet his reasonable expectations and hence

the decision is incomplete.

2.2.2 AHP Procedures

Decision applications of the AHP are carried out in four steps [58,22]:

Step 1: Setting up the decision hierarchy by breaking down the decision problem

into a hierarchy of interrelated decision elements.

Step 2: Collecting input data by pairwise comparisons of decision elements.

Step 3: Using "scaling" methods to estimate the relative weights of decision ele

ments.

Step 4: Aggregating the relative weights of decision elements to arrive at a set of

ratings for the decision alternatives (or outcomes).

In Step 1, which is perhaps the most important aspect of the AHP, the decision

analyst should break down the decision problem into a hierarchy of interrelated
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elements [2, 12, 16, 14, 3J. At the top of the hierarchy lies the most macro decision

objective, such as the objective to maximize the wealth of the shareholder. The

lower levels of the hierarchy contain attributes that increase at the lower levels

of the hierarchy. The last levels of the hierarchy contain decision alternatives or

selection choices. The decision schema, hence, has a standard form as depicted in

Fig. 2.1 [34J.

Level I

Level 2

Level 3

Level k

I More detaIled :
decIsIOn I

~"'" .

~
Decision i

alternative
m

Figure 2.1: The standard form of decision schema in the analytic hierarchy process:

a hierarchy with k levels.

For example, Kocaoglu's MOGSA [IJ is a hierarchical model using the Mission,

Objective, Goals, Strategies, and Actions levels envisioned by the decision maker

in the decision process. MOGSA can be used as a general guideline for forming a



16

hierarchy. This approach has been satisfactorily used by Shipley [35J for strategic

planning of the engineering school in a university. Forman et al. [I1J also provide a

list of typical hierarchical structures:

- Goal, criteria, alternatives

- Goal, criteria, subcriteria, alternatives

- Goal, scenarios, criteria, (subcriteria), alternatives

- Goal, actors, criteria, (subcriteria), alternatives

- Goal, ... , subcriteria, levels of intensities (many alternatives)

In setting up the decision hierarchy, the number of levels depends on the degree

of details that the analyst requires to solve the problem. Since each level entails

pairwise comparisons of its elements, Saaty [3J suggests that the number of elements

at each level be limited to a maximum of nine. This constraint, however, is not a

necessary condition of the method and has not been adhered to in all applications.

In Step 2, the input data for the problem consists of matrices of pairwise com

parisons of elements of one level that contribute to achieving the objectives of the

next higher level. For example, in a project selection application, project 2 may be

twice as important as project 1 in terms of profit. The input matrix in this case

would look like Table 2.1:

The value 2 in row 2 and column 1 of the above matrix indicates that project 2

is twice as important as project 1 in achieving the objective of the next higher level:
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Table 2.1: Pairwise Comparison of Two Elements

in this case, profitability. In row 1, column 2, the value of 1/2 indicates the relative

importance of project 1 compared to project 2. When compared with itself, each

element of the input matrix is always equal to one, and the lower triangle elements of

the matrix are the reciprocals of upper triangle elements. Thus, pairwise comparison

data are collected for only half of the matrix elements, excluding diagonal elements.

One may argue that it is possible to assign weights directly to the elements of a

level. For example, instead of obtaining pairwise weights, one may directly assign

relative weights of 2/3 and 1/3 to project 1 and project 2 for their role in making

a profit. The argument in AHP is that such a direct assignment of weights is too

abstract for the evaluator and results in inaccuracies. Pairwise comparisons, on the

other hand, give the evaluator a basis on which to reveal his or her preference by

comparing two elements. The evaluator has the option of expressing preferences

between the two as equally preferred, weakly preferred, strongly preferred, or ab

solutely preferred, which would be translated into pairwise weights of 1, 3, 5, 7

and 9, respectively, with 2, 4, 6, 8 as intermediate values. We can also use the

Constant-Sum Measurement for the same purpose. A total of 100 points are dis

tributed between the two elements to express the respondent's judgment about the
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ratio of one element to the other; one element of the pair is given the integer value

(J) from 1 to 99, and the other element has the value (100 - J). For example, if

one element is three times as important as the other, 75 and 25 are distributed,

respectively.

In Step 3, the AHP takes as input the above pairwise comparison matrix and

produces the relative weights of elements at each level as output. The argument

for the solution methodology is as follows [36, 37]: If the evaluator could know the

actual relative weights (Vjl of n elements (j = 1"" , n), which is at one level of

the hierarchy with respect to one level higher, the matrix of pairwise comparisons

would be At = (Vjl/Vkl) (i, j = 1"" , n). In this case, the relative weights could

be trivially obtained from each one of n rows of matrix A, where V-r = (Vll" .. ,Vnl)

is the vector of actual relative weights, and n is the number of elements.

AHP posits that the evaluator does not know V and, therefore, is not able to

produce the pairwise relative weights of matrix At accurately. Thus, the observed

pairwise comparison ma.trix A contains inconsistencies. The estimation of Vt (de

noted as V) could be obtained from

V = f(A) (2.1 )

where A is the observed matrix of pairwise comparisons, fO indicates the estimation

method used. (A number of estimation methods exist. For a detailed review of

them please see Appendix A.) An important concern is the difficulty to satisfy the

consistency conditions. It is not unusual for an evaluator to be inconsistent in

expressing his judgments, especially if he is dealing with fuzzy concepts such as
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quality, attractiveness, evolvability, etc. Inconsistency can also be caused by the

limited scale that evaluators used to elicit their judgments.

In Step 4, it aggregates relative weights of various levels obtained from Step 3

in order to produce a vector of composite weights which serve as ratings of decision

alternatives (or selection choices) in achieving the most general objective of the

problem. The composite relative weight vector of elements at kth level with respect

to that of the first level may be computed from

k

e[l, k] = II Bi

i=2

(2.2)

where [1, k] is the matrix of composite weights of elements at level k with respect

to the elements on levell, and B i is the ni-l by ni matrix with rows consisting of

estimated V vectors, ni representing the number of elements at level i [38]. At the

top level, k, where we usually have one element, such as the mission, [1, k] is reduced

to a vector of composite weights. We also noticed that this approach of aggregation

will cause the rank reversal problem. Barzilai and Golany [39] proposed a axiomatic

framework for deriving consistent weight ratios from pairwise comparison matrices

and aggregating weights and comparison matrices. If a multiplicative aggregation

rule is used and normalized vectors are replaced with weight-ratio matrices, and the

rank reversal problem can be avoided.

2.3 Characteristics of Group Decision Making

There are three major reasons for people to make a decision as a group. First,

the decision problems that modern businesses and governments are confronted with
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different types and complexities, those complexities range from a lack of complete

information, conflicts among objectives or interests, linkages between problems, and

the cost nature of commitments in resolving complex problems [40J. Second, "in

society, decisions often affect groups of people instead of isolated individuals. How

ever, the group decision making is usually understood to be the reduction of many

different individual preference (interests) to a single choice, either by conflict or

by compromise[9J." Third, the information handling capability of human being is

limited by his knowledge, experiences, and even his very nature.

Characteristics of the group process are reviewed in this section. Carefully han

dling those characteristics during the group decision process will help us to improve

the individual and group performance as a whole. The characteristics being reviewed

include these factors:

a. boundary of the group

b. information aspects

c. tension and conflict among group members

d. resistance nature of human beings

e. explicit-implicit nature of the problem description

f. normative and localized behavior of group processing
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2.3.1 Boundary of the Group

The boundary of the group is defined as certain restrictions applied on such

things as: who the group's members are, what the entry and exit requirements are,

and how much commitment the members have to the group. For example, formal

organizational groups may have quite impermeable boundaries, allowing inside only

people of particular rank or those who are deemed by the group's leader to be

relevant to the problem. In particular, the following considerations should be taken

into account for identifying the boundary of the group:

- The size of the group is only mildly approximated by the numerical count of

bodies in attendance at meeting. The most important factor of all is that the

willingness and ability of each member, singly and collectively, to commit his

or her resources and energy to the problem of the group, and its maintenance

determine the effective size of the group [41J.

- The task environment is also the group's boundary. The group manifest pur

pose determines what problems it is supposed to deal with. For example,

engineering managers consider problems of engineering [41J.

- The value and belief system of the group may also be considered as part of

its boundary. A group of engineering managers might view a problem in one

way, while a group of marketing managers might see the same situation quite

differently - the differences arising from their different professional experi

ences. The effectiveness of a group coping with its task environment is often
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made difficult by the fact that people with similar backgrounds, personalities,

or roles are likely to define a problem in only one way and missing possible

alternatives [41,40].

2.3.2 Information Handling Capability

The limited capability of handling the information for individuals is one of the

most important factors for people forming groups to deal with complex decision

problems. It is generally impossible for any decision maker involved to construct

a comprehensive model of the decision situation with all relevant parameters and

their relationships. With only limited information available, no formulation of a

complex problem can be assumed automatically to contain all possible solutions to

the problem. However, "today's decision makers and problem solvers in government,

business, industry, and education - in any area of our society - are confronted

with a variety of problems. These problems are highly complex, often interdisci

plinary or transdisciplinary, with social, economic, political, and emotional factors

intertwined with more quantifiable factors of physical technology [9]". Therefore,

when attempting to solve a complex decision problem, all important factors of the

problem should be considered, which in turn requires us to make decisions as a

group to enhance the capability to handle all necessary information. Furthermore,

it is not the case that two different participants in a problem have the same in

formation available to them. In fact, the information available to two participants

will generally be different, unless there has been complete and continuing commu-
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nication between them. Each participant's perception of the problem in which he is

involved is based on the information available to him and depends on the nature of

his motivations and spheres of competence, experience and judgment.

2.3.3 Tension and Conflict

"Complex decision problems are often concerned with situations in which a num

ber of objectives must be pursued simultaneously and in which it is necessary to

consider all of these objectives in choosing a policy or course of action. In most

situations, those objectives are conflict with each other [40]". In such cases, the

adoption of a course of action that allows maximum achievement of one objective

may result in less progress toward satisfying others. Consequently, for every poten

tial decision there are sources of tension and conflict. First, whenever the decision

involves a choice between alternatives, there is a loss and gain of factors that must

be weighed. There are further potential conflicts as a result of disagreement among

individual participants, as well as from the implication any decision will have upon

the group as a whole. Second, natural tension and conflict are created after the

individual or group makes a decision. This stems from being faced with having to

live with the decision that has just been made and thus having to continually justify

it in the mind of the group and in the mind of others.

It appears natural, therefore, that tension and points of conflict exist within

decision making groups. The question becomes one of whether or not the sources

of tension are clearly recognized and dealt with in the most constructive manner
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possible. All too often the greatest sources of tension and conflict are completely

avoided, denied or ignored. If the actual sources of tension are not uncovered and

dealt with, it is highly likely that they will be diffused into other areas of the group's

experience.

2.3.4 Resistance

The individual attempts to bring his or her life into state of equilibrium in

which he is able to predict events and reduce conflict. To change this relatively

stable, steady state results in a need to change accustomed patterns of behavior and

creates, at least temporarily, discomfort and tension. However, problem solving and

eventual decision making often lead to innovation, alternative courses of action, and

a disruption of a group's or individual's state of equilibrium. It is evident that unless

individuals feel personally secure and relatively unthreatened within the problem

solving group, they will tend to respond with their own characteristic patterns of

defense [40]. The frustration which often arises from working with a decision making

group results from an inability to understand and accept as perfectly natural many

of the resistances that develop during the decision making process.

2.3.5 Explicit-huplicit

Explicit problems of the group dominate the implicit functions. By dominate we

mean that when issues are made explicit by the group, they are treated as legitimate

topics for discussion and come under the self-conscious control of the members.
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Hoffman [41J points out HAs the members define the decision problem and suggest

solutions, they develop implicit norms about turn taking, dominance relationships,

etc." Other issues that also affect the group are kept at an implicit level, where their

interpretation is more ambiguous. But it is not unusual for decisions to be made by

implicit criteria that are not discussed, especially if the power relationships in the

group are clearly understood.

2.3.6 Norlnative and Localized Behavior

Hoffman [41J points out another dimension of the group process, i.e the norma

tive and localized behavior. The norms are a set of guidelines developed to regulate

the behaviors of group members to replace the need for direct interpersonal control.

There are two extreme points of this normative and localized behavior dimension.

At the localized extreme of the dimension, each person behaves somewhat idiosyn

cratically, reflecting his or her personality, external role, or even temporary mood.

At other points along the dimension are such phenomena as stereotypes and coali

tion formation, in which the norms for some subset of the group are different than

they are for others.

The norms not only exist in the concerning participation, expressions of emo

tionality, and etc, but also in the procedures by which a group solves a problem. The

various techniques that have been invented to facilitate problem solving, which will

be discussed next section, such as brainstorming and Delphi method, have explic

itly stated rules to which the members must conform. In addition to the explicitly
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stated norms, there is an implicit one too, which usually define the general char-

acter of a group meeting. It is noticed that the concept of the norm may be quite

different. The events that define the norm will be interpreted differently according

to the motives and perceptions of each individual. Therefore, norms often lead to

dysfunctional consequences for groups and are difficult to change.

2.4 Techniques for Group Decision Making

Group decision making under multiple criteria includes such diverse and inter

connected fields as preference analysis, utility theory, social choice theory, committee

decision theory, theory of voting, general game theory, expert evaluation analysis,

aggregation of qualitative factors, and economic equilibrium theory. With the fo

cus of expert judgment aggregation in this dissertation, the techniques for expert

judgment and group participation is the object of this review.

The problem of group decision making can be broadly classified into two cate

gories: experts' judgment and group participation. The expert judgment process

entails making a decision by inventing a new alternative. Specifically, it is con

cerned with forecasting and involves constructing supplemental objects which may

be new designs or technical solutions. On the other hand, the group participation

process entails groups which have common interests, such as a community or an or

ganization, making a decision. The techniques used for expert judgment and group

participation focus on the method of generating/pooling ideas and the method of

systematic structuring, which are classified by Hwang and Lin [9].
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The idea generation methods are for producing a large quantity of ideas. The

methods of stimulating are brainstorming and brainwriting and its variations, and

the Nominal Group Technique (NGT). In general, brainstorming refers to verbal

generation of ideas while brainwriting involves silent, written idea generation. NGT

is a combination of brainwriting, discussion and voting techniques to generate a

solution. On the other hand, polling of experts' options can be used to produce

a quick sense of the prospects in a particular subject area. A critical concern of

this method is identification of experts. Experts may be certified by a variety of

means - educational degree, professional memberships, peer recognization, and

even selfproclamation. Two type of experts can be identified as potentially useful

in the problem solving. The first belongs to the representatives of subpopulation

whose attitudes or actions influence the research topics we are concerned with. The

methods of surveys and Delphi will be reviewed which use these types of experts.

The second type of expert has extensive special knowledge and experience about the

research topic we are concerned with. The methods of conferences and Successive

Additive Numeration use these experts. More detailed descriptions of the above

mentioned techniques are presented in the following sections.

2.4.1 Brainstorluing

Osborn's [42J attempts to improve the creativity of his advertising staff evolved

into the brainstorming method. Fundamental to its use is the "principle of deferred

judgment"- the postponement of evaluation during the period of idea generation.
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The value of this method is two-fold: First, the members' efforts are concentrated

on developing a roster of possible solutions, then on their evaluation. In this way

no solution can acquire enough positive valence to pass the adoption threshold nor

enough negative valence to drop below the rejection threshold before many alterna

tives have been proposed and described. Second, by having a procedure - a task

norm - that permits only the proposing of alternatives, the members feel secure

in searching for new ideas without fear that their current favorite will be discarded.

Members can be proactive rather than defensive in their approach to problems [41].

There are four basic rules used to guide a brainstorming session [9]:

1. Criticism is ruled out

2. Free-wheeling is welcomed

3. Quantity is wanted

4. Combination and improvement are sought

Usually, the brainstorming group consists of members, a leader, a secretary, and a

blackboard. The leader should remind the group of the problem at hand and the

rules for brainstorming. The recording secretary should sit next to the leader so

that he is in the direct line of conversation between him and the others. The ideas

should be taken down reportorially - not word by word. To achieve good success

in free-wheeling, only people of equal status should be invited to participate. The

brainwriting method is developed to avoid negative effects of brainstorming sessions

or group meetings so that the influence of opinion-leaders, some group members,
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and restraints against free-wheeling speaking is eliminated [9].

2.4.2 Nominal Group Technique (NGT)

This method [69], which combines elements of brainwriting, brainstorming, and

the voting technique, adds another dimension to the separation of idea generation

and idea evaluation. Studies of brainstorming groups show a tendency to limit

solution proposals to particular directions. The NGT attempts to release the total

creativity of the group in two ways [41]. First, group members are required to

develop solutions to the problem individually, without consulting each other. In

this way, each member's perspective on the problem enters the group's problem

solving efforts uncontaminated by the other's points of view. Second, each member

is required to contribute one solution to the group in turn or to pass his or her turn.

This procedure continues until all solution possibilities have been exhausted. In this

way, every member's idea has a chance to enter the group's deliberations without

having to fight its way in. The principal advantage of NGT over brainstorming

in the solution proposal stage is its defense against the participation and influence

biases that derive from the personalities or statutes of the members.

2.4.3 Surveys

This is a method to poll a group of experts about their opinions. Surveys are

useful when a group of appropriate respondents can be identified and when interac

tion among the respondents is not a necessary consideration. Surveys may be formal
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or informal. In general, there are three important forms:

A. Face-to-face interviews

B. Telephone interviews

C. Mail questionnaires

Survey techniques usually involve several stages as identified in [9], which are:

1. Planning stage, which involves setting the goals for the survey and advising a

general strategy to obtain and analyze the data.

2. Research design stage, which is a prearranged program for collecting and an

alyzing the information needed to satisfy the study objectives at the lowest

possible cost.

3. Sampling, which is the process of choosing certain people in the population

to represent the whole. At this stage the researcher must carefully define the

population to be studied.

4. Questionnaire design, which is a process of translating the broad objectives

of the study into questions that will obtain the necessary information. At the

same time the form of survey is also laid out.

5. Editing and coding, which is designed to translate the information recorded

in the questionnaires into a form suitable for statistical analysis.

6. Preparation for analysis, which is a process to identify and correct any errors

in above mentioned stages.
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7. Analysis and reporting, which is a stage of presentation and interpretation

of simple distributions and cross tabulations of information collected in the

survey.

2.4.4 Delphi Technique

The Delphi Technique [43J was designed primarily for noninteracting groups,

which can be viewed as a modification of the brainwriting and survey technique.

In this method, a panel is used with members in communication remotely through

several rounds of questionnaires transmitted in writing. However, besides its obvious

advantages for a group whose members are geographically distant, one of its principal

objectives is to minimize the effects of status differences on the decision-making

process. Delphi is an expert opinion survey with three special features - anonymous

response, iteration and controlled feedback, and statistical group response. In its

simplest form, the method asks each member of the group to make an independent

and anonymous judgment on a predefined problem. This judgment is then averaged,

giving each person's judgment equal weight. The members are then told what the

average and the distribution of judgments were and are asked to vote again. Reasons

for different votes may be included in the report. This process may be repeated again

if necessary to promote consensus.

The principal advantages of the Delphi Method are two related ones. First,

the anonymity of votes and their equal weight prevent the higher status members

from having undue weight on the decision. On the assumption that all members
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of the group have relevant information, the intrusidn of maintenance factors on the

decision is then reduced. The second advantage is that there is an explicit, easily

1

understood mechanism for making a final decision) which avoids the biases of the

implicit valence adoption process [41 J.

By avoiding any discussion of the problem among the members, however, the

I

Delphi Technique runs two risks. The first is a lack Of understanding of the problem

1

and of the final decision. There is an implicit demand for conformity to the majority

I

created by the noninteractive process of collecting judgments. It is difficult for a

group to adopt a truly creative solution to a problem through the Delphi Technique

since the ideas of the minority are not usually clarified [41J.

2.4.5 Structure Modeling

Systematic structuring analysis em.ploys intera.ction matrices, graphs, intent

1

structures, signal flow graphs, etc, to identify a structure within a system of related

1

elements. The purpose of the systematic: structuringi process is to transform unclear,

poorly articulated mental models of systems into visible, well-defined models use:ul

I

for many applications. There are two such models for this purpose.

1

Interpretive Structure Modeling (ISM): This approach (lis intended for

use when it is desired to utilize systematic and logical thinking to approach a com-

plex issue and then to communicate the results ofl that thinking to others [44J."

The objective is to expedite the process of creating ;a digraph, which can converted

to a structural model. This objective is achieved by the systematic application of

1
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some notions of graph theory in such a way that theoretical, conceptual and com-

putationalleverage is exploited to efficiently construct a directed graph, or network

representation, of complex pattern of contextual relationship among a set of element

with the aid of computer.

The mathematical basis for ISM is found in theory of sets, relations, and directed

graphs. Warfield [45] has presented comprehensive techniques for identification of

the structure in a system. In general, the process of ISM is based upon the one

on-one correspondence between a binary matrix and a graphical representation of

a directed network. The fundamental concepts of the process are an "element set"

and a "contextual relation." The element set is identified within some situational

context, and the contextual relation is selected as a possible statement of relationship

among the elements in a manner that is contextually significant for the purposes

of enquiry. The elements correspond to the nodes on a network model, and the

presence of the relation between any two elements is denoted by a directed line

(or link) connecting those two elements (nodes). In the equivalent binary matrix

representation, the elements are the contents of the index set for the rows and

columns of the matrix, and the presence of the relation directed from element i to

element j is indicated by placing a 1 in the corresponding intersection of row i and

column j.

Fig. 2.2 is a representation of the principle operations of ISM when implemented

in man/machine interactive mode as depicted by Malone [44]. "People are assumed

to make observations in the real world and to draw upon their own knowledge and

attitudes to identify pertinent concepts ana relationships. The embedding opera-
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tion is performed jointly by man and machine. The computer is supplied with an

appropriate list of elements and the definition of a pertinent relation. A system-

atic sequence of queries is then generated, and a binary matrix representation of

the system is assembled from responses provided by a person or group of persons.

When the matrix model is completed, computer operations are performed in order

to partition the elements into natural hierarchical levels and to establish a minimal

set of linkages which captures the entire pattern of the relation. The multilevel

directed graph which results can be inspected and interpretive symbols introduced

according to the context, to produce an interpretive structural model. This process

can be iterative until the creators are satisfied."

f · · · - - - - · · · · · · · - · · · · · · - - - · · · - - · · · · · · · · · · ~

, Matrix ~ .'
: Partitioning ° Embedding 0'
, Model "0 ....J

Hierarchical

Order

Corrections

Mental Model

Figure 2.2: Functional Representation of Interpretive Structural Modeling
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There are several advantages of using ISM as pointed out by Warfield [45J and

Malone [46J:

o ISM operates without such a priori knowledge of the structure. The process is

initiated by specifying an element set and the a transitive relational statement .

• No knowledge of the underlying mathematics of the process is required of the

user. He simply must process enough knowledge of the context to answer the

queries of the computer.

o The process is systematic efficiency; computer is programmed to handle all

possible pairwise interactions of elements either through asking questions of

user or using transitive inference based on the responses of user.

Cognitive Map: This method is a mathematical model of a person's belief

system and is designed to capture the structure of causal assertions of a person with

respect to a particular policy domain, and generate the consequences that follow

from this structure. A cognitive map contains only two basic types of elements:

concepts and causal beliefs. The concepts are treated as variables, and the causal

b e l i ~ f s are treated as the relationship between the variables. The concepts that a

person uses are represented as points, the causal links between these points should

represent the relationships. This gives a graphical representation of the causal asser

tions of a person as a graph of points and arrows. The policy alternatives, all of the

various causes and effects, the goals, and the ultimate utility of the decision maker

can all be thought of as concept variables and represented as points in the cognitive
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map. As pointed out by Hwang and Lin [9], the real power of this approach is when

a cognitive map is pictured in graph formj it is relatively easy to see how each of the

concepts and causal relationships relate to each other, and to see the overall struc

ture of the whole set of portrayed assertions. Three methods for deriving a cognitive

map are proposed by Hwang and Lin [9J. First, the cognitive map can be derived

from existing documents, which has the advantage of being both unobtrusive and

fully able to employ the concepts used by the decision maker himself. Second, the

questionnaire method employs a questionnaire sent to a panel of judges who are in

a position to make an informed estimation of causal links, which has the advantage

of allowing aggregation of individual opinions and results in a much wider range of

information than researchers can select for documentary analysis. The third method

is to use an open- ended probing interview. It has the advantage of allowing the

researcher to interact actively with the source of his data.

2.5 AHP for Group Decision Making

From the above discussion of techniques for group decision making, researchers

share the task of addressing two major issues [47J. One is the processing of infor

mation. When we speak of decision making, whether with reference to individuals,

groups, organizations, governments, or any other entity, of necessity we speak of

information processing. This includes collecting and evaluating information, forging

alternative courses of action, and selecting one as preferred. The study of groups as

decision makers, however, entails a second focus: the social-psychological dynamic
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of behavior. All attempts to understand group decision making must address both

Issues.

There is a strong mutuality of influence between information-handling activi

ties and social psychological forces. How information is acquired and evaluated can

limit the nature of social interaction among group members. For example, the proce

dure for reaching planning decisions in groups called the Nominal Group Technique

(NGT) imposes strict guidelines concerning how information is to be managed, and

these guidelines in turn limit the ways in which social influence can take place among

group members.

Different perspectives on group decision making, then, ultimately address the

interrelationship of information-processing activities and the dynamics of behavior

in small groups in order to understand and improve group decision making. The

interaction of social behavior and information processing is handled by introducing

the interventions into the group decision process [47]. The techniques for improving

group decision making have build-in mechanisms for the interventions. Especially,

those group decision methods are for generating and polling ideas, even for the

problem structure.

Interventions to improve group decision making can be regarded as being of two

types their primary target as pointed out by Guzzo [47], which are the action of

group decision making and inputs to group decision making. The first type has

as it:; target direct changes in the behavior of decision- making group members.

These changes could be brought about by the creation of new patterns of social

interaction, or by the establishment of specific procedures of task accomplishment:
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requiring groups to adhere to a sequence of steps such as defining the problem,

generating alternatives, and then evaluating and choosing among alternatives for

example. Thus, such interventions can affect either or both the social-psychological

influences residing in a group and the processes of manipulating and utilizing infor

mation.

The second type, input-oriented interventions, also seeks to change behavior in

groups, but it attempts to do this indirectly rather than directly. Inputs to a group

decision include the distribution of abilities and vested interests among group mem

bers, the nature of available information, group size, the reward structure under

which a group exits, and the time pressures for decision making. Thus without

explicitly specifying new patterns of behavior for group members, it is possible to

intervene to arrange inputs and circumstances such that effective decision making

will be more likely. As with action-oriented interventions, the consequences of input

oriented interventions can affect information processing and social-psychological fac

tors in a group.

The Analytic Hierarchy Process is a compensatory methodology for structure,

evaluation and choice. The AHP improves the decision process by structure inter

vention. Problems have to be addressed in the hierarchy structure fashion with its

unique pairwise comparison evaluation phase to facilitate the choice, which is also

an intervention. At the same time, we open the question of how to structure the

hierarchy and what should be included in the method of idea generating and polling

method, which have been reviewed in above section. It is obvious that AHP can

serve a basis for group decision making and allows us to integrate all the other idea
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generating/polling methods to facilitate comprehensive decision making process.

There are several advantages in this due to the structured nature of AHP as

pointed out by Dyer and Forman [11].

1. AHP helps to structure a group decision so that the discussion centers on

objectives rather than on alternatives.

2. AHP analysis involves structured discussion. Every topic and factors rele

vant to the decision are addressed in turn. Individual group members with

information, knowledge and expertise relative to a specific factor are naturally

presented with the opportunity to make their views knownj strong members

of the group cannot continuously bring the conversation back to their area of

expertise.

3. Because the analysis is structured, discussion continues until all available and

pertinent information has been considered, and a consensus choice of the alter

native most likely to achieve the organizations' stated objectives is achieved.

In the above sections, AHP procedures, group characteristics and the techniques

for group decision making have been reviewed. In the following section, a overall

picture of the AHP research area will be presented.

2.6 Areas of Research in AHP

Research has been conducted in various areas of AHP. Some of the topics on

which research concentrates are:
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1. Hierarchy Structure

2. Incomplete Comparison

3. Consistency Analysis

4. Relationship of the AHP to Utility Theory

5. Uncertainty in AHP

6. Analysis of Sensitivity of Reciprocal Matrices

7. The Method to Estimate the Underlying Scale

8. Comparison of Estimation Methods

9. Group Judgments and Consensus

10. Applications

The above research areas will be reviewed briefly in order to present the whole

picture for AHP research areas. Although some of the areas do not have a direct

impact on the proposed dissertation, all of them are generalized in the following

discussion to give a complete picture of the field. Detailed review of those areas, on

which this proposed dissertation focuses, will be presented in their corresponding

chapters.

2.6.1 Hierarchic Structure

A hierarchy is a simple structure used to represent the simplest type of functional

(contextual or semantic) dependence of one level or component of a system on
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another in a sequential manner. A hierarchy represents a linear chain of interactions.

One result of this approach is to assume the functional independence of an upper

part, component or cluster from its lower parts. This often does not imply its

structural independence from the lower parts, which involves information on the

number of elements, their measurements, etc. But there is a more general way to

structure a problem involving functional dependence. It allows for feedback between

components. It is a network system of which a hierarchy is a special case. Saaty

[33] has provided a theory for the priorities of a network system. This network

can be used to identify relationships among components using one's own thoughts,

relatively free of rules. It is especially suited for modeling dependence relations.

The sensitivity analysis of the structure, called the backward process [19, 38],

could be seen as an extension of the forward process. In such an analysis, one may

fix the desired outcome and change the structure of the hierarchy to observe how

the desired outcome may be achieved. The formulation of the decision structure

may also be extended to time-dependent and dynamic structures [15]. This aspect,

although of high value to real and complicated systems, is yet to be developed into an

operational method. This process can be described as both forward and backward,

with' both hierarchical structure being evaluated. The hierarchical structure of the

backward process is compared to the structure of the forward process. If they are the

same or almost the same, then the process is stopped. However, if the structure in

the backward process is not the same as the forward process, then they are combined

to form a censuses structure.

Khorramshahgol [48] proposed a systematic approach for identifying criteria and
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objectives, which is of paramount importance to a decision-making process and is

the basis for a sound decision. The approach uses the Delphi method and integrates

it with the AHP. It assists the decision maker(s) in systematically identifying the

organizational objectives and then setting priorities among them.

2.6.2 Incomplete COluparison

The standard mode of questioning in the AHP requires the decision maker to

complete a sequence of positive reciprocal matrices by answering n(n-1) /2 questions

for each matrix, each entry being an approximation to the ratio of the weights of

the n items being compared. If n is large, these comparisons can become an onerous

task. Thus, one would be likely to find a method in which the decision maker could

complete less than n(n - 1)/2 comparisons but still answer enough comparisons in

order to derive a meaningful measure of the alternatives' relative weights. Harker [29,

30J has presented two methods, which can be classified as the Incomplete Pairwise

Comparison (IPC), to deal with the incomplete comparisons. One is in the context

of an iterative scheme for the elicitation of the pairwise comparison matrix A, which

is based upon the approximation of missing elements of pairwise comparison matrix

A with data available from the completed comparisons. This approximation of

ajk is formed by taking the geometric mean of the intensity of all paths in the

directed graph associated with the partially completed matrix A, which connects

the alternatives j and k. This approximation scheme in some sense mimics what

the decision makers would have to perform if they were forced to complete a given
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comparison. Another is a more natural approach to dealing with the missing entries

aik. Instead of approximating the missing entry aik, which is itself an approximation

of the ratio vi/Vk, it (aik) is set to be equal to vi/Vk' The necessary theory to

deal with this situation in which some aikS take on the functional form Vi/Vk is

also developed and found consistent with Saaty's eigenvalue method. This way,

the questioning process can be substantially shortened by ordering the questions in

decreasing informational value and by stopping the process when the added value

of questions decreases below a certain level.

Weiss et al. [31] discussed a number of design issues involved in the imple

mentation of AHP for large-scale systems. Specifically, the paper describes the use

of incomplete experimental designs for simplifying data-collection tasks for group

decision making. The idea behind this approach is to segment the hierarchy into

more manageable parts by using the method of balanced incomplete block designs

(BIRD), and to allow each member in the decision group to make a relatively small

number of pairwise comparisons. The individuals' weights are then aggregated by

using the geometric mean. One of the specific BIRD designs was proposed by Ra [23]

to develop a shortcut for pairwise comparisons. Ra's method is called "chainwise

paired comparisons".

Millet and Harker [32] proposed further opportunities for effort reduction through

globally effective allocation of questions. Global efficiency means that the process

goes beyond efficiency and effectiveness for the whole hierarchy. The first motivating

concept behind the proposed technique is the utilization of the current node global

weight as a major input to the effort allocation process. This approach requires more
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effort from the DM when making comparisons for a node that has an overall high

impact on the final priorities. Contrasted with this approach, the IPC technique

can lead the decision maker (DM) to spend time on ineffectual comparisons under

a node with a negligible global weight. A second idea is that a node with a very

low global weight compared to its peers at the same level can be frozen. The

questioning process for such a node and for all the nodes below it can be completely

avoided, allowing attention to be focused on substantial branches of the hierarchy.

A third opportunity for effect reduction is found in cases where the DM wants only

to identify the best n out of m alternatives. As the approximate relative weights of

the alternatives begin to unfold, we propose to cease elicitation of ratios for clearly

inferior alternatives.

2.6.3 Consistency

The AHP does not require that judgments be consistent or even transitive. The

degree of consistency of the judgment can be measured, which is a distinguishing

characteristic of the AHP. Several consistency measurements have been developed,

and these measurements are associated with certain methods to estimate the un

derlying scale. Besides the measurement itself, some researches are focused on de

veloping some procedures to adjust the inconsistent judgments.

The relationship between rank preservation and consistency has been studied by

Saaty and Vargus [49]. Three methods of deriving ratio estimates are examined: the

eigenvalue, the logarithmic least squares, and the least squares methods. It is shown
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that only the principal eigenvector directly deals with the question of inconsistency

and captures the rank order inherent in the inconsistent data..

2.6.4 Relationship of the AHP to Utility Theory

There is a basic distinction between the utility theory and AHP. The former

quantifies the intensity of preferences through probability distributions. In AHP,

however, the preferences are defined based on the set of consequences. No probability

measures are involved. Other important distinctions are pointed out by Vargas

[21]. First, AHP deals with pairwise comparisons, providing a method to elicit

judgments of individuals and to synthesize them into priorities that represent the

relative attractiveness of the consequences according to criteria. Second, AHP is a

group decision-making methodology. Judgments of individuals can be fused into a

single judgment through compromises or through synthesis criteria, which we will

discuss in detail in Chapters 3, 4 and 5. Third, AHP can deal with several levels of

complexity. Fourth, AHP is a true measurement theory in the sense that when there

are scales associated with the consequences, the AHP can reproduce known results.

Utility theory, on the other hand, can only be used for individual decision makers

and cannot be used to estimate numerical values from existing scales. Also, it cannot

deal with more than two levels of complexity. Besides knowing those distinctions, it

is most important to understand the relationships between the reciprocal property

and preference relations. This is explored by Vargas [21] with and without the axiom

of transitivity.
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The relationship between the AHP and the additive value function has been

studied by Kamenetzky [22J. He concluded that the measure of preference obtained

by applying the AHP to the multicriteria decision-making problem under certainty

satisfies the definition of an additive value function. The comparison of the AHP and

the standard method of building an additive value function seems to indicate that

the AHP may provide a useful tool in evaluating unidimensional value functions,

but it seems less rigorous than the standard method with respect to the aggregation

of unidimensional value f;mctions into an overall measure of preference. A proce

dure that attempts to combine features of both methods has been proposed. For

building the unidimensional value functions, this procedure relies on the AHP. For

determining the weighing constants, it combines elements of both the AHP and the

standard method.

2.6.5 Uncertainty in AHP

Dennis [50J developed an approach to modeling the assignment of priorities under

uncertainty in hierarchically structured multicriteria decision problems. The theo

retical results indicate that the analysis of uncertainty in complex decision problems

is distributionally invariant to the associated hierarchy, both in depth and in nodal

ramifications. Since the properties of the underlying probability distribution (i.e.

the Dirichlet distribution) are well known, it is not difficult to conduct the proba

bilistic analysis of these problems within the AHP decision framework.

The uncertainty in the relative weights of a pairwise comparison matrix in the
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AHP is caused by the uncertainty in our decision judgments and in many cases can-

not be avoided. In Zahir's [51] study, it is explicitly shown how such uncertainty can

be incorporated within the framework of AHP and how the resulting uncertainties

in the relative priorities of the decision alternatives can be computed. The required

algorithm and the computational procedures are also developed and illustrated with

examples. Uncertainty is introduced as a fundamental concept independent of the

concept of consistency with a view to extending the AHP as a decision analysis

procedure.

The standard application of the AHP assumes that all alternatives are known

and available to the decision maker at the time of the evaluation. Weiss [31] relaxes

that assumption and models the situation where alternatives become available to

the decision maker sequentially, and an accept/reject decision must be made be

fore ot.her alternatives become available. Once an alternative is accepted, no other

alternatives are evaluated by the decision maker. Uncertainty about the value of

future alternatives and the number of alternatives is included. It is well-known that

AHP is an alternative dependent. That is, the relative weights and the final rank

ings that are given to alternatives are functions of the set of alternatives given to

the decision maker. This fact complicates the situation in the current application

since the problem is not merely to decide upon the set of alternatives to include

in the hierarchy, but rather how to evaluate a set of potential, and yet unknown,

alternatives. A technique similar to the classic "secretary problem" of operations

research was presented, and this technique involves prioritizing criteria of possible

alternatives before the alternatives become available, scoring the alternatives and



48

then comparing the score of an alternative with an easily computed (through a

dynamic programming recursive process) critical value.

2.6.6 Analysis of Sensitivity of Reciprocal Matrices

As in any decision process, decision makers are interested in the sensitivity of the

outcomes. In AHP, researchers focus on analyzing the sensitivity of priorities when

the entries of A are perturbed. Vargas [49J has developed a method based on the

Hadamard product of Matrices to analyze the sensitivity of reciprocal matrices. It

has been proven that these types of matrices can be decomposed into the Hadamard

Product of a consistent matrix and an inconsistent matrix. The consistent matrix

has the same principal eigenvector as the original matrix, and the inconsistent matrix

has the same principal eigenvalue as the original one. This decomposition can be

used in the analysis of sensitivity to compute the principle eigenvector of a perturbed

reciprocal matrix.

Saaty and Vargas [52J investigated the effect of uncertainty in judgment on the

stability of the rank order of alternatives. The uncertainty experienced by decision

makers in making comparisons is measured by associating with each judgment an

interval of numerical values. The approach leads to estimating the probability that

an alternative or project exchanges rank with other projects. These probabilities

are then used to calculate the probability that the project would change rank at

all. The priority of importance of each project is combined with the probability

that it does not change rank to obtain the final ranking. Vargas [53] developed
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a method to estimate the average opinion (or core) of a group of people. The

method elicits judgments from a smaller group of individuals rather than the total

population. What we obtain is a scattering of values around a core value that is

being estimated. Some of those values will be closer to the core and others will

lie away from it. The method allows us, given the density of concentration of the

judgments, to use to a greater extent those values closer to the core.The method

generates a surface which is more like a probability distribution that can be used

to estimate the core without treating the data as if it were direct estimates of it.

The shape of the relevant distribution corresponding to a Dirichlet distribution. It

has been proven that the only distribution of judgments which yields this type of

result is the gamma distribution. Under the assumption of total consistency, if the

judgments are gamma distributed, the principal right-eigenvector of the resulting

reciprocal matrix of pairwise comparisons is Dirichlet distributed. If the assumption

of consistency is relaxed, then the hypothesis that the principal right-eigenvector

follows a Dirichlet distribution is accepted if inconsistency is 10% or less.

2.6.7 The luethod to Derive the Priority Vector

There are several methods to derive priority vectors from matrices of pairwise

comparisons including the eigenvector method [3], the logarithmic least squares

methods [27, 54], the least squares methods [26], the constant-sum method [24] and

the column-row sums method [55]. A detailed review of these methods and others

are given in Appendix A.
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2.6.8 COluparison of Prioritization Methods

The focus of this research is to develop a set of criteria to decide which method

is the "best" one.

Fichtner [25] proposed an axiomatic approach to decide which method is the best

one. Invariance principles are motivated and formulated as axioms. There are four

axioms involved: correctness in the consistent case, comparison order invariance,

smoothness and power invariance. The only method which fulfills all these axioms

uses the geometric row means. It is often called Logarithmic Least Squares Method

(LLSM). However, only one axiom would have to be replaced in order to get the

widely used Right Eigenvector.

Saaty and Vargas [56] compared three methods - the eigenvalue, logarithmic

least squares, and least squares methods - used to derive estimates of ratio scales

from a positive reciprocal matrix. The criteria for comparison are the measurement

of consistency, dual solutions, and rank preservation. It is shown that the eigenvalue

procedure, which is metric- free, leads to a structural index for measuring inconsis

tency, has two separate dual interpretations, and is the only method that guarantees

rank preservation under inconsistency conditions.

Zahedi [38] used a simulation analysis to investigate the statistical accuracy

and rank preservation capability of the AHP estimation methods. The methods

under study consist of the eigenvalue, mean transformation, row geometric mean,

column geometric mean, harmonic mean and simple row average. The methods

are compared under three distributions for error terms - gamma, lognormal and
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uniform - and under two types of input matrices of various sizes. There are several

findings:

1. The most important factors in the estimation of relative weights comprise the

probability distribution of error terms and the type of input matrix.

2. While analysts do not control the probability distribution of error terms, they

can improve the estimation by collecting data for the upper and lower triangles

of the input matrix.

3. The column geometric and simple row average could be dropped from the list

of estimators because they generally show the highest degree of sensitivity

toward the underlying distribution of error terms and exhibit, in some cases,

very poor accuracy and rank statistics.

4. In the computation of the eigenvalue method, the "size" criterion performs

exactly as well as the "convergence" criterion, and has the additional advan

tage of computational efficiency, which becomes crucial for cases with a large

number of elements.

5. Of the four methods (excluding the column geometric and the simple row

average), no method dominates others in all statistics. The mean transforma

tion method, however, is the most robust toward the underlying distribution

and type and size of input matrix. Hence, in absence of knowledge of the

distribution of error terms, the mean transformation is recommended.
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6. When an alternative has a relative weight close to zero for an attribute, the

symmetric type of input matrix is inappropriate because the performance of

all methods deteriorates as the pairwise scores become very small or very large.

The full input type does not exhibit extensive sensitivity to the extreme values,

and hence constitutes the better choice.

Ra [55J also proposed a logical inference approach to select the best method.

As selection criteria, three cases of inconsistent judgmt:nts - risky choice, rank

preservation, and symmetry - have been designed. The major methods have been

used to obtain subjective values for sets of decision elements with known values.

Two methods - the column-row sums method and the logarithmic least squares

method - are shown to give robust results in all cases.

2.6.9 Group Judg111ents and Consensus

Synthesizing judgments is often an important part of the AHP. Aczel and Saaty

[6,7, 8J have proposed a functional approach to synthesize the judgments. There are

several conditions which are reasonable to require for this approach: (1) separability

and unanimity conditions, (2) reciprocal property, (3) homogeneity condition, (4)

power conditions. Under these conditions the geometric mean is the functional form.

For a more detailed review, see Chapter 3.
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2.6.10 Applications

The areas in which AHP is applied are diverse and numerous. The papers

range from economic/management, political and social problems to technological

problems. Detailed references can be found in Vargas [57J.

2.7 Summary

In this chapter, we have reviewed broad areas of methods and techniques for

group decision making. In the subsequent chapters, we will focus on two objectives:

developing new approaches for aggregating group judgments and analyzing the per

formance of aggregation methods. The two above improvements are important to

the AHP.



Chapter 3

METHODS OF AGGREGATING

JUDGMENTS FOR PAIRWISE

COMPARISONS

In many decision problems, the consequences of an action may impact several

individuals or groups of individuals in different ways. Each of these individuals or

groups may have different preferences for the consequences. For example, the new

product development program in a corporation affects the top management group,

engineering department, finance department, marketing department, personnel de

partment and so on. As another example, setting of new occupational health and

safety standards affects workers, stockholders, and consumers, etc. The individual,

agency, or group responsible for a complex decision may feel that the decision should

reflect the preferences of all those who are affected. However, moving from a single

decision maker to a multiple decision maker introduces a great deal of complexity

into analysis as we reviewed in Chapter 2. The problem is no longer the selection

of the most preferred alternative among the nondominated solutions according to

one individual's preference structure. The analysis must be extended to account for

the conflicts among different interest groups who have different objectives, goals,

criteria, and so on. They usually have disagreements among themselves. The dis-
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agreements come from the differences in their subjective evaluations of the decision

problems, caused by the differences in knowledge and/or the differences in personal

or group objectives, goals and criteria.

The group's decision is usually understood to be the reduction of different indi

vidual preferences among objects in a given situation to a single collective preference,

or group preference. Many researchers have concentrated on the analysis of decisions

that are "correct" or "reasonable" from certain points of view. In this dissertation,

we are interested in how group choices are made. This approach allows one to

treat the group decision problems as a generalized problem of transition from given

"individual sets of data or preference" to "group set of data or preference". The

individuals involved and their data or preference can vary greatly from situation to

situation. Members of a group may use several different techniques to arrive at a fi

nal decision. Some use the social choice theory, which is voting, while others use the

experts judgment/group participation analysis, which is discussing and guessing at

the advantages and disadvantages of the project, while still others may use the game

theory approach where each decision maker has his own strategy. In general, three

approaches can be used to resolve the differences of preferences among individual

members of a group:

1. Consensus can be reached through systematical communication and discussion

of each individual's judgments or preferences.

2. External rules, such as voting, can be used to determine the group choices.

3. A combination of methods in item 1 and 2 can be used.
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Determining the external rules and procedur,es for aggregating jtldgments is one

I

of the important issues of the group decision problem. The focus' of this chapter

is on understanding and developing the external rules for ag~regating judgments l

I

under the decision analysis framework of AHP. This chapter is organized as follows:

I

In section 3.1, the definition of aggregating judgments for Fiairwise comparisons

is given. Section 3.1 also provides the notations used t h r o u ~ h o u t I the rest of the

I

dissertation. In section 3.2, the existing rules or fu!).ctions for aggregating pair-

wise comparison judgments are reviewed. In section 3.3, the Firoposed aggregation

methods for pairwise comparisons are discussed in detail. FinClrlly, a comprehensive

example to demonstrate the presented aggregation m e ~ h o d s is illustrated in section

3.5.

3.1 Definition of Aggregation Proble,m

Definitions and descriptions of group aggregation pll'oblems ,are presented in this

I

section, which will serve as the basis for reviewing existing a g g r ~ g a t i o n methods and

developing new aggregation methods.

Suppose in a group decision making situation the group consjsts of m individuals,

I

and the group decision problem has n elements. If the pairwise \:omp:arison matrices

are made separately by each individual in the decision group, we should obtain

m n x n pairwise comparison matrices; each pairwise: comparison matrix results

I

in one priority vector. This priority vector consists of' n elem~nts for the priority

1Judgments in this dissertation mean the pairwise coJlparison judgmel'\ts, we' also use pairwise

comparison judgments and pairwise comparison matrices linterch,angablly I
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weights and is derived by using prioritization methods (see Appendix A for details).

Two concepts have been involved. One is the pairwise comparison matrix (A),

which is the result of pairwise comparison. Each element in matrix A records the

relative preference of one element over another element. The other concept is priority

vector, which is derived from matrix A and records the relative weight of one decision

element over the n decision elements. With the objective of obtaining the aggregated

group priority vector in mind, the aggregation is based on the individual pairwise

comparison matrices within a group. Therefore, two distint ways to aggregate the

group judgments, i.e. pairwise comparison matrices, are defined as follows:

- Approach A: The aggregation methods are operated on a group of pairwise

comparison matrices. An aggregated group pairwise comparison matrix is

obtained from the operation. Then, the aggregated group priority vector is

derived from the aggregated group pairwise comparison matrix by using the

prioritization method.

- Approach B: The aggregation methods are operated on a group of prior

ity vectors. An aggregated priority vector is obtained from the aggregation

process. Group priority vectors are derived from the corresponding pairwise

comparison matrices by employing the prioritization method.

In the following sections, we will put these two approaches in a mathematical form.

Both approaches are the integrated part of this dissertation.



58

3.1.1 Representation of Pairwise Comparison Matrix for

Group Judglnent Aggregation

Suppose there is a decision group of m persons, each of whom has a pairwise

comparison matrix Ai defined over n decision elements, where i stands for member

i in the group and i = 1" .. ,m. Considering the judgments are made separately

by each member, the judgments of the group can be represented by a vector of

m-components, where each component is an n x n pairwise comparison matrix. Let

{Ai} = (AI, A2 , .", Am) be the vector. Each Ai can be represented as:

Ai = (3.1 )

where {ajkh denotes a pairwise comparison regarding decision elements j and k

(j, k = 1,2, "., n) judged by person i in the group.

3.1.2 Representation of Priority Vector for Group Judg

ment Aggregation

The priority vector is derived from the pairwise comparison matrix by using the

prioritization methods listed in Appendix A. In a group decision situation defined

in section 3.1.1, each pairwise comparison matrix Ai has a corresponding priority

vector V;. Therefore, priority vectors of a group can also be represented by a vector

of m-components. Each component itself is a vector of n-components. Let V =



59

(VI, V2, ... ,Vm ) be the vector. V; denotes the priority vector of person i derived from

Ai. V; can be explicitly expressed as:

(3.2)

where f( ) denotes any of the prioritization methods described in Appendix A. It

also represents the prioritization methods which are operated on Ai. {Vih denotes

the relative weight for decision element j of person i, which is derived from pairwise

comparison matrix Ai.

3.1.3 Aggregation Approaches

Now let A denote the aggregated group pairwise comparison matrix and V de

note the aggregated group priority vector. Our objective is to investigate the two

aggregation approaches, i.e. A and B.

Approach A: This approach represents that the aggregation is through the

pairwise comparison matrices. Suppose Ac( ) stands for the aggregation method.

This approach can be expressed as A = Ac ({Ai}) and V = f(A). More specifically,

we have

au aI2

a2I a22

(3.3)
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and

(3.4 )

where iijk is the aggregated group pairwise comparison between decision element j

and element k. Vj is the aggregated relative weight for decision element j.

Approach B: This is an approach to aggregate the judgments through priority

vectors. In section 3.1.2, for each pairwise comparison matrix {Ai} (i = 1,··· ,m)

in the group, there is a corresponding priority vector {Vi}. If VG( ) stands for

the aggregation method operating on the priority vectors, then approach B can be

expressed as:

(3.5)

and

(3.6)

where {vih is the relative weight of decision element j for person i in the group. vi

is the aggregated relative weight for decision element j for the group.

In summary, the judgment quantification process involves comparisons among

decision elements (i.e. alternatives) according to a given criterion. The individual

judgments are made by comparing an object, say C, with another, say D, according

to the given criterion. In a group decision process, these individual judgments need

to be aggregated into a single judgment. Two general approaches can be conducted

for aggregating the pairwise judgments. One is to aggregate {Ai} = (All A2 , '''1 Am)
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to A = AG ( {Ai}) as indicated in expression (3.3), which we call Approach A.

Then the aggregated group priority vector is obtained by using the prioritization

method, which is if = f(A) as shown in Eqn. (3.4). The other approach is to use

the prioritization method on each of {A} to get {Vi} = ({vlh,{V2h,'" ,{Vn}i)

as indicated in Eqn. (3.5). Then {Vi} = (Vi, V2, ... ,Vm ) is aggregated to obtain

if = VG({Vi}), which we call Approach B. Both of these two different approaches

will be carried out in this chapter.

3.2 Existing Methods for Aggregating Pairwise

Comparison Judgments

There are two existing methods to aggregate pairwise comparison judgments.

One is the function equation approach via geometric mean, which was developed

by Aczel and Saaty [6, 7, 8]. The other one is the arithmetic mean, which is the

commonly used method. Both of these methods are simple and easy to use. As

mentioned in section 3.1, there are two distinct approaches to aggregate pairwise

comparison judgments for each aggregation method. In the following section, we

will review the existing aggregation methods. Specifically, we will focus on how

those two approaches can be applied.

3.2.1 GeOllletric Mean

Aczel et al. [6, 7, 8] proposed a functional equation approach to aggregate the

ratio judgments. Let us suppose that the numerical judgments Xl, X2, ... , X m given by

m persons lie in a continuum (interval) P of positive numbers so that P may contain
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Xl, X2, ... , Xm as well as their powers, reciprocals and geometric means, etc. The

aggregating function f( ) will map Pm into a proper interval J, and f(XI,X2' ... ,xm)

will be called the result of the aggregation for the judgments Xli X2, ... , x m . The

function f( ), which should satisfy the Separability condition, Unanimity condition

and Reciprocal condition, is the geometric mean as follows:

(3.7)

Given expression (3.7), let us apply this equation to the aggregation problem defined

in section 3.1. Since Xi is a ratio judgment, so is {ajk};. Therefore, Eqn. (3.7) can

be directly applied to the aggregation problem.

Approach A: The approach A is to derive.ii from {Ai}' By applying expression

(3.7) to every element of the pairwise comparison matrix {Ai}, we will have the

following expression:

au al2

a21 a22



=

m~l{al1h);!; (TI~I{aI2h);!;

m~l{a21h);!; (TI~I{a22h);!;

(TI~1 {alnh);!;

(TI~1 {a2nh);!;
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(3.8)

Once A is obtained, the priority V can be derived from V = J(A). The methods to

derive V from A are summarized in Appendix A. The most often used methods are

geometric mean, eigenvector and constant sum method.

Approach B: As an alternative to approach A, the aggregated group priority

vector V can be obtained from the priority vector of each person in the group. The

priority vector for each individual Vi of the group is derived from Ai. Prioritization

methods in Appendix A are used for the derivation. Approach B can be summarized

as follows:

i=I, .. ·,m (3.9)

m m m

V = (Vl,V2,'" ,vn) = ((IT{vdi);!;,(II{v2}i);!;,'" , ( I T { v n h ) ~ )
i=1 i=1 i=1

3.2.2 Weighted GeOlnetric Mean

(3.10)

If we consider that all judging persons have different weights when the judgments

are aggregated, the geometric mean in section 3.2.1 becomes the weighted geometric

mean method. The different weight to a different person stands for the importance,
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or the expertise of that person in the decision problem. Aczel et al. [8] show that

a weighted geometric mean is a robust method to aggregate group judgments with

a different weight for each person. If we assume Wi is the weight for person i, the

general form of the weighted geometric mean can be expressed as:

(3.11)

where Xi are the ratio judgments.

Based on the weighted geometric mean concept represented in Eqn. 3.11, the

group decision problem defined in section 3.1 can be expressed as follows in terms

approach A and B, respectively.

Approach A: The aggregated pairwise comparison matrix is generated from

{A;}. It will be in the following form:

m

A = (ajk) = (ll({ajk};)Wi),
i=1

m

and j,k = 1,2"" ,n, LWi = 1
i=1

(3.12)

(3.13)

Approach B: This is an approach to aggregate the group priority vector from

the individual priority vectors {Vi}. The individual priority vector Vi is obtained

from the individual pairwise comparison matrix Ai. The mathematical form for this

approach is as follows:

i = 1,··· ,m (3.14)

m m m

V = (ll({V1h)Wi,ll({V2};)Wi, ... ,ll({Vn}i)Wi)
i=1 i=2 i=1

m

LWji=l, j=I,2,.",n
i=1

(3.15)

(3.16)
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3.2.3 Arithmetic Mean

In addition to the geometric mean and weighted geometric mean methods dis-

cussed above, the arithmetic mean can also be used to aggregate group judgments.

The only difference is that the arithmetic mean can only be applied on the final prior-

ity weights, i.e. Approach B. This is because of the reciprocal property of pairwise

comparison and 1/ L : ~ 1 ajki f. L:~11/ajki' The arithmetic mean method cannot be

used to aggregate the pairwise comparison matrix A. So we have the mathematical

form of the arithmetic mean operated on the priority weight as follows:

i = 1"" ,m (3.17)

m m m

V = (V1,V2,'" ,vn ) = (L{V1};,E{V2};,'" ,E{vn };)

;=1 ;=1 i=l

(3.18)

In the constant sum method (see Appendix A for detail), raw data, which is the

original constant-sum pairwise comparison data, can also be used for aggregation

purposes by using the arithmetic mean. For example, suppose there are three indi-

viduals to compare two elements, say C and D. Their corresponding judgments for

three individuals are [80, 20], [70, 30] and [75, 25], respectively. By using arithmetic

mean approach, the aggregated group judgment in constant-sum form is [75,25]'

which is still 75 + 25 = 100!

The existing methods of aggregating judgments, which are geometric mean,

weighted geometric mean and arithmetic mean, have been reviewed and discussed

in this section. Two approaches of aggregating pairwise comparison judgments, i.e.

approach A and approach B, are formed for the existing methods. In the follow-
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ing section, a new method will be proposed. This method is based on the general

distance concept.

3.3 The Minimum Distance Method for Aggre

gating Pairwise Comparison Judgments

In this section, we will focus on a new approach (i.e. the distance approach).

This new approach is based on the following concepts and assumptions:

1. General distance concept as indicated by Yu and Cook in [4, 5], respectively.

2. Group disagreement be expressed as a distance function of individual judg-

ments v.s. the aggregated judgments.

3. Aggregated judgments are in the form of weighted geometric mean.

Under the above conditions, the aggregation method leads itself to the formulation of

goal programming by using Cook et aI's work as illustrated in [5], which is relatively

easy to solve by using commercial software such as LINDO.

The distance concept has been used by researchers to aggregate group judgments.

Among them are Kemeny and Snell's distance measure to aggregate a set of ordered

rankings as indicated in [58], and Yu's general distance approach to solve the group

decision problem by using the concept of an ideal solution to describe measurements

of compromise in utility space as presented in [4]. The concept of distance between

pairwise comparison matrices or between priority vectors is also very appealing for

the group decision problem defined in section 3.1 of this chapter. This concept can

be applied in several aspects of group decision measurements.
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3.3.1 Distance as Accuracy Measurement

Considering n attributes, all of which are measurable in a common criterion,

one would contend that the resultant relative weights of n attributes are correct at

the level of significance of the instrument if the attributes are physically measured

with a precise instrument. Let a second estimate of relative weights be provided by

an estimator that is less precise, a human evaluator for instance. Taking the first

estimate as correct, the distance or disagreement between the two estimates results

from errors made by the estimator.

In such a case, distance becomes a measure of accuracy, where the correct mea

sure has been objectively assessed by a precise tool. Suppose Vj is the measure

from the human and {v·r}; is the measure from the instrument for attribute j

(j = 1,'" ,n), respectively, Then, the differences (Vj - {v·r};) represent the as

sessment error of the human.

3.3.2 Distance as Group Disagreement

Another circumstance to consider is the comparison of priority vectors or pair

wise comparison matrices supplied by different sources, none of which is sufficiently

precise to assure objective correctness. A group of experts (say m of them) might

provide estimates regarding the relative value of several program strategies. Each ex

pert's judgments are summarized by a vector of relative weights or pairwise compar

ison matrices. Since no objective standard for correctness exists, the disagreements

between the judgments of the experts cannot be interpreted directly as inaccuracy.

However, some indication of the extent to which the experts agree may be a
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useful guide to make inferences regarding how well the attributes are known. If

the experts clearly understand the value of the program strategies with respect to

the given criterion, one would expect d(iI, i 2 ) to be small for any two estimators i1

and i2 , where d(i11 i2 ) is the value difference between two estimators i 1 and i2• An

example of the criterion may be the increase of the market share during the next

five years. However, unless the market is unusually well known and well behaved,

the alternative strategies are likely to be evaluated differently from one expert to

the next. The resultant significantly nonzero values for the d( iI, i 2) suggest that

a summary of the d(il' i2 ) values could provide a useful guide to expert judgment

variance. Furthermore, such variance would mean that the experts have different

understandings of the available strategies and their effects on market share.

Suppose that there are m experts in the group and their judgments are trans

formed into an estimate of relative weights or pairwise comparison matrices, then

those estimates can be aggregated into group estimates. Furthermore, if all estima

tors are considered equally important, the group's geometric mean estimate may be

defined as the aggregated group priority vector if or the aggregated group pairwise

comparison matrix A. The if or A can also be obtained using any of the meth

ods mentioned in section 3.2. By defining disagreement as an algebraic deviation,

we can define a function to represent the deviation of each individual's judgment

from the aggregated group priority vector or aggregated group pairwise comparison

matrix. An example of such a function would be the combined distance between

aggregated group estimates and individual estimates. Such a function is regarded

as group disagreement.
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The interpretation of group disagreement depends largely upon the decision mak-

ing circumstance. Keeney and Raiffa [59J point out that the differences in personal

objectives and preferences will lead individuals to assess alternatives differently even

though each estimator may have the same level of knowledge. Nevertheless, if a

group of experts is exploring a problem area that is independent of personal con

cerns, then the remaining variance can be attributed primarily to differences in

knowledge and understanding about the attributes.

In such circumstances the combined value ofthe group disagreement (say D) may

allow inferences about completeness of understanding. If complete understanding

would lead all the estimators to provide the same relative weights, then D measures

the incompleteness of each estimator's level of knowledge. The vector V or matrix

A represents the group's collective judgment regarding the true values V1 or At. If

it is important that the group decision be accurate, then one would desire minimum

deviation between V and V1 or A and Ar . Since the true value V1 and Ar cannot

be assessed directly, one does not know whether the V or A is in fact a good

approximation. However, information obtained from the disagreement measurement

can be used to make inferences on the prudence of trusting V and A.

The premise for choosing the group decision making process is that the group

is more likely to be accurate than any given individual estimator would be. In any

given instance, one member of a group of estimators may prove to be particularly

accurate. However, one cannot generally know the "correct" result when assessing

fuzzy attributes. Therefore, no means exist for identifying an individual estimator

that would regularly surpass a carefully achieved group consensus.
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When group disagreement D is zero, the group decision represents consensus. In

the consensus situation, if the individual estimates are accurate, the group decision

will also be accurate. However, good consensus does not mean that the estimates are

accurate. In general, the smaller D is, the better the consensus. When disagreement

is high, the group decision should be reexamined. Individual estimators whose

assessments differ from the group average or aggregated values can explain their

rationales, often broadening the group's understanding. Thus, a knowledge of the

degree of the group's understanding and of the degree of group disagreement can

be used to prompt discussion until the group decision approaches consensus. If the

estimators provide accurate information in the discussions, the group decision is

likely to approach the best available choice. The group decision may not always

prove to be correct; time unveils many uncertainties. However, the group decision

can approach the best possible decision given the information available at the time.

Based on the above reasons for the distance concept, minimization of D (i.e. the

group disagreements) is proposed as the criterion for deriving V and A. Based on this

criterion, an aggregation method, along with the assumption that the aggregated

judgments are in the form of weighted geometric mean, is developed in the following

sections. The literature indicates that the absolute distance is an adequate distance

function (see Cook et al. [5]). The objective of our work is to find the weights of

the weighted geometric mean in order to minimize the group disagreement. The

aggregation method leads itself to a goal programming formulation, which can be

solved by using commercial software such as LINDO. The detailed presentation of

this aggregation method is in the following section.
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3.3.3 The Minhnum Distance Method for Pairwise COlU

parison Matrix

In the preceeding section, we have discussed the appealing characteristics of the

distance concept for the group judgment aggregation problem defined in section

3.1 of this chapter. We also stated that our objective is to minimize the group

disagreement D. Therefore, we call this method minimum distance method (MDM).

Let us first consider aggregating the pairwise comparison matrix (i.e. Approach

A). Specifically, consider that m group members have provided data for pairwise

comparison matrices {A j } (i = 1,," ,m) regarding n decision elements. Let A; =

({ajkh), (j,k = 1,2,,,, ,n). A is the matrix of aggregated group estimates. In

order to obtain A, the objective can be expressed as:

Objective: Minimize D

and D is defined as:

m

D=Ed(Aj,A)
j=l

(3.19)

(3.20)

in which d stands for any distance function between A j and A, such as the squared

distqnce, absolute distance and so on.

Expression (3.20) requires that we examine the aggregation of pairwise com-

parison matrices from the view point of a distance measure on the set of pairwise

comparison matrices ({Ai} and A). The problem is to determine a consensus pair-

wise comparison matrix (A) that best agrees with all the group members' pairwise

comparison matrices ({Ai}) in terms of distance measure. In the following, we will
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develop the mathematical formula for MDM operated on the pairwise comparison

matrices. Let us consider the following two factors.

First, from our literature review in this section we have noticed that the weighted

geometric mean method is the extension of the geometric mean when an individual

has different weights. Aczel and Saaty [8] demonstrated that weighted geometric

mean is a robust method for aggregating group judgment. Therefore, the A can be

expressed as follows:

m

A=(ajk)=(IT({ajkh)Wi), and j,k=I,2, .. ·,n
i=1

m

LWi = 1, V = 1(A)
i=1

(3.21 )

(3.22)

where Wi is the weight assigned to person i, and ajk takes the form of the weighted

geometric mean. Therefore, the aggregation problem defined in expressions (3.19),

(3.21) and (3.22) becomes to find the optimal Wi so that the group disagreement D is

minimal. In other words, the aggregated pairwise comparison matrix A should sat-

isfy not only the expression (3.19), but also the expressions (3.21) and (3.22). There

are two significant advantages in assuming that A is in the form of the weighted

geometric mean:

• Under the following proposed distance function the weighted geometric mean

form allows us to convert the problem defined in expressions (3.19) and (3.20)into

a linear programming formulation which can be easily solved.

• The weighted geometric mean form reduces the number of variables to be

determined in expression (3.19) from n(n - 1)/2 to m. This is because of the
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fact that even though reciprocal matrix A contains n(n - 1)/2 independent

variables or elements (iijk), there are only m Wi representing the weights to be

assigned to the m decision makers.

Second, what kind of distance function of d(Ai, A) will be the most suitable

form for our aggregation problem? There are at least two criteria:

1. A should be unique to satisfy the Eqn. (3.19)

2. A should be easy to calculate

Cook and Kress [5] have proven that the unique distance between any two pairwise

comparison matrices A and B should be in the following form:

d(A, B) = ~ t t Iln(~~k)1
j=l k=l ,k

(3.23)

as long as A and B satisfy three axioms as shown in [5]. In order to better explain

the MDM, those three axioms are listed: +

Axiom 1: (metric properties)

1. For any two pairwise comparison matrices A, d(A, B) ~ 0 with equality

iff A == B, where d( ) stands for the distance between A and B.

2. d(A, B) = d(B, A)

3. d(A, B) +d(B, C) ~ d(A, C)

Axiom 2: If A, B are two pairwise comparison matrices, and A = B except for

one pair (i,k) for which ajk i= bjk , then d(A,B) = H(~), where H is a

continue function.
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Axiom 3: (scaling axiom) H(Co) = 1 for some Co. The value Co can be chosen

arbitrarily and will be called the base of the distance.

Cook and Kress [5J proved that H has the form of expression (3.23). Axiom 1 and

axiom 3 are easy to understand. There are two meanings for axiom 2:

1. If two judgments regarding the odds of favoring one object over another are

the same in all cases except for exactly one pair of objects (j, k), the distance

between A and B is reduced to the distance relative to i and j only.

2. Since the original data (i.e. ajk) expressing the extent to which one object is

preferred to another is given as a ratio, then the differences between judgments

(ajk versus bjk) should also be expressed as some function H of the ratio of

these judgments.

Reciprocal pairwise comparison matrix A; and 11 always satisfy the above axioms

given the distance function in expression (3.23). So expression 3.23 can be used in

the aggregation problem defined in expression (3.19). Given the logarithmic form of

the distance function (3.23), the nonlinear relationship between Wi and D presented

in expressions (3.21) and (3.22) becomes linear. There is a significant advantage

for our problem in using expression (3.23). Later, we will show another advantage

in that the distant function defined in (3.23) can convert our problem into a linear

programming formulation.

The distance function presented in expression (3.23) combined with expressions

(3.19), (3.21) and (3.22) can now be used to determine the unknown aggregated
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group pairwise comparison matrix..4. A formal definition for the aggregation of

group judgments is given below.

Definition: The consensus pairwise comparison matrix ..4 is that matrix which

minimizes the total absolute distance:

m m n n

D = L d(A i ,..4) = L L L Iln({ajlch) -In(iijlc)1
i=l i=l j=l 1c=1

and is subject to the following constraints:

(3.24 )

m

In(iijlc) = LWi In({ajdi),
i=l

m

LWi = 1,
i=l

j,k=I,"·n. (3.25)

where Wi is the weight assigned to decision maker i.

The aggregation problem defined in expressions (3.24) and (3.25) can be further

expanded. Let us make the following transformation:

(3.26)

where {Njlch ~ 0, {Pjlch ~ 0, and ajlc are the aggregated values. The original prob-

lem is now equivalent to the foJJowing goal programming problem, and a numerical

example of this is presented in section 3.5.

m n n

minimize L L L({Njdi +{Pjlch)
i=l j=1 1c=1

m

subject to L WI In({ajlc},) - {Njlch + {Pjlch = In({ajdi)
1=1

i = 1,2"" , m, and j, k = 1,2"" ,n

m

LWi = 1
i=1

(3.27)

(3.28)
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3.3.4 The MininlU111 Distance Method for Priority Vectors

In the above, the aggregation with the pairwise comparison matrix is discussed.

Now we turn to discuss the aggregation with priority vectors, which is Approach B.

Consider that m group members have provided pairwise comparison matrices {A}

(i = 1,··· ,m) regarding n decision elements. The corresponding priority vector

for each member is Vi = ({vlh, {v2h, ... ,{vnh). Let ii be the aggregated group

estimates for the priority vector. Hence, the objective of the aggregation can be

represented as:

Objective:
m

Minimize D = Minimize L d(Vi, ii)
;=1

(3.29)

where d can also use the logarithm form as:

m n

d(V, ii) = LL Iln({vjh -In(vi)1
;=1 j=1

and ii can be expressed in the weighted geometric form:

m m m

ii = (Vl,V2,'" ,Vn) = UI {VlhWi,II {v2h
w
"", ,II {vnh

Wi
)

i=1 i=1 ;=1

(3.30)

(3.31 )

The distance function presented in expression (3.29) combined with expressions

(3.30) and (3.31) can now be used to determine the unknown aggregated group

priority vector ii. The formal definition for the aggregation of a group priority

vector can be expressed as follows:

Definition: The consensus priority vector ii is the vector which minimizes the

total absolute distance:

m m n

D = L d(Vi, ii) = LL Iln({vjh) -In(vj)1
;=1 i=lj=1

(3.32)
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and subject to the following constraints:

m

In(vj) = L w;ln({vjh),
i=1

m

LWi =1,
i=1

j,k = 1,2"" ,no (3.33)

where Wi is the weight assigned to decision maker i. As in section 3.3.3, the aggre-

gation problem defined above can be further simplified. Let us make the following

transformation:

(3.34)

where {Nj h ~ 0, {Pj h ~ 0, and Vj are the aggregated values. The original problem

is now equivalent to the following goal programming problem, and an example of it

is presented in section 3.5:

m n n

minimize LL L({Nj }; + {Pj};)
i=1 j=1 k=1

m

subject to L wtln({vjh) - {N)}. + {Pjh = In({vjh)
1=1

i = 1,2"" , m, and j = 1,2"" ,n

(3.35)

(3.36)
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3.3.5 The Weighted Membership in the Minhnu111 Distance

Method

In the above two sections, we presented two versions of the minimum distance

method. One is based on the pairwise comparison matrix (i.e. Approach A)j

the other is on the final priority vectors of pairwise comparison judgments (i.e.

approach B). We should keep in mind that the final priority vector can also transfer

to a consistent pairwise comparison matrix. In turn the aggregation for the pairwise

comparison matrix can be used to aggregate the final priority vectors. We should

notice that the W; (i = 1,2, ... ,m) used above are not the physical values assigned

to decision maker, but they are only mathematical and logical integrations of the

distance approach. However, it is often desirable to attach a positive weight (); to

decision maker i in order to reflect their relative importance, rather than weighting

them equally as suggested in sections 3.3.3 and 3.3.4. Therefore, expressions (3.27)

and (3.35) become the expressions (3.37) and (3.38) respectively:
m n n

minimize E E E (); ({Njkh + {Pjkh)
;=1 j=l k=l

m n

minimize E E (); ({Njh + {Pj};)
;=1 j=l

(3.37)

(3.38)

with their corresponding constraints remaining unchanged. Weights can be intro-

duced in other ways, of course, such as applying them directly to the pairwise com-

parison matrices or the final priority vectors. This approach would lead to a slightly

different linear programming formulation than that given by (3.37) and (3.38) re-

spectively. However, we believe that expressions (3.37) and (3.38) are much simpler

solutions than the one which applies the weights directly to the pairwise comparison
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matrices or the final priority vectors. Therefore, the mathematical formation of the

latter approach is omitted from this section in order to avoid confusion. In general,

they are equivalent to allowing more important members of the decision making

group a heavier weight than a member of lesser importance. The importance of the

members can be determined by their knowledge, experience and even the status of

the member in given organization.

The OJ (i = 1,,,, ,m) in expression (3.37) and (3.38) can be interpreted as

weights on the goals in a hierarchical sense. They tend to sway the aggregated

pairwise comparison matrix or aggregated priority vector closer to the judgments

of the more important members, and away from those of less important members.

For example, given a marketing situation, weighting is an important concept in

that different consumers and even groups of consumers may need to be weighted

according to the relevance of their actions and attitudes in regard to purchasing

behavior. Therefore, if a group of consumers gathered to evaluate a particular

consumer product, the final results should be weighted according to both advertising

and duration of customer exposure to the products in question.

Hence, weighting of decision makers or evaluators, whether they are consumers,

committee members, managers or voters, is an important issue. Saaty [3] suggests

that the AHP method can be used "to derive priorities for several individuals in

volved according to the soundness of their judgment," and that "factors affecting

judgment may be: relative intelligence (however measured), years of experience,

past record, depth of knowledge, experience in related fields, personal involvement

in the issue at stake, and so on." This can be done as a subsidiary AHP model
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constructed for evaluating player importance.

3.4 The Sensitivity and Reliability of the Mini

mum Distance Method

There is a difficulty with a formulation such as (3.37) and (3.38) due to the

fact that in most situations the decision maker would be unsure as to what would

constitute a reasonably accurate set of weights B;. Different values of weights B; may

lead to a different aggregated pairwise comparison matrix or different final priority

vector. Therefore, an important issue is how sensitive is the optimal solution of

(3.37) and (3.38) to the judgment of any particular decision maker. To obtain a

measure of the reliability (stability) of the aggregated pairwise comparison matrix or

aggregated final priority vector, it is necessary to analyze their sensitivity to changes

in the parameters B; of (3.37) and (3.38). Let us consider the goal programming

problem (3.37) again:

m n n

minimize E E E B;({Njkh + {Pjkh)
;=1 J=1 k=l

m

subject to E wzln({ajdl) - {Njkh + {Pjd; = In({ajkh)
1=1

i = 1,2"" ,m, andj,k = 1,2"" ,no

(3.39)

m

Ew; = 1,
;=1

m

EB; = 1
;=1
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The above expressions constitute a goal programming model. Sensitivity of such

models has been studied in detail [60J. A detailed discussion of sensitivity analysis

will not be given in this dissertation. However, its application will be described in

section 3.5.

3.5 Numerical Examples of the Minimum Dis

tance Method

In the above section, the proposed aggregation method (MDM) has been dis-

cussed in detail. In this section, an example is presented for MDM of aggregating

both pairwise comparison matrices and the final priority vectors. The example

includes also the sensitivity analysis and will demonstrate how the MDM works.

Suppose there are four estimators (say A, B, C and D) for four decision elements.

The corresponding four pairwise comparison matrices obtained from estimator A,

B, C and D are as follows:

1 1 1 1 1 2 ~ 1
2 J 4 J 2

2 1 ~ 1 1 1 1 1

A=
J "2

B=
2 '3 4

(3.40)

3 ~ 1 ~ ~ 3 1 ~
2 4 2 4

4 2 1 1 2 4 1 1
J J

1 1 1 1 1 1 2 4
J 2 4 J

3 1 ~ ~ ~ 1 ~ 3
C=

2 4
D=

4 2
(3.41)

2 ~ 1 1 1 £ 1 2
J 2 "2 J

4 1 2 1 1 1 1 1
J 4 3 2
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The priority vectors of above pairwise comparison matrices are:

VA = (0.1,0.2,0.3,0.4)

Vc = (0.1,0.3,0.2,0.4)

VB = (0.2,0.1,0.3,0.4)

VD = (0.4,0.3,0.2,0.1)

(3.42)

(3.43)

3.5.1 MDM Operated on Pairwise Comparison Matrices

By applying expressions (3.27) and (3.28), the goal programming model for ag-

gregating the pairwise comparison matrices is constructed as follows:

4 4

mmtmtze E E E({Njdi + {Pjk };)
iE{A,B ,C,D} j=1 k=1

(3.44)

where {Njdi is the negative deviation from the comparison of elements j and k by

estimator i, {Pjdi is the positive deviation from the comparison of elements j and

k by estimator i, i = A"" ,D (estimators), j and k = 1"" ,4 (the elements being

compared. The expressions for constraints are as follows:

subject to E w,ln({ajdl) - {Njk}i + {Pjk }; = In({ajdi)
IE{A,B,C,D}

iE{A,B,C,D}, andj,k=1,2,· .. ,4

E Wi = 1
iE{A,B,C,D}

(3.45 )

The goal programming defined in expressions (3.44) and (3.45) are in the follow-

ing form (call it input deck of LINDO) when it is inputted to LINDO:
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MIN N12A+P12A+N13A+P13A+N14A+P14A+N23A+P23A+N24A+

P24A+N34A+P34A+N12B+P12B+N13B+P13B+N14B+P14B+

N23B+P23B+N24B+P24B+N34B+P34B+N12C+P12C+N13C+

P13C+N14C+P14C+N23C+P23C+N24C+P24C+N34C+P34C+

N12D+P12D+N13D+P13D+N14D+P14D+N23D+P23D+N24D+

P24D+N34D+P34D

SUBJECT TO
-0.6931WA+0.6931WB-1.0986WC+0.2876WD-N12A+P12A=-0.6931

-0.6931WA+0.6931WB-1.0986WC+0.2876WD-N12B+P12B=0.6931

-0.6931WA+0.6931WB-1.0986WC+0.2876WD-N12C+P12C=-1.0986

-0.6931WA+0.6931WB-1.0986WC+0.2876WD-N12D+P12D= 0.2876

-1.0986WA-O.4055WB-0.6931WC+O.6931WD-N13A+P13A=-1.0986

-1.0986WA-0.4055WB-O.6931WC+0.6931WD-N13B+P13B=-0.4055

-1.0986WA-0.4055WB-0.6931WC+O.6931WD-N13C+P13C=-O.6931

-1.0986WA-0.4055WB-0.6931WC+0.6931WD-N13D+P13D= 0.6931

-1.3863WA-0.6931WB-1.3863WC+1.3862WD-N14A+P14A=-1.3863

-1.3863WA-O.6931WB-1.3863WC+1.3862WD-N14B+P14B=-0.6931

-1.3863WA-0.6931WB-1.3863WC+1.3862WD-N14C+P14C=-1.3863

-1.3863WA-O.6931WB-1.3863WC+1.3862WD-N14D+P14D= 1.3862

-0.4055WA-1.0986WB+0.4055WC+0.4055WD-N23A+P23A=-O.4055

-O.4055WA-l.0986WB+O.4055WC+O.4055WD-N23B+P23B=-1.0986

-0.4055WA-1.0986WB+O.4055WC+O.4055WD-N23C+P23C=O.4055

-O.4055WA-1.0986WB+O.4055WC+0.4055WD-N23D+P23D= 0.4055

-0.6931WA-1.3863WB-0.2877WC+1.0986WD-N24A+P24A=-O.6931

-O.6931WA-1.3863WB-0.2877WC+1.0986WD-N24B+P24B=-1.3863

-0.6931WA-1.3863WB-O.2877WC+l.0986WD-N24C+P24C=-0.2877

-0.6931WA-1.3863WB-O.2877WC+1.0986WD-N24D+P24D= 1.0986

-0. 2877WA-O.2877WB-O.6931WC+O.6931WD-N34A+P34A=-O.2877

-O.2877WA-0.2877WB-0.6931WC+0.6931WD-N34B+P34B=-0.2877

-O.2877WA-0.2877WB-O.6931WC+O.6931WD-N34C+P34C=-O.6931

-0.2877WA-0.2877WB-0.6931WC+0.6931WD-N34D+P34D=O.6931

WA+WB+WC+W4=1.0

END

where {Njdi, {Pjk };, and Wi show as Njki, Pjki, and Wi, respectively. We should

also notice the principle of In(x) = -In(1/x), where x ;::: O. The constants in the

input deck of LINDO are from In(2) = 0.6931, In(3) = 1.0986, In(4) = 1.3863,

In(4/3) = 0.2877, and In(3/2) = 0.4055.
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The goal programming model was solved by LINDO with the following results:

WA = 0.5, WB = 0.0, we = 0.15, WD = 0.35 (3.46)

The corresponding pairwise comparison matrix A can now be obtained by using the

expression (3.21), which are:

A = (ajk) = ( IT ({ajkh)Wi), and j, k = 1,2"" ,4
iE{A,B,c,D}

(3.47)

Specifically, combining the Wi (i E {A, B, C, D}) value with the respective pairwise

comparison matrices {Ai} obtained from the four estimators, the A, the aggregated

pairwise comparison matrix, is obtained as follows:

1 1°.52°.01°.151°.35 1°.5£°.°1°.152°.35 1°.51°.010.1540.35
2 3 3 332 424

2o.510.03o.15;!0.35 1
£0.510'0;! 0.15 ;!0.35 1°.51°.0;!0.153o.35

A=
2 4 3 3 2 2 244

3o.5;!0.°2°.151°.35 ;!0.5
3

o.0£0.15 £0.35
1 ;!0.5 ;!o.o 1°.152°.35

2 2 2 3 3 442

4°.52°.°4°.151°.35 2°.54°.01°.151°.35 10.5.10.020.1510.35 14 3 3 3 3 2

=

1

2

0.5

1

0.5 0.375

1 0.75
(3.48)

2 1 1 0.75

2.667 1.333 1.333 1

Using the A as the aggregated matrix, we can obtain the aggregated priority

vector, V, which represents the minimum distance criterion. Several methods as
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described in Appendix A can be used for this purpose. For example, using the

geometric mean method:

v = (0.13,0.26,0.26,0.35)

The individual priority weight are:

(3.49)

VI = 0.13, V2 = 0.26, Va = 0.26, V4 = 0.35 (3.50)

V, the resulting vector obtained after the aggregation process, is the one which

minimizes the distance between the Ai (i E {A,B,C,D} and the aggregated value

(A) in the multi dimensional space.

Note that once A has been obtained, the calculation of V is not limited to

the geometric mean method used above. Any of the priorization methods given in

Appendix A can be used for that purpose. The MDM developed in this dissertation

is applicable to all of those methods.

3.5.2 Weighted Melubership and Sensitivity Analysis

The example presented in section 3.5.1 used implicitly equal weights for the four

estimators. Different weights can be incorporated into the example as discussed in

section 3.3.5. The goal programming model for operating on pairwise comparison

matrices is as follows:

4 4

mmtmtze L L L Oi ({Nidi + {Pikh)
ie{A,B,C,D} i=1 k=1

(3.51 )

where Oi (i E {A, B, C, D}) is the weights assigned to the estimator i. The weights

represents the relative importance of the estimator. We should notice the difference
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of between weight Wi and weight Bi . Wi are the mathematical and logical integration

of the MDM. The meaning of the variables in expression (3.51) is the same as in

section 3.5.1. The expression for constrains are as follows:

subject to L WI In({ajdl) - {Njkh + {Pjkh = In({ajkh) (3.52)
IE{A,B,e,D}

i E {A,B,C,D}, and j,k = 1,2,'" ,4

L Wi = 1
iE{A,B,e,D} --

Suppose the following weights of Bi (i E {A, B) C, D}) have been assigned to the

estimators:

BA = 0.1, BB = 0.4, Be = 0.3, BD = 0.2, (3.53)

The input deck of LINDO for goal programming model defined in expressions (3.51)

and (3.52) are as follows:

MIN O.lN12A+O.1P12A+O.1N13A+O.1P13A+O.1N14A+O.1P14A+

O.lN23A+O.1P23A+O.1N24A+O.1P24A+O.1N34A+O.1P34A+

O.40N12B+O.40P12B+O.40N13B+O.40P13B+O.40N14B+O.40P14B+

O.40N23B+O.40P23B+O.40N24B+O.40P24B+O.40N34B+O.40P34B+

O.3N12C+O.3P12C+O.3N13C+O.3P13C+O.3N14C+O.3P14C+

O.3N23C+O.3P23C+O.3N24C+O.3P24C+O.3N34C+O.3P34C+

O.20N12D+O.20P12D+O.20N13D+O.20P13D+O.20N14D+O.20P14D+

O.20N23D+O.20P23D+O.20N24D+O.20P24D+O.20N34D+O.20P34D

SUBJECT TO

-O.6931WA+O.6931WB-l.0986WC+O.2876WD-N12A+P12A=-O.6931

-O.6931WA+O.6931WB-l.0986WC+O.2876WD-N12B+P12B=O.6931

-O.6931WA+O.6931WB-l.0986WC+O.2876WD-N12C+P12C=-1.0986
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-O.6931WA+O.6931WB-1.0986WC+O.2876WD-N12D+P12D= 0.2876

-1.0986WA-0.4055WB-O.6931WC+0.6931WD-N13A+P13A=-1.0986

-1.0986WA-O.4055WB-0.6931WC+0.6931WD-N13B+P13B=-0.4055

-1.0986WA-0.4055WB-0.6931WC+0.6931WD-N13C+P13C=-0.6931

-1.0986WA-0.4055WB-O.6931WC+0.6931WD-N13D+P13D= 0.6931

-1.3863WA-0.6931WB-1.3863WC+1.3862WD-N14A+P14A=-1.3863

-1.3863WA-0.6931WB-1.3863WC+1.3862WD-N14B+P14B=-0.6931

-1.3863WA-O.6931WB-1.3863WC+1.3862WD-N14C+P14C=-1.3863

-1.3863WA-0.6931WB-1.3863WC+1.3862WD-N14D+P14D= 1.3862

-O.4055WA-1.0986WB+0.4055WC+O.4055WD-N23A+P23A=-0.4055

-O.4055WA-1.0986WB+O.4055WC+0.4055WD-N23B+P23B=-1.0986

-O.4055WA-1.0986WB+0.4055WC+O.4055WD-N23C+P23C=0.4055

-0.4055WA-1.0986WB+0.4055WC+0.4055WD-N23D+P23D= 0.4055

-0.6931WA-1.3863WB-0.2877WC+1.0986WD-N24A+P24A=-0.6931

-0.6931WA-1.3863WB-0.2877WC+1.0986WD-N24B+P24B=-1.3863

-0.6931WA-1.3863WB-0.2877WC+1.0986WD-N24C+P24C=-0.2877

-O.6931WA-1.3863WB-0.2877WC+1.0986WD-N24D+P24D= 1.0986

-0.2877WA-0.2877WB-0.6931WC+0.6931WD-N34A+P34A=-0.2877

-0.2877WA-0.2877WB-0.6931WC+0.6931WD-N34B+P34B=-0.2877

-0.2877WA-0.2877WB-0.6931WC+0.6931WD-N34C+P34C=-0.6931

-0.2877WA-0.2877WB-O.6931WC+0.6931WD-N34D+P34D=0.6931

WA+WB+WC+WD=1.0

END

The above goal programming model was solved by LINDO with the following results:

WA = OJ, WB = 0.5, we = 0.3, WD = 0.1 (3.54)

Due to the introduction of weights Bi to the original goal programming model as

shown in expressions 3.44 and 3.45, the Wi obtained in this section are significantly

different from the results of previous section, which are:

WA = 0.5, WB = 0.0, We = 0.15, WD = 0.35 (3.55)
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The corresponding aggregated pairwise comparison matrix A can now be obtained

by using the expression (3.21), which are:

A=(ajk)=( II ({ajk};)Wi), and j,k=1,2, ... ,4
iE{A,B,c,D}

(3.56)

Combining the Wi (i E {A, B, C, D}) value with the respective pairwise comparison

matrices {Ai} obtained from the four estimators, the A, the aggregated pairwise

comparison matrix, is obtained as follows:

1 10.1 2°.51 0.3~0.1 1°.11°.51°.32°.1 1°.11°.51°.34°.1
2 3 3 332 424

20.11 0.53o.3~0.1 1
10.110.5 ~0.3~0.1 1°.110.5 ~ 0.33°.1

A=
2 4 332 2 244

30.1 ~o.52o.31 0.1 ~0.13o.51o.31o.1 1 ~0.1 ~0.51 0.32°.1
2 2 2 3 3 442

4°.12°.54°.31°.1 2o.14o.5~0.31 0.1 ~0.1 ~0.52o.31 0.1 1
4 3 3 3 3 2

1 0.98 0.64 0.47

1.02 1 0.65 0.48
= (3.57)

1.56 1.54 1 0.73

2.13 2.08 1.37 1

Using A as the aggregated matrix, we can now obtain the aggregated priority

vector, V, which represents the minimum distance criterion. Several methods as

described in appendix A can be used for this purpose. For example, using the

geometric mean method:

V = (0.18,0.18,0.27,0.37) (3.58)
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The individual priority weights are:

Vi = 0.18, V2 = 0.18, Va = 0.27, (3.59)

V, the resulting vector obtained after the aggregation process, is the one which

minimize the distance between the Ai ( i E {A, B, C, D} and the aggregated value

(A) in the multi dimensional space.

As we discussed in section 3.4, sensitivity analysis of weights Bi is very im-

portant. We would like to know in what ranges the changes of Bi will not alter the

original decision, which means that V will remain same. The sensitivity analysis

was carried out by LINDO. The results are as follows:

BA = 0.1, 0.4 ~ BB ~ 0.6, 0.1 ~ Be ~ 0.3, BD = 0.2 (3.60)

Expression (3.60) tells us that that V will keep the same if BB takes any value

between 0.4 to 0.6, and Be takes any value between 0.1 to 0.3.

3.5.3 MDM Operated on Priority Vectors

In the same way as shown in section 3.5.1, the goal programming model for

aggregating the priority vector from each decision maker can be obtained by using

expressions (3.35) and (3.36), which are presented as follows:

4 4

mzmmzze L LL({Nih+{Pi}i)
iE{A,B ,c,D} i=l k=l

(3.61)

where {Nih is the negative deviation from the relative weight of element j by

estimator i, {Pi h is the positive deviation from the relative weight of element j
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by estimator i, i stands for the estimators, which is from A to D in this example,

j and k = 1,'" , 4 (the elements being compared). The constraints for the goal

programming model are as follows:

subject to E wzln({vi}l) - {Nih + {Pih = In({vih) (3.62)
IE{A,B,c,D}

iE {A,B,C,D}, andj= 1,2, .. ·,4

E Wi = 1
iE{A,B,C,D}

{Nih, {Pih,Wi ~ o.

Given the priority vector of each estimator as presented in expressions (3.42)

and (3.43), the input deck of LINDO for the goal programming model defined in

expressions (3.61) and (3.62) are presented in the following:

MIN N1A+P1A+N2A+P2A+N3A+P3A+N4A+P4A+N1B+P1B+N2B+

P2B+N3B+P3B+N4B+P4B+N1C+P1C+N2C+P2C+N3C+P3C+

N4C+P4C+N1D+P1D+N2D+P2D+N3D+P3D+N4D+P4D

SUBJECT TO
0.0000WA+0.6931WB+0.0000WC+1.3863WD-N1A+P1A = 0

0.0000WA+0.6931WB+0.0000WC+1.3863WD-N1B+P1B = 0.6931

0.0000WA+0.6931WB+0.0000WC+1.3863WD-N1C+P1C = 0

0.0000WA+0.6931WB+0.0000WC+1.3863WD-N1D+P1D = 1.3863

0.6931WA+0.0000WB+1.0986WC+1.0986WD-N2A+P2A = 0.6931

0.6931WA+0.0000WB+1.0986WC+1.0986WD-N2B+P2B = 0.0000

0.6931WA+0.0000WB+1.0986WC+1.0986WD-N2C+P2C = 1.0986

0.6931WA+0.0000WB+1.0986WC+1.0986WD-N2D+P2D = 1.0986

1.0986WA+1.0986WB+0.6931WC+0.6931WD-N3A+P3A = 1.0986

1.0986WA+1.0986WB+0.6931WC+0.6931WD-N3B+P3B = 1.0986

1.0986WA+1.0986WB+0.6931WC+0.6931WD-N3C+P3C = 0.6931

1.0986WA+1.0986WB+0.6931WC+0.6931WD-N3D+P3D = 0.6931
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1.3863WA+1.3863W8+1.3863WC+0.0000WD-N4A+P4A = 1.3863

1.3863WA+1.3863W8+1.3863WC+0.0000W4-N4B+P48 = 1.3863

1.3863WA+1.3863WB+1.3863WC+0.0000WD-N4C+P4C = 1.3863

1.3863WA+1.3863WB+1.3863WC+0.0000WD-N4D+P4D = 0.0000

WA+W8+W3+WD=1.0

END

where {Nih, {Pih and Wi show as Nji, Pji and Wi, respectively. The values of the

constants are from In(l) = 0, In(2) = 0.6931, In(3) = 1.0986, and In(4) = 1.3863.

The goal programming model was solved by LINDO, Wi (i E {A, B, C, D}) are

obtained as:

WA = 1.0, WB = 0.0, We = 0.0, WD = 0.0 (3.63)

The corresponding aggregated priority vector ii can now be obtained by using the

expression (3.15), which are:

ii=( II ({vlh)Wi, II ({v2h)Wi,"', II ({Vnh)Wi) (3.64)
iE{A,B,C,D} iE{A,B,e,D} iE{A,B,C,D}

Combining the values of WA, WB, we and WD with respective priority vector obtained

from four estimators, the ii, aggregated priority vector, is obtained as:

= (0.1,0.2,0.3,0.4) (3.65)

ii, the resulting vector obtained after the aggregation process, is the one which

minimize the distance the V; (i E {A,B,C,D}) and the aggregated value in the

multi dimensional space.



Chapter 4

COMPARISON STUDY AND

SIMULATION PROCEDURES

The previous chapters investigated the judgment aggregation methodologies from

mathematical and logical points of view. Judgment aggregation within the frame

work of AHP, as one of the most important aspects of a group decision making

process, has been discussed in detail by Aczel and Saaty [6, 7, 8] as well as in this

dissertation. Aczel and Saaty's work focuses on the functional equations approach

(i.e. the geometric mean approach). Several conditions must be satisfied to use

that approach; three conditions (separability, unanimity and reciprocal) have been

discussed in Chapter 3. Aczel and Saaty have shown that the only function to sat

isfy these three conditions is geometric function. We propose an approach in this

dissertation, the distance approach, which we have named the Minimum Distance

Method (MDM), is based on the Cook et aI's distance axiom [5] and weighted ge

ometric mean concept. This new approach not only appeals to the compromising

nature of the group decision making process, but it also preserves these conditions

that Aczel and Saaty have stipulated. We will carry further the study of aggregation

methods by evaluating their performance in this and following chapters.



93

The arithmetic mean and geometric mean methods have been used for judgment

aggregations for a long time. Aczel and Saaty's contribution has been to provide

a mathematical justification for the geometric mean approach. However, based on

the literature search, there has been little done regarding the performance of those

methods presented so far. It would be possible and important to "test" all present

judgment aggregation methods by examining their performance according to certain

performance measurements. The "test" of judgment aggregation methods would

be valuable, especially when the alternatives and equally "reasonable" methods

(arithmetic mean, geometric mean and MDM) has been proposed or practiced.

Two approaches are adopted to study the performance of judgment aggregation

methods in this dissertation. One is simulation by which a large number of judg

ments (i.e pairwise comparison matrices) for group decision situations are created

by computer. The decision to use any particular scientific technique in pursuing

a problem is determined by a large number of factors. The appropriateness of the

method is one consideration, the potential to advance theoretical understanding is

another, and economy is yet a third. The reasons for using the simulation are as

follows:

• Computer simulation often leads to a more complete expression of a theory

than may otherwise be possible. This is primarily because of the ability of

the computer program to deal with great complexity, both in terms of its own

variables and in terms of its data. A verbally stated theory, or indeed a math

ematically presented one, often becomes incomprehensible when it attempts

to deal with large numbers of variables and parameters simultaneously.
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• Exploration with the simulation may suggest relationships that can be ex-

plored in a real experiment. The net result of this complex interconnection

between theory, simulation, and experimentation is an advancement in the

theoretical understanding of the process that is all important in research.

o Computer simulation is a model of some real process, the program's activ

ities can be made to parallel the actual process to a greater degree than it

possible with other forms of models. This is of benefit even in simple and

well-specified theories - it allows the theory to be more easily understood be

cause it is possible to "watch" the process unfold over the course of operating

the program.

o An operating computer simulation in many respects provides an ideal exper

imental subject for research. Once the program is operating correctly, it is a

relatively simple matter to run many experimental quickly. It suffers none of

the practical problems that plague behavioral researchers - it does not need

to be fed, housed, or paid; it does not require a massive survey effort, and etc.

o In a computer model, it is easy to represent randomness and to deal with

random variables. for example, to make several simulation runs of a program

assuming that a variable has different distributions.

But we also notice that there may exist discrepancies between those pairwise

comparison matrices generated by computer and the pairwise comparison matrices

obtained from actual judgments. It is desirable to "test" the aggregation method
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through the actual judgment data. Then the empirical data (i.e the empirical test

approach), which is obtained from groups of students measuring values of seven

categories, are used to test the aggregation methods.

This chapter is structured as follows: Section 4.1 presents the objectives of the

proposed comparison study. Section 4.4 deals with the simulation approach in gen

eral and is followed by section 4.2 and section 4.3 for the analysis of perturbation

methods and of performance measurements respectively. Section 4.5 deals with the

empirical test approach.

4.1 Objectives and Considerations

The existing aggregation methods (arithmetic and geometric mean) were re

viewed in section 3.2, and a new method - Minimum Distance Method (MDM)

- was proposed in section 3.3. Due to different assumptions and the underlying

input data (i.e. the judgments) distributions, the solutions obtained from different

methods will be different. Consequently, evaluation of the performances of those

methods is important and necessary for helping us to use those methods. To facil

itate the discussion in this chapter, a list of the judgment aggregation methods to

be evaluated is given in the Table 4.1. The abbreviation given in this table will be

used throughout this and the next chapters. In Table 4.1, one point needs special

attention. The geometric mean method and MDM deal with two kinds of data, one

is the pairwise comparison matrix, and the other one is the final priority vector.
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Table 4.1: The List of Judgment Aggregation Methods

DESCRIPTIONS

1 A-GE(V) The Geometric Mean operates on the

priority vector of group members

2 A-GE(M) The Geometric Mean operates on the

pairwise comparison matrix of group members

3 A-AM(V) The Arithmetic Mean operates on the

priority vector of group members

4 A-MDM(M) The Minimum Distance Method operates on the

pairwise comparison matrix

5 A-MDM(V) The Minimum Distance Method operates on the

priority vector of group members

~ ABBREVIATION I

4.1.1 Objectives of COlllparisoll Study

Specifically, the major purpose of this study is to evaluate and contrast judgment

aggregation methods so that the characteristics of the aggregation methods can be

better understood. The significance of this chapter is: the first goal is to investigate

the following issues:

1. How do the aggregation methods function with respect to the different types

of input data?

2. What is the relationship between aggregation methods and the number of

decision makers?

3. What is the influence of prioritization methods over the aggregation methods

or vice versa?

The second goal is to generalize the findings from the comparison of judgment

aggregation methods and to develop guidance for the use of aggregation methods.
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4.1.2 Considerations for Comparison Study

Simulation and empirical test approaches are employed in the comparison study.

Regardless which approaches are used, the comparison study begins with groups

of input data (i.e the judgments). The input data is in the form of a pairwise

comparison matrix (A). Suppose m is the size of the group referred to as the number

of decision makers, then we use {Ai} to represent a group of pairwise comparison

matrices, where i = 1" .. ,m. Furthermore, suppose T is the number of groups, then

we denote groups of input data as {Aih, where t = 1", . ,T. After the input data

are ready, which can be obtained either through computer generations or from real

judgments, they are fed into the aggregation process. There are two variations of

the aggregation process: one is to aggregate the pairwise comparison matrices {Ai}

then derive the priority vector from the aggregated pairwise comparison matrix. The

other one is to derive the priority vectors of each pairwise comparison matrix in {Ai}

and then to aggregate priority vectors. Finally, the performance of the aggregation

process is evaluated by performance measurements. The above discussed procedure

is summarized in FigA.l

From Fig. 4.1, the following items should be further discussed in general even

though the detailed mathematical descriptions are presented in subsequent sections.

• Input data to the aggregation methods, i.e. what are the judgments

• Performance measurements

• Prioritization methods
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.-J Aggregati~n f-I---+1 Prioritization

of {A,}~A of A ~ V

I Prioritizatio~

of all A, ~ {V,}

Aggregation

of {V,} ~ V
L -l

Perfonnance
Measurements

Figure 4.1: The procedures of comparison study for both simulation and empirical

test

We will spend this section discussing these items and their underlying relationships

in general.

Input data: The ways to get the input data (i.e. the pairwise comparison ma-

trices) for evaluation of aggregation methods are different for simulation study and

emperical test. In the simulation approach, a large number of groups of pairwise

comparison matrices (i.e. judgments) are generated by using a computer. The data

generation procedures are discussed in detail in section 4.4.1. Each group of pairwise

comparison matrices consists of m (i.e. number of decision makers) individual pair-

wise comparison matrix, just as a decision making group has m members and each

member make a judgment. Therefore, in simulation, the input data generation is

the process to mimic the judgments of group decision makers. The empirical testing
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data are actual judgments from a group of students, and details of those data are

discussed in section 4.5.

Performance measurements: In order to compare the aggregated results of

simulation and empirical test for aggregation methods, criteria and measurements

are needed to gauge the performance of each aggregation method. Two kinds of

measurements for performance are proposed in section 4.3. Briefly, one measurement

is the accuracy , which is to measure how closely the aggregated group priority

vector matches the "real" priority vector. In this study, the "real" priority vectors

are known. The other one is the measurement for disagreement, which is designed

to measure the deviation between the group members' responses and aggregated

group priority vector (response). This is the measurement to indicate the extent to

which the group as whole satisfies the aggregated group priority vector.

Prioritization methods: In AHP, the output of group decision making is in

the form of a priority vector; therefore, we need to use prioritization methods, which

transfer the pairwise comparison matrix into the priority vector. The involvement of

prioritization methods greatly complicates the simulation and empirical test process

because we have one more dimension to consider for both the simulation and empir

ical test. Furthermore, the impacts of the prioritization methods on the aggregation

methods or vice versa are also the concerns of the comparison study. For example,

what is the best combination of prioritization method and aggregation method in

order to produce the best aggregation result? Therefore, for each set of pairwise

comparison matrices, all the prioritization methods have to be applied, and each of

those aggregation results will be subjected to performance evaluation.
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The prioritization methods themselves have been a major research area especially

in the past fifteen years. Since the method of paired comparisons was first discussed

by Thurstone [61,62] in 1927, and more recently, the effective use of the reciprocal

matrices was demonstrated by Saaty [2] in 1977, there has been an increased interest

in the problem of prioritization through ratio scale measurements. To a large extent,

the interest in this problem is due to the development of various new prioritization

methods and their successful use in experimental and practical situations, especially

in the areas of social sciences and management. A large number of techniques

has been proposed for prioritization through scaling ratio judgment, ranging from

relatively simple averages [37] to more complicated methods, such as the constant-

sum method [24, 1], the column-row sums method [23], the eigenvalue method [2,

3], the geometric mean [63, 27, 28], the least squares [64, 26], the weighted least

squares [65], and so on. A summary of these techniques is given in Appendix A.

An abbreviation of various prioritization techniques is presented in Table 4.2 1. The

abbreviations and the identification numbers for prioritization methods in Table 4.2

will be used throughout this and next chapter.

lIn Table 4.2, A is the pairwise comparison matrix, A' is the transpose of matrix A and AA'

stand for multiplication of matrix A with matrix A'
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~ ABBREVIATION I DESCRIPTIONS

1 CSM Constant-Sum Method

2 R-EV Right Eigenvector of [A] Matrix

3 L-EV Left Eigenvector of [A] Matrix

4 AM-EV Arithmetic Means of Right and Left

Eigenvector of [A] Matrix

5 GM-EV Geometric Means of Right and Left

Eigenvector of [A] Matrix

6 EV[AA'] Eigenvector of [AA'] Matrix

7 EV[A'A] Eigenvector of [A'A] Matrix

8 AM-EV[AA'] Arithmetic Means of Eigenvector of

AND EV[NA] [AA'] and [NA] Matrices

9 GE-EV[AA'] Geometric Means of Eigenvector of

AND EV[A'A] [AN] and [A'A] Matrices

10 GM Logarithmic Least Squares Method

via row Geometric Means Method

11 C-RSM Column-Row Sums Method.

(Normalized geometric means of two

normalized vectors of the inverse

column sums and the row sums)

12 MT Mean Transformation Method

13 SAV Average of Row Elements of [A]

Matrix

14 NEV New Eigenweight Method

15 LSM Least Squares Method
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4.2 Input Data Generation and The Perturbation

Method

An important part of input data generation is how to get quality pairwise com-

parison matrix (A) for simulation. Quality here means that generated pairwise

comparison matrices by computer should be close to the actual judgments. There-

fore, in this section, we will first discuss the characteristics of actual judgments in

section 4.2.1. In section 4.2.2, input data generation procedures are presented in

general. Sections 4.2.3, section 4.2.4, 4.2.5 and 4.2.6 will discuss detailed data gen-

eration procedures via probability distributions.

4.2.1 Characteristics of Actual Judgluents

Suppose we compare n decision elements, and the pairwise comparison matrix

is used to express the ratio judgments in AHP. The matrix of pairwise comparisons

shows the extent to which one element is preferred over another in achieving an

objective at one level higher in the hierarchy, which has been discussed in Chapter 2.

There are two situations when pairwise comparisons are made, which are consistent

and inconsistent cases in terms of the pairwise comparison matrix (A).

Consistent situation: In this situation, the pairwise comparisons are made

without measurement errors, i.e. the corresponding pairwise comparison matrix

is consistent. Assume that pairwise comparison matrix is denoted as A. If V =

(VI, V2, •. , ,vn ) is the priority vector of n decision elements, which is derived from A

by using any prioritization methods in Appendix A, then the n x n square matrix
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(A) of pairwise comparisons should satisfy the following relationship:

j,k=l,'" ,n (4.1 )

Inconsistent situation: In this situation, pairwise comparisons are made with

measurement errors. The relationship between pairwise comparison matrix A and

priority vector denoted in the above expression 4.1 no longer holds true. In general,

those measurement errors are largely due to the estimator's perception and knowl

edge. Consequently, the matrix would be inconsistent. This happens frequently and

is not a disaster. Usually, unless the estimator methodically pays attention to build

ing up the judgments from n-1 decision elements, his pairwise comparison matrix

is not likely to be consistent. Furthermore, in the case of measurement error, one

of the most important things that the decision makers would like to know is how

good the pairwise comparison matrix A is. One way to measure the goodness of

the pairwise comparison judgments is to use the difference between matrix A and

matrix [Vjl/Vkl], where VI: = (Vll' V211 .•. , vnd is the actual priority vector. But in

the real world, it is very difficult and even impossible to know the actual priority

vector VI:. We only can get the estimation V of priority vector by using various

prioritization methods (see Appendix A) from matrix A.

4.2.2 Input Data Generation for Shnulation

Given the nature of both consistency and inconsistency of pairwise comparison

judgments, we would like to generate the input data for simulation with the following

characteristics:

• Have a "true" priority vector so that the aggregation performance can be
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measured.

• Take the nature of both consistency and inconsistency of pairwise comparison

matrices into consideration.

The procedure of input data generation can be described as follows: For each simu-

lated group (t) (t = 1"" I T), a corresponding priority vector vt = (Vlt' V2t,'" ,Vnt)

is generated by computer. We take the vt as the "true" priority vector. Based on

vt, a consistent matrix At is constructed by At = [Vil/vkt], which is the consistent

matrix according Eqn. 4.1. The simulated groups of pairwise comparison matrices

{Aih (i = 1,'" ,m), where m is the size of the group, are derived from At. Keep

in mind the multi-dimensional situation in the simulation. There are T groups of

pairwise comparison matrices, so the t is from 1 to T through out this chapter.

Within each group of pairwise comparison matrices, there are m individual pairwise

comparison matrices.

For any given t, we need a mechanism to derive pairwise comparison matrices

{A;h from consistent matrix At. Those pairwise comparison matrices {Aih should

have the characteristics of actual judgments as described in section 4.2.1. Suppose

for any given i, Ai can be expressed as:

j,k=I, .. ·,n (4.2)

where eik is called the measurement error term. When eii = 1, the A; is equal to

At which is a consistent matrix. When eik f. 1 and eik > 1, the Ai is away from

consistent matrix At, the magnitude of difference is determined by the value of eik,
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and that is where the measurement error term comes from. Therefore, we have a

mechanism to generate Ai from At, which is realized by using Eqn. 4.2 with change

of ejk value. If ejk are generated in such a way that the mean of ejk is equal to one,

we then get a group of matrices {Ai} either consistent or inconsistent.

According to the approach of generating Ai presented above, all the pairwise

comparison matrices in a group are generated from a single pairwise comparison

matrix At. Considering the case that the mean of eij is (~qual to one, the procedure

of data generation described in this section implies that the "true" priority vector of

the group should be VI. By repeating this procedure, a number of groups of pairwise

comparison matrices can be generated.

The multiplicative form for the measurement error was used for perturbating the

At to form matrix A. The reasons for using this form are two-fold. First of all, this

form is easy to understood. Second, the multiplicative form for the measurement

error was originally proposed by Saaty [3J to derive the inconsistency measure for the

pairwise comparison. Zahedi [66J also used the multiplicative form in a simulation

study to compare the prioritization methods.

In the above discussion, we have decided on the form of measurement error term

for perturbation. Now the focus of input data generation is how to determine the

value of ejk. The measurement error means that the judgment error or inconsistency

occurs when the ratio judgments are made among n decision elements. It describes

"the effect of inconsistency on what is thought to be the psychological process in

volved in pairwise comparisons of a set of data" [3J. Hence, when different decision

makers or groups of decision makers are involved in a decision process, their ratio
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judgments will be different, and so are the error terms. Furthermore, the underly-

ing distribution of judgments and error terms should not only be different but also

in a wide variety of types. Consequently, the results from aggregation and prior

itization will be different too. Due to the psychologically complex implication of

measurement error terms, it is very difficult or even impossible to reproduce the er

ror term distributions by computer. However, in this study we are concerned about

the performance of aggregation and prioritization methods. From logical and math

ematical points of view, only the typical probability distributions should be used to

generate the measurement error terms (ejk)' But the proposed probability distri

butions should cover a wide variety of distribution types and have non-negativity

random variables. There are three typical distributions to satisfy those conditions,

i.e. gamma, lognormal and uniform distributions. We also noticed those distribu

tions have been used in other studies as well [63, 3, 66J. Zahedi [66J used these

three distributions to generate pairwise comparison matrices. Those matrices were

used to study the performance of prioritization methods. The simulation approach

presented in this dissertation can be viewed as the extension of Zahedi's approach

to a group decision situation.

4.2.3 Generation of Perturbation Distributions

Three probability distributions are typically used in the perturbation process.

This allows comparison between the simulation results using different probability

distributions. In order to make cross comparison meaningful, the input data gener-
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ation process should satisfy the following two conditions.

1. Each element ajk of Ai must be generated within a given interval I regardless of

probability distributions. I = [piajdt, 7J{ajkhJ, where p and 7J are constants,

{ajkh is the element of At. p and 7J should be determined so that the interval

I will be symmetric to ajk. For the purpose of the simulation conducted in

this study, 7J = 1.5 and p = 0.5 are used.

2. The mean of ejk should be equal to one, i.e. E(ejk) = 1.0. Equivalently, the

mean of ajk should be equal to {ajdt, i.e E(ajk) = {ajkh. Those relationships

are for all the simulated probability distributions.

From the simulation point of view, there are two ways to simulate the measurement

errors:

1. To generate the probability distribution of ejk with the mean value of E(ejk) =

1.0 (note: when ejk = 1, there are no measurement errors).

2. To create the probability distribution of ajk with the mean value, E(ajk) =

{ajkh =VjdVkt.

These two approaches are equivalentj they generate the data with the same mean

and same distribution. In this dissertation, the latter is adopted and the same

approach is also discussed in [66].

In the following three sections, we will discuss how to generate a group of pair

wise comparison matrices {Ai} by using the three probability distributions. The
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significance of the following sections is to demonstrate that under what conditions,

those three distributions will result in the same mean and with all or nearly all of

ajk generated by computer fall in the given interval I = [p{ajkh,77{aj."hJ. This

condition is very important for us to comparing the simulation results across those

distributions.

4.2.4 Generation of Uniform Distribution Input Data

This section describes how to generate a uniform distribution over the inter-

val I = [p{ajkh,77{ajkhJ for a computer simulation program. When we say a

distribution over an interval I = [p{ajkh, 77{ajkhJ, it means that the points (ajk)

generated by computer fall in the interval I with a given distribution. Two pa-

rameters need to be determined to completely specify the uniform distribution,

which are expected value (J.L) and variance. With the probability density function

p(ajk) = 1/[(77 - p){ajkhJ (suppose t is given), we have

(4.3)

(4.4)

(4.5)

With 77 = 1.5 and p = 0.5, from the above equations, we can get E(ajk) = {ajdt

and Var(ajk) = {ajd/ /12 = 0.08{ajk}/' This mean and variance will guarantee

that all ajk generated by computer fall into interval I = [0.5{ajd!> 1.5{ajk}tl.
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4.2.5 Generation of Lognormal Distribution Input Data

It is easy to notice that generated a ~ k s from the computer fall 100% in the interval

I for uniform distribution. However, for lognormal distribution, it is impossible for

all simulation observations (i.e. generated aiks) to fall in the interval I. This is due

to the nature of lognormal distribution, whose simulation observations can only fall

100% in the interval [O,ooJ. In order to make meaningful comparison of simulation

results between uniform and lognormal distribution, the objective is to make interval

I contain a substantial portion (say 90%) of simulated observations, which are aik's.

The rest of this section will derive the conditions for lognormal distribution such

that 90% of generated aik fall in the interval I = [p{aidt, T/{aikh].

Suppose x has a normal distribution with expected value (mean) J.1. and variance

a 2
, aik has the lognormal distribution with aik = eX. The objective is to determine

J.1. and a2 such that the interval I = [p{aidt, T/{ aikhJ would contain 95% simulated

aik. The probability density function of aik is as follows:

(4.6)

The r-th moment is

(4.7)

With this r-th moment, the expected value and variance are

(4.8)

(4.9)



110

As mentioned in section 4.2.3, we expect that E(ajk) = {ajkh. By using this

expression, we can get the relationship between Il. and {ajdt as follows:

(4.10)

From Eqn.4.l0, the normal distribution has mean Il. = In{ajkh - ~2 and a

standard deviation of a. As one of the characteristics for normal distribution states,

95% of observations of normal distribution fall in an interval of In{ajdt - a2/2 ±

2a. Consequently, the corresponding lognormal distribution contains 95% of its

observations in the interval I = [eln{ajhh-0"2 /2-20", e 1n{ajhh-0"2/2+20"]. Furthermore, we

expect that interval I equals [p{ajkh,1]{ajkh]. Combining these two expressions,

lower and upper bounds of interval I should satisfy the following conditions:

(4.11)

The expression in (4.11) is equivalent to following equations:

(4.12)

For any given p and 1], the equations in (4.12) can be solved by any approximation

method to get a. For example, if p = 0.5 and 1] = 1.5, the approximate solution is

a2= 0.05. From Il. = In{ajkh - ~2 , we can get Il. = In{ajk}t - 0.0025. Hence, the

interval I contains 100% of the uniform distribution and about 95% of the lognormal

distribution.

The expected value and variance of generated ajk, in case of lognormal distribu-

tions, are E(ajk) = {ajd!! and Far(ajk) = 0.05({ajkh)2 for p = 0.5 and 1] = 1.5.



111

The variance of the lognormal distribution, hence, is smaller than that of the uniform

distribution in this analysis.

4.2.6 Generation of Galllllla Distribution Input Data

In the above two sections, we have mathematically derived the expected value

and variance of aj/" such that ajk will fall in the interval of I = [p{ ajkh, 1}{ajkh]

100% and 95% for uniform and lognormal distributions, respectively. For gamma

distribution, the situation is more complex. It is very difficult if not impossible to

have an analytical form to express the conditions that the generated ajkS fall in the

interval I. Instead, we offer an explanation originally provided by Zahedi [66] as a

justification for the simulation. As we know, the standard gamma distribution with

mean equal to 1 becomes an exponential distribution, and the generation of the

gamma distribution has been carried out by directly generating ajk in the standard

gamma distribution:

(4.13)

The expected value and variance are equal to the true pairwise comparison value,

i.e. E(ajk) = {ajdt and Var(ajk) = {ajkh.

Due to the equality of mean and variance in the gamma distribution, it is impos

sible to develop a process similar to that of the lognormal distribution to establish

the compatibilityofthe confidence intervals. As pointed out in [66], "the Chi-square

distribution (which is a special form of gamma distribution with a variance twice as

large as the standard gamma), shows that the interval I (with p = 0.5 and 1} = 1.5)
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contains more than 80% of observations in all cases of ajk ~ o. For the standard

gamma with half the variance of Chi-square, this percentage should be higher, and

thus closer to 95%. The variance of the gamma distribution is higher than that of

the lognormal and uniform for all ajk ~ 12 and ajk ~ 12, respectively."

4.3 Performance Measurements

In the previous section, the generation of input data by using the perturbation

method has been discussed in detail, which is one of the most important compo

nents of simulation. In this section, another important component of simulation, the

performance measurements as indicated in section 4.1.2, will be discussed. Two mea

surements will be used to evaluate the performance of aggregation methods. Those

measurements deal with two significant aspects of the aggregated group judgment

and have been discussed in [1J. The first measurement is the accuracy measurement

or discrepancy between the actual (true) and aggregated group judgment value. The

second measurement is used to measure the satisfaction of group members with re

gard to the aggregated group judgment. These two measurements will be discussed

in detail in the following sections.

4.3.1 The Accuracy Measureluents (dd

Of considerable interest to us is the issue of how closely the group priority vec

tor developed by aggregation methods matches the "true" priority vector. In this

simulation study, the "true" priority vector is known due to our simulation design
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discussed in section 4.2.2. Therefore, to test for accuracy we must compare the ag-

gregated group results in simulations with real answers that are known. In general,

two statistical forms can be used for validating theoretical results against reality,

i.e. root mean square deviation (RMS) and the median absolute deviation about the

median (MAD). In this dissertation, RMS is used. This definition of accuracy, which

stands for the discrepancy between the "true" priority vector and the aggregated

priority vector is attractive for several reasons. First, RMS type measures are found

in numerous statistical problems for which a usual objective is the minimization of

RMS error. Second, RMS measures have already been adopted for use in measuring

the accuracy [3, IJ. Third, the results are easy to interpret.

To measure RMS discrepancy, we proceed as follows. For any give t (t =

1" .. ,T), we have two vectors: VI = (Vlt, Vu,'" ,Vnt) is the "true" priority vector

and itt = (Vlt, V2t, ... , Vnt) is the aggregated priority vector. The RMS discrepancy

for each tis:

1 n

- "[v 't - V'tFnLJ 3 J
3=1

(4.14)

Where n is the number of decision elements in the simulation, d1 stands for RMS

discrepancy. We should notice that in the simulation, there should be many groups

of pairwise comparison matrices generated in order to get statistical significance.

Suppose there are T simulation runs, T is the number of groups as illustrated in

section 4.1.2. Given the number of simulation runs, the mean (E) and the standard

deviation (S) of {ddt are used for collective comparisons over different aggregation
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methods. E and S are defined as follows:

(4.15)

(4.16)

4.3.2 The Disagreeluent Measurements (d2 )

Another important measurement, which was discussed in [24], used in a com-

parison study is the disagreement measurement (d2 ), which is designed to measure

the deviation among the group responses and aggregated priority vector. This mea-

sure is used to indicate the degree of alignment or correspondence of the group as

a whole to the aggregated priority vector, which means the smaller the d2 is, the

greater the degree to which the group members are aligned or correspond with the

aggregated priority vector. This degree of group lignment or correspondence can

also be interpreted as the consensus among group members. In order to define this

disagreement measurement, the RMS form of deviation is used for the disagreement

measurement.

qonsidering there are many simulation runs, for each simulation run, Vit =

({vlih, {V2i}t, ... ,{vnih) is the individual priority vector of given group t with i

simulated members (i = 1, ... ,m), ~ = (Vlt, V2t, ... , Vnt) is the aggregated priority

vector of group t (t = 1" .. ,T). By using the RMS concept, we get:

(4.17)
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where the {d2j h is the indication of the degree of satisfaction of group member i over

the aggregated priority vector tit. We also notice that the group disagreement deals

with two dimensions of data instead of one dimension as the accuracy measurement

did. These two dimensions come from decision elements j (1 to n) and number of

decision makers i (1 to m). Therefore, the group disagreement or the RMS form of

two dimensional data can be expressed as:

(4.18)

As indicated above, there are T simulation runs. The mean E and the standard devi-

ation (S) of disagreement measurement (d2 ) are also used for collective comparisons

over different aggregation methods. E(d2 ) and S(d2 ) can be expressed as:

1 T

E(d2 ) = T L:{d2h
t=l

1 T

E(d2 ) = T L{d2 }t
t=l

(4.19)

(4.20)

(4.21 )

4.4 The Simulation Approach

In the previous section, comparison study procedures in general have been pre-

sented. In this section, we will focus on illustrating the simulation approach in detail.

The simulation approach uses a computer to generate a large number of groups (T)

of pairwise comparison matrices, each group of pairwise comparison matrices con-

sists of m (number of decision makers) matrices. For the purpose of simulation
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performed in this study, T = 500 is used. As presented in section 4.1.2, T groups

of pairwise comparison matrices can be denoted as {Aih, where t = 1"" ,T and

i = 1"" , m. For each group of pairwise comparison matrices ({A;}), it represents

a group decision process with each of {Ad generated from computer. We should

also notice that the significant characteristics of actual judgments is the inconsis

tency inherent in the pairwise comparison matrix, which is due to the fact that

each individual has limitations. Those limitations may range from psychological

reasons to the scales used for eliciting the judgments and making consistent pair

wise comparison among elements. In order to mimic actual judgments, the pairwise

comparison matrix in {Adt has build-in inconsistency. The inconsistency is built by

using the perturbation mechanism which has been discussed in detailed in section

4.2. In general, perturbations are realized by introducing measurement errors into

each element of the pairwise comparison matrix, and the measurement errors are

generated by using certain probability distributions. Each group of pairwise com

parison matrix {Ai} is subject to the evaluations of judgment aggregation methods,

of prioritization methods, and of performance measurements. We also notice that

there are T groups of pairwise comparison matrices involved in the simulation. The

performance measure for each judgment aggregation method is in statistical form,

i.e. mean and standard deviation.



117

4.4.1 Data Generation Procedures

The simulation process starts with the generation of T groups of "true" values

of priority vectors \It = (VIt,V2t,'" ,Vnt), (t = 1,2,,,, ,T) by a random number

generator, where n is the number of decision elements involved and T is the number

of groups to be simulated. T also represents simulation runs. Then, for each \It =

(VIt,V2t,'" ,Vnt) a consistent pairwise comparison matrices At, (t = 1 to T), is

generated. At are computed by using {aidt = vitlvkt. Each matrix At, (t =

1,2"" ,T) forms the input to generate m pairwise comparison matrices in a given

group {Ah, (i = 1,2"" ,m), where m is the supposed number of decision makers

in the simulated group. Consequently, Ai is the ratio judgment of decision maker

i. Ai is generatdl by adding measurement errors to matrix At according to one

of the proposed probability distributions as indicated in section 4.2.3. For each

group of {Aih, (i = 1,2"" ,m), all combinations of aggregation methods with

prioritization methods are applied to produce the aggregated group priority vector

~ = (Vlt, V2t,'" ,Vnt).

The aggregated value of group priority vectors Vi = (VIt, V2t,' .. ,Vnt) are sub

jected to evaluations of performance measurements, which have been discussed in

section 4.3. The output of the simulation study consists of two sets of statistics

(mean and variance) with respect to the measurements. One measurement is for

the accuracy of the aggregated group priority vector against the "true" priority

vector. The second measurement is for the group disagreements among simulated

group members.
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4.4.2 Shnulation Control Factors

In summary, there are two important issues associated with the simulation ad

dressed in this chapter. One is the factors that influence the simulation process.

The other one is the evaluation of the performance of aggregation methods. It is

obvious that a large number of factors are involved in the above discussions. All

those factors influence the simulation processes. We call them control factors of the

proposed simulation. In general, giving different values of the control factors will

result in simulating different decision situations. The interpretation of simulation

results are mainly dependent on the control factors. There are seven control factors

in this analysis. They are :

1. number of decision elements or alternatives in a given decision problems (n),

2. number of decision makers (m),

3. judgment scales to be used,

4. number of simulation runs (T),

5. prioritization methods which are used to derive the priority vector,

6. probability distribution of the error terms, and

7. performance measurements.

All control factors, except the probability distribution of the error term, are

explicit and easy to understand. Probability distribution, which is one of the most
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important parts of this simulation, has been discussed in detail in section 4.2.3.

Another important component of this simulation is the performance measurement,

which also has been discussed in detail in section 4.3. The detailed steps for the

simulation are presented in the following section.

4.4.3 Simulation Procedures

Based on above discussions, the procedures, which are used to conduct the sim

ulation comparison study for any given judgment aggregation method, can be sum

marized in the following steps. These procedures are repeated for each aggregation

method.

Step 1: Generate T (number of simulation runs) groups of "true" priority vectors

Vi = (Vlt,Vu,'" ,Vnt), (t = 1,2,·,T). Each of those has n elements, which

represent the simulated decision elements.

Step 2: For any given t, which is from 1 to T, the priority vector Vi = (Vlt, Vu, ... ,vnd

generated from Step 1 is converted to a consistent pairwise comparison ma

trix At. The At is built by using At = ({ajkh) = (Vjtfvkt).

Step 3: For any given t, the consistent pairwise comparison matrix At, which is cre

ated in Step 2, is used to generate a group of pairwise comparison matrices

{Ai}t, where i = 1"" ,m, m is the number of simulated decision mak

ers. {A;}t are generated from At by using perturbation methods described

in section 4.2.3. There are three distributions to be considered, uniform,
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lognormal and gamma. Further, there are two possible approaches for judg-

ment aggregation as described in Step 4a and Step 4b.

Step 4a: Approach A: judgment aggregation method is operated on the pairwise

comparison matrices. In this step, the generated group pairwise comparison

matrices {Adt are aggregated by using one of the aggregation methods.

The aggregated group pairwise comparison matrix At (for any given t) is

then used to derive the group priority vector ~ (for any given t). The

group priority vector ~ is derived by employing one of fifteen prioritization

methods listed in Table. 4.2.

Step 4b: Approach B: judgment aggregation method is operated on priority vector of

each simulated group member. In this approach, priority vectors {V;h (i =

1, ... , m) for simulated group members are derived from the corresponding

pairwise comparison matrix {Aih. {V;h are obtained from one of fifteen

prioritization methods listed in Table 4.2. The group priority vector is

obtained from aggregating {V;h by using a given aggregation method.

Step 5: For each aggregated group priority vector from Step 4a or 4b, the perfor

mance measurements, i.e. the accuracy measurement and group disagree

ment measurement, are calculated and those results are saved.

Step 6: Go to Step 4a or 4b for another combination of the prioritization method

and aggregation method. This process is repeated until all combinations

are exhausted. Then go to Step 7.
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Step 7: Go to Step 3 for another probability distribution for error terms until all

proposed probability distributions are exhausted. Then go to Step 8.

Step 8: Go to Step 2 for another "true" priority vector until all (total of T ) the

"true" priority vectors created in Step 1 are exhausted. Then go to Step

10.

Step 9: For each combination of the probability distribution and prioritization

method, the mean and standard deviation of the performance measure

ments over T simulation runs are calculated for analysis.

Step 10: For a given judgment aggregation method, stop. Or, go to Step 1 for

another judgment aggregation method. The process is repeated until all

judgment aggregation methods listed in Table. 4.1 are finished.

A detailed flow chart of these steps, which also reflects the computer implemen

tations of the simulation, is presented in Fig. 4.2 and 4.3. The difference of these

two figures is that Fig. 4.2 is for the judgment aggregation methods operated on

pairwise comparison matrices. Fig. 4.3 is for the judgment aggregation methods

operated on the priority vectors.
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4.5 The Empirical Approach

Simulation study is a fast way to reproduce or partially produce the real situation

of pairwise comparison judgment. Significant differences may exist between the sim

ulated judgments and real judgments made by real people. The reasons, which may

respond to this discrepancy, are due to the limited probability distribution involved

in the perturbation mechanism of a simulation and the uncertainty involved in the

underlying distribution of the real judgments made by individuals. Consequently, it

is desirable to test the aggregation methods by using the actual data from individ

uals' judgments. In addition to the above discussed simulation, a set of empirical

judgment data have also been used to test the aggregation methods. Those data

were collected from an IE-204 course at the University of Pittsburgh in 1984, and

were also used in [55] to test the appropriateness of prioritization methods. A total

of 39 graduate students were asked to estimate values of various elements in seven

categories, as summarized in Tables 4.5 and 4.5. All the categories had six judgment

elements. Objective values were known but not given to the students, and those

values are also presented in Table 4.5 and 4.5. In Appendix D, the data collected

for the seven categories are listed.

The procedures to test those seven categories are presented in the following steps,

which is similar to the one we have presented for the simulation. There are some

differences; the input data is not generated by computer and it is real judgment data.

There is only one group for each category; therefore, the performance measurements

are not in statistical form. The objective is to calculate the measurements for all
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combinations of aggregation methods and prioritization methods. Then the results

are compared with simulation results and among themselves. The procedures to

conduct the above mentioned test are summarized as follows:

Step 1: Get a group of actual pairwise comparison matrices from disk {Ai}e, which

is also corresponding to a category, where i = 1" .. ,m, m is the number of

students in a given category, C is the number of categories in the empirical

test (C = 1" .. ,7). As we pointed out in the simulation procedure, there

are two possible approaches for judgment aggregation indicated in Step 2a

or Step 2b.

Step 2a: Approach A: judgment aggregation method is operated on the pairwise

comparison matrices. In this step, the group pairwise comparison matrices

{Ai}e are aggregated by using one of aggregation methods. The aggregated

group pairwise comparison matrix Ae (for any given C) is then used to

derive the group priority vector Ve (for any given C). The group priority

vector Ve is derived by employing one of fifteen prioritization methods listed

in Table 4.2.

Step 2b: Approach B: judgment aggregation method is operated on priority vector of

each simulated group member. In this approach, priority vectors {Vi}e (i =

1", . ,m) for simulated group members is derived from the corresponding

pairwise comparison matrix {Ai}e. {Vi}e are obtained from one of fifteen

prioritization methods listed in Table. 4.2. The group priority vector is

obtained from aggregating {Vi}e by using a given aggregation method.
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Step 3: For each aggregated group priority vector from Step 2a or 2b, the perfor-

mance measurements, i.e. the accuracy measurement and group disagree

ment measurement, are calculated.

Step 4: Go to Step 4a or 4b for another combination of the prioritization method

and aggregation method. This process is repeated until all combinations

are exhausted. Then go to Step 5.

Step 5: For a given judgment aggregation method, stop. Or, go to Step 1 for

another judgment aggregation method. The process is repeated until all

judgment aggregation methods listed in Table 4.1 are finished.

Modified flow charts of Fig. 4.2 and 4.3 are presented in Fig. 4.4 and 4.5

to represent the above described steps. Those two figures also reflect the computer

implementations of empirical tests. The differences of those two figures are that Fig.

4.4 is for the process of judgment aggregation methods operated on the pairwise

comparison matrices. Fig. 4.5 is for the case of judgment aggregation methods

operated on the priority vectors.
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Table 4.3: The Estimation Categories

I Actual

1 8 (0.18)

2 5 (0.11)

3 7 (0.16)

4 9 (0.20)

5 6 (0.13)

6 10 (0.22)

~ Category 1 ILengths of Straight Line (cm)

IActual

1 Between Pittsburgh and Cleveland 115 (0.04)

2 Between Pittsburgh and Detroit 205 (0.07)

3 Between Pittsburgh and Indianapolis 330 (0.11)

4 Between Pittsburgh and Miami 1010 (0.35)

5 Between Pittsburgh and New Orleans 910 (0.32)

6 Between Pittsburgh and New York 317 (0.11)

~ Category 2 IAIr DIstance (miles)

I Actual

1 Pittsburgh Steelers 4 (0.29)

2 Dallas Cowboys 2 (0.14)

3 Washington Redskins 1 (0.07)

4 Green Bay Packers 2 (0.14)

5 Oakland Raiders 3 (0.22)

6 Maimi Dolphins 2 (0.14)

~ Category 3 I Number of Super Bowls Won

I Actual

1 Boston 2,763,357 (0.10)

2 Chicago 7,103,328 (0.26)

3 Houston 2,905,350 (0.11)

4 New York 9,119,737 (0.33)

5 Pittsburgh 2,263,894 (0.08)

6 San Francisco 3,252,751 (0.12)

~ Category 4 I MetropolItan

~ , - I_c_o_n_tI_nu_e_d_o_n_n_e_x_t-=-p_a=-ge --,- - - ' ~
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Table 4.4: The Estimation Categories (Continued)

1 Atlanta 37,594,073 (0.22)

2 Chicago 37,992,151 (0.22)

3 Dallas/Fort Worth 25,533,929 (0.15)

4 Los Angeles 32,722,534 (0.20)

5 New York JFK 25,752,719 (0.15)

6 Pittsburgh 10,112,266 (0.06)

~ Category 5 IAnnual Number of Passengers in Airports IActual ~

~ Category 6 IProfessIOnal m Major OccupatIOns ] Actual

1 Accountants 1,126,000 (0.26)

2 Computer Programmers 367,000 (0.08)

3 Engineers 1,537,000 (0.35)

4 Lawyers and Judges 581,000 (0.13)

5 Life and Physical Scientist 311,000 (0.07)

6 Physicians 454,000 (0.10)

~ Category 7 ICountry PopulatIons (m Milhons) IActual

1 Brazil 124.5 (0.05)

2 India 700.0 (0.29)

3 Japan 118.5 (0.05)

4 People's Republic of China 1020.0 (0.41)

5 Unites States 232.0 (0.09)

6 USSR 269.9 (0.11)



Chapter 5

SIMULATION RESULTS AND

DISCUSSIONS

In chapter 4, several issues regarding procedures for comparison study and sim

ulations are discussed; among those discussions are:

Gl Why and how the simulation for aggregation methods were carried out .

• Perturbation method for generating the pairwise comparison matrices for sim

ulation were illustrated.

• Performance measurements for comparing the test results were presented.

We will carry further the study of aggregation methods by looking at simulation

and empirical testing results. As we pointed out in the beginning of chapter 4,

the purpose of the simulation study is to examine the characteristics of aggregation

methods for group decision making and to provide the guidelines for users to apply

these methods. In group decision situations, there are several issues we are concerned

about such as how many decision makers should be in the decision making group,

who should be in the decision making group, and how complex is the decision making

task.

Those who are chosen to be in the decision making group determine the judg-
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ments (i.e. the input data to the aggregation process), because the judgments are

the reflections of decision makers' knowledge and information. How many decision

makers should be in the decision making group usually is determined by the com

plexity of the decision making task. One measure of complexity is the number of

decision elements. In general, the more the decision elements are, the more decision

makers are needed because the capability to handle the decision making elements

are limited for each individual decision maker. However, the capability limitation for

each individual decision maker is not modeled in our simulation process presented in

the Chapter 4. On one hand, this capability limitation is not a major issue from the

aggregation point of view. On the other hand, modeling the capability limitation

process is a very complex task and psychological in nature, which is out the context

of this dissertation. Therefore, results are interpreted by the following categories:

1. aggregation methods vs. input data type

2. aggregation methods vs. prioritization methods

3. aggregation methods vs. number of decision makers

5.1 Simulation Set Up

The proposed simulation study and empirical test, which have been discussed

m Chapter 4, have been carried out by using two kinds of software: the IMSL

MATH/LIBRARY and LINDO. The IMSL MATH/LIBRARY is a collection of

FORTRAN subroutines and functions useful in research and mathematical analy-
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sis, which includes subroutines as linear systems, eigensystem analysis, optimization

and so on. To use any of these routines, a program in FORTRAN must be written

to call the IMSL MATH/LIBRARY routine. Two routines were called in our study.

One is EVCRG, which is used to calculate the maximum eigenvalue and its corre

sponding eigenvector. Another is BCLSF, which is used to solve a nonlinear least

squares problem in our study. LINDO is an optimization modeling system to deal

with linear, nonlinear and integer programming. This program is used to solve the

goal programming which we proposed in Chapter 3 for MDM aggregation methods.

All the simulation and calculations are conducted on the IBM mainframe 4381.

The simulation results are summarized into two groups according to the perfor

mance measurements, which are accuracy and disagreement. The simulation results

for accuracy measurement are presented in Appendix B. Appendix C contains the

simulation results for group disagreement measurement. All the notations in Ap

pendix B, Appendix C and in this chapter are consistent with the notation defini

tion of Table 4.1 and Table 4.2. Table 4.1 defines the abbreviations for aggregation

methods, which covers the geometric mean operated on the final priority vector,

geometric mean method operated on pairwise comparison matrix, arithmetic mean

operated on final priority vector, minimum distance method operated on the final

vector and minimum distance method operated on the pairwise comparison matrix.

Table 4.2 covers all the notations for prioritization methods. The other notations

used in Appendix B, C and in this chapter but not included in Table 4.1 and 4.2

are summarized in the following: UF stands for uniform probability distribution

in perturbation process, LN represents lognormal probability distribution, and GA
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stands for gamma probability distribution in the perturbation process.

In simulation, only the selected value of control factors nand m are simulated.

This will not lose the generality of this study because for the other values of n

and m, the behaviors are the same as those which have been simulated. As we

also pointed out in Chapter 4, the simulation is very complex due to involving not

only aggregation methods but also the prioritization methods. Five aggregation

methods (considering data types on which the aggregation methods operated) have

been studied. For each aggregation method, there are fifteen prioritization methods

to combine with. This significantly increases the time to run the simulation. Due to

limited computer resources, only certain nand m are simulated. The size (n) of the

input matrices of pairwise comparisons (also referred to as the number of decision

elements) in the simulation study is set to be 8, 10 and 12 instead of 3 to 15. The

number of decision makers simulated is 3, 5, 7 and 9. The number of simulation runs

(T), which is for each combination the aggregation method, prioritization method,

number of decision elements, and number of decision makers, is 500. The judgment

scale is [1/9, 9]. We should also notice that the input matrices are formed once in

the "symmetric" fashion in which the elements of the upper triangle of a matrix

are generated by using ajk = (Vj/vk)ejk and the elements of the lower triangle are

computed from akj = 1/ajk. The discussion of the simulation results are presented

in the following sections.
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5.2 Aggregation Methods vs. Type of Input Data

The relationship between aggregation methods and the type of input data is one

of the major concerns of this simulation study. The input data here refers to the

judgments made by decision makers, or in our simulation situation the generated

pairwise comparison matrices. Three sets of input data have been studied, based

on the perturbation distribution utilized uniform, lognormal and gamma. As dis

cussed in Chapter 4. The implication is that when using a uniform perturbation, for

example, the probability for decision makers to have the same judgment is equal,

which also means that the decision makers have the same information and knowl

edge about the decision to be made. In this section, the influence of distributions,

i.e. the input data type, on group decision making in terms of accuracy and group

disagreement measurements are investigated.

Accuracy: The simulation results with respect to the input data type are pre

sented in Fig. 5.1 through Fig. 5.5. In those figures, the horizontal axis represents

the prioritization methods in their In. No. as indicated in Table 4.2. Throughout

the whole chapter, all the figures' horizontal axis are the same. The vertical axis

represents the mean of accuracy measurement over all the simulation runs. Accu

racy is the function of data type as shown in Fig. 5.1 to Fig. 5.5, which means

for any given aggregation and prioritization methods, the accuracy is dependent on

data type. Lognormal distribution input data type presents better accuracy than

both uniform and gamma distribution, and gamma distribution yields the least ac

curacy. This is under the condition that the simulation data, i.e. the elements (ajl")
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of pairwise comparison matrix) fall in the interval [0.5aik) 1.5aik], where aik is the

given "true)) value. Fig. 5.1 through Fig. 5.5 only demonstrate the case of N = 8

and M = 3 for all the aggregation methods. The result is the same for all other

combinations of Nand M as well (see Appendix B for detail). The patterns of

Fig.5.l through Fig. 5.5 are the same, which means that functionality of all the

aggregation methods for the same data type is the same.

Group disagreement: The simulation results for group disagreement with

respect to three different input data types are presented in Fig. 5.6 through Fig.

5.10. As indicated in those figures, group disagreement is also a function of data

types) which means for any given aggregation and prioritization methods) the group

disagreement is dependent on data type. As with accuracy measurement, lognormal

distribution input data type presents better group agreement than both uniform and

gamma distribution, and gamma distribution yields the worst group agreement. We

should notice that the vertical axis in Fig. 5.6 through Fig. 5.10 represents the

mean value of group disagreement measurement over all 500 simulation runs. The

patterns demonstrated in Fig. 5.6 through Fig.5.l0 can be explained by the same

reason as mentioned in the accuracy section above) which is due to the variance

(a2
) of input data distributions. The lognormal distribution has smaller a2

) and the

simulation data) i.e. aggregation results, generated by this distribution are closer to

their true data; hence, the group disagreement is smaller. The results demonstrated

in Fig. 5.6 through Fig. 5.10 are the case of N = 12 and M = 7. This result is also

true for all other combinations of Nand M as well (see Appendix C for detail).
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Performance within given distribution: The general relationships of ag-

gregation methods with input data types have been presented above. As expected,

the higher the variance of input data, i.e. the input pairwise comparison matrices,

the worse the aggregation results. Now let us look one step further within each

input data distribution at how the aggregation methods are functioning. For uni

form input data type, the performance of aggregation methods is shown in Fig. 5.11

and Fig. 5.14 for accuracy and group disagreement measurement, respectively. The

MDM approach operated on the final priority vectors gives inferior results com

pared with other aggregation methods for a given accuracy level. For lognormal

input data distribution, simulation results are illustrated in Fig. 5.12 and Fig. 5.15

for accuracy and group disagreement measurement, respectively. The results are

the same as the uniform input data type with the MDM operated on the final prior

ity vectors giving the "worst" result. The rest of aggregation methods give almost

identical results, and the difference among them are very small. Simulation results

regarding the gamma distribution are shown in Fig. 5.13 and Fig. 5.16 for accuracy

and group disagreement measurement, respectively. Contrary to the uniform and

lognormal distribution cases, the MDM operated on both final priority vectors and

pairwise comparison matrices gives better results for all the prioritization methods

as indicated in Fig. 5.13 for accuracy measurement, while the group disagreement

measurements are close to each other for all the aggregation methods. In general, if

the input data have higher variance, the MDM gives better results than any other

aggregation method. Otherwise, the arithmetic mean method gives slightly better

results than the rest of the aggregation methods. MDM operated on the final prior-
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ity vectors does not give as accurate measurements as the other methods when the

variations are low.
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5.3 Prioritization Methods vs. Aggregation Meth

ods

Another dimension of our interests is the combination of different prioritization

methods with aggregation methods. The key questions are: which combination will

give us good results in terms of accuracy and group disagreement measurement,

among all the combinations? Are there any differences among themselves? These

questions are the focus of this section. As usual, all our discussions are in terms of

accuracy and group disagreement measurements.

Accuracy: Simulation results for different combinations of prioritization meth-

ods and aggregation methods are illustrated in Fig. 5.11 through Fig. 5.13, which

are classified by input data distribution. For given types of input data distribution

and the simulated decision making environments (i.e. the number of decision mak-

ers and decision elements, etc.), different combinations result in different levels of

the mean of accuracy over all 500 simulation runs for given types of input data and

decision environments, i.e. the number of decision makers and decision elements,

etc. There are differences between prioritization methods to prioritization method.

Some of them are considerably large, and some of them small. For uniform input

data distribution, the prioritization methods 2, 3, 4, 5, 10, 11, 12 and 14 produce

almost identical results over all aggregation methods except MDM operated on fi-

nal priority vector as shown in Fig. 5.11. We also notice that some combinations

generate far worse results, such as the combination of prioritization 1 with the geo-

metric mean method or arithmetic mean. In general, the combination of aggregation
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methods with any prioritization method gives worse results. For lognormal input

data distribution, the relationship between aggregation methods and prioritization

methods is almost the same as the uniform case as shown in Fig. 5.12. For gamma

distribution, the prioritization methods 1, 2, 3, 4, 5, 10, 11, 12 and 14 produce

almost identical results over all aggregation methods, but also notice that prioriti-

zation methods 13 and 15 produce better results for all the aggregation methods.

The results discussed above are summarized in Table 5.1.

Table 5.1: The prioritization methods with good mean accuracy and good mean

disagreement over different input data type for all the aggregation methods

1 CSM

2 R-EV X X X

3 L-EV X X X

4 AM-EV X X X

5 GM-EV X X X

6 EV[AA']

7 EV[A'A]

8 AM - EV[AA']

AND EV[A'A]

9 GE - EV[AA']

AND EV[A'A]

10 GE X X X

11 C-RSM X X X
12 MT X X X
13 SAY X
14 NEV

15 LSM X

~ ID NO. ~ ABBREVIATIONS IUniform I Lognormal I Gamma ~

Group disagreement: The simulation results of group disagreement, which

are represented by prioritization methods and aggregation methods, are shown in
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Fig. 5.14 through Fig. 5.16 according to the input data distribution. Different

combinations of prioritization and aggregation methods result in different group

disagreement as in Fig. 5.14 through Fig. 5.16, which are for a given type of in

put data distribution and decision environment, i.e the number of decision makers

and decision elements, etc. The difference is very small for all aggregation meth

ods even though the MDM operated on the final priority vector generates higher

group disagreement for all input data distribution and prioritization methods. For

uniform and lognormal input data distribution, prioritization methods 7, 13 and 15

give higher group disagreement, especially for MDM approach. For gamma input

data distribution, contrary to the uniform and lognormal cases, the prioritization

methods 13 and 15 combined with MDM produce better results than any other pri

oritization methods, while for all other combinations of prioritization methods and

aggregation methods, the group disagreement is very close as shown in Fig. 5.13

with prioritization methods 6, 8, 14 giving the worse results.

Table 5.1 summarizes which prioritization methods yield very good agreement

with respect to all given aggregation methods and input data distributions. All the

prioritization methods marked with X in Table 5.1 generated very close mean of

accuracy and group disagreement for all given aggregation methods. The difference

of magnitude among all marked prioritization methods is less than 10%. For input

data distribution with large variance, we should notice that simple average prioriti

zation methods (10 No. 13), which is combined with any aggregation method, create

better results for both accuracy and group disagreement. Prioritization methods 7

and 9 in general, generate much worse results in terms of accuracy measurement, as
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we see in Fig. 5.11 and Fig. 5.12. For N = 10 and N = 12, those two prioritization

methods are significantly worse (usually they are 200% to 50% worse; see Appendix

B for details) than the rest of the methods. Therefore, some of the figures in the

following sections have omitted those two methods in order to better illustrate the

rest of the prioritization methods.

5.4 Aggregation Methods vs. Number of Deci

sion Makers

The influence of the number of decision makers on the decision outcome, i.e.

the accuracy and group disagreement, is the focus of this section. Specifically,

we are concerned with how the aggregation methods function, and if there are

differences among the aggregation methods with respect to an increase in the number

of decision makers. The following discussions are also classified by accuracy and

group disagreement measurements.

Accuracy: Fig. 5.17 through Fig. 5.31 summarize the simulation results for

the N = 10 case according to aggregation methods and input data distributions. In

general, accuracy increases (small mean accuracy value) by increasing the number

of decision makers (M) under the condition that the type of input data and number

of decision elements (N) are given. But we should notice that the rate of improve-

ment for accuracy measurement reduces significantly when you compare the change

of M = 3 to M = 5 with the change of M = 5 to M = 7. These phenomena are

true for all the combinations of input data distribution and aggregation methods as
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shown in Fig. 5.17 through Fig. 5.31. As a numerical example, look at Fig. 5.17

for prioritization method 10 (geometric mean approach). The mean accuracy for

different M s are as follows:

d1(M=3) = 0.00666,

d1(M=7) = 0.00489,

d1(M=5) = 0.00551

d1(M=9) = 0.00453

(5.1 )

(5.2)

where d1 stands for accuracy measurement. It can be seen that if decision makers

increase from M = 3 to M = 5, the accuracy measurement improves 17%, while

the improvement for changing M from 7 to 9 is 7%. Therefore, further increases to

the number of decision maker means the benefit of increasing the accuracy will be

diminished. After all, we should keep in mind that this conclusion is a result of the

fact that we assume that all decision makers' judgments are in the same interval

[0.5ajk, 1.5ajk] and have the same probability distribution of the judgments. In other

words, theses results tell us that adding more decision makers to a decision making

group will enforce the decision if the new members have the same knowledge or

biases. But the improvement is limited as the number of decision makers increase.

Group disagreement: Fig. 5.32 through Fig. 5.46 are the simulation results

for group disagreement with N = 10 according to input data distributions and ag

gregation methods. Group disagreement decreases as the number of decision makers

(M) increases for a given type of input data and number of decision elements as

indicated in Fig. 5.32 through Fig. 5.46. This may contrary to people's thinking

about the increase in the number of decision makers. Usually, people think that
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group disagreement may become larger with an increasing number of decision mak-

ers in a decision making group. This may be true if the decision makers added to

the decision making group have different knowledge and information. But in our

simulation we assume that all decision makers' judgments are in the same interval

([O.5ajk,1.5ajk]) with the same knowledge level (or distribution) of a given subject;

therefore, increasing the number of decision makers results in reinforcing the previ-

ous decision. Otherwise, this characteristic may not exist, which is obvious. Hence,

the conclusion presented here is also valid. We also notice the same characteristics

as accuracy measurement: the group disagreement decreases by increasing the num-

ber of decision makers in the decision making group. The improvement is decreases

as the number of decision makers increase.
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5.5 Analysis of the empirical test of the aggrega

tion methods

In previous sections of this chapter, the simulation results have been presented

and discussed. As we mentioned before, the simulation approach is a fast way to

reproduce or partially produce the real situation of a pairwise comparison. But

there are limitations for the simulation approach, such as the capability limitation

of each decision maker as we discussed at the beginning of this chapter. For this

and other reasons, this dissertation also presents limited empirical test results for all

the aggregation methods. The discussion of the empirical data sets have been pre-

sented in section 4.5. In this section, the results of this empirical test are analyzed.

The discussion will focus on the accuracy and group disagreement measurements.

The calculation results are presented in Appendix E. In general, the empirical test

supports the results from the simulation study.

Accuracy: Fig. 5.47 through Fig. 5.53 are empirical testing results of accu-

racy measurements. The empirical test results are input data type dependent. For

different categories, the distributions of judgments are different due to the knowl-

edge level difference of each individual who gives the judgments. The influence of

judgment distribution on accuracy is significant from category to category, which

can be seen from the mean accuracy value of 0.006 for category one to 0.066 for

category six in Fig. 5.47 and Fig. 5.52, respectively. In the empirical test, the

aggregation method of the MDM produces better results overall than any other ag-

gregation methods. This is consistent with the above simulation study with gamma
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input data distribution. The MDM operated on the pairwise comparison matrices

(i.e. A-MDM(M)) outperforms other aggregation methods. For any given category

(one through seven), the combination of an aggregation method with a prioritization

method yields the same pattern for most cases. This means the relationship among

aggregation methods in terms of accuracy measurement is nearly the same for all

the prioritization methods. In general, the prioritization methods 1, 2, 3, 4, 5, 6,

10, 11, 12 and 13 perform very consistently across all categories as indicated in the

above simulation and empirical results.

Group disagreement: The simulation results for group disagreement are pre

sented in Fig. 5.47 through Fig. 5.53. For any give category, all the combinations of

aggregation methods with prioritization methods perform almost identically, which

is also consistent with the simulation results. Across different categories, the higher

the variance of input data, the higher the disagreements, which is expected.
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5.6 Summary of the Analysis

So far in this chapter, the simulation results and empirical test results have been

presented. We have discussed the following relationships:

• aggregation methods vs input data type

It aggregation methods vs prioritization methods

It aggregation methods vs number of decision makers

Those discussions dealt with different aspects of the performance of prioritization

methods, aggregation methods and the relationship among them. In this section, the

performances of prioritization methods and aggregation methods are summarized in

tables 5.2, 5.3, 5.4 and 5.5 according to the performance measurements.
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Table 5.2: The comparison of prioritization methods for accuracy

1 CSM Very Good Good

2 R-EV Very Good Very Good

3 L-EV Very Good Very Good

4 AM-EV Very Good Very Good

5 GM-EV Very Good Very Good

6 EV[AA'] Unstable Unstable

7 EV[NA] Unstable Unstable

8 AM - EV[AA'] Unstable Unstable

AND EV[A'A]

9 GE - EV[AA'] Unstable Unstable

AND EV[A'A]

10 GE Very Good Very Good

11 C-RSM Very Good Very Good

12 MT Very Good Very Good

13 SAV Unstable Unstable

14 NEV Unstable Unstable

15 LSM Unstable Unstable

~ ID NO. IABBREVIATIONS ~ Empirical Data ~ Simulation Results ~
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Table 5.3: The comparison of prioritization methods for group disagreement

~ ID NO. I ABBREVIATIONS ~ Empirical Data ~ Simulation Results ~

1 CSM Very Good Very Good

2 R-EV Very Good Very Good

3 L-EV Very Good Very Good

4 AM-EV Very Good Very Good

5 GM-EV Very Good Very Good

6 EV[AA'] Unstable Unstable

7 EV[A'A] Unstable Unstable

8 AM- EV[AA'] Unstable Unstable

AND EV[A'A]

9 GE - EV[AA'] Unstable Unstable

AND EV[A'A]

10 GE Very Good Very Good

11 C-RSM Very Good Very Good

12 MT Very Good Very Good

13 SAV Unstable Unstable

14 NEV Unstable Unstable

15 LSM Unstable Unstable



Table 5.4: The comparison of aggregation methods for accuracy

180

Aggregation Empirical Simulation Results

Methods Data Gamma Uniform/ Lognormal

A-GE(V): The Geometric

Mean operates on the Good Good Very Good

priority vector

A-GE(M): The Geometric

Mean operates on the Good Good Very Good

pairwise comparison matrix

A-AM(V): The Arithmetic

Mean operates on the Good Good Very Good

priority vector

A-MDM(M): The

Minimum Distance Method Very Good Very Good Good

operates on the pairwise

comparison matrix

A-MDM(V): The

Minimum Distance Method Very Good Very Good Fairly Good

Operates on the

priority vector



Table 5.5: The comparison of aggregation methods for group disagreement
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Aggregation Empirical Simulation Results

Methods Data Gamma Uniform/Lognormal

A-GE(V): The Geometric

Mean operates on the Good Good Good

priority vector

A-GE(M): The Geometric

Mean operates on the Good Good Good

pairwise comparison matrix

A-AM(V): The Arithmetic

Mean operates on the Very Good Very Good Very Good

priority vector

A-MDM(M): The

Minimum Distance Method Good Good Good

operates on the pairwise

comparison matrix

A-MDM(V): The

Minimum Distance Method Good Good Good

Operates on the

priority vector



Chapter 6

CONCLUSIONS

In this dissertation, we have fulfilled the following two objectives:

1. Using the general distance concept developed by Yu [4J and Cook et al. [5], and

the representation of group aggregated judgments (..4 or V) as weighted geo

metric mean of group members' judgments ({A;} or {Vi}, where i = 1,· .. , m),

a new aggregation method -Minimum Distance Method (MDM)-was devel

oped. Both approaches (i.e. Approach A and Approach B) were investi

gated for the MDM. Approach A stands for the MDM operated on pairwise

comparison matrices. Approach B stands for the MDM operated on priority

vectors.

2. Using the simulation method and empirical test approach, evaluation of the

performance of aggregation methods was conducted. Two performance mea

surements were used for this purpose. Accuracy measurement was to measure

how close the aggregated group judgments in terms of relative weights matched

the "real" relative weights of decision elements. The group disagreement mea

surement was designed to measure the deviation between the group members'
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judgments and the aggregated group judgments. Aggregation methods that

were under investigation are:

o geometric mean operated on pairwise comparison matrices

• geometric mean operated on priority vectors

• arithmetic mean operated on priority vectors

o MDM operated on pairwise comparison matrices

• MDM operated on priority vectors

All of these studies are under the framework of the Hierarchical Decision Model

(HDM) via the Analytic Hierarchy Process (AHP) with emphasis on the pairwise

comparison technique. In addition to the above two objectives) we surveyed the

literature categorized and summarized research works in the AHP area, Group de

cision making characteristics and techniques are also discussed in chapter 2. In

the following sections, we conclude our research reported in this dissertation, which

includes the findings of this research and future works.

6.1 Main Results

Based on our study, simulation results and empirical test results) we conclude

that:

• The most important factors in the aggregation and estimation of pairwise

comparison judgments are the probability distribution of error terms and the
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aggregation method. Using an appropriate aggregation method will result in

significant improvement of decision quality in terms of accuracy.

I

o MDM outperforms the other aggregation methods in terms of accuracy mea-

surement when empirical da.ta are used.

• Simulation results also indicate that the MDM outperforms the other aggre

I

gation methods: in term of a.ccuracy measurement under certain distributions

I

of the input data, such as the gamma distribution.

I

o MDM works best on pairwise comparison matrix vs. final priority vector.

• Geometric mean and arithmetic mean produce better results in terms of ac

I

curacy measurement when the simulated perturbations follow a uniform dis-

tribution or a lognormal distribution.

o The arithmetic mean aggregation method performs better than any other ag-

gregation method in terms (J)f group disagreement. But the difference among

I

aggregation methods is veryl small, which has also been demonstrated in the

I

empirical test.

• The influence of the prioritization method on the aggregation method is not

I

significant. There is no combination of aggregation method and prioritization

method that yields markedly different results. As indicated in the empirical

I

test, for any given category\ one aggregation method performs better than

other aggregation method fo!! all prioritization methods.
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• The simulation and empirical test results suggested that the following priori-

tization methods could be dropped out.

1. EV[AA'] - eigenvector of [AA'] matrix

2. EV[A'A] - eigenvector of [A'A] matrix

3. AM EV[AA'] and EV[A'A] -arithmeticmeanofeigenvectorof[AN]

and [A'A] matrices

4. GM EV[AA'] and EV[A'A] - geometric mean eigenvector of [AA']

and [A'A] matrices

because they generally produce worse results than any other prioritization

method in terms of accuracy, and they show the highest degree of sensitivity

toward the underlying distribution of error terms.

• Simulation results also indicated that increasing the number of decision makers

in a group will effectively increase the quality of the decision making. If

all group members uniformly have one of the following input data types 

uniform distribution, lognormal distribution and gamma distribution. But the

improvement diminish with further increase of number of group members.

6.2 Contributions

The major contributions of this dissertation are as follows:

o A new approach - Minimum Distance Method (MDM) - to aggregate group

pairwise comparison judgments has been developed.
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- MDM, which employs the general distance concept, was proven to be

very appealing to the compromise nature of group decision making.

- MDM preserves all characteristics of the functional approach (i.e. geo

metric mean approach), which was proposed by Aczel and Saaty [6, 7, 8].

- MDM can aggregate not only the pairwise comparison matrices, but also

the final priority vectors.

- The sensitivity analysis can be performed on MDM to investigate the

effect of varying the decision makers' relative importance in terms of

weights in the goal programming. Sensitivity analysis allows us to make

robust decisions.

• A methodology has been developed and demonstrated for the evaluation of

aggregation methods

6.3 Suggested Future Work

This study focus on aggregating the group pairwise comparison judgments as

well as the performance issues of aggregation methods. These are only some of the

aspects of decision analysis of HDM or AHP. There is much additional research

to be done. The research areas listed below would enhance the findings of this

dissertation.

1. Further Study of the Aggregation Methods: Further study of the

aggregation methods with more complete and more readily available experi-
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mental data. Those experimental data should include the changes of decision

elements, decision makers and decision makers' knowledge level of decision

problem.

2. Sensitivity and Comparison Analysis in the Hierarchy: The pairwise

comparison technique described in the dissertation is a building-block of the

HDM or AHP, which has been developed for complex decision-making prob

lems to select alternatives with respect to a specified objective through multi

ple criteria and multiple levels. There are several approaches for aggregating

the vectors of relative weights under multiple criteria and multiple level. To

put the group aggregation methods into the context of multiple criteria and

multiple level is very important. The questions for this study would be what

is the influence of the methods for aggregating the relative weights in hier

archy to the aggregation methods among decision makers. What is the best

combinations of them to yield the best performance as regarding to accuracy

and group disagreement, etc

3. Measurement to Test the Judgment Distribution: In the dissertation,

the simulation study and empirical test have demonstrated that the perfor

mance of aggregation methods is highly dependent on the input data type.

Therefore, it is highly desirable to have some kind of measurement to link the

judgment distribution to the choice of aggregation methods.

4. Software and Field Testing Developing software to facilitate the usage of

these methods in real situations, and also help the field testing of the software.



Appendix A

The Prioritization Methods

AHP

•
In

The input matrix of pairwise comparisons shows the extent that one element

is preferred over another in achieving an objective of one level higher in hierarchy.

If there were no measurement errors in the input data (i.e. pairwise comparison

matrix), the n x n square matrix of pairwise comparisons would be:

{allh {aI2h {alnh

{a2Ih {a22h {a2nh

At = (A.I)

where n is the number of decision elements, {aikh = {vih/{vdl and Vi: = ({Vdll

... ,{vnh) is the vector of actual relative weights of n elemets. However, the pairwise

comparison matrix A = (aik), which are actual judgments by real people, contains

measurement errors. Therefore, aik i- {vihi{Vkh- Furthermore, in most decision

cases, the value of VT is unknown, the estimation methods in the AHP attempt to

estimate the vector of relative weights V = (VI,' .. ,vn ), which is the estimation of
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estimation of v.I , from the pairwise comparison matrix A.

In developing the AHP approach, Saaty [2] was the first to suggest the eigenvalue

method for deriving the V from the pairwise comparison matrix A. Since then,

a number of other estimation methods have been proposed in the literature. In

supporting this dissertation, this appendix reviews these estimation methods briefly.

A.I The (Right) Eigenvalue Method

The eigenvalue method is based on the following argument. If there were no

errors in measurement, the relative weights (we also call priority vector) could be

trivially obtained from each one of n rows of matrix A. In other words, if matrix A

has rank 1, and then the following holds:

(A.2)

The AHP acknowledges that the matrix A, which is obtained from real people,

contains inconsistencies. The estimation of priority vector V could be obtained

similar to expression (A.2) from:

A V = >'ma:z: V (A.3)

where >'ma:z: is the largest eigenvalue of A, and V constitutes the estimation of Vr.

In expression (A.3), >'ma:z: may be considered the estimation of n. Saaty [3] has

shown that >'ma:z: is always greater than or equal to n. The closer the value of >'ma:z:

is to n, the more consistent are the observed values of A. This property has led to

the consistency index as:

J.L=
>'ma:z: - n

n-1
(AA)



A.2 The Mean Thansformation Method
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Zahedi [66] argues that enforcing the reciprocal cOildition on the input data (

i.e. pairwise comparison matrix) creates unnecessary dependency among observa-

tions and loses additional information contained in elements of the lower triangle of

Matrix A. Hence, the data for all off-diagonal elements should be collected, which

means to obtain a full input matrix; and the estimator should enforce consistency

requirements. This estimator consists of:

Min 2: 2:(hjk - Vk)2

j k

for Vj > 0 (A.S)

where hjk is the element of a matrix obtained from transposing Matrix A and dividing

each of its row elements by the row sum. This transformation changes elements of

Matrix A from pairwise preferences to relative weights, each observed n times.

In other words, the mean transformation method minimizes the squared estima-

tion error and enforces the constraint that each row of the input matrix should lead

to the same estimation of relative weights, which is a strict form of the consistency

requirement.

The solution of the above minimization problem lead to

n h'k
Vj=2:-'

, n,

where hjk is defined above.

(A.6)
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A.3 Row Geometric Mean (or the Logarithmic

Least Squares) Method

This method was fully developed to the argument for this method by Crawford

and Williams [27]. The estimation criterion in this method is the minimization of

the sum of square distances of the natural logarithm of ajk from the logarithm of

n

Min L [In(ajk) - (In(vj) -In(vk)]
j¢k

(A.7)

This minimization lead to the estimation of relative weights as the geometric mean

of the row elements of Matrix A:

n

Vj=(II a j k ) ~
k=1

A.4 The Column Geometric Mean Method

(A.8)

This method is similar to the row geometric method, except that the geometric

mean is calculated over the columns of matrix A:

n

Vk = (II ajk)~
j=1

(A.9)

A.5 The Harmonic Mean (the left eigenvector)

method

Johnson, Beine and Wang [18] presented the possibility of using the left eigen-

vector as an estimator of relative weights:

(A.I0)
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It has been shown that the left and right eigenvectors are asymmetric in ranking

the elements.

A.6 The Simple Row Average

One of the most simplest methods of estimating relative weights is to compute

the average of the row elements of Matrix A as shown in [3] by Saaty:

L:k=l ajk
Vj =

n
(A.11)

A.7 Ordinary Least Squares

This Least Squares Method (LSM), which was mentioned by Chu and et al.

[65], determines the nearest (in the Euclidean metric) vector in Rnxn the elements

of which have the form Vj/Vk:

n n

Min L L (ajk - :j)2
j=l k=l k

(A.12)

A.8 Constant Sum Method

This method, which is based on the work of Comery [37], was refined by Kocaoglu

[1]. The term constant-sum refers to the procedure for expressing judgments as a

total of 100 points which are divided between the two elements.

With the pairwise comparison Matrix A, the next step is to obtain the second

matrix (call it Mat.rix B) by dividing each element in a row by the element in the

next row:

a'kb
jk

= _J_

aj+1,k
j=1,···,n-1, j=l, .. ·,n (A.13)
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Due to the inconsistency, the estimate for the ratio of the weight of jth element to

that of its successor is obtained by taking arithmetic mean of the cells values in the

jth row.

_ 1 n

bj = - L bjk

n k=1

(A.14)

The relative values of the elements, rj, are obtained by assigning a value of 1.0 to the

element in the last row, calculating the other element values, and then normalizing

them for the n elements:

en -1 = 1, xbn - 1

(A.I5)

(A.16)

(A.17)

(A.I8)

e'J
rj = "n ,

L..Jj=1

therefore:

n

L rj = 1
j=1

(A.I9)

(A.20)

So far, rj has been obtained from only one orientation of bj, that is the order

in which the elements are arranged. In cases of inconsistency, bj based on the

other orientations shows perturbations. Hence, it is required to estimate rj from all

possible orientations, that is, all permutations of the n elements (n!).
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The final relative values of elements, Vj, are the means of the n! values obtained

in n! orientations of the rows:

1 n!

v· - - " TJ'kJ - n! L.J
k=1

n

E Vj= 1
j=1

where Tjk is the relative value of element j in the kth orientation.

(A.21)

(A.22)

A.9 Column-Row Sums Method

This technique developed by Ra [23, 55J uses geometric means of normalized

inverse column sums (NICS) and the n.ormalized row sums (NRS).

In the column orientation, inverse of the sum of cell values in each column

divided by the total sum gives the relative weight of element in that column to total

elements' weights:
1

(A.23)

In the row orientation, the same relative weight is derived from the sum of the cell

values in a row divided by the total sum:

N RS. = L:k=1 ajk
J ,\,n ,\,n

L.Jj=1 L.Jk=1 ajk

(A.24)

However, in a practical case, matrix A is inconsistent, and thus, the two ratios,

NICS and NRS, are not always identical.
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The final relative weights of the jth elements, Vj, are obtained by taking the

geometric mean of N I CSj and N RSj, and normalizing them:

(A.25)
(NICSj x NRSj)~

Vj = I

2:j=1 (NICSj X NICSj )2

Simplifying the expression (A.25) (see [23] for detail), the relative weight of the jth

element, Vj, is represented by row sums (RS) and column sums (CS):

(A.26)



Appendix B

The Mean and Standard

Deviation of Accuracy

Measurement from Simulation

The entries of the following tables are the mean and standard deviation of accu

racy measurement from simulation study. All of them are in pairs in each cell, the

number inside the parenthesis is the standard deviation of accuracy measurement,

and the number without parenthesis is the mean of accuracy measurement. All the

notations in the tables follow the definition Table 4.1 and 4.2. Other notations such

as N stands for number of decision elements simulated (i.e. the pairwise comparison

matrix size). M is the number of decision makers in the simulation process. UF

stands for Uniform probability distribution. LN stands for lognormal probability

distribution and GA is the gamma probability distribution.
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Table B.1: Mean and Standard Deviation of Accuracy Measurement (dd from Sim

ulation (With N = 8, M = 3, scale [1/9, 9], T = 500)

M=3 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.01206 0.00923 0.03542 0.01110 0.00896 0.02541

(0.00424) (0.00393) (0.00955) (0.00401) (0.00384) (0.00790)

R-EV 0.00858 0.00622 0.02486 0.00858 0.00620 0.02329

(0.00283) (0.00224) (0.00771) (0.00285) (0.00223) (0.00762)

L-EV 0.00866 0.00619 0.02571 0.00870 0.00617 0.02379

(0.00287) (0.00221) (0.00748) (0.00289) (0.00220) (0.00748)

AM-EV 0.00862 0.00618 0.02516 0.00867 0.00617 0.02351

(0.00286) (0.00221) (0.00735) (0.00288) (0.00221) (0.00739)

GM-EV 0.00857 0.00618 0.02439 0.00861 0.00618 0.02315

(0.00283) (0.00221) (0.00737) (0.00285) (0.00221) (0.00738)

EV[AA'] 0.01043 0.00767 0.03406 0.01042 0.00760 0.03209

(0.00384) (0.00283) (0.01113) (0.00388) (0.00281) (0.01153)

EV[A'A] 0.01398 0.00973 0.02334 0.01402 0.00963 0.02242

(0.00513) (0.00371) (0.00821) (0.00528) (0.00376) (0.00797)

AM - EV[AA'] 0.00965 0.00712 0.03068 0.00959 0.00705 0.02880

AND EV[A'A] (0.00358) (0.00266) (0.00984) (0.00359) (0.00265) (0.01011 )

GE- EV[AA'] 0.00946 0.00689 0.02392 0.00945 0.00686 0.02194

AND EV[A'A] (0.00336) (0.00256) (0.00729) (0.00335) (0.00255) (0.00712)

GE 0.00859 0.00618 0.02286 0.00860 0.00618 0.02272

(0.00284) (0.00221 ) (0.00702) (0.00285) (0.00222) (0.00722)

C-RSM 0.00870 0.00632 0.02387 0.00872 0.00631 0.02241

(0.00293) (0.00230) (0.00701) (0.00296) (0.00229) (0.00708)

MT 0.00852 0.00617 0.02315 0.00854 0.00618 0.02266

(0.00280) (0.00221) (0.00678) (0.00283) (0.00222) (0.00705)

SAY 0.01057 0.00745 0.02130 0.01057 0.00743 0.02010

(0.00373) (0.00275) (0.00672) (0.00381) (0.00274) (0.00648)

NEV 0.01032 0.00785 0.02977 0.01126 0.00809 0.02728

(0.00374) (0.00275) (0.01047) (0.00400) (0.00286) (0.00990)

LSM 0.01282 0.00887 0.02269 0.01278 0.00880 0.02010
(0.00499) (0.00358) (0.00878) (0.00513) (0.00359) (0.00737)
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Table B.2: Mean and Standard Deviation of Accuracy Measurement (dd from Sim

ulation (With N = 8, M = 3, scale [1/9, 9], T = 500) [Continued]

M=3 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.01220 0.00923 0.03607 0.01127 0.00910 0.02706

(0.00433) (0.00399) (0.00941) (0.00407) (0.00382) (0.00869)

R-EV 0.00856 0.00622 0.02513 0.00870 0.00634 0.02439

(0.00281) (0.00225) (0.00797) (0.00297) (0.00224) (0.00834)

L-EV 0.00867 0.00619 0.02533 0.00884 0.00631 0.02470

(0.00287) (0.00221) (0.00771) (0.00300) (0.00222) (0.00805)

AM-EV 0.00863 0.00618 0.02488 0.00880 0.00631 0.02439

(0.00285) (0.00221) (0.00757) (0.00299) (0.00222) (0.00796)

GE-EV 0.00856 0.00618 0.02434 0.00874 0.00632 0.02404

(0.00282) (0.00222) (0.00759) (0.00297) (0.00223) (0.00800)

EV[AA'] 0.01045 0.00767 0.03310 0.01071 0.00783 0.03354

(0.00384) (0.00283) (0.01161) (0.00394) (0.00289) (0.01302)

EV[A'A] 0.01404 0.00973 0.02361 0.01449 0.00996 0.02282

(0.00513) (0.00371) (0.00845) (0.00531) (0.00390) (0.00791)

AM - EV[AA'] 0.00966 0.00712 0.03009 0.00982 0.00723 0.03009

AND EV[A'A] (0.00357) (0.00266) (0.01027) (0.00364) (0.00271) (0.01140)

GE - EV[AA'] 0.00948 0.00689 0.02369 0.00966 0.00703 0.02284

AND EV[A'A] (0.00948) (0.00256) (0.00743) (0.00341) (0.00252) (0.00756)

GE 0.00858 0.00618 0.02280 0.00873 0.00632 0.02339

(0.00283) (0.00221) (0.00721) (0.00297) (0.00223) (0.00776)

C-RSM 0.00870 0.00632 0.02375 0.00887 0.00645 0.02325

(0.00292) (0.00230) (0.00723) (0.00305) (0.00227) (0.00761)

MT 0.00850 0.00617 0.02322 0.00866 0.00632 0.02338

(0.00279) (0.00221) (0.00696) (0.00296) (0.00223) (0.00746)

SAY 0.01059 0.00745 0.02149 0.01085 0.00765 0.02070

(0.00372) (0.00275) (0.00687) (0.00391) (0.00277) (0.00655)

NEV 0.01020 0.00785 0.02864 0.01148 0.00832 0.02843

(0.00370) (0.00275) (0.01026) (0.00420) (0.00297) (0.01068)

L5M 0.01294 0.00887 0.02228 0.01318 0.00910 0.02047
(0.00499) (0.00358) (0.00882) (0.00522) (0.00370) (0.00761)
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Table B.3: Mean and Standard Deviation of Accuracy Measurement (dd from Sim

ulation (With N = 8, M = 3, scale [1/9, 9], T = 500) [continued]

CSM 0.01027 0.00694 0.03204

(0.00355) (0.00260) (0.01125)

R-EV 0.00964 0.00695 0.02656

(0.00348) (0.00269) (0.00997)

L-EV 0.00980 0.00689 0.02833

(0.00357) (0.00261) (0.01035)

AM-EV 0.00977 0.00689 0.02794

(0.00357) (0.00261) (0.01020)

GE-EV 0.00967 0.00689 0.02655

(0.00356) (0.00265) (0.00978)

EV[AA'] 0.01318 0.00913 0.03822

(0.00486) (0.00360) (0.01524)

EV[A'A] 0.02067 0.01431 0.01647

(0.00930) (0.00632) (0.01061)

AM - EV[AA'] 0.01266 0.00883 0.03623

AND EV[A'A] (0.00471) (0.00346) (0.01453)

GE - EV[AA'] 0.01239 0.00891 0.02311

AND EV[A'A] (0.00515) (0.00360) (0.00876)

GE 0.00973 0.00689 0.02361

(0.00361) (0.00265) (0.00891)

C-RSM 0.01070 0.00764 0.02309

(0.00396) (0.00287) (0.00875)

MT 0.00959 0.00690 0.02344

(0.00346) (0.00261) (0.00844)

SAY 0.01556 0.01086 0.01574

(0.00669) (0.00467) (0.00823)

NEV 0.01179 0.00909 0.03072

(0.00476) (0.00365) (0.01309)

LSM 0.02015 0.01361 0.01484

(0.00915) (0.00628) (0.00963)

~ A B B R ~ ~ 1 T I O N S ~ I - - - - : : U = F = - - - t - - _ M - = - ~ = : : - ' ( - V " ' ) I - = G - : - A - j ~
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Table B.4: Mean and Standard Deviation of Accuracy Measurement (dd from Sim

ulation (With N = 8, M = 5, scale [1/9, 9], T = 500)

M=5 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.01080 0.00835 0.03327 0.00971 0.00802 0.02058

(0.00408) (0.00387) (0.00836) (0.00392) (0.00376) (0.00625)

R-EV 0.00703 0.00491 0.02161 0.00703 0.00490 0.01973

(0.00247) (0.00180) (0.00636) (0.00250) (0.00179) (0.00623)

L-EV 0.00710 0.00490 0.02233 0.00711 0.00488 0.02016

(0.00248) (0.00175) (0.00624) (0.00252) (0.00176) (0.00636)

AM-EV 0.00708 0.00489 0.02193 0.00709 0.00488 0.01999

(0.00247) (0.00176) (0.00512) (0.00251) (0.00177) (0.00625)

GM-EV 0.00703 0.00489 0.02131 0.00705 0.00488 0.01974

(0.00246) (0.00177) (0.00607) (0.00250) (0.00177) (0.00616)

EV[AA'] 0.00833 0.00597' 0.02998 0.00825 0.00592 0.02720

(0.00318) (0.00227) (0.00894) (0.00320) (0.00227) (0.00914)

EV[A'A] 0.01092 0.00777 0.02019 0.01093 0.00767 0.01859

(0.00449) (0.00304) (0.00671) (0.00466) (0.00307) (0.00668)

AM - EV[AA'] 0.00775 0.00557 0.02694 0.00765 0.00552 0.02431

AND EV[A'A] (0.00293) (0.00213) (0.00791) (0.00292) (0.00212) (0.00802)

GE - EV[AA'] 0.00761 0.00551 0.02093 0.00760 0.00546 0.01847

AND EV[A'A] (0.00291 ) (0.00203) (0.00618) (0.00291) (0.00204) (0.00602)

GE 0.00703 0.00488 0.01986 0.00703 0.00488 0.01949

(0.00247) (0.00177) (0.00579) (0.00248) (0.00177) (0.00601)

C-RSM 0.00709 0.00501 0.02099 0.00710 0.00500 0.01906

(0.00254) (0.00182) (0.00578) (0.00257) (0.00182) (0.00590)

MT 0.00700 0.00489 0.02034 0.00699 0.00589 0.01944

(0.00244) (0.00178) (0.00572) (0.00248) (0.00178) (0.00588)

SAY 0.00840 0.00593 0.01836 0.00843 0.00590 0.01679

(0.00327) (0.00221) (0.00572) (0.00333) (0.00220) (0.00547)

NEV 0.00821 0.00610 0.02597 0.00938 0.00646 0.02297

(0.00302) (0.00217) (0.00900) (0.00339) (0.00237) (0.00807)

LSM 0.01007 0.00711 0.01923 0.01003 0.00700 0.01663
(0.00434) (0.00287) (0.00758) (0.00451) (0.00291) (0.00619)
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Table B.5: Mean and Standard Deviation of Accuracy Measurement (d1) from Sim

ulation (With N = 8, M = 5, scale [1/9, 9], T = 500) [Continued]

M=5 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.01099 0.00844 0.03390 0.00998 0.00819 0.02144
(0.00421) (0.00394) (0.00813) (0.00401) (0.00376) (0.00685)

R-EV 0.00701 0.00491 0.02164 0.00723 0.00508 0.02013
(0.00247) (0.00181) (0.00664) (0.00267) (0.00184) (0.00684)

L-EV 0.00710 0.00490 0.02153 0.00732 0.00507 0.02055

(0.00248) (0.00176) (0.00661) (0.00269) (0.00183) (0.00684)

AM-EV 0.00708 0.00489 0.02126 0.00729 0.00507 0.02037

(0.00248) (0.00177) (0.00648) (0.00268) (0.00183) (0.00670)

GE-EV 0.00702 0.00488 0.02096 0.00725 0.00507 0.02010
(0.00246) (0.00178) (0.00640) (0.00267) (0.00184) (0.00664)

EV[AA'] 0.00833 0.00597 0.02817 0.00860 0.00620 0.02774
(0.00320) (0.00226) (0.00953) (0.00337) (0.00239) (0.01033)

EV[A'A] 0.01086 0.00779 0.02033 0.01159 0.00797 0.01852

(0.00453) (0.00306) (0.00700) (0.00495) (0.00313) (0.00639)

AM - EV[AA'] 0.00776 0.00557 0.02568 0.00793 0.00577 0.02482
AND EV[A'A] (0.00294) (0.00212) (0.00843) (0.00310) (0.00221) (0.00907)

GE- EV[AA'] 0.00761 0.00551 0.02035 0.00790 0.00566 0.01882

AND EV[A'A] (0.00291) (0.00204) (0.00636) (0.00306) (0.00206) (0.00631)

GE 0.00702 0.00488 0.01953 0.00723 0.00507 0.01975

(0.00247) (0.00178) (0.00607) (0.00266) (0.00184) (0.00644)

C-RSM 0.00708 0.00501 0.02056 0.00733 0.00518 0.01941

(0.00254) (0.00183) (0.00606) (0.00274) (0.00186) (0.00631)

MT 0.00695 0.00488 0.02020 0.00719 0.00507 0.01968
(0.00244) (0.00179) (0.00589) (0.00265) (0.00184) (0.00636)

SAY 0.00838 0.00593 0.01840 0.00886 0.00611 0.01699
(0.00328) (0.00223) (0.00588) (0.00357) (0.00224) (0.00553)

NEV 0.00806 0.00609 0.02418 0.00979 0.00679 0.02366

(0.00303) (0.00218) (0.00858) (0.00374) (0.00247) (0.00886)

LSM 0.Ql011 0.07154 0.01847 0.01062 0.00728 0.01647
(0.00436) (0.00289) (0.00752) (0.00482) (0.00295) (0.00607)
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Table B.6: Mean and Standard Deviation of Accuracy Measurement (dd from Sim

ulation (With N = 8, M = 5, scale [1/9, 9], T = 500) [Continued]

CSM 0.00870 0.00579 0.02964

(0.00316) (0.00214) (0.00979)

R-EV 0.00787 0.00557 0.02263

(0.00293) (0.00209) (0.00817)

L-EV 0.00802 0.00564 0.02397

(0.00301) (0.00217) (0.00830)

AM-EV 0.00802 0.00562 0.02375

(0.00299) (0.00215) (0.00825)

GE-EV 0.00791 0.00555 0.02240

(0.00296) (0.00213) (0.00793)

EV[AA'] 0.01006 0.00708 0.03282

(0.00389) (0.00279) (0.01355)

EV[A'A] 0.01616 0.01104 0.01262

(0.00796) (0.00464) (0.00836)

AM - EV[AA'] 0.00968 0.00684 0.03131

AND EV[A'A] (0.00381) (0.00268) (0.01296)

GE - EV[AA'] 0.01008 0.00691 0.01951

(0.00410) (0.00267) (0.00727)

GE 0.00792 0.00555 0.02013

(0.00297) (0.00211) (0.00736)

C-RSM 0.00875 0.00609 0.01990

(0.00337) (0.00230) (0.00717)

MT 0.00784 0.00550 0.01998

(0.00290) (0.00205) (0.00692)

SAY 0.01237 0.00838 0.01250

(0.00586) (0.00347) (0.00680)

NEV 0.00937 0.00720 0.02488

(0.00376) (0.00296) (0.01044)

L5M 0.01569 0.01059 0.01142
(0.00796) (0.00473) (0.00767)
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Table B.7: Mean and Standard Deviation of Accuracy Measurement (dI) from Sim

ulation (With N = 8, M = 7, scale [1/9, 9], T = 500)

M=7 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.01016 0.00798 0.03225 0.00903 0.00767 0.01851

(0.00398) (0.00384) (0.00782) (0.00390) (0.00377) (0.00538)

R-EV 0.00625 0.00438 0.02010 0.00623 0.00436 0.01810

(0.00214) (0.00158) (0.00558) (0.00216) (0.00158) (0.00559)

L-EV 0.00629 0.00437 0.02078 0.00627 0.00435 0.01838

(0.00215) (0.00156) (0.00537) (0.00219) (0.00157) (0.00556)

AM-EV 0.00627 0.00436 0.02042 0.00626 0.00435 0.01826

(0.00214) (0.00156) (0.00531) (0.00218) (0.00157) (0.OU549)

GM-EV 0.00624 0.00436 0.01987 0.00623 0.00436 0.01811

(0.00213) (0.00157) (0.00532) (0.00216) (0.00157) (0.00547)

EV[AA'] 0.00738 0.00533 0.02784 0.00726 0.00527 0.02488

(0.00291) (0.00197) (0.00765) (0.00293) (0.00198) (0.00810)

EV[A'A] 0.00942 0.00681 0.01878 0.00930 0.00670 0.01668

(0.00381) (0.00261) (0.00612) (0.00402) (0.00258) (0.00594)

AM - EV[AA'] 0.00690 0.00498 0.02502 0.00678 0.00492 0.02221

AND EV[A'A] (0.00269) (0.00184) (0.00678) (0.00267) (0.00185) (0.00709)

GE - EV[AA'] 0.00677 0.00488 0.01943 0.00671 0.00482 0.01680
AND EV[A'A-j (0.00253) (0.00174) (0.00553) (0.00254) (0.00175) (0.00538)

GE 0.00622 0.00436 0.01845 0.00621 0.00435 0.01793

(0.00214) (0.00157) (0.00512) (0.00215) (0.00157) (0.00537)

C-RSM 0.00631 0.00447 0.01960 0.00629 0.00445 0.01745

(0.00219) (0.00160) (0.00509) (0.00222) (0.00160) (0.00528)

MT 0.00619 0.00437 0.01902 0.00619 0.00436 0.01793

(0.00211 ) (0.00157) (0.00506) (0.00214) (0.00157) (0.00532)

SAY 0.00734 0.00523 0.01710 0.00731 0.00519 0.01529

(0.00274) (0.00192) (0.00514) (0.00284) (0.00189) (0.00493)

NEV 0.00683 0.00521 0.02407 0.00825 0.00573 0.02080

(0.00255) (0.00193) (0.00815) (0.00298) (0.00213) (0.00719)

LSM 0.00870 0.00625 0.01746 0.00857 0.00615 0.01499

(0.00362) (0.00245) (0.00685) (0.00383) (0.00243) (0.00551)
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Table B.B: Mean and Standard Deviation of Accuracy Measurement (d1 ) from Sim

ulation (With N = B, M = 7, scale [1/9, 9], T = 500) [Continued]

M=7 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.01037 0.00807 0.03289 0.00924 0.00782 0.01904

(0.00413) (0.00393) (0.00758) (0.00394) (0.00379) (0.00577)

R-EV 0.00622 0.00438 0.01995 0.00637 0.00453 0.01827

(0.00215) (0.00159) (0.00592) (0.00230) (0.00173) (0.00611)

L-EV 0.00627 0.00437 0.01975 0.00641 0.00452 0.01851

(0.00217) (0.00157) (0.00569) (0.00233) (0.00172) (0.00605)

AM-EV 0.00625 0.00436 0.01955 0.00640 0.00452 0.01839

(0.00216) (0.00157) (0.00563) (0.00232) (0.00173) (0.00599)

GE-EV 0.00622 0.00435 0.01934 0.00637 0.00452 0.01823

(0.00214) (0.00157) (0.00563) (0.00230) (0.00173) (0.00597)

EV[AA'] 0.00735 0.00532 0.02561 0.00757 0.00561 0.02488

(0.00295) (0.00196) (0.00811) (0.00312) (0.00219) (0.00930)

EV[A'A] 0.00933 0.00681 0.01882 0.09880 0.00698 0.01621

(0.00388) (0.00265) (0.00644) (0.00431) (0.00269) (0.00573)

AM - EV[AA'] 0.00688 0.00497 0.02344 0.00700 0.00521 0.02233
AND EV[A'A] (0.00272) (0.00184) (0.00718) (0.00286) (0.00204) (0.00814)

GE - EV[AA'] 0.00676 0.00488 0.01869 0.00695 0.00502 0.01695

AND EV[A'A] (0.00254) (0.00175) (0.00574) (0.00264) (0.00186) (0.00574)

GE 0.00620 0.00435 0.01794 0.00635 0.00452 0.01796

(0.00215) (0.00157) (0.00541) (0.00229) (0.00173) (0.00583)

C-RSM 0.00629 0.00446 0.01900 0.00646 0.00462 0.01756

(0.00220) (0.00160) (0.00537) (0.00232) (0.00174) (0.00575)

MT 0.00615 0.00436 0.01877 0.00633 0.00452 0.01796

(0.00212) (0.00157) (0.00526) (0.00228) (0.00173) (0.00577)

SAY 0.00732 0.00523 0.01707 0.00767 0.00539 0.01527

(0.00277) (0.00194) (0.00532) (0.00303) (0.00200) (0.00496)

NEV 0.00667 0.00519 0.02180 0.00841 0.00603 0.02114

(0.00257) (0.00194) (0.00771) (0.00317) (0.00223) (0.00792)

LSM 0.00873 0.00628 0.01652 0.00909 0.00640 0.01445
(0.00366) (0.00248) (0.00682) (0.00413) (0.00255) (0.00549)



205

Table B.9: Mean and Standard Deviation of Accuracy Measurement (d1 ) from Sim

ulation (With N = 8, M = 7, scale [1/9, 9], T = 500) [Continued]

CSM 0.00776 0.00512 0.02803

(0.00295) (0.00188) (0.00911)

R-EV 0.00686 0.00488 0.02039

(0.00253) (0.00180) (0.00692)

L-EV 0.00713 0.00492 0.02116

(0.00257) (0.00184) (0.00715)

AM-EV 0.00712 0.00492 0.02100

(0.00258) (0.00184) (0.00710)

GE-EV 0.00694 0.00490 0.02003

(0.00253) (0.00182) (0.00660)

EV[AA'] 0.00880 0.00634 0.02933

(0.00345) (0.00251) (0.01168)

EV[A'A] 0.01358 0.00962 0.01063

(0.00686) (0.00409) (0.00703)

AM - EV[AA'] 0.00850 0.00614 0.02791

AND EV[A'A] (0.00333) (0.00243) (0.01110)

GE - EV[AA'l 0.00868 0.00623 0.01740

AND EV[A'A] (0.00354) (0.00244) (0.00632)

GE 0.00695 0.00491 0.01794

(0.00254) (0.00182) (0.00603)

C-RSM 0.00760 0.00541 0.01768

(0.00287) (0.00208) (0.00595)

MT 0.00683 0.00480 0.01825

(0.00253) (0.00174) (0.00573)

SAY 0.01059 0.00739 0.01088

(0.00507) (0.00302) (0.00587)

NEV 0.00775 0.00623 0.02236

(0.00325) (0.00251) (0.00852)

LSM 0.01322 0.00925 0.00973

(0.00669) (0.00408) (0.00648)
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Table B.lO: Mean and Standard Deviation of Accuracy Measurement (d1) from

Simulation (With N = 8, M = 9, scale [1/9, 9], T = 500)

M=9 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00979 0.00771 0.03143 0.00864 0.00741 0.01727

(0.00392) (0.00391) (0.00750) (0.00388) (0.00386) (0.00486)

R-EV 0.00578 0.00403 0.01912 0.00574 0.00401 0.01698

(0.00186) (0.00143) (0.00494) (0.00189) (0.00142) (0.00496)

L-EV 0.00582 0.00401 0.01971 0.00579 0.00400 0.01726

(0.00190) (0.00143) (0.00493) (0.00193) (0.00143) (0.00501)

AM-EV 0.00581 0.00401 0.01938 0.00578 0.00400 0.01717

(0.00189) (0.00143) (0.00485) (0.00192) (0.00143) (0.00495)

GM-EV 0.00578 0.00400 0.01890 0.00576 0.00400 0.01704

(0.00187) (0.00142) (0.00480) (0.00190) (0.00142) (0.00490)

EV[AA'] 0.00679 0.00481 0.02656 0.00667 0.00476 0.02339

(0.00261) (0.00180) (0.00683) (0.00260) (0.00181) (0.00715)

EV[A'A] 0.00841 0.00622 0.01773 0.00824 0.00611 0.01532

(0.00341) (0.00234) (0.00577) (0.00356) (0.00236) (0.00522)

AM - EV[AA'] 0.00638 0.00451 0.02389 0.00626 0.00446 0.02087

AND EV[A'A] (0.00237) (0.00168) (0.00606) (0.00234) (0.00168) (0.00627)

GE - EV[AA'] 0.00620 0.00446 0.01853 0.00614 0.00442 0.01569

AND EV[A'A] (0.00224) (0.00160) (0.01835) (0.00223) (0.00159) (0.00489)

GE 0.00575 0.00400 0.01751 0.00574 0.00400 0.01689

(0.00188) (0.00142) (0.00460) (0.00189) (0.00142) (0.00483)

C-RSM 0.00583 0.00410 0.01870 0.00580 0.00408 0.01639

(0.00192) (0.00145) (0.00460) (0.00195) (0.00145) (0.00476)

MT 0.00572 0.00401 0.01817 0.00572 0.00400 0.01688

(0.00184) (0.00142) (0.00455) (0.00188) (0.00142) (0.00477)

SAY 0.00665 0.00478 0.01620 0.00659 0.00475 0.01420

(0.00246) (0.00174) (0.00476) (0.00252) (0.00172) (0.00449)

NEV 0.00603 0.00463 0.02320 0.00760 0.00530 0.01974

(0.00229) (0.00177) (0.00765) (0.00259) (0.00196) (0.00688)

LSM 0.00783 0.00572 0.01630 0.00766 0.00563 0.01386

(0.00312) (0.00225) (0.00647) (0.00329) (0.00223) (0.00495)
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Table B.ll: Mean and Standard Deviation of Accuracy Measurement (d1 ) from

Simulation (With N = 8, M = 9, scale [1/9, 9], T = 500) [Continued]

M=9 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.01002 0.00781 0.03210 0.00874 0.00753 0.01763

(0.00408) (0.00399) (0.00721) (0.00391) (0.00387) (0.00528)

R-EV 0.00576 0.00401 0.01888 0.00571 0.00415 0.01698

(0.00187) (0.00144) (0.00524) (0.00204) (0.00153) (0.00548)

L-EV 0.00580 0.00400 0.01854 0.00576 0.00415 0.01719

(0.00192) (0.00143) (0.00526) (0.00208) (0.00153) (0.00555)

AM-EV 0.00578 0.00400 0.01838 0.00575 0.00415 0.01709

(0.00191) (0.00143) (0.00517) (0.00207) (0.00153) (0.00547)

GE-EV 0.00576 0.00399 0.01827 0.00572 0.00415 0.01696

(0.00188) (0.00143) (0.00510) (0.00205) (0.00153) (0.00541 )

EV[AA'J 0.00674 0.00480 0.02409 0.00684 0.00499 0.02326

(0.00266) (0.00180) (0.00735) (0.00286) (0.00201) (0.00838)

EV[A'AJ 0.00829 0.00619 0.01771 0.00880 0.00643 0.01465

(0.00348) (0.00239) (0.00617) (0.00388) (0.00245) (0.00519)

AM - EV[AA'J 0.00635 0.00451 0.02211 0.00634 0.00466 0.02089

AND EV[A'A] (0.00241) (0.00168) (0.00650) (0.00257) (0.00185) (0.00735)

GE - EV[AA'J 0.00619 0.00446 0.01770 0.00623 0.00461 0.01575

AND EV[A'A] (0.00226) (0.00161) (0.00526) (0.00239) (0.00163) (0.00519)

GE 0.00573 0.00399 0.01693 0.00570 0.00415 0.01674

(0.00189) (0.00143) (0.00487) (0.00204) (0.00153) (0.00528)

C-RSM 0.00581 0.00409 0.01802 0.00579 0.00424 0.01632

(0.00194) (0.00146) (0.00485) (0.00208) (0.00153) (0.00521)

MT 0.00568 0.00399 0.01787 0.00568 0.00415 0.01673

(0.00185) (0.00142) (0.00471) (0.00202) (0.00153) (0.00522)

SAY 0.00661 0.00477 0.01614 0.00683 0.00497 0.01399

(0.00248) (0.00176) (0.00492) (0.00272) (0.00176) (0.00448)

NEV 0.00585 0.00461 0.02066 0.00750 0.00553 0.01979

(0.00233) (0.00180) (0.00720) (0.00280) (0.00208) (0.00734)

LSM 0.00784 0.00574 0.01520 0.00807 0.00588 0.01314

(0.00315) (0.00229) (0.00646) (0.00362) (0.00235) (0.00501)
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Table B.12: Mean and Standard Deviation of Accuracy Measurement (d1 ) from

Simulation (With N = 8, M = 9, scale [1/9, 9], T = 500) [Continued]

Il M=9 I]f----:-::=__- A-MDM(V) _=-:-_1]
IT ABBREVIATIONS n UF I LN I GA n

CSM 0.00724 0.00474 0.02697

(0.00270) (0.00173) (0.00867)

R-EV 0.00631 0.00456 0.01919
(0.00230) (0.00166) (0.00642)

L-EV 0.00652 0.00460 0.01949

(0.00238) (0.00170) (0.00638)

AM-EV 0.00651 0.00459 0.01933

(0.00238) (0.00169) (0.00638)

GE-EV 0.00638 0.00457 0.01872
(0.00233) (0.00168) (0.00595)

EV[AA'] 0.00797 0.00590 0.02742

(0.00322) (0.00217) (0.01053)

EV[A'A] 0.01191 0.00886 0.00959

(0.00604) (0.00386) (0.00657)

AM - EV[AA'] 0.00770 0.00565 0.02620

AND EV[A'A] (0.00310) (0.00212) (0.01002)

GE - EV[AA'] 0.00789 0.00569 0.01600

AND EV[A'A] (0.00326) (0.00210) (0.00582)

GE 0.00634 0.00457 0.01682

(0.00232) (0.00168) (0.00543)

C-RSM 0.00695 0.00497 0.01644

(0.00264) (0.00179) (0.00548)

MT 0.00623 0.00455 0.01722
(0.00227) (0.00162) (0.00524)

SAY 0.00947 0.00681 0.00994
(0.00451) (0.00284) (0.00551)

NEV 0.00694 0.00542 0.02110

(0.00277) (0.00218) (0.00807)

LSM 0.01169 0.00855 0.00864
(0.00604) (0.00383) (0.00590)
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Table B.13: Mean and Standard Deviation of Accuracy Measurement (d1 ) from

Simulation (With N = 10, M = 3, scale [1/9, 9], T = 500)

M=3 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00853 0.00621 0.02539 0.00'776 0.00594 0.01864

(0.00268) (0.00236) (0.00670) (0.00253) (0.00227) (0.00533)

R-EV 0.00668 0.00444 0.01899 0.00669 0.00443 0.01764

(0.00210) (0.00133) (0.00510) (0.00210) (0.00133) (0.00514)

L-EV 0.00669 0.00445 0.01962 0.00670 0.00443 0.01800

(0.00211) (0.00133) (0.00535) (0.00213) (0.00132) (0.00522)

AM-EV 0.00667 0.00444 0.01916 0.00669 0.00442 0.01778

(0.00211) (0.00132) (0.00519) (0.00213) (0.00132) (0.00512)

GM-EV 0.00665 0.00442 0.01852 0.00667 0.00442 0.01748

(0.00209) (0.00132) (0.00494) (0.00211) (0.00132) (0.00501)

EV[AA'] 0.00837 0.00561 0.02633 0.00827 0.00557 0.02495

(0.00259) (0.00177) (0.00742) (0.00257) (0.00174) (0.00764)

EV[A'A] 0.04485 0.04418 0.04474 0.04483 0.04420 0.04457

(0.01588) (0.01552) (0.01393) (0.01590) (0.01553) (0.01474)

AM - EV[AA'] 0.00921 0.00757 0.02463 0.00936 0.00769 0.02331

AND EV[A'A] (0.00251) (0.00230) (0.00621) (0.00254) (0.00233) (0.00632)

GE - EV[AA'] 0.02092 0.02047 0.02666 0.02102 0.02054 0.02558

AND EV[A'A] (0.00725) (0.00711) (0.00696) (0.00724) (0.00711) (0.00714)

GE 0.00666 0.00442 0.01718 0.00666 0.00442 0.01704

(0.00210) (0.00132) (0.00476) (0.00211) (0.00132) (0.00489)

C-RSM 0.00679 0.00451 0.01817 0.00678 0.00451 0.01703

(0.00214) (0.00134) (0.00474) (0.00216) (0.00133) (0.00484)

MT 0.00663 0.00443 0.01770 0.00665 0.00443 0.01715

(0.00207) (0.00131 ) (0.00453) (0.00209) (0.00132) (0.00482)

SAY 0.00803 0.00544 0.01603 0.00803 0.00544 0.01500

(0.00265) (0.00164) (0.00438) (0.00268) (0.00163) (0.00437)

NEV 0.00815 0.00591 0.02348 0.00888 0.00612 0.02090

(0.00288) (0.00189) (0.0074) (0.00312) (0.00195) (0.00705)

LSM 0.00980 0.00672 0.01652 0.00974 0.00668 0.01513

(0.00357) (0.00229) (0.00602) (0.00367) (0.00227) (0.00491 )
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Table B.14: Mean and Standard Deviation of Accuracy Measurement (d1 ) from

Simulation (With N = 10, M = 3, scale [1/9, 9], T = 500) [Continued]

M-3 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00864 0.00626 0.02576 0.00786 0.00605 0.01926
(0.00273) (0.00240) (0.00653) (0.00254) (0.00224) (0.00562)

R-EV 0.00668 0.00444 0.01912 0.00678 0.00457 0.01802

(0.00210) (0.00134) (0.00528) (0.00213) (0.00135) (0.00535)

L-EV 0.00671 0.00446 0.01920 0.00681 0.00456 0.01846

(0.00210) (0.00133) (0.00547) (0.00216) (0.00135) (0.00544)

AM-EV 0.00669 0.00444 0.01882 0.00679 0.00456 0.01821

(0.00211) (0.0013:\) (0.00530) (0.00215) (0.00135) (0.00534)

GE-EV 0.00665 0.00443 0.01838 0.00677 0.00456 0.01785

(0.00210) (0.00133) (0.00506) (0.00213) (0.00135) (0.00520)

EV[AA'] 0.00841 0.00562 0.02552 0.00841 0.00574 0.02554

(0.00262) (0.00178) (0.00772) (0.00262) (0.00179) (0.00804)

EV[A'A] 0.04486 0.04419 0.04476 0.04483 0.04424 0.04470

(0.01592) (0.01554) (0.01393) (0.01588) (0.01554) (0.01481)

AM -EV[AA'] 0.00917 0.00752 0.02384 0.00945 0.00780 0.02377

AND EV[A'A) (0.00252) (0.00229) (0.00642) (0.00256) (0.00236) (0.00656)

GE - EV[AA') 0.02090 0.02046 0.02625 0.02104 0.02058 0.02578

AND EV[A'A) (0.00726) (0.00711) (0.00696) (0.00722) (0.00713) (0.00708)

GE 0.00667 0.00442 0.01705 0.00676 0.00456 0.01734

(0.00211) (0.00132) (0.00487) (0.00213) (0.00135) (0.00508)

C-RSM 0.00680 0.00452 0.01797 0.00689 0.00464 0.01737

(0.00215) (0.00134) (0.00487) (0.00218) (0.00135) (0.00501)

MT 0.00663 0.00443 0.01773 0.00675 0.00456 0.01739
(0.00208) (0.00132) (0.00465) (0.00212) (0.00134) (0.00497)

SAY 0.00803 0.00545 0.01612 0.00817 0.00560 0.01524

(0.00266) (0.00165) (0.00450) (0.00273) (0.00163) (0.00452)

NEV 0.00806 0.00592 0.02266 0.00895 0.00628 0.02136

(0.00289) (0.00189) (0.00708) (0.00317) (0.00197) (0.00716)

LSM 0.00987 0.00676 0.01623 0.00995 0.00686 0.01526

(0.00359) (0.00232) (0.00604) (0.00372) (0.00228) (0.00518)
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Table B.15: Mean and Standard Deviation of Accuracy Measurement (d1 ) from

Simulation (With N = 10, M = 3, scale [1/9, 9], T = 500) [Continued]

CSM 0.00769 0.00516 0.02355

(0.00254) (0.00159) (0.00710)

R-EV 0.00751 0.00516 0.02061

(0.00250) (0.00165) (0.00673)

L-EV 0.00743 0.00517 0.02184

(0.00249) (0.00170) (0.00681)

AM-EV 0.00743 0.00517 0.02159

(0.00249) (0.00170) (0.00676)

GE-EV 0.00741 0.00513 0.02021

(0.00247) (0.00166) (0.00644)

EV[AA'] 0.00994 0.00666 0.03008

(0.00330) (0.00228) (0.01024)

EV[A'A] 0.05774 0.05674 0.05603

(0.02395) (0.02397) (0.02268)

AM - EV[AA'] 0.00985 0.00712 0.02897
AND EV[A'A] (0.00319) (0.00232) (0.00968)

GE - EV[AA'] 0.02590 0.02543 0.03054

AND EV[A'A] (0.0107!:i) (0.01099) (0.01051)

GE 0.00745 0.00513 0.01801

(0.00251) (0.00165) (0.00565)

C-RSM 0.00844 0.00578 0.01737

(0.00283) (0.00191) (0.00567)

MT 0.00743 0.00513 0.01809

(0.00251) (0.00162) (0.00539)

SAY 0.01242 0.00855 0.01124

(0.00486) (0.00335) (0.00559)

NEV 0.00922 0.00695 0.02516

(0.00324) (0.00251) (0.00931)

LSM 0.01619 0.01118 0.01082
(0.00639) (0.00453) (0.00692)

~ M-3 U A-MDM(V) U
UABBREVIATIONS Ui---:-:U=F-' LN I GA U
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Table B.16: Mean and Standard Deviation of Accuracy Measurement (d1 ) from

Simulation (With N = 10, M = 5, scale [1/9, 9], T = 500)

M=5 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00761 0.00553 0.02404 0.00674 0.00526 0.01517

(0.00254) (0.00240) (0.00580) (0.00238) (0.00228) (0.00414)

R-EV 0.00555 0.00357 0.01674 0.00554 0.00356 0.01512

(0.00173) (0.00106) (0.00404) (0.00176) (0.00107) (0.00403)

L-EV 0.00554 0.00358 0.01739 0.00554 0.00356 0.01543

(0.00177) (0.00107) (0.00442) (0.00178) (0.00106) (0.00427)

AM-EV 0.00553 0.00357 0.01702 0.00553 0.00355 0.01530

(0.00176) (0.00107) (0.00429) (0.00178) (0.00106) (0.00420)

GM-EV 0.00551 0.00356 0.01646 0.00552 0.00355 0.01510

(0.00174) (0.00106) (0.00404) (0.00176) (0.00106) (0.00407)

EV[AA'] 0.00667 0.00448· 0.02342 0.00657 0.00444 0.02145

(0.00221) (0.00141) (0.00585) (0.00223) (0.00140) (0.00609)

EV[A'A] 0.04455 0.04417 0.04427 0.04453 0.04418 0.04404

(0.01583) (0.01557) (0.01381) (0.01587) (0.01558) (0.01466)

AM - EV[AA'] 0.00797 0.00693 0.02231 0.00820 0.00709 0.02051

AND EV[A'A] (0.00227) (0.00225) (0.00491) (0.00235) (0.00232) (0.00500)

GE - EV[AA'] 0.02053 0.02040 0.02563 0.02064 0.02048 0.02429

AND EV[A'Al (0.00713) (0.00713) (0.00682) (0.00714) (0.00714) (0.00708)

GE 0.00551 0.00356 0.01516 0.00551 0.00355 0.01489

(0.00175) (0.00106) (0.00386) (0.00176) (0.00106) (0.00401)

C-RSM 0.00562 0.00361 0.01624 0.00560 0.00360 0.01461

(0.00177) (0.00109) (0.00382) (0.00178) (0.00109) (0.00392)

MT 0.00550 0.00356 0.01575 0.00551 0.00355 0.01492

(0.00171) (0.00106) (0.00362) (0.00174) (0.00107) (0.00389)

SAY 0.00651 0.00427 0.01397 0.00650 0.00426 0.01255
(0.00209) (0.00134) (0.00366) (0.00211 ) (0.00134) (0.00357)

NEV 0.00635 0.00464 0.02074 0.00740 0.00498 0.01768

(0.00255) (0.00153) (0.00637) (0.00276) (0.00162) (0.00579)

LSM 0.00784 0.00523 0.01390 0.00773 0.00518 0.01238

(0.00281) (0.00185) (0.00519) (0.00288) (0.00184) (0.00392)
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Table B.17: Mean and Standard Deviation of Accuracy Measurement (dd from

Simulation (With N = 10, M = 5, scale [1/9, 9], T = 500) [Continued]

M=5 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00775 0.00560 0.02440 0.00686 0.00532 0.01544

(0.00261) (0.00245) (0.00565) (0.00239) (0.00228) (0.00428)

R-EV 0.00554 0.00357 0.01678 0.00563 0.00365 0.01528

(0.00173) (0.00107) (0.00420) (0.00181) (0.00108) (0.00416)

L-EV 0.00554 0.00358 0.01675 0.00564 0.00365 0.01560

(0.00177) (0.00108) (0.00459) (0.00183) (0.00107) (0.00441)

AM-EV 0.00553 0.00357 0.01648 0.00563 0.00365 0.01546

(0.00177) (0.00107) (0.00444) (0.00182) (0.00107) (0.00433)

GE-EV 0.00551 0.00358 0.01618 0.00562 0.00365 0.01524

(0.00174) (0.00106) (0.00417) (0.00181) (0.00107) (0.00419)

EV[AA'] 0.00670 0.00449 0.02212 0.00675 0.00457 0.02180

(0.00225) (0.00142) (0.00618) (0.00232) (0.00147) (0.00630)

EV[A'A] 0.04456 0.04418 0.04428 0.04455 0.04421 0.04411

(0.01586) (0.01559) (0.01384) (0.01582) (0.01558) (0.01474)

AM - EV[AA'] 0.00789 0.00687 0.0211. 0.00833 0.00716 0.02073

AND EV[A'A] (0.00225) (0.00223) (0.00508) (0.00243) (0.00233) (0.00523)

GE- EV[AA'] 0.02050 0.02038 0.02509 0.02071 0.02050 0.02434

AND EV[A'A] (0.00713) (0.00713) (0.00681) (0.00715) (0.00713) (0.00718)

GE 0.00551 0.00355 0.01490 0.00560 0.00365 0.01496

(0.00175) (0.00107) (0.00397) (0.00180) (0.00107) (0.00412)

C-RSM 0.00562 0.00361 0.01590 0.00571 0.00370 0.01472

(0.00177) (0.00110) (0.00394) (0.00184) (0.00110) (0.00403)

MT 0.00549 0.00356 0.01568 0.00561 0.00365 0.01500

(0.00171) (0.00106) (0.00372) (0.00179) (0.00107) (0.00400)

SAY 0.00651 0.00427 0.01401 0.00668 0.00440 0.01248

(0.00209) (0.00136) (0.00379) (0.00220) (0.00135) (0.00357)

NEV 0.00625 0.00463 0.01929 0.00752 0.00510 0.01777

(0.00256) (0.00153) (0.00596) (0.00287) (0.00161) (0.00613)

LSM 0.00789 0.00527 0.01343 0.00802 0.00536 0.01220

(0.00283) (0.00188) (0.00514) (0.00303) (0.00188) (0.00394)
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Table B.18: Mean and Standard Deviation of Accuracy Measurement (d1 ) from

Simulation (With N = 10, M = 5, scale [1/9, 9], T = 500) [Continued]

a M=5 rl_-=:---rA_-_M-=-D=M...>(-..!.V)_-=-:-_1I
~ ABBREVIATIONS n UF I LN I GA ~

CSM 0.00648 0.00414 0.02166

(0.00216) (0.00133) (0.00635)

R-EV 0.00624 0.00411 0.01702

(0.00624) (0.00136) (0.00527)

L-EV 0.00623 0.00408 0.01788

(0.00204) (0.00135) (0.00558)

AM-EV 0.00623 0.00407 0.01765

(0.00204) (0.00136) (0.00552)

GE-EV 0.00620 0.00407 0.01653

(0.00205) (0.00134) (0.00502)

EV[AA'] 0.00798 0.00536 0.02584

(0.00274) (0.00190) (0.00907)

EV[A'A] 0.05730 0.05647 0.05566

(0.02389) (0.02363) (0.02280)

AM - EV[AA'] 0.00812 0.00603 0.02520

AND EV[A'A] (0.00261) (0.00206) (0.00847)

GE - EV[AA'] 0.02546 0.02519 0.02945

AND EV[A'A] (0.01068) (0.01087) (0.01059)

GE 0.00620 0.00407 0.01475

(0.00207) (0.00135) (0.00463)

C-RSM 0.00688 0.00465 0.01456

(0.00238) (0.00158) (0.00466)

MT 0.00614 0.00406 0.01511

(0.00203) (0.00135) (0.00449)

SAY 0.00986 0.00674 0.00916

(0.00395) (0.00275) (0.00440)

NEV 0.00736 0.00537 0.02143

(0.00296) (0.00192) (0.00771)

LSM 0.01282 0.00897 0.00842

(0.00546) (0.00380) (0.00506)
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Table B.19: Mean and Standard Deviation of Accuracy Measurement (dd from

Simulation (With N = 10, M = 7, scale [1/9, 9], T = 500)

M=7 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00713 0.00522 0.02326 0.00623 0.00496 0.01361

(0.00251) (0.00243) (0.00534) (0.00235) (0.00229) (0.00341)

R-EV 0.00493 0.00317 0.01559 0.00492 0.00314 0.01381

(0.00153) (0.00094) (0.00353) (0.00156) (0.00095) (0.00350)

L-EV 0.00493 0.00316 0.01618 0.00490 0.00315 0.01413

(0.00158) (0.00096) (0.00378) (0.00159) (0.00095) (0.00367)

AM-EV 0.00492 0.00316 0.01587 0.00490 0.00315 0.01404

(0.00157) (0.00096) (0.00366) (0.00158) (0.00095) (0.00361)

GM-EV 0.00490 0.00315 0.01538 0.00490 0.00314 0.01387

(0.00155) (0.00095) (0.00347) (0.00157) (0.00095) (0.00352)

EV[AA'] 0.00584 0.00388 0.02177 0.00572 0.00383 0.01948

(0.00196) (0.00122) (0.00503) (0.00196) (0.00121) (0.00522)

EV[A'A] 0.04445 0.04416 0.04403 0.04441 0.04417 0.04380

(0.01581) (0.01561) (0.01381) (0.01585) (0.01562) (0.01469)

AM - EV[AA'] 0.00741 0.00663 0.02109 0.00769 0.00682 0.01901

AND EV[A'A] (0.00217) (0.00221) (0.00433) (0.00229) (0.00228) (0.00435)

GE- EV[AA'] 0.02043 0.02036 0.02523 0.02056 0.02045 0.02379

(0.00713) (0.00712) (0.00677) (0.00714) (0.00714) (0.00709)

GE 0.00489 0.00315 0.01408 0.00488 0.00314 0.01372

(0.00156) (0.00095) (0.00333) (0.00157) (0.00095) (0.00349)

C-RSM 0.00499 0.00319 0.01522 0.00496 0.00319 0.01334

(0.00156) (0.00096) (0.00332) (0.00157) (0.00097) (0.00342)

MT 0.00489 0.00316 0.01476 0.00490 0.00314 0.01371

(0.00151) (0.00094) (0.00320) (0.00155) (0.00095) (0.00342)

SAY 0.00573 0.00373 0.01302 0.00570 0.00371 0.01133

(0.00181) (0.00119) (0.00326) (0.00184) (0.00120) (0.00312)

NEV 0.00540 0.00393 0.01948 0.00662 0.00439 0.01621

(0.00225) (0.00132) (0.00560) (0.00239) (0.00147) (0.00495)

LSM 0.00680 0.00453 0.01246 0.00665 0.00446 0.01099

(0.00248) (0.00157) (0.00463) (0.00254) (0.00159) (0.00332)
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Table B.20: Mean and Standard Deviation of Accuracy Measurement (d1 ) from

Simulation (With N = 10, M = 7, scale [1/9, 9], T = 500) [Continued]

M=7 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00730 0.00530 0.02360 0.00629 0.00504 0.01374

(0.00261) (0.00249) (0.00519) (0.00236) (0.00227) (0.00358)

R-EV 0.00492 0.00316 0.01553 0.00494 0.00325 0.01382

(0.00153) (0.00095) (0.00372) (0.00161) (0.00097) (0.00369)

L-EV 0.00492 0.00316 0.01541 0.00492 0.00325 0.01420

(0.00159) (0.00097) (0.00393) (0.00163) (0.00097) (0.00381)

AM-EV 0.00491 0.00315 0.01522 0.00492 0.00325 0.01409

(0.00158) (0.00096) (0.00381) (0.00163) (0.00097) (0.00375)

GE-EV 0.00490 0.00314 0.01502 0.00492 0.00325 0.01388

(0.00156) (0.00095) (0.00362) (0.00161) (0.00097) (0.00367)

EV[AA') 0.00585 0.00387 0.02020 0.00585 0.00395 0.01966

(0.00199) (0.00123) (0.00531) (0.00211) (0.00124) (0.00548)

EV[A'A) 0.04446 0.04416 0.04405 0.04442 0.04420 0.04391

(0.01585) (0.01563) (0.01383) (0.01581) (0.01562) (0.01487)

AM - EV[AA'] 0.00730 0.00655 0.01964 0.00778 0.00687 0.01901

AND EV[A'A) (0.00215) (0.00219) (0.00445) (0.00233) (0.00229) (0.00464)

GE - EV[AA'] 0.02039 0.02034 0.02462 0.02059 0.02047 0.02372

AND EV[A'A] (0.00713) (0.00712) (0.00676) (0.00714) (0.00713) (0.00715)

GE 0.00488 0.00314 0.01375 0.00490 0.00324 0.01368

(0.00157) (0.00095) (0.00345) (0.00161) (0.00096) (0.00361)

C-RSM 0.00499 0.00319 0.01478 0.00499 0.00330 0.01335

(0.00157) (0.00097) (0.00344) (0.00163) (0.00098) (0.00350)

MT 0.00487 0.00315 0.01461 0.00491 0.00324 0.01365

(0.00152) (0.00094) (0.00332) (0.00160) (0.00096) (0.00357)

SAY 0.00571 0.00373 0.01303 0.00578 0.00387 0.01121

(0.00183) (0.00121) (0.00337) (0.00194) (0.00134) (0.00316)

NEV 0.00528 0.00391 0.01770 0.00668 0.00455 0.01616

(0.00226) (0.00132) (0.00523) (0.00251) (0.00146) (0.00502)

LSM 0.00684 0.00457 0.01186 0.00686 0.00467 0.01069

(0.00251) (0.00160) (0.00458) (0.00271) (0.00164) (0.00336)
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Table B.21: Mean and Standard Deviation of Accuracy Measurement (d1 ) from

Simulation (With N = 10, M = 7, scale [1/9, 9], T = 500) [Continued]

CSM 0.00585 0.00376 0.02104

(0.00187) (0.00125) (0.00596)

R-EV 0.00564 0.00370 0.01558

(0.00178) (0.00125) (0.00504)

L-EV 0.00561 0.00369 0.01632

(0.00180) (0.00126) (0.00494)

AM-EV 0.00560 0.00368 0.01614

(0.00180) (0.00127) (0.00492)

GE-EV 0.00559 0.00369 0.01521

(0.00176) (0.00127) (0.00485)

EV[AA'] 0.00696 0.00475 0.02360

(0.00254) (0.00162) (0.00808)

EV[A'A] 0.05701 0.05620 0.05559

(0.02376) (0.02353) (0.02277)

AM - EV[AA'] 0.00717 0.00550 0.02300

AND EV[A'A] (0.00245) (0.00186) (0.00749)

GE - EV[AA'] 0.02524 0.02498 0.02896

AND EV[A'A] (0.01074) (0.01077) (0.01066)

GE 0.00556 0.00369 0.01353

(0.00179) (0.00126) (0.00435)

C-RSM 0.00608 0.00411 0.01339

(0.00214) (0.00145) (0.00440)

MT 0.00557 0.00368 0.01395

(0.00174) (0.00124) (0.00425)

SAY 0.00841 0.00587 0.00802

(0.00353) (0.00239) (0.00693)

NEV 0.00622 0.00463 0.01926

(0.00252) (0.00170) (0.00693)

LSM 0.01111 0.00772 0.00714

(0.00495) (0.00334) (0.00423)
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Table B.22: Mean and Standard Deviation of Accuracy Measurement (d1 ) from

Simulation (With N = 10, M = 9, scale [1/9, 9], T = 500)

M=9 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00683 0.00506 0.02282 0.00595 0.00482 0.01286
(0.00252) (0.00244) (0.00507) (0.00229) (0.00228) (0.00304)

R-EV 0.00458 0.00294 0.01501 0.00455 0.00291 0.01313

(0.00133) (0.00085) (0.00331) (0.00137) (0.00084) (0.00325)

L-EV 0.00457 0.00292 0.01551 0.00454 0.00291 0.01345

(0.00138) (0.00085) (0.00342) (0.00140) (0.00085) (0.00337)

AM-EV 0.00456 0.00292 0.01524 0.00454 0.00291 0.01338

(0.00138) (0.00085) (0.00333) (0.00139) (0.00085) (0.00333)

GM-EV 0.00455 0.00292 0.01481 0.00454 0.00291 0.01323

(0.00135) (0.00084) (0.00321) (0.00138) (0.00085) (0.00326)

EV[AA'] 0.00535 0.00352 0.02100 0.00523 0.00348 0.01863
(0.00185) (0.00107) (0.00470) (0.00184) (0.00106) (0.00484)

EV[A'A] 0.04443 0.04419 0.04398 0.04439 0.04419 0.04377

(0.01578) (0.01562) (0.01372) (0.01581) (0.01564) (0.01462)

AM - EV[AA'] 0.00708 0.00646 0.02051 0.00740 0.00667 0.01837

AND EV[A'A] (0.00218) (0.00219) (0.00407) (0.00230) (0.00228) (0.00406)

GE- EV[AA'] 0.02038 0.02036 0.02500 0.02051 0.02045 0.02359

AND EV[A'A] (0.00712) (0.00714) (0.00668) (0.00713) (0.00715) (0.00702)

GE 0.00453 0.00292 0.01352 0.00452 0.00291 0.01311

(0.00136) (0.00084) (0.00309) (0.00137) (0.00085) (0.00323)

C-RSM 0.00463 0.00296 0.01468 0.00459 0.00296 0.01269

(0.00136) (0.00085) (0.00309) (0.00137) (0.00085) (0.00317)

MT 0.00453 0.00293 0.01425 0.00454 0.00291 0.01307
(0.00132) (0.00084) (0.00300) (0.00136) (0.00084) (0.00318)

SAY 0.00525 0.00345 0.01244 0.00520 0.00343 0.01049

(0.00161) (0.00105) (0.00316) (0.00166) (0.00106) (0.00298)

NEV 0.00472 0.00345 0.Q1850 0.00616 0.00401 0.01539

(0.00203) (0.00115) (0.00517) (0.00218) (0.00132) (0.00475)

LSM 0.00619 0.00415 0.01153 0.00601 0.00410 0.01003
(0.00223) (0.00140) (0.00444) (0.00234) (0.00142) (0.00307)
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Table B.23: Mean and Standard Deviation of Accuracy Measurement (d1) from

Simulation (With N = 10, M = 9, scale [1/9, 9], T = 500) [Continued]

M=9 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00700 0.00514 0.02317 0.00597 0.00488 0.01288

(0.00262) (0.00250) (0.00492) (0.00227) (0.00227) (0.00329)

R-EV 0.00457 0.00293 0.01463 0.00453 0.00300 0.01308

(0.00134) (0.00085) (0.00348) (0.00141) (0.00087) (0.00349)

L-EV 0.00456 0.00292 0.01463 0.00451 0.00301 0.01342

(0.00140) (0.00086) (0.00360) (0.00145) (0.00087) (0.00357)

AM-EV 0.00455 0.00292 0.01449 0.00451 0.00300 0.01333

(0.00139) (0.00085) (0.00350) (0.00145) (0.00087) (0.00353)

GE-EV 0.00455 0.00291 0.01438 0.00451 0.00300 0.01315

(0.00136) (0.00085) (0.00335) (0.00142) (0.00087) (0.00347)

EV[AA'] 0.00535 0.00352 0.01922 0.00534 0.00359 0.01862

(0.00187) (0.00108) (0.00496) (0.00194) (0.00111) (0.00520)

EV[A'A] 0.04444 0.04419 0.0440 0.04438 0.04421 0.04383

(0.01582) (0.01564) (0.01374) (0.01579) (0.01563) (0.01484)

AM - EV[AA'] 0.00696 0.00638 0.01889 0.00747 0.00672 0.01824

AND EV[A'A] (0.00216) (0.00217) (0.00415) (0.00232) (0.00227) (0.00432)

GE - EV[AA'] 0.02034 0.02034 0.02437 0.02052 0.02046 0.02344

AND EV[A'A] (0.00713) (0.00714) (0.00666) (0.00713) (0.00715) (0.00704)

GE 0.00452 0.00291 0.01313 0.00449 0.00300 0.01298

(0.00137) (0.00085) (0.00320) (0.00142) (0.00087) (0.00341)

C-RSM 0.00462 0.00296 0.01419 0.00457 0.00306 0.01263

(0.00137) (0.00086) (0.00319) (0.00144) (0.00088) (0.00330)

MT 0.00452 0.00292 0.01407 0.00450 0.00300 0.01294

(0.00133) (0.00084) (0.00311) (0.00140) (0.00087) (0.00336)

SAY 0.00523 0.00345 0.01241 0.00528 0.00359 0.01037

(0.00163) (0.00106) (0.00326) (0.00178) (0.00110) (0.00298)

NEV 0.00461 0.00342 0.01655 0.00603 0.00416 0.01540

(0.00204) (0.00116) (0.00480) (0.00227) (0.00133) (0.00486)

LSM 0.00621 0.00418 0.01085 0.00624 0.00432 0.00971

(0.00227) (0.00143) (0.00440) (0.00253) (0.00147) (0.00319)
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Table B.24: Mean and Standard Deviation of Accuracy Measurement (dI) from

Simulation (With N = 10, M = 9, scale [1/9, 9], T = 500) [Continued]

CSM 0.00539 0.00346 0.02056

(0.00164) (0.00112) (0.00568)

R-EV 0.00507 0.00345 0.01466

(0.00155) (0.00117) (0.00473)

L-EV 0.00515 0.00345 0.01542

(0.00159) (0.00116) (0.00454)

AM-EV 0.00514 0.00345 0.01528

(0.00159) (0.00116) (0.00448)

GE-EV 0.00508 0.00344 0.01441

(0.00155) (0.00116) (0.00436)

EV[AA'] 0.00642 0.00438 0.02244

(0.00235) (0.00149) (0.00729)

EV[A'A] 0.05681 0.05632 0.05564

(0.02372) (0.02359) (0.02274)

AM - EV[AA'] 0.00671 0.00515 0.02196

AND EV[A'A] (0.00232) (0.00184) (0.00679)

GE - EV[AA'] 0.02509 0.02501 0.02870

AND EV[A'A] (0.01062) (0.01079) (0.01064)

GE 0.00505 0.00345 0.01290

(0.00157) (0.00116) (0.00393)

C-RSM 0.00552 0.00379 0.01270

(0.00190) (0.00130) (0.00389)

MT 0.00499 0.00343 0.01316

(0.00151 ) (0.00117) (0.00397)

SAY 0.00750 0.00524 0.00735

(0.00322) (0.00203) (0.00380)

NEV 0.00541 0.00417 0.01829

(0.00222) (0.00150) (0.00651)

LSM 0.00979 0.00696 0.00637

(0.00461) (0.00287) (0.00385)

~ A B B R ; ' ~ 1 T I O N S ~ r - - - : : - : U = F - t - - _ M - = - ~ = : " " " ( - V " " ) I - = G - A - ~
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Table B.25: Mean and Standard Deviation of Accuracy Measurement (d1) from

Simulation (With N = 12, M = 3, scale [1/9, 9J, T = 500)

M=3 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00650 0.00485 0.01931 0.00580 0.00455 0.01490

(0.00194) (0.00171) (0.00436) (0.00181) (0.00159) (0.00367)

R-EV 0.00509 0.00354 0.01589 0.00505 0.00353 0.01470

(0.00145) (0.00095) (0.00375) (0.00145) (0.00096) (0.00381)

L-EV 0.00505 0.00356 0.01653 0.00510 0.00354 0.01491

(0.00143) (0.00095) (0.00397) (0.00146) (0.00095) (0.00381)

AM-EV 0.00504 0.00355 0.01613 0.00509 0.00353 0.01474

(0.00143) (0.00095) (0.00384) (0.00145) (0.00095) (0.00374)

GM-EV 0.00504 0.00353 0.01548 0.00505 0.00353 0.01451

(0.00143) (0.00095) (0.00361) (0.00145) (0.00095) (0.00365)

EV[AA'] 0.00631 0.00447 0.02170 0.00626 0.00443 0.02031

(0.00185) (0.00123) (0.00575) (0.00185) (0.00123) (0.00589)

EV[A'A] 0.03796 0.03767 0.03792 0.03782 0.03762 0.03783
(0.01067) (0.01063) (0.00898) (0.01067) (0.01063) (0.01006)

AM - EV[AA'] 0.00721 0.00625 0.02078 0.00734 0.00634 0.01941
AND EV[A'A] (0.00192) (0.00169) (0.00479) (0.00200) (0.00172) (0.00486)

GE - EV[AA'] 0.01777 0.01766 0.02312 0.01779 0.01768 0.02206

AND EV[A'A] (0.00481 ) (0.00469) (0.00498) (0.00483) (0.00469) (0.00494)

GE 0.00504 0.00352 0.01423 0.00505 0.00353 0.01417

(0.00144) (0.00095) (0.00349) (0.00145) (0.00095) (0.00356)

C-RSM 0.00515 0.00356 0.01508 0.00515 0.00357 0.01401

(0.00149) (0.00096) (0.00347) (0.00149) (0.00096) (0.00351)

MT 0.00505 0.00353 0.01483 0.00503 0.00352 0.01429
(0.00144) (0.00095) (0.00337) (0.00144) (0.00095) (0.00356)

SAY 0.00617 0.00425 0.01314 0.00616 0.00425 0.01220
(0.00188) (0.00116) (0.00321) (0.00187) (0.00117) (0.00315)

NEV 0.00616 0.00506 0.01998 0.00682 0.00521 0.01723

(0.00179) (0.00159) (0.00547) (0.00196) (0.00166) (0.00525)

L5M 0.00769 0.00529 0.01298 0.00764 0.00524 0.01195
(0.00257) (0.00157) (0.00434) (0.00260) (0.00159) (0.00341)
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Table B.26: Mean and Standard Deviation of Accuracy Measurement (dr) from

Simulation (With N = 12, M = 3, scale [1/9, 9], T = 500) [Continued]

M=3 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

C5M 0.00660 0.00490 0.01967 0.00584 0.00462 0.01529

(0.00197) (0.00173) (0.00443) (0.00183) (0.00160) (0.00381 )

R-EV 0.00510 0.00354 0.01602 0.00508 0.00362 0.01498

(0.00145) (0.00096) (0.00386) (0.00148) (0.00098) (0.00389)

L-EV 0.00507 0.00356 0.01627 0.00512 0.00363 0.01525

(0.00143) (0.00096) (0.00408) (0.00149) (0.00097) (0.00389)

AM-EV 0.00506 0.00355 0.01592 0.00511 0.00362 0.01506

(0.00143) (0.00095) (0.00395) (0.00149) (0.00097) (0.00382)

GE-EV 0.00505 0.00353 0.01541 0.00508 0.00361 0.01478

(0.00143) (0.00095) (0.00372) (0.00148) (0.00098) (0.00374)

EV[AA'] 0.00634 0.00448 0.02125 0.00632 0.00455 0.02071

(0.00186) (0.00123) (0.00597) (0.00191) (0.00128) (0.00600)

EV[A'A] 0.03798 0.03768 0.03795 0.03781 0.03763 0.03790

(0.01068) (0.01064) (0.00988) (0.01067) (0.01063) (0.01010)

AM - EV[AA'] 0.00717 0.00621 0.02027 0.00737 0.00369 0.01972

AND EV[A'A] (0.00192) (0.00168) (0.00497) (0.00202) (0.00173) (0.00497)

GE - EV[AA'] 0.01775 0.01765 0.02282 0.01777 0.01767 0.02219

AND EV[A'A] (0.00480) (0.00468) (0.00496) (0.00483) (0.00469) (0.00499)

GE 0.00506 0.00353 0.01419 0.00507 0.00361 0.01437

(0.00144) (0.00095) (0.00358) (0.00148) (0.00098) (0.00363)

C-RSM 0.00516 0.00357 0.01498 0.00517 0.00365 0.01423

(0.00150) (0.00097) (0.00359) (0.00152) (0.00099) (0.00356)

MT 0.00505 0.00353 0.01487 0.00505 0.00361 0.01450

(0.00144) (0.00095) (0.00346) (0.00147) (0.00098) (0.00361)

SAY 0.00619 0.00427 0.01321 0.00190 0.00433 0.01234

(0.00188) (0.00117) (0.00327) (0.00604) (0.00122) (0.00361)

NEV 0.00612 0.00506 0.01924 0.00202 0.00535 0.01755

(0.00180) (0.00159) (0.00546) (0.00663) (0.00170) (0.00536)

L5M 0.00778 0.00534 0.01276 0.00264 0.00534 0.01201

(0.00259) (0.00158) (0.00427) (0.00729) (0.00165) (0.00349)
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Table B.27: Mean and Standard Deviation of Accuracy Measurement (d1) from

Simulation (With N = 12, M = 3, scale [1/9, 9], T = 500) [Continued]

CSM 0.00551 0.00411 0.01764

(0.00162) (0.00137) (0.00515)

R-EV 0.00570 0.00406 0.01586

(0.00166) (0.00127) (0.00460)

L-EV 0.00566 0.00403 0.01717

(0.00164) (0.00125) (0.00519)

AM-EV 0.00565 0.00403 0.01699

(0.00164) (0.00125) (0.00514)

GE-EV 0.00566 0.00402 0.01558

(0.00163) (0.00127) (0.00436)

EV[AA'J 0.00742 0.00525 0.02378

(0.00222) (0.00164) (0.00750)

EV[A'A] 0.04713 0.04700 0.04641

(0.01551) (0.01547) (0.01527)

AM - EV[AA'] 0.00747 0.00558 0.02309

AND EV[A'A] (0.00218) (0.00167) (0.00716)

GE - EV[AA'] 0.02106 0.02087 0.02526

AND EV[A'A] (0.00708) (0.00709) (0.00713)

GE 0.00569 0.00402 0.01385

(0.00164) (0.00127) (0.00396)

C-RSM 0.00638 0.00452 0.01340

(0.00200) (0.00149) (0.00377)

MT 0.00564 0.00404 0.01412

(0.00160) (0.00127) (0.00373)

SAY 0.00943 0.00671 0.00878

(0.00350) (0.00250) (0.00375)

NEV 0.00719 0.00571 0.02051

(0.00230) (0.00197) (0.00729)

L5M 0.01292 0.00912 0.00804

(00501) (0.00348) (0.00458)
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Table B.28: Mean and Standard Deviation of Accuracy Measurement (d1 ) from

Simulation (With N = 12, M = 5, scale [1/9, 9], T = 500)

M=5 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00580 0.00431 0.001787 0.00499 0.00398 0.01206
(0.00187) (0.00175) (0.00387) (0.00172) (0.00159) (0.00290)

R-EV 0.00422 0.00288 0.01372 0.00417 0.00287 0.01226
(0.00122) (0.00076) (0.00311) (0.00122) (0.00075) (0.00307)

L-EV 0.00419 0.00288 0.01423 0.00422 0.00287 0.01248

(0.00121) (0.00076) (0.00318) (0.00123) (0.00076) (0.00313)

AM-EV 0.00418 0.00288 0.01392 0.00420 0.00287 0.01238

(0.00121) (0.00076) (0.00309) (0.00123) (0.00076) (0.00309)

GM-EV 0.00418 0.00287 0.01340 0.00418 0.00287 0.01222

(0.00121) (0.00075) (0.00296) (0.00122) (0.00075) (0.00303)

EV[AA'] 0.00516 0.00353 0.001889 0.00510 0.00250 0.01702
(0.00155) (0.00098) (0.00443) (0.00154) (0.00097) (0.00454)

EV[A'A] 0.03778 0.03757 0.03763 0.03763 0.03752 0.03752

(0.01066) (0.01061) (0.00984) (0.01065) (0.01060) (0.01010)

AM - EV[AA'] 0.00647 0.00574 0.01861 0.00667 0.00588 0.01681

AND EV[A'A] (0.00176) (0.00171) (0.00374) (0.00186) (0.00176) (0.00379)

GE - EV[AA'] 0.01759 0.01755 0.02226 0.01761 0.Q1757 0.02100

AND EV[A'A] (0.00482) (0.00472) (0.00492) (0.00483) (0.00473) (0.00497)

GE 0.00417 0.00287 0.01223 0.00417 0.00287 0.01205

(0.00121) (0.00075) (0.00289) (0.00122) (0.00075) (0.00299)

C-RSM 0.00425 0.00290 0.01319 0.00423 0.00290 0.01174

(0.00126) (0.00075) (0.00280) (0.00126) (0.00075) (0.00290)

MT 0.00418 0.00288 0.01294 0.00416 0.00287 0.01210

(0.00120) (0.00075) (0.00285) (0.00121) (0.00075) (0.00296)

SAY 0.00495 0.00341 0.01141 0.00493 0.00339 0.01011

(0.00152) (0.00093) (0.00283) (0.00155) (0.00093) (0.00263)

NEV 0.00494 0.00390 0.01769 0.00580 0.00420 0.01436

(0.00163) (0.00123) (0.00463) (0.00181) (0.00128) (0.00448)

L5M 0.00607 0.00416 0.01069 0.00600 0.00410 0.00895
(0.00208) (0.00128) (0.00354) (0.00214) (0.00130) (0.00273)
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Table B.29: Mean and Standard Deviation of Accuracy Measurement (d1) from

Simulation (With N = 12, M = 5, scale [1/9, 9J, T = 500) [ContinuedJ

M=5 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00593 0.00437 0.01826 0.00508 0.00402 0.01222

(0.00193) (0.00178) (0.00384) (0.00175) (0.00159) (0.00297)

R-EV 0.00422 0.00289 0.01379 0.00425 0.00292 0.01238

(0.00122) (0.00076) (0.00322) (0.00128) (0.00077) (0.00312)

L-EV 0.00420 0.00289 0.01379 0.00428 0.00292 0.01261

(0.00122) (0.00076) (0.00333) (0.00130) (0.00078) (0.00316)

AM-EV 0.00419 0.00288 0.01355 0.00427 0.00292 0.01250

(0.00122) (0.00076) (0.00324) (0.00130) (0.00078) (0.00312)

GE-EV 0.00419 0.00287 0.01323 0.00425 0.00292 0.01233

(0.00121 ) (0.00075) (0.00309) (0.00129) (0.00077) (0.00305)

EV[AA'] 0.00519 0.00353 0.01802 0.00527 0.00357 0.01717

(0.00157) (0.00098) (0.00474) (0.00167) (0.00098) (0.00457)

EV[A'A] 0.03782 0.03759 0.03766 0.03765 0.03753 0.03759

(0.01067) (0.01062) (0.00984) (0.01063) (0.01062) (0.01012)

AM - EV[AA'] 0.00640 0.00569 0.01775 0.00677 0.00590 0.01689

AND EV[A'A] (0.00176) (0.00170) (0.00393) (0.00193) (0.00177) (0.00382)

GE- EV[AA'] 0.01756 0.01753 0.02188 0.01763 0.01757 0.02101

AND EV[A'A] (0.00482) (0.00472) (0.00490) (0.00483) (0.00473) (0.00467)

GE 0.00418 0.00287 0.01208 0.00424 0.00292 0.01213

(0.00122) (0.00075) (0.00301) (0.00128) (0.00077) (0.00300)

C-RSM 0.00426 0.00291 0.01297 0.00431 0.00295 0.01184

(0.00127) (0.00075) (0.00291) (0.00132) (0.00077) (0.00291)

MT 0.00418 0.00287 0.01293 0.00424 0.00292 0.01219

(0.00120) (0.00075) (0.00293) (0.00128) (0.00077) (0.00299)

SAY 0.00497 0.00342 0.01146 0.00504 0.00347 0.01017

(0.00154) (0.00093) (0.00288) (0.00157) (0.00096) (0.00264)

NEV 0.00488 0.00389 0.01655 0.00585 0.00427 0.01458

(0.00165) (0.00123) (0.00450) (0.00181) (0.00131) (0.00460)

LSM 0.00616 0.00420 0.01039 0.00617 0.00422 0.00978

(0.00212) (0.00130) (0.00350) (0.00219) (0.00136) (0.00275)
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Table B.30: Mean and Standard Deviation of Accuracy Measurement (dd from

Simulation (With N = 12, M = 5, scale [1/9, 9], T = 500) [Continued]

CSM 0.00472 0.00331 0.01610

(0.00139) (0.00111) (0.00431)

R-EV 0.00476 0.00323 0.01356

(0.00147) (0.00099) (0.00358)

L-EV 0.00473 0.00326 0.01459

(0.00147) (0.00099) (0.00392)

AM-EV 0.00472 0.00326 0.01443

(0.00147) (0.00099) (0.00389)

GE-EV 0.00471 0.00322 0.01327

(0.00146) (0.00097) (0.00355)

EV[AA'] 0.00616 0.00422 0.02059

(0.00193) (0.00131) (0.00614)

EV[A'A] 0.04683 0.04674 0.04629

(0.01553) (0.01542) (0.01523)

AM - EV[AA'] 0.00619 0.00462 0.02022

AND EV[A'A] (0.00190) (0.00145) (0.00576)

GE - EV[AA'] 0.02076 0.02067 0.02436

AND EV[A'A] (0.00709) (0.00698) (0.00715)

GE 0.00471 0.00323 0.01175

(0.00147) (0.00097) (0.00330)

C-RSM 0.00526 0.00363 0.01156

(0.00166) (0.00112) (0.00312)

MT 0.00469 0.00320 0.01213

(0.00145) (0.00096) (0.00305)

SAY 0.00753 0.00534 0.00710

(0.00280) (0.00178) (0.00300)

NEV 0.00559 0.00447 0.01773

(0.00198) (0.00139) (0.00623)

LSM 0.01037 0.00731 0.00645

(0.00410) (0.00277) (0.00347)
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Table B.31: Mean and Standard Deviation of Accuracy Measurement (d1 ) from

Simulation (With N = 12, M = 7, scale [1/9, 9], T = 500)

M=7 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

C5M 0.00544 0.00405 0.01723 0.00463 0.00371 0.01096

(0.00188) (0.00178) (0.00356) (0.00165) (0.00159) (0.00250)

R-EV 0.03812 0.00253 0.01283 0.00376 0.00252 0.01130

(0.00101) (0.00067) (0.00274) (0.00102) (0.00066) (0.00265)

L-EV 0.00379 0.00253 0.01325 0.00380 0.00251 0.01148

(0.00102) (0.00066) (0.00275) (0.00102) (0.00066) (0.00272)

AM-EV 0.00379 0.00252 0.01299 0.00379 0.00251 0.01141

(0.00101) (0.00066) (0.00268) (0.00102) (0.00066) (0.00269)

GM-EV 0.00378 0.00252 0.01256 0.00377 0.00251 0.01130

(0.00101) (0.00066) (0.00261) (0.00102) (0.00066) (0.00265)

EV[AA'] 0.00456 0.00303 0.01784 0.00449 0.00300 0.01583

(0.00132) (0.00084) (0.00370) (0.00133) (0.00082) (0.00390)

EV[A'A] 0.03771 0.03755 0.03749 0.03755 0.03750 0.03736

(0.01064) (0.01059) (0.00986) (0.01062) (0.01059) (0.01017)

AM - EV[AA'] 0.00607 0.00548 0.01782 0.00631 0.00565 0.01587

AND EV[A'A] (0.00172) (0.00548) (0.00325) (0.00185) (0.00179) (0.00335)

GE - EV[AA'] 0.01752 0.01750 0.02198 0.01754 0.01753 0.02065

AND EV[A'A] (0.00482) (0.00471) (0.00487) (0.00483) (0.00473) (0.00493)

GE 0.00376 0.00251 0.01142 0.00376 0.00251 0.01119

(0.00101) (0.00066) (0.00253) (0.00101) (0.00066) (0.00262)

C-R5M 0.00384 0.00255 0.01246 0.00382 0.00254 0.01084

(0.00105) (0.00066) (0.00241) (0.00106) (0.00066) (0.00252)

MT 0.00377 0.00252 0.01218 0.00375 0.00251 0.01123

(0.00100) (0.00066) (0.00252) (0.00101 ) (0.00066) (0.00258)

SAY 0.00440 0.00300 0.01065 0.00437 0.00298 0.00916

(0.00130) (0.00081) (0.00253) (0.00132) (0.00080) (0.00235)

NEV 0.00412 0.00327 0.01673 0.00517 0.00367 0.01335

(0.00136) (0.00102) (0.00436) (0.00160) (0.00110) (0.00417)

L5M 0.00533 0.00364 0.00969 0.00524 0.00358 0.00890

(0.00182) (0.00113) (0.00318) (0.00188) (0.00112) (0.00243)
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Table B.32: Mean and Standard Deviation of Accuracy Measurement (dd from

Simulation (With N = 12, M = 7, scale [1/9, 9], T = 500) [Continued]

M=7 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00559 0.00411 0.01766 0.00464 0.00375 0.01107

(0.00195) (0.00183) (0.00350) (0.00169) (0.00159) (0.00262)

R-EV 0.00382 0.00253 0.01285 0.00376 0.00257 0.01136

(0.00102) (0.00067) (0.00287) (0.00107) (0.00069) (0.00275)

L-EV 0.00380 0.00253 0.01269 0.00378 0.00257 0.01155

(0.00102) (0.00066) (0.00290) (0.00108) (0.00068) (0.00281)

AM-EV 0.00379 0.00252 0.01253 0.00377 0.00257 0.01147

(0.00102) (0.00066) (0.00283) (0.00108) (0.00068) (0.00278)

GE-EV 0.00389 0.00251 0.01233 0.00376 0.00257 0.001135

(0.00101) (0.00066) (0.00275) (0.00107) (0.00069) (0.00273)

EV[AA'] 0.00457 0.00303 0.01673 0.00454 0.00307 0.01594

(0.00133) (0.00084) (0.00398) (0.00145) (0.00086) (0.00410)

EV[A'A] 0.03774 0.03756 0.03752 0.03755 0.03751 0.03743

(0.01066) (0.01059) (0.00986) (0.01061) (0.01059) (0.01016)

AM - EV[AA'] 0.00598 0.00543 0.01677 0.00633 0.00568 0.01590

AND EV[A'A] (0.00170) (0.00170) (0.00336) (0.00188) (0.00180) (0.00351)

GE· EV[AA'] 0.01749 0.01748 0.02156 0.01753 0.01754 0.02062

AND EV[A'A] (0.00481 ) (0.00471) (0.00483) (0.00483) (0.00474) (0.00493)

GE 0.00376 0.00251 0.01122 0.00375 0.00257 0.01112

(0.00101) (0.00066) (0.00264) (0.00107) (0.00069) (0.00270)

C-RSM 0.00385 0.00255 0.01217 0.00382 0.00260 0.01089

(0.00106) (0.00066) (0.00252) (0.00111) (0.00068) (0.00260)

MT 0.00377 0.00252 0.01212 0.00374 0.00257 0.01124

(0.00100) (0.00066) (0.00261) (0.00107) (0.00069) (0.00267)

SAY 0.00441 0.00300 0.01068 0.00444 0.00308 0.00913

(0.00132) (0.00081) (0.00260) (0.00134) (0.00084) (0.00244)

NEV 0.00404 0.00325 0.01533 0.00514 0.00375 0.01348

(0.00140) (0.00101) (0.00416) (0.00162) (0.00114) (0.00437)

LSM 0.00541 0.00367 0.00932 0.00537 0.00371 0.00874

(0.00185) (0.00114) (0.00316) (0.00195) (0.00120) (0.00254)
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Table B.33: Mean and Standard Deviation of Accuracy Measurement (dd from

Simulation (With N = 12, M = 7, scale [1/9, 9J, T = 500) [ContinuedJ

CSM 0.00420 0.00291 0.01541

(0.00123) (0.00098) (0.00417)

R-EV 0.00426 0.00290 0.01253
(0.00127) (0.00084) (0.00340)

L-EV 0.00427 0.00288 0.01344

(0.00127) (0.00084) (0.00365)

AM-EV 0.00426 0.00288 0.01330

(0.00127) (0.00084) (0.00359)

GE-EV 0.00422 0.00288 0.01224

(0.00125) (0.00083) (0.00331)

EV[AA'] 0.00537 0.00366 0.01901

(0.00167) (0.00110) (0.00538)

EV[A'A] 0.04678 0.04665 0.04621

(0.01555) (0.01542) (0.01525)

AM - EV[AA'] 0.00550 0.00417 0.01884
AND EV[A'A] (0.00167) (0.00131) (0.00499)

GE - EV[AA'] 0.02064 0.02061 0.02405

AND EV[A'A] (0.00704) (0.00703) (0.00724)

GE 0.00420 0.00288 0.01086

(0.00125) (0.00084) (0.00297)

C-RSM 0.00472 0.00320 0.01074

(0.00145) (0.00097) (0.00287)

MT 0.00418 0.00289 0.01132

(0.00125) (0.00084) (0.00293)

SAY 0.00659 0.00462 0.00629
(0.00255) (0.00158) (0.00283)

NEV 0.00478 0.00388 0.01630

(0.00166) (0.00120) (0.00552)

LSM 0.00877 0.00632 0.00541
(0.00366) (0.00232) (0.00305)

n M=7 llf--==-_ A-MDM(V)_-:::-:-_a
a ABBREVIATIONS 0 UF I LN I GA a
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Table B.34: Mean and Standard Deviation of Accuracy Measurement (d1 ) from

Simulation (With N = 12, M = 9, scale [1/9, 9], T = 500)

M=9 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00522 0.00390 0.01695 0.00439 0.00357 0.01041
(0.00190) (0.00180) (0.00338) (0.00165) (0.00160) (0.00233)

R-EV 0.00353 0.00236 0.01236 0.00347 0.00235 0.01074

(0.00094) (0.00060) (0.00246) (0.00095) (0.00060) (0.00243)

L-EV 0.00351 0.00236 0.01273 0.00350 0.00234 0.01096

(0.00094) (0.00060) (0.00261) (0.00095) (0.00060) (0.00254)

AM-EV 0.00351 0.00235 0.01251 0.00350 0.00234 0.01090

(0.00094) (0.00060) (0.00254) (0.00095) (0.00060) (0.00251 )

GM-EV 0.00350 0.00235 0.01212 0.00348 0.00234 0.01079
(0.00093) (0.00060) (0.00243) (0.00094) (0.00060) (0.00246)

EV[AA'] 0.00414 0.00283 0.01722 0.00406 0.00280 0.01508

(0.00123) (0.00077) (0.00340) (0.00125) (0.00075) (0.00349)

EV[A'A] 0.03770 0.03754 0.03745 0.03754 0.03748 0.03730

(0.01061) (0.01058) (0.00986) (0.01060) (0.01058) (0.01020)

AM - EV[AA'] 0.00584 0.00539 0.01737 0.00610 0.00557 0.01531
AND EV[A'A] (0.00173) (0.00173) (0.00304) (0.00186) (0.00182) (0.00308)

GE - EV[AA'] 0.01749 0.01748 0.02183 0.01752 0.01751 0.02044

AND EV[A'A] (0.00480) (0.00474) (0.00484) (0.00482) (0.00476) (0.00492)

GE 0.00347 0.00235 0.01098 0.00347 0.00234 0.01070

(0.00093) (0.00060) (0.00234) (0.00094) (0.00060) (0.00244)

C-RSM 0.00355 0.00238 0.01205 0.00353 0.00237 0.01032

(0.00097) (0.00061) (0.00226) (0.00098) (0.00061) (0.00234)

MT 0.00349 0.00236 0.01176 0.00346 0.00234 0.01071

(0.00092) (0.00060) (0.00226) (0.00094) (0.00060) (0.00238)

SAY 0.00401 0.00276 0.01022 0.00397 0.00274 0.00858
(0.00118) (0.00075) (0.00239) (0.00120) (0.00074) (0.00219)

NEV 0.00363 0.00292 0.01621 0.00485 0.00339 0.01266

(0.00124) (0.00091) (0.00413) (0.00149) (0.00102) (0.00395)

LSM 0.0'3481 0.00331 0.00905 0.00469 0.00325 0.00821

(0.00164) (0.00099) (0.00303) (0.00170) (0.00100) (0.00229)
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Table B.35: Mean and Standard Deviation of Accuracy Measurement (d1 ) from

Simulation (With N = 12, M = 9, scale [1/9, 9], T = 500) [Continued]

M=9 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00539 0.00398 0.01739 0.00597 0.00360 0.01048

(0.00197) (0.00184) (0.00331) (0.00227) (0.00161) (0.00242)

R-EV 0.00353 0.00236 0.01233 0.00453 0.00240 0.01075

(0.00094) (0.00061) (0.00259) (0.00141) (0.00063) (0.00250)

L-EV 0.00351 0.00236 0.01211 0.00451 0.00240 0.01097

(0.00094) (0.00061) (0.00276) (0.00145) (0.00063) (0.00260)

AM-EV 0.00351 0.00235 0.01198 0.00451 0.00240 0.01090

(0.00094) (0.00061) (0.00269) (0.00144) (0.00063) (0.00257)

GE-EV 0.00351 0.00234 0.01184 0.00451 0.00240 0.01078

(0.00093) (0.00060) (0.00257) (0.00142) (0.00063) (0.00251)

EV[AA'] 0.00415 0.00283 0.01598 0.00534 0.00288 0.01501

(0.00124) (0.00077) (0.00370) (0.00194) (0.00078) (0.00375)

EV[A'A] 0.03773 0.03755 0.03748 0.04438 0.03748 0.03737

(0.01063) (0.01058) (0.00968) (0.01579) (0.01058) (0.01022)

AM - EV[AA'] 0.00574 0.00533 0.01622 0.00747 0.00559 0.01518
AND EV[A'A] (0.00171) (0.00171) (0.00314) (0.00232) (0.00182) (0.00324)

GE - EV[AA'] 0.01747 0.01747 0.02139 0.02052 0.01751 0.02035

AND EV[A'A] (0.00480) (0.00474) (0.00480) (0.00713) (0.00476) (0.00488)

GE 0.00347 0.00234 0.01073 0.00449 0.00240 0.01066

(0.00094) (0.00060) (0.00245) (0.00142) (0.00063) (0.00248)

C-RSM 0.00356 0.00237 0.01172 0.00457 0.00242 0.01032

(0.00097) (0.00061) (0.00236) (0.00144) (0.00063) (0.00238)

MT 0.00349 0.00235 0.01167 0.00450 0.00240 0.01067
(0.00093) (0.00060) (0.00235) (0.00140) (0.00063) (0.00243)

SAY 0.00402 0.00276 0.01022 0.00528 0.00281 0.00853

(0.00120) (0.00075) (0.00247) (0.00178) (0.00078) (0.00217)

NEV 0.00355 0.00290 0.01462 0.00603 0.00346 0.01269

(0.00127) (0.00091) (0.00389) (0.00227) (0.00105) (0.00399)

LSM 0.00488 0.00334 0.00862 0.00624 0.00334 0.00804

(0.00168) (0.00101) (0.00300) (0.00253) (0.00105) (0.00223)
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Table B.36: Mean and Standard Deviation of Accuracy Measurement (dd from

Simulation (With N = 12, M = 9, scale [1/9, 9], T = 500) [Continued]

CSM 0.00397 0.00269 0.01503

(0.00115) (0.00088) (0.00411)

R-EV 0.00394 0.00268 0.01181

(0.00115) (0.00077) (0.00312)

L-EV 0.00394 0.00266 0.01254

(0.00116) (0.00077) (0.00333)

AM-EV 0.00393 0.00266 0.01244

(0.00116) (0.00077) (0.00331)

GE-EV 0.00389 0.00266 0.01160

(0.00115) (0.00075) (0.00305)

EV[AA'] 0.00485 0.00337 0.01799

(0.00153) (0.00106) (0.00486)

EV[A'A] 0.04670 0.04659 0.04623

(0.01549) (0.01547) (0.01518)

AM - EV[AA'] 0.00507 0.00388 0.01778
AND EV[A'A] (0.00157) (0.00130) (0.00454)

GE - EV[AA'] 0.02061 0.02053 0.02386

AND EV[A'A] (0.00697) (0.00705) (0.00705)

GE 0.00388 0.00266 0.01025

(0.00116) (0.00076) (0.00273)

C-RSM 0.00433 0.00297 0.01018

(0.00138) (0.00085) (0.00268)

MT 0.00389 0.00266 0.01068

(0.00113) (0.00076) (0.00267)

SAY 0.00591 0.00420 0.00578

(0.00245) (0.00144) (0.00269)

NEV 0.00425 0.00342 0.01556

(0.00159) (0.00114) (0.00502)

LSM 0.00794 0.00570 0.00487

(0.00361) (0.00209) (0.00279)



Appendix C

The Mean and Standard

Deviation of Group Disagreement

Measurement from Simulation

The entries of the following tables are the mean and standard deviation of group

disagreement measurement from simulation study. All of them are in pairs in each

cell, the number inside the parenthesis is the standard deviation of group disagree

ment measurement, and the number without parenthesis is the mean of group dis

agreement measurement. All the notations in the tables follow the definition Table

4.1 and 4.2. Other notations such as N stands for number of decision elements

simulated (i.e. the pairwise comparison matrix size). M is the number of decision

makers in the simulation process. UF stands for Uniform probability distribution.

LN stands for lognormal probability distribution and GA is the gamma probability

distribution.



234

Table C.1: Mean and Standard Deviation of Group Disagreement (d2 ) from Simu

lation (With N = 8, M = 3, scale [1/9, 9], T = 500)

M=3 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00648 0.00475 0.01638 0.00704 0.00500 0.01989

(0.00162) (0.00114) (0.00413) (0.00151 ) (0.00110) (0.00392)

R-EV 0.00620 0.00460 0.01623 0.00622 0.00460 0.01655

(0.00154) (0.00107) (0.00387) (0.00153) (0.00107) (0.00385)

L-EV 0.00627 0.00458 0.01701 0.00629 0.00459 0.01731

(0.00156) (0.00108) (0.00424) (0.00156) (0.00108) (0.00406)

AM-EV 0.00624 0.00457 0.01645 0.00625 0.00457 0.01664

(0.00156) (0.00108) (0.00407) (0.00155) (0.00108) (0.00393)

GM-EV 0.00619 0.00456 0.01572 0.00618 0.00456 0.01579

(0.00154) (0.00107) (0.00382) (0.00154) (0.00107) (0.00373)

EV[AA'l 0.00831 0.00596 0.02291 0.00836 0.00598 0.02326

(0.00214) (0.00155) (0.00609) (0.00212) (0.00154) (0.00582)

EV[A'A] 0.01052 0.00784 0.01599 0.01059 0.00789 0.01705

(0.00303) (0.00247) (0.00408) (0.00298) (0.00245) (0.00415)

AM - EV[AA'] 0.00763 0.00542 0.02047 0.00767 0.00544 0.02081

AND EV[A'A] (0.00197) (0.00141) (0.00546) (0.00196) (0.00141) (0.00527)

GE - EV[AA'] 0.00715 0.00523 0.01550 0.00719 0.00525 0.01589

AND EV[A'A] (0.00178) (0.00136) (0.00389) (0.00178) (0.00136) (0.0038)

GE 0.00624 0.00456 0.01491 0.00624 0.00456 0.01484

(0.00154) (0.00107) (0.00371) (0.00154) (0.00107) (0.00366)

C-RSM 0.00636 0.00469 0.01506 0.00637 0.00469 0.01515

(0.00157) (0.00112) (0.00376) (0.00156) (0.00112) (0.00368)

MT 0.00617 0.00455 0.01439 0.00619 0.00456 0.01466

(0.00152) (0.00106) (0.00340) (0.00151) (0.00105) (0.00328)

SAV 0.00773 0.00579 0.01395 0.00775 0.00580 0.01446

(0.00206) (0.00156) (0.00339) (0.00204) (0.00156) (0.00331 )

NEV 0.00870 0.00649 0.01971 0.00890 0.00658 0.02192

(0.00224) (0.00173) (0.00526) (0.00218) (0.00171) (0.00508)

LSM 0.00956 0.00705 0.01635 0.00963 0.00709 0.01723

(0.00277) (0.00229) (0.00515) (0.00274) (0.00228) (0.00533)
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Table C.2: Mean and Standard Deviation of Group Disagreement (d2 ) from Simu

lation (With N = 8, M = 3, scale [1/9, 9], T = 500) [Continued]

M=3 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00647 0.00474 0.01622 0.00705 0.00507 0.01985

(0.00162) (0.00113) (0.00402) (0.00153) (0.00112) (0.00422)

R-EV 0.00619 0.00459 0.01608 0.00629 0.00471 0.01693

(0.00153) (0.00107) (0.00388) (0.00154) (0.00109) (0.00399)

L-EV 0.00626 0.00458 0.01683 0.00636 0.00469 0.01775

(0.00156) (0.00108) (0.00413) (0.00157) (0.00110) (0.00423)

AM-EV 0.00623 0.00457 0.01629 0.00632 0.00468 0.01708

(0.00155) (0.00108) (0.00397) (0.00157) (0.00110) (0.00407)

GE-EV 0.00618 0.00456 0.01559 0.00625 0.00467 0.01623

(0.00154) (0.00107) (0.00374) (0.00155) (0.00109) (0.00384)

EV[AA'] 0.00829 0.00595 0.02250 0.00845 0.00611 0.02385

(0.00213) (0.00154) (0.00585) (0.00214) (0.00158) (0.00603)

EV[A'A] 0.01048 0.00783 0.01580 0.01071 0.00806 0.01731

(0.00300) (0.00245) (0.00397) (0.00301) (0.00252) (0.00426)

AM - EV[AA'] 0.00761 0.00542 0.02018 0.00775 0.00556 0.02133

AND EV[A'A) (0.00196) (0.00141) (0.00528) (0.00198) (0.00145) (0.00547)

GE - EV[AA') 0.00714 0.00522 0.01536 0.00727 0.00536 0.01624

AND EV[A'A) (0.00178) (0.00136) (0.00381) (0.00179) (0.00139) (0.00390)

GE 0.00623 0.00455 0.01479 0.00631 0.00466 0.01527

(0.00154) (0.00107) (0.00363) (0.00155) (0.00109) (0.00373)

C-RSM 0.00636 0.00469 0.01494 0.00644 0.00479 0.01556

(0.00156) (0.00112) (0.00369) (0.00157) (0.00114) (0.00377)

MT 0.00616 0.00455 0.01427 0.00626 0.00467 0.01505

(0.00152) (0.00105) (0.00333) (0.00153) (0.00107) (0.00340)

SAY 0.00771 0.00578 0.01383 0.00784 0.00593 0.01473

(0.00205) (0.00156) (0.00332) (0.00206) (0.00159) (0.00339)

NEV 0.00867 0.00645 0.01935 0.00896 0.00673 0.02211

(0.00222) (0.00172) (0.00501) (0.00220) (0.00177) (0.00538)

L5M 0.00953 0.00704 0.01614 0.00974 0.00725 0.01745

(0.00274) (0.00228) (0.00497) (0.00277) (0.00235) (0.00539)
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Table C.3: Mean and Standard Deviation of Group Disagreement (d2 ) from Simu

lation (With N = 8, M = 3, scale [1/9, 9], T = 500) [Continued]

CSM 0.00921 0.00736 0.02054

(0.00306) (0.00288) (0.00576)

R-EV 0.00680 0.00505 0.01705

(0.00185) (0.00138) (0.00470)

L-EV 0.00687 0.00503 0.01893

(0.00189) (0.00136) (0.00550)

AM-EV 0.00685 0.00502 0.01862

(0.00189) (0.00135) (0.00540)

GE-EV 0.00677 0.00500 0.01713

(0.00186) (0.00136) (0.00470)

EV[AA'] 0.00969 0.00689 0.02566

(0.00253) (0.00193) (0.00721)

EV[A'A] 0.01513 0.01112 0.01307

(0.00520) (0.00365) (0.00629)

AM - EV[AA'] 0.00928 0.00662 0.02439

AND EV[A'A] (0.00249) (0.00191) (0.00698)

GE - EV[AA'] 0.00907 0.00662 0.01587

AND EV[A'AJ (0.00267) (0.00206) (0.00449)

GE 0.00683 0.00500 0.01580

(0.00188) (0.00136) (0.00437)

C-RSM 0.00758 0.00559 0.01526

(0.00216) (0.00164) (0.00426)

MT 0.00675 0.00499 0.01482

(0.00182) (0.00136) (0.00390)

SAY 0.01127 0,00833 0.01128

(0.00396) (0.00283) (0.00452)

NEV 0.00947 0.00705 0.01997

(0.00257) (0.00215) (0.00580)

LSM 0.01453 0.01065 0.01216

(0.00526) (0.00376) (0.00632)
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Table 0.4: Mean and Standard Deviation of Group Disagreement (d2 ) from Simu

lation (With N = 8, M = 5, scale [1/9, 9J, T = 500)

M=5 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00559 0.00410 0.01420 0.00614 0.00433 0.01786

(0.00098) (0.00075) (0.00263) (0.00094) (0.00072) (0.00261)

R-EV 0.00534 0.00397 0.01410 0.00534 0.00397 0.01421

(0.00090) (0.00070) (0.00248) (0.00090) (0.00070) (0.00243)

L-EV 0.00542 0.00396 0.01480 0.00543 0.00396 0.01488

(0.00092) (0.00070) (0.00269) (0.00092) (0.00070) (0.00263)

AM-EV 0.00539 0.00395 0.01432 0.00539 0.00395 0.01436

(0.00092) (0.00070) (0.00258) (0.00092) (0.00070) (0.00252)

GM-EV 0.00534 0.00394 0.01370 0.00533 0.00394 0.01369

(0.00090) (0.00070) (0.00241) (0.00090) (0.00070) (0.00236)

EV[AA'] 0.00712 0.00513 0.01993 0.00714 0.00514 0.01995

(0.00131) (0.00102) (0.00395) (0.00130) (0.00102) (0.00377)

EV[A'A] 0.00919 0.00674 0.01403 0.00922 0.00676 0.01473

(0.00197) (0.00162) (0.00283) (0.00194) (0.00161) (0.00285)

AM - EV[AA'] 0.00653 0.00468 0.01782 0.00655 0.00469 0.01788

AND EV[A'A] (0.00121) (0.00093) (0.00353) (0.00120) (0.00093) (0.00341)

GE - EV[AA'] 0.00618 0.00450 0.01358 0.00620 0.00451 0.01377

AND EV[A'A] (0.00107) (0.00085) (0.00246) (0.00106) (0.00085) (0.00241)

GE 0.00538 0.00394 0.01299 0.00538 0.00394 0.01291

(0.00090) (0.00070) (0.00236) (0.00090) (0.00070) (0.00233

C-RSM 0.00550 0.00404 0.01315 0.00550 0.00404 0.01317

(0.00092) (0.00071) (0.00237) (0.00092) (0.00071) (0.00233)

MT 0.00531 0.00393 0.01248 0.00532 0.00394 0.01262

(0.00089) (0.00069) (0.00214) (0.00089) (0.00069) (0.00208)

SAY 0.00673 0.00498 0.01220 0.00673 0.00499 0.01247

(0.00127) (0.00099) (0.00225) (0.00126) (0.00099) (0.00221)

NEV 0.00739 0.00558 0,01712 0.00757 0.00565 0.01902

(0.00139) (0.00107) (0.00336) (0.00136) (0.00106) (0.00328)

LSM 0.00834 0.00610 0.01429 0.00836 0.00612 0.01475

(0.00181) (0.00149) (0.00365) (0.00179) (0.00148) (0.00371)
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Table C.5: Mean and Standard Deviation of Group Disagreement (d2 ) from Simu

lation (With N = 8, M = 5, scale [1/9, 9], T = 500) [Continued]

M=5 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00558 0.00410 0.01407 0.00613 0.00437 0.01781

(0.00097) (0.00075) (0.00256) (0.00094) (0.00074) (0.00284)

R-EV 0.00533 0.00396 0.01397 0.00543 0.00403 0.01448

(0.00090) (0.00070) (0.00243) (0.00092) (0.00071) (0.00247)

L-EV 0.00542 0.00396 0.01465 0.00552 0.00401 0.01516

(0.00092) (0.00070) (0.00263) (0.00094) (0.00071) (0.00268)

AM-EV 0.00539 0.00395 0.01419 0.00549 0.00400 0.01464

(0.00092) (0.00070) (0.00251) (0.00094) (0.00071) (0.00257)

GE-EV 0.00533 0.00394 0.01359 0.00542 0.00399 0.01397

(0.00090) (0.00070) (0.00235) (0.00092) (0.00071) (0.00240)

EV[AA'] 0.00711 0.00512 0.01958 0.00725 0.00521 0.02026

(0.00131) (0.00102) (0.00378) (0.00132) (0.00103) (0.00385)

EV[A'A] 0.00916 0.00673 0.01386 0.00937 0.00685 0.01492

(0.00195) (0.00161) (0.00274) (0.00199) (0.00163) (0.00288)

AM - EV[AA'] 0.00652 0.00468 0.01757 0.00665 0.00475 0.01816

AND EV[A'A] (0.00121) (0.00093) (0.00341) (0.00123) (0.00086) (0.00349)

GE - EV[AA'] 0.00617 0.00450 0.01346 0.00630 0.00457 0.01401

AND EV[A'A] (0.00106) (0.00085) (0.00241) (0.00109) (0.00086) (0.00244)

GE 0.00538 0.00394 0.01289 0.00547 0.00399 0.01317

(0.00090) (0.00070) (0.00230) (0.00092) (0.00071) (0.00236)

C-RSM 0.00549 0.00404 0.01304 0.00559 0.00410 0.01343

(0.00092) (0.00071) (0.00232) (0.00094) (0.00072) (0.00236)

MT 0.00531 0.00393 0.01238 0.00541 0.00399 0.01288

(0.00089) (0.00069) (0.00210) (0.00091) (0.00070) (0.00213)

SAY 0.00671 0.00498 0.00684 0.00506 0.01269

(0.00126) (0.00220) (0.00129) (0.00100) (0.00225)

NEV 0.00737 0.00557 0.01683 0.00765 0.00573 0.01917

(0.00138) (0.00107) (0.00321) (0.00139) (0.00108) (0.00350)

LSM 0.00831 0.00609 0.01412 0.00850 0.00620 0.01489

(0.00180) (0.00148) (0.00353) (0.00183) (0.00150) (0.00373)
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Table C.6: Mean and Standard Deviation of Group Disagreement (d2 ) from Simu

lation (With N = 8, M = 5, scale [1/9, 9], T = 500) [Continued]

CSM 0.00751 0.00597 0.01684

(0.00223) (0.00215) (0.00375)

R-EV 0.00571 0.00425 0.01441

(0.00105) (0.00081) (0.00285)

L-EV 0.00580 0.00425 0.01592

(0.00108) (0.00084) (0.00336)

AM-EV 0.00579 0.00424 0.01567

(0.00108) (0.00084) (0.00331)

GE-EV 0.00571 0.00422 0.01442

(0.00105) (0.00083) (0.00289)

EV[AA'] 0.00813 0.00576 0.02173

(0.00157) (0.00122) (0.00458)

EV[A'A] 0.01273 0.00928 0.01094

(0.00339) (0.00244) (0.00436)

AM - EV[AA'] 0.00780 0.00553 0.02066

AND EV[A'A] (0.00159) (0.00123) (0.00450)

GE - EV[AA'] 0.00760 0.00557 0.01330
AND EV-[A'A-J (0.00172) (0.00127) (0.00275)

GE 0.00576 0.00422 0.01334

(0.00106) (0.00083) (0.00268)

C-RSM 0.00638 0.00471 0.01282

(0.00133) (0.00100) (0.00265)

MT 0.00568 0.00421 0.01246

(0.00104) (0.00081) (0.00235)

SAY 0.00947 0.00694 0.00944

(0.00262) (0.00188) (0.00318)

NEV 0.00788 0.00594 0.01691

(0.00164) (0.00130) (0.00370)

LSM 0.01226 0.00890 0.01037

(0.00348) (0.00253) (0.00452)
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Table C.7: Mean and Standard Deviation of Group Disagreement (d2 ) from Simu

lation (With N = 8, M = 7, scale [1/9, 9], T = 500)

M=7 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00491 0.00360 0.01248 0.00543 0.00381 0.01589

(0.00071) (0.00055) (0.00190) (0.00068) (0.00054) (0.00205)

R-EV 0.00470 0.00347 0.01236 0.00470 0.00347 0.01240

(0.00063) (0.00051) (0.00178) (0.00063) (0.00051) (0.00174)

L-EV 0.00475 0.00347 0.01296 0.00476 0.00347 0.01298

(0.00065) (0.00051) (0.00192) (0.00065) (0.00051) (0.00188)

AM-EV 0.00473 0.00346 0.01255 0.00473 0.00346 0.01254

(0.00065) (0.00051) (0.00183) (0.00064) (0.00051) (0.00179)

GM-EV 0.00469 0.00345 0.01201 0.00468 0.00345 0.01198

(0.00063) (0.00051) (0.00170) (0.00063) (0.00051) (0.00166)

EV[AA'] 0.00623 0.00450 0.01744 0.00624 0.00451 0.01738

(0.00098) (0.00076) (0.00277) (0.00097) (0.00076) (0.00265)

EV[A'A] 0.00808 0.00589 0.01243 0.00810 0.00590 0.01295

(0.00154) (0.00128) (0.00219) (0.00152) (0.00127) (0.00221)

AM - EV[AA'] 0.00571 0.00411 0.01560 0.00572 0.00411 0.01559

AND EV[A'A] (0.00090) (0.00070) (0.00248) (0.00090) (0.00070) (0.00240)

GE- EV[AA'] 0.00541 0.00393 0.01193 0.00543 0.00394 0.01205

AND EVIA'A] (0.00078) (0.00065) (0.00179) (0.00077) (0.00065) (0.00176)

GE 0.00473 0.00345 0.01139 0.00473 0.00345 0.01132

(0.00063) (0.00051) (0.00168) (0.00063) (0.00051) (0.00165)

C-RSM 0.00483 0.00354 0.01153 0.00482 0.00354 0.01152

(0.00064) (0.00053) (0.00169) (0.00064) (0.00052) (0.00165)

MT 0.00468 0.00344 0.01096 0.00468 0.00344 0.01104

(0.00062) (0.00050) (0.00153) (0.00062) (0.00050) (0.00149)

SAY 0.00593 0.00435 0.01073 0.00593 0.00436 0.01092

(0.00093) (0.00077) (0.00171) (0.00092) (0.00077) (0.00167)

NEV 0.00652 0.00491 0.01504 0.00668 0.00498 0.01671

(0.00102) (0.00079) (0.00265) (O.OOOlD) (0.00078) (0.00260)

LSM 0.00735 0.00534 0.01261 0.00737 0.00535 0.01290

(0.00143) (0.00117) (0.00291) (0.00141 ) (0.00117) (0.00295)
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Table C.8: Mean and Standard Deviation of Group Disagreement (d2 ) from Simu

lation (With N = 8, M = 7, scale [1/9, 9], T = 500) [Continued]

M=7 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00490 0.00359 0.01237 0.00540 0.00384 0.01591

(0.00071) (0.00055) (0.00186) (0.00069) (0.00055) (0.00223)

R-EV 0.00469 0.00347 0.01225 0.00477 0.00352 0.01263

(0.00063) (0.00051) (0.00174) (0.00061) (0.00052) (0.00174)

L-EV 0.00475 0.00347 0.01283 0.00482 0.00352 0.01321

(0.00065) (0.00051) (0.00187) (0.00066) (0.00052) (0.00193)

AM-EV 0.00472 0.00346 0.01243 0.00480 0.00350 0.01278

(0.00064) (0.00051) (0.00179) (0.00066) (0.00052) (0.00184)

GE-EV 0.00468 0.00345 0.01191 0.00475 0.00349 0.01222

(0.00063) (0.00051) (0.00166) (0.00065) (0.00051) (0.00168)

EV[AA'] 0.00622 0.00450 0.01714 0.00632 0.00456 0.01762

(0.00097) (0.00076) (0.00266) (0.00099) (0.00077) (0.00272)

EV[A'A] 0.00805 0.00588 0.01229 0.00821 0.00597 0.01314

(0.00153) (0.00127) (0.00213) (0.00155) (0.00130) (0.00227)

AM - EV[AA'] 0.00570 0.00411 0.01539 0.00579 0.00416 0.01582

AND EV[A'A] (0.00090) (0.00070) (0.00240) (0.00091) (0.00071) (0.00245)

GE - EV[AA'] 0.00540 0.00393 0.01183 0.00550 0.00399 0.01226

AND EV[A'A] (0.00077) (0.00065) (0.00175) (0.00078) (0.00066) (0.00180)

GE 0.00472 0.00345 0.01131 0.00479 0.00349 0.01154

(0.00063) (0.00051) (0.00165) (0.00064) (0.00051) (0.00166)

C-RSM 0.00482 0.00354 0.01144 0.00489 0.00358 0.01175

(0.00064) (0.00052) (0.00165) (0.00065) (0.00053) (0.00167)

MT 0.00467 0.00344 0.01088 0.00475 0.00349 0.01128

(0.00062) (0.00050) (0.00150) (0.00063) (0.00051) (0.00150)

SAY 0.00591 0.00435 0.01065 0.00601 0.00441 0.01112

(0.00092) (0.00077) (0.00167) (0.00094) (0.00078) (0.00170)

NEV 0.00650 0.00491 0.01479 0.00670 0.00504 0.01689

(0.00101) (0.00079) (0.00253) (0.00101) (0.00079) (0.00276)

LSM 0.00733 0.00533 0.01246 0.00747 0.00541 0.01302

(0.00142) (0.00117) (0.00282) (0.00144) (0.00119) (0.00298)
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Table C.9: Mean and Standard Deviation of Group Disagreement (d2 ) from Simu

lation (With N = 8, M = 7, scale [1/9, 9], T = 500) [Continued]

CSM 0.00647 0.00513 0.01473
(0.00179) (0.00177) (0.00294)

R-EV 0.00500 0.00370 0.01262

(0.00077) (0.00060) (0.00202)

L-EV 0.00505 0.00369 0.01400

(0.00079) (0.00061) (0.00253)

AM-EV 0.00504 0.00369 0.01376

(0.00078) (0.00061) (0.00249)

GE-EV 0.00498 0.00368 0.01267

(0.p0077) (0.00060) (0.00209)

EV[AA'] 0.00705 0.00505 0.01901

(0.00113) (0.00096) (0.00331)

EV[A'A] 0.01109 0.00814 0.00965

(0.00273) (0.00199) (0.00343)

AM - EV[AA'] 0.00675 0.00484 0.01806

AND EV[A'A] (0.00116) (0.00097) (0.00332)

GE - EV[AA'] 0.00662 0.00489 0.01161

AND EVrA'A] (0.00129) (0.00099) (0.00198)

GE 0.00503 0.00368 0.01169

(0.00077) (0.00060) (0.00192)

C-RSM 0.00556 0.00411 0.01123

(0.00097) (0.00076) (0.00192)

MT 0.00497 0.00367 0.01091

(0.00076) (0.00059) (0.00166)

SAY 0.00826 0.00608 0.00826

(0.00212) (0.00156) (0.00251)

NEV 0.00690 0.00520 0.01479

(0.00122) (0.00098) (0.00283)

LSM 0.01068 0.00783 0.00907

(0.00281) (0.00209) (0.00352)

a M=7 nl----="=-- A-MDM(V) _-=-=-_0
o ABBREVIATIONS ~ UF I LN I GA 0
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Table C.10: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 8, M = 9, scale [1/9, 9], T = 500)

M=9 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00442 0.00324 0.01125 0.00490 0.00343 0.01445

(0.00058) (0.00045) (0.00158) (0.00056) (0.00044) (0.00178)

R-EV 0.00423 0.00313 0.01112 0.00423 0.00313 0.01114

(0.00050) (0.00040) (0.00146) (0.00050) (0.00040) (0.00143)

L-EV 0.00428 0.00312 0.01170 0.00428 0.00313 0.01169

(0.00051) (0.00040) (0.00155) (0.00051) (0.00040) (0.00151)

AM-EV 0.00426 0.00312 0.01133 0.00426 0.00312 0.01130

(0.00051) (0.00040) (0.00149) (0.00051) (0.00040) (0.00145)

GM-EV 0.00422 0.00311 0.01083 0.00422 0.00311 0.01079

(0.00050) (0.00040) (0.00139) (0.00050) (0.00040) (0.00137)

EV[AA'] 0.00561 0.00406 0.01569 0.00561 0.00407 0.01559

(0.00081) (0.00063) (0.00220) (0.00080) (0.00063) (0.00210)

EV[A'A] 0.00727 0.00531 0.01122 0.00728 0.00532 0.01163

(0.00128) (0.00106) (0.00181) (0.00126) (0.00105) (0.00183)

AM - EV[AA'] 0.00514 0.00371 0.01405 0.00514 0.00371 0.01399

AND EV[A'A] (0.00074) (0.00058) (0.00197) (0.00074) (0.00058) (0.00191)

GE - EV[AA'] 0.00487 0.00354 0.01075 0.00488 0.00354 0.01082

AND EV[A'A] (0.00060) (0.00052) (0.00148) (0.00060) (0.00051 ) (0.00145)

GE 0.00426 0.00311 0.01027 0.00425 0.00311 0.01020

(0.00050) (0.00040) (0.00139) (0.00050) (0.00040) (0.00137)

C-RSM 0.00434 0.00319 0.01040 0.00434 0.00318 0.01039

(0.00050) (0.00041) (0.00139) (0.00050) (0.00041) (0.00136)

MT 0.00421 0.00310 0.00986 0.00421 0.00310 0.00992

(0.00049) (0.00040) (0.00127) (0.00049) (0.00039) (0.00123)

SAY 0.00532 0.00392 0.00968 0.00532 0.00392 0.00982

(0.00073) (0.00061) (0.00144) (0.00073) (0.00061) (0.00141)

NEV 0.00588 0.00443 0.01355 0.00602 0.00449 0.01507

(0.00080) (0.00063) (0.00215) (0.00078) (0.00062) (0.00213)

LSM 0.00662 0.00481 0.01142 0.00663 0.00481 0.01160

(0.00118) (0.00097) (0.00248) (0.00117) (0.00096) (0.00249)
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Table C.ll: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 8, M = 9, scale [1/9, 9], T = 500) [Continued]

M=9 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00441 0.00324 0.01115 0.00485 0.00346 0.01449

(0.00058) (0.00045) (0.00154) (0.00056) (0.00045) (0.00195)

R-EV 0.00423 0.00313 0.01102 0.00429 0.00317 0.01134

(0.00050) (0.00040) (0.00143) (0.00051) (0.00040) (0.00144)

L-EV 0.00427 0.00312 0.01159 0.00434 0.00316 0.01190

(0.00051) (0.00040) (0.00151) (0.00052) (0.00041) (0.00155)

AM-EV 0.00425 0.00312 0.01123 0.00432 0.00315 0.01151

(0.00051) (0.00040) (0.00145) (0.00052) (0.00041) (0.00149)

GE-EV 0.00422 0.00311 0.01075 0.00428 0.00314 0.01100

(0.00050) (0.00040) (0.00136) (0.00051) (0.00040) (0.00139)

EV[AA'] 0.00559 0.00406 0.01543 0.00568 0.00411 0.01583

(0.00080) (0.00063) (0.00211) (0.00082) (0.00063) (0.00217)

EV[A'A] 0.00724 0.00530 0.01109 0.00737 0.00538 0.01183

(0.00127) (0.00105) (0.00176) (0.00128) (0.00107) (0.00189)

AM - EV[AA'] 0.00513 0.00370 0.01386 0.00521 0.00375 0.01421

AND EV[A'A] (0.00074) (0.00058) (0.00191) (0.00075) (0.00058) (0.00197)

GE - EV[AA'] 0.00486 0.00354 0.01066 0.00494 0.00358 0.01102

AND EV[A'A] (0.00060) (0.00051) (0.00145) (0.00061) (0.00052) (0.00149)

GE 0.00425 0.00311 0.01019 0.00431 0.00314 0.01039

(0.00050) (0.00040) (0.00136) (0.00051) (0.0040) (0.00138)

C-RSM 0.00434 0.00318 0.01032 0.00440 0.00322 0.01060

(0.00050) (0.00041) (0.00136) (0.00051) (0.00042) (0.00137)

MT 0.00420 0.00310 0.00979 0.00427 0.00314 0.01014

(0.00049) (0.00039) (0.00125) (0.00050) (0.00040) (0.00125)

SAY 0.00531 0.00392 0.00960 0.00540 0.00397 0.01100

(0.00073) (0.00061) (0.00141) (0.00073) (0.00062) (0.00142)

NEV 0.00586 0.00443 0.01333 0.00602 0.00454 0.01522

(0.00080) (0.00062) (0.00205) (0.00080) (0.00062) (0.00225)

LSM 0.00660 0.00480 0.01129 0.00671 0.00487 0.01172

(0.00117) (0.00096) (0.00240) (0.00118) (0.00097) (0.00251)
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Table C.12: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 8, M = 9, scale [1/9, 9], T = 500) [Continued]

CSM 0.00576 0.00457 0.01321

(0.00153) (0.00154) (0.00248)

R-EV 0.00448 0.00332 0.01134

(0.00061 ) (0.00047) (0.00157)

L-EV 0.00452 0.00331 0.01259

(0.00061) (0.00047) (0.00199)

AM-EV 0.00451 0.00331 0.01237

(0.00061) (0.00047) (0.00197)

GE-EV 0.00447 0.00330 0.01139

(0.00061) (0.00047) (0.00162)

EV[AA'] 0.00628 0.00454 0.01701

(0.00094) (0.00078) (0.00277)

EV[A'A] 0.00990 0.00729 0.00868

(0.00239) (0.00167) (0.00285)

AM - EV[AA'] 0.00602 0.00435 0.01617

AND EV[A'A] (0.00096) (0.00080) (0.00282)

GE - EV[AA'] 0.00595 0.00437 0.01041

AND EV[A'A] (0.00110) (0.00080) (0.00159)

GE 0.00450 0.00330 0.01051

(0.00060) (0.00047) (0.00149)

C-RSM 0.00499 0.00369 0.01007

(0.00081) (0.00061) (0.00151)

MT 0.00445 0.00329 0.00980

(0.00060) (0.00047) (0.00127)

SAY 0.00739 0.00545 0.00742

(0.00186) (0.00130) (0.00212)

NEV 0.00619 0.00468 0.01335

(0.00095) (0.00076) (0.00230)

LSM 0.00954 0.00701 0.00819

(0.00247) (0.00174) (0.00297)

n M-9 I] A-MDM(V) n
~ ABBREV~ATIONS ~-"""U=F-I LN 1--=GA..,...----1~
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Table C.13: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 10, M = 3, scale [1/9, 9J, T = 500)

M=3 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00469 0.00346 0.01152 0.00510 0.00364 0.01434

(0.00098) (0.00075) (0.00278) (0.00091) (0.00072) (0.00265)

R-EV 0.00455 0.00337 0.01201 0.00457 0.00338 0.01232

(0.00095) (0.00072) (0.00274) (0.00095) (0.00071) (0.00266)

L-EV 0.00459 0.00338 0.01297 0.00451 0.00340 0.01324

(0.00094) (0.00072) (0.00288) (0.00093) (0.00072) (0.00277)

AM-EV 0.00457 0.00337 0.01247 0.00458 0.00338 0.01265

(0.00093) (0.00072) (0.00277) (0.00093) (0.00072) (0.00268)

GM-EV 0.00453 0.00335 0.01166 0.00453 0.00335 0.01173

(0.00093) (0.00072) (0.00258) (0.00093) (0.00071) (0.00252)

EV[AA'] 0.00602 0.00437 0.01731 0.00606 0.00439 0.01761

(0.00133) (0.00104) (0.00406) (0.00132) (0.00103) (0.00391)

EV[A'A] 0.00467 0.00333 0.00681 0.00478 0.00339 0.00768

(0.00165) (0.00116) (0.00206) (0.00165) (0.00117) (0.00214)

AM-EV[AA'] 0.00534 0.00386 0.01482 0.00539 0.00388 0.01515

AND EV[A'A] (0.00121) (0.00092) (0.00358) (0.00120) (0.00092) (0.00346)

GE-EV[AA'] 0.00383 0.00278 0.00922 0.00788 0.00280 0.00960

AND EV[A'A] (0.00091) (0.00064) (0.00199) (0.00090) (0.00064) (0.00195)

GE 0.00457 0.00335 0.01102 0.00457 0.00335 0.01098

(0.00094) (0.00071) (0.00245) (0.00093) (0.00071 ) (0.00242)

C-RSM 0.00468 0.00343 0.01116 0.00468 0.00343 0.01126

(0.00098) (0.00074) (0.00244) (0.00097) (C.00074) (0.00240)

MT 0.00453 0.00334 0.01077 0.00455 0.00335 0.01102

(0.00094) (0.00071) (0.00232) (0.00093) (0.00071) (0.00224)

SAY 0.00581 0.00422 0.01028 0.00583 0.00423 0.01072

(0.00132) (0.00100) (0.00226) (0.00132) (0.00100) (0.00219)

NEV 0.00652 0.00499 0.01523 0.00670 0.00506 0.01736

(0.00159) (0.00118) (0.00354) (0.001550 (0.00116) (0.00352)

LSM 0.00743 0.00527 0.01196 0.00749 0.00531 0.01255

(0.00192) (0.00154) (0.00342) (0.00190) (0.00154) (0.00351)
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Table C.14: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 10, M = 3, scale [1/9, 9], T = 500) [Continued]

M=3 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00468 0.00345 0.01144 0.00512 0.00368 0.01434

(0.00098) (0.00074) (0.00271) (0.00093) (0.00074) (0.00275)

R-EV 0.00455 0.00336 0.01191 0.00461 0.00342 0.01250

(0.00095) (0.00072) (0.00269) (0.00096) (0.00073) (0.00274)

L-EV 0.00459 0.00338 0.01286 0.00465 0.00344 0.01347

(0.00093) (0.00072) (0.00281) (0.00094) (0.00073) (0.00287)

AM-EV 0.00457 0.00337 0.01236 0.00463 0.00342 0.01288

(0.00093) (0.00072) (0.00270) (0.00094) (0.00073) (0.00277)

GE-EV 0.00453 0.00335 0.01157 0.00457 0.00340 0.01195

(0.00093) (0.00071) (0.00252) (0.00094) (0.00073) (0.00259)

EV[AA'] 0.00601 0.00437 0.01703 0.00612 0.00445 0.01790

(0.00133) (0.00104) (0.00390) (0.00134) (0.00105) (0.00403)

EV[A'A] 0.00466 0.00333 0.00678 0.00482 0.00344 0.00771

(0.00164) (0.00116) (0.00204) (0.00167) (0.00119) (0.00215)

AM - EV[AA'] 0.00534 0.00386 0.01463 0.00544 0.00394 0.01539

AND EV[A'A] (0.00121) (0.00092) (0.00347) (0.00122) (0.00094) (0.00357)

GE - EV[AA'] 0.00382 0.00278 0.00917 0.00391 0.00284 0.00975

AND EV[A'A] (0.00090) (0.00064) (0.00196) (0.00091) (0.00066) (0.00200)

GE 0.00457 0.00335 0.01094 0.00462 0.00340 0.01120

(0.00093) (0.00071) (0.00240) (0.00094) (0.00072) (0.00248)

C-RSM 0.00467 0.00343 0.01108 0.00473 0.00348 0.01147

(0.00097) (0.00074) (0.00240) (0.00098) (0.00075) (0.00246)

MT 0.00453 0.00334 0.01069 0.00459 0.00340 0.01123

(0.00094) (0.00071) (0.00228) (0.00094) (0.00072) (0.00231)

SAY 0.00580 0.00422 0.01021 0.00589 0.00429 0.01085

(0.00132) (0.00100) (0.00222) (0.00133) (0.00102) (0.00231)

NEV 0.00650 0.00498 0.01498 0.00674 0.00513 0.01745

(0.00158) (0.00117) (0.00339) (0.00158) (0.00118) (0.00365)

LSM 0.00741 0.00527 0.01183 0.00756 0.00538 0.01265

(0.00190) (0.00153) (0.00333) (0.00191) (0.00156) (0.00356)
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Table C.15: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 10, M = 3, scale [1/9, 9], T = 500) [Continued]

CSM 0.00648 0.00518 0.01472

(0.00189) (0.00169) (0.0040)

R-EV 0.00506 0.00377 0.01295

(0.00114) (0.00088) (0.00309)

L-EV 0.00506 0.00377 0.01466

(0.00117) (0.00086) (0.00385)

AM-EV 0.00505 0.00377 0.01441

(0.00117) (0.00086) (0.00378)

GE-EV 0.00500 0.00375 0.01297

(0.00113) (0.00087) (0.00308)

EV[AA'] 0.0070il 0.00506 0.01976

(0.00167) (0.00125) (0.00505)

EV[A'A] 0.00799 0.00606 0.00632

(0.00340) (0.00286) (0.00322)

AM - EV[AA'] 0.00676 0.00482 0.01868

AND EV[A'A] (0.00165) (0.00123) (0.00499)

GE - EV[AA'] 0.00536 0.00404 0.01003

AND EV[A'A] (0.00180) (0.00143) (0.00262)

GE 0.00506 0.00375 0.01178

(0.00114) (0.00087) (0.00282)

C-RSM 0.00574 0.00427 0.01122

(0.00140) (0.00112) (0.00271)

MT 0.00503 0.00374 0.01117

(0.00112) (0.00087) (0.00257)

SAV 0.00872 0.00649 0.00799

(0.00261) (0.00213) (0.00293)

NEV 0.00719 0.00549 0.01605

(0.00192) (0.00137) (0.00435)

LSM 0.01166 0.00870 0.00882

(0.00347) (0.00299) (0.00410)
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Table C.16: Mean i'nd Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 10, M = 5, scale [1/9, 9], T = 500)

M=5 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00408 0.00300 0.00999 0.00450 0.00317 0.01287

(0.00065) (0.00048) (0.00175) (0.00059) (0.00047) (0.00183)

R-EV 0.00396 0.00292 0.01043 0.00397 0.00292 0.01057

(0.00061) (0.00047) (0.00169) (0.00060) (0.00046) (0.00165)

L-EV 0.00400 0.00293 0.01122 0.00400 0.00293 0.01133

(0.00061) (0.00045) (0.00187) (0.00061) (0.00045) (0.00182)

AM-EV 0.00398 0.00292 0.01080 0.00398 0.00292 0.01086

(0.00061) (0.00045) (0.00179) (0.00060) (0.00045) (0.00175)

GM-EV 0.00394 0.00290 0.01012 0.00394 0.00290 0.01013

(0.00060) (0.00045) (0.00164) (0.00060) (0.00045) (0.00161)

EV[AA'] 0.00527 0.00379 0.01493 0.00528 0.00380 0.01500

(0.00085) (0.00066) (0.00257) (0.00085) (0.00066) (0.00246)

EV[A'A] 0.00412 0.00289 0.00596 0.00419 0.00293 0.00655

(0.00119) (0.00083) (0.00140) (0.00119) (0.00083) (0.00146)

AM - EV[AA'] 0.00467 0.00335 0.01278 0.00470 0.00336 0.01289

AND EV[A'A] (0.00079) (0.00060) (0.00229) (0.00079) (0.00060) (0.00221)

GE - EV[AA'] 0.00337 0.00241 0.00797 0.00340 0.00242 0.00818

AND EV[A'A] (0.00060) (0.00045) (0.00129) (0.000600 (0.00045) (0.00128)

GE 0.00398 0.00290 0.00957 0.00398 0.00290 0.00953

(0.00060) (0.00045) (0.00158) (0.00060) (0.00045) (0.00156)

C-RSM 0.00407 0.00296 0.00967 0.00407 0.00296 0.00971

(0.00062) (0.00046) (0.00157) (0.00061) (0.00046) (0.00154)

MT 0.00394 0.00290 0.00935 0.00395 0.00290 0.00949

(0.00060) (0.00045) (0.00145) (0.00060) (0.00045) (0.00141)

SAY 0.00503 0.00363 0.00894 0.00504 0.00364 0.00920

(0.00084) (0.00065) (0.00146) (0.00084) (0.00065) (0.00142)

NEV 0.00563 0.00431 0.01335 0.00580 0.00438 0.01523

(0.00099) (0.00071) (0.00243) (0.00096) (0.00070) (0.00240)

LSM 0.00644 0.00456 0.01048 0.00646 0.00458 0.01079

(0.00127) (0.00101) (0.00231) (0.00125) (0.00100) (0.00233)
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Table C.17: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 10, M = 5, scale [1/9, 9], T = 500) [Continued]

M=5 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00407 0.00300 0.00992 0.00449 0.00319 0.01286

(0.00065) (0.00048) (0.00171) (0.00061) (0.00048) (0.00192)

R-EV 0.00396 0.00292 0.01035 0.00402 0.00295 0.01069

(0.00061) (0.00046) (0.00165) (0.00061 ) (0.00046) (0.00166)

L-EV 0.00400 0.00293 0.01112 0.00405 0.00296 0.01147

(0.00061) (0.00045) (0.00183) (0.00061) (0.00046) (0.00185)

AM-EV 0.00398 0.00292 0.01071 0.00403 0.00295 0.01100

(0.00060) (0.00045) (0.00175) (0.00061) (0.00046) (0.00178)

GE-EV 0.00394 0.00290 0.Q1005 0.00399 0.00293 0.01027

(0.00060) (0.00045) (0.00161) (0.00061) (0.00046) (0.00163)

EV[AA'] 0.00526 0.00379 0.01470 0.00535 0.00383 0.01514

(0.00085) (0.00066) (0.00247) (0.00086) (0.00066) (0.00249)

EV[A'A] 0.00412 0.00289 0.00594 0.00424 0.00295 0.00659

(0.00118) (0.00083) (0.00138) (0.00121) (0.00084) (0.00150)

AM - EV[AA'] 0.00467 0.00335 0.01263 0.00475 0.00339 0.01302

AND EV[A'A] (0.00079) (0.00060) (0.00222) (0.00080) (0.00061) (0.00224)

GE- EV[AA'] 0.00337 0.00241 0.00793 0.00344 0.00245 0.00827

AND EV[A'A] (0.00060) (0.00045) (0.00127) (0.00061) (0.00045) (0.00128)

GE 0.00398 0.00290 0.00951 0.00403 0.00293 0.00966

(0.00060) (0.00045) (0.00156) (0.00061) (0.00046) (0.00158)

C-R5M 0.00406 0.00296 0.00960 0.00412 0.00299 0.00983

(0.00061) (0.00046) (0.00154) (0.00062) (0.00047) (0.00156)

MT 0.00394 0.00290 0.00929 0.00400 0.00293 0.00961

(0.00060) (0.00045) (0.00143) (0.00061) (0.00045) (0.00143)

SAY 0.00502 0.00363 0.00888 0.00510 0.00367 0.00929

(0.00084) (0.00065) (0.00143) (0.00085) (0.00065) (0.00145)

NEV 0.00562 0.00430 0.01313 0.00585 0.00441 0.01528

(0.00098) (0.00071) (0.00231) (0.00098) (0.00071) (0.00250)

L5M 0.00642 0.00455 0.01038 0.00653 0.00461 0.01085

(0.00126) (0.00100) (0.00224) (0.00127) (0.00101) (0.00236)
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Table C.18: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 10, M = 5, scale [1/9, 9], T = 500) [Continued]

CSM 0.00535 0.00420 0.01216

(0.00138) (0.00126) (0.00263)

R-EV 0.00429 0.00318 0.01089

(0.00070) (0.00051) (0.00187)

L-EV 0.00432 0.00317 0.01241

(0.00070) (0.00050) (0.00236)

AM-EV 0.00431 0.00317 0.01220

(0.00070) (0.00050) (0.00234)

GE-EV 0.00427 0.00315 0.01096

(0.00070) (0.00050) (0.00193)

EV[AA'] 0.00595 0.00431 0.01665

(0.00108) (0.00078) (0.00334)

EV[A'A] 0.00692 0.00497 0.00541

(0.00253) (0.00189) (0.00222)

AM - EV[AA'] 0.00570 0.00412 0.01573

AND EV[A'A] (0.00109) (0.00078) (0.00337)

GE - EV[AA'] 0.00462 0.00333 0.00850

AND EV[A'A] (0.00127) (0.00093) (0.00165)

GE 0.00431 0.00315 0.00999

(0.00070) (0.00050) (0.00178)

C-RSM 0.00486 0.00360 0.00952

(0.00090) (0.00069) (0.00172)

MT 0.00427 0.00314 0.00945

(0.00069) (0.00050) (0.00160)

SAY 0.00739 0.00543 0.00685

(0.00183) (0.00140) (0.00208)

NEV 0.00609 0.00460 0.01351

(0.00116) (0.00083) (0.00273)

LSM 0.00998 0.00725 0.00762

(0.00248) (0.00196) (0.00284)

n M=5 [ l r - - - ; " = - - - r A _ - _ M - ; - D ~ M - , - ( - , - V ) _ ~ _ ~ 1 1
~ ABBREVIATIONS ~ UF I LN I GA ~
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Table C.19: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 10, M = 7, scale [1/9, 9], T = 500)

M=7 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00361 0.00264 0.00879 0.00399 0.00280 0.01146

(0.00049) (0.00035) (0.00127) (0.00045) (0.00034) (0.00143)

R-EV 0.00351 0.00258 0.00920 0.00351 0.00258 0.00927

(0.00045) (0.00033) (0.00119) (0.00045) (0.00033) (0.00116)

L-EV 0.00353 0.00258 0.00990 0.00354 0.00258 0.00995

(0.00046) (0.00033) (0.00134) (0.00045) (0.00033) (0.00130)

AM-EV 0.00352 0.00257 0.00953 0.00352 0.00257 0.00955

(0.00045) (0.00033) (0.00129) (0.00045) (0.00033) (0.00126)

GM-EV 0.00349 0.00256 0.00893 0.00349 0.00256 0.00893

(0.00045) (0.00032) (0.00116 (0.00045) (0.00032) (0.00114)

EV[AA'] 0.00466 0.00336 0.01313 0.00466 0.00336 0.01312

(0.00066) (0.00049) (0.00183) (0.00065) (0.00049) (0.00175)

EV[A'A] 0.00364 0.00259 0.00527 0.00369 0.00262 0.00572

(0.00094) (0.00067) (0.00107) (0.00094) (0.00067) (0.00111)

AM - EV[AA'] 0.00413 0.00297 0.01124 0.00415 0.00298 0.01128

AND EV[A'A] (0.00062) (0.00046) (0.00165) (0.00062) (0.00046) (0.00159)

GE- EV[AA'] 0.00297 0.00215 0.00701 0.00299 0.00216 0.00715

AND EV[A'A] (0.00046) (0.00034) (0.00094) (0.00046) (0.00034) (0.00092)

GE 0.00352 0.00256 0.00843 0.00352 0.00256 0.00839

(0.00045) (0.00032) (0.00114) (0.00045) (0.00032) (0.00113)

C-RSM 0.00359 0.00262 0.00853 0.00359 0.00262 0.00855

(0.00045) (0.00034) (0.00112) (0.00045) (0.00034) (0.00110)

MT 0.00349 0.00256 0.00853 0.00349 0.00256 0.00831

(0.00044) (0.00032) (0.00105) (0.00044) (0.00032) (0.00102)

SAY 0.00442 0.00322 0.00785 0.00442 0.00323 0.00802

(0.00063) (0.00049) (0.00110) (0.00062) (0.00049) (0.00107)

NEV 0.00495 0.00378 0.01173 0.00510 0.00384 0.01341

(0.00072) (0.00051) (0.00185) (0.00069) (0.00050) (0.00186)

LSM 0.00563 0.00406 0.00919 0.00564 0.00407 0.00939

(0.00098) (0.00078) (0.00182) (0.00097) (0.00078) (0.00183)
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Table C.20: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 10, M = 7, scale [1/9, 9], T :; 500) [Continued]

[l M-7 n A-AM(V) --=rn A-MDM(M) n
~ ABBREVIATIONS nl----=-u=F,...--..I - : - : L N : 7 - " ' - , C ~ f - - - : - : U = F - 1 LN 1-=GA-,------1~

CSM 0.00360 0.00264 0.008731 0.00398 0.00282 0.01150

(0.00049) (0.00035) (0.001251) (0.00046) (0.00035) (0.00149)

R-EV 0.00350 0.00257 0.009131 0.00355 0.00260 0.00938

(0.00045) (0.00033) (0.001161) (0.00045) (0.00033) (0.00117)

L-EV 0.00353 0.00258 0.009811 0.00357 0.00260 0.01007

(0.00046) (0.00033) (0.001311) (0.00046) (0.00033) (0.00131)

AM-EV 0.00351 0.00257 0.00945 1 0.00356 0.00259 0.00968

(0.00045) (0.00033) (0.00128 1
) (0.00046) (0.00033) (0.00126)

GE-EV 0.00349 0.00256 0.00887 1 0.00353 0.00258 0.00905

(0.00048) (0.00032) (0.00114') (0.00046) (0.00033) (0.00115)

EV[AA'] 0.00465 0.00338 0.01293 0.00471 0.00339 0.01326

(0.00066) (0.00049) (0.00176') (0.00066) (0.00049) (0.00176)

EV[A'A] 0.00363 0.00259 0.00525 0.00372 0.00264 0.00577

(0.00093) (0.00067) (0.OOI06 i) (0.00095) (0.00068) (0.00113)

AM - EV[AA'] 0.00412 0.00297 0.01111: 0.00419 0.00300 0.01140

AND EV[A'A] (0.00062) (0.00046) ( 0 . 0 0 1 6 0 ~ (0.00063) (0.00046) (0.00160)

GE - EV[AA'] 0.00297 0.00214 0.00697: 0.00302 0.00217 0.00724

AND EV[A'A] (0.00046) (0.00034) (0.00092} (0.00047) (0.00034) (0.00093)

GE 0.00352 0.00256 0.00838', 0.00356 0.00258 0.00851

(0.00045) (0.00032) (0.00113) (0.00'046) (0.00033) (0.00113)

C-RSM 0.00359 0.00262 0.00847: 0.00363 0.00264 0.00867

(0.00045) (0.00034) (0.00110) (0.00046) (0.00034) (0.00110)

MT 0.00349 0.00255 0.00818 : 0.00353 0.00258 0.00844

(0.00044) (0.00032) (0.010103) (0.00045) (0.00032) (0.00102)

SAY 0.00441 0.00322 0.010780 : 0.00446 0.00325 0.00813

(0.00062) (0.00049) (0.010108) (0.00063) (0.00049) (0.00107)

NEV 0.00494 0.00378 0.011154 : 0.00511 0.00387 0.01347

(0.00071) (0.00051) (0.00176) (0.00071) (0.00051) (0.00192)

LSM 0.00561 0.00405 0.009101 0.00570 0.00410 0.00944

(0.00097) (0.00078) (0.00177) (0.00098) (0.00079) (0.00185)
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Table C.21: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 10, M = 7, scale [1/9, 9], T = 500) [Continued]

CSM 0.00464 0.00362 0.01061

(0.00111) (0.00105) (0.00260) ,

R-EV 0.00376 0.00276 0.00953

(0.00052) (0.00037) (0.00132)

L-EV 0.00378 0.00277 0.01078

(0.00052) (0.00037) (0.00169)

AM-EV 0.00378 0.00276 0.01061

(0.00052) (0.00037) (0.00169)

GE-EV 0.00374 0.00275 0.00956

(0.00051) (0.00037) (0.00137)

EV[AA'] 0;00523 0.00377 0.01445

(0.00082) (0.00058) (0.00249)

EV[A'A] 0.00603 0.00436 0.00477

(0.00210) (0.00157) (0.00185)

AM - EV[AA'] 0.00501 0.00361 0.01366

AND EV[A'A] (0.00084) (0.00059) (0.00259)

GE - EV[AA'] 0.00404 0.00293 0.00741

AND EV[A'A] (0.00101) (0.00074) (0.00122)

GE 0.00377 0.00275 0.00870

(0.00052) (0.00037) (0.00127)

C-RSM 0.00425 0.00313 0.00832

(0.00069) (0.00053) (0.00124)

MT 0.00374 0.00274 0.00826

(0.00051) (0.00036) (0.00113)

SAY 0.00642 0.00472 0.00600

(0.00152) (0.00117) (0.00168)

NEV 0.00531 0.00402 0.01172

(0.00083) (0.00062) (0.00208)

LSM 0.00868 0.00634 0.00672

(0.00210) (0.00164) (0.00230)
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Table C.22: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 10, M = 9, scale [1/9, 9], T = 500)

M=9 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00325 0.00238 0.00791 0.00361 0.00253 0.01042

(0.00038) (0.00028) (0.00100) (0.00036) (0.00028) (0.00122)

R-EV 0.00316 0.00232 0.00826 0.00316 0.00232 0.00830

(0.00034) (0.00026 (0.00093) (0.00034) (0.00026) (0.00091)

L-EV 0.00318 0.00233 0.00891 0.00318 0.00233 0.00893

(0.00035) (0.00026) (0.00106) (0.00035) (0.00026) (0.00103)

AM-EV 0.00317 0.00232 0.00857 0.00317 0.00232 0.00857

(0.00035) (0.00026) (0.00102) (0.00035) (0.00026) (0.00099)

GM-EV 0.00314 0.00231 0.00803 0.00314 0.00231 0.00801

(0.00034) (0.00026) (0.00092) (0.00034) (0.00026) (0.00090)

EV[AA'] 0.00419 0.00302 0.01179 0.00419 0.00302 0.01175

(0.00052) (0.00040) (0.00149) (0.00052) (0.00040) (0.00143)

EV[A'A] 0.00327 0.00233 0.00475 0.00332 0.00235 0.00513

(0.00080) (0.00057) (0.00090) (0.00080) (0.00057) (0.00094)

AM - EV[AA'] 0.00372 0.00267 0.01010 0.00373 0.00267 0.Q1011

AND EV[A'A] (0.00050) (0.00038) (0.00136) (0.00050) (0.00038) (0.00131 )

GE - EV[AA'] 0.00267 0.00193 0.00630 0.00269 0.')0193 0.00642

AND EV"rA'A] (0.00037) (0.00028) (0.00074) (0.00037) (0.00028) (0.00074)

GE 0.00317 0.00231 0.00757 0.00317 0.00231 0.00753

(0.00034) (0.00026) (0.00090) (0.00034) (0.00026) (0.00088)

C-RSM 0.00323 0.00236 0.00766 0.00323 0.00236 0.00767

(0.00035) (0.00027) (0.00090) (0.00035) (0.00027) (0.00088)

MT 0.00315 0.00231 0.00739 0.00315 0.00231 0.00745

(0.00034) (0.00026) (0.00081) (0.00034) (0.00026) (0.00079)

SAV 0.00398 0.00291 0.00706 0.00398 0.00291 0.00719

(0.00052) (0.00039) (0.00089) (0.00051) (0.00039) (0.00087)

NEV 0.00447 0.00340 0.01054 0.00461 0.00346 0.01206

(0.00056) (0.00042) (0.00154) (0.00054) (0.00041) (0.00156)

LSM 0.0050'/ 0.00366 0.00824 0.00507 0.00367 0.00838

(0.00083) (0.00066) (0.00157) (0.00082) (0.00065) (0.00157)
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Table C.23: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 10, M = 9, scale [1/9, 9], T = 500) [Continued]

M=9 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00325 0.00238 0.00786 0.00359 0.00254 0.01046

(0.00038) (0.00028) (0.00099) (0.00036) (0.00028) (0.00127)

R-EV 0.00316 0.00232 0.00820 0.00320 0.00234 0.00841

(0.00034) (0.00026) (0.00091) (0.00035) (0.00026) (0.00092)

L-EV 0.00318 0.00233 0.00883 0.00322 0.00235 0.00904

(0.00035) (0.00026) (0.00103) (0.00035) (0.00026) (0.00104)

AM-EV 0.00317 0.00232 0.00850 0.00321 0.00234 0.00869

(0.00035) (0.00026) (0.00100) (0.00035) (0.00026) (0.00101)

GE-EV 0.00314 0.00231 0.00797 0.00318 0.00233 0.00813

(0.00034) (0.00026) (0.00090) (0.00035) (0.00026) (0.00091)

EV[AA'] 0.00418 0.00302 0.01161 0.00424 0.00304 0.01188

(0.00052) (0.00040) (0.00144) (0.00053) (0.00040) (0.00146)

EV[A'A] 0.00327 0.00233 0.00474 0.00335 0.00237 0.00519

(0.00080) (0.00057) (0.00089) (0.00081) (0.00058) (0.00096)

AM - EV[AA'] 0.00371 0.00267 0.00999 0.00377 0.00269 0.01022

AND EV[A'A] (0.00050) (0.00038) (0.00132) (0.00051) (0.00038) (0.00138)

GE - EV[AA'] 0.00267 0.00192 0.00627 0.00271 0.00195 0.00650

AND EV[A'A] (0.00037) (0.00028) (0.00073) (0.00037) (0.00028) (0.00074)

GE 0.00317 0.00231 0.00753 0.00321 0.00232 0.00764

(0.00034) (0.00026) (0.00088) (0.00035) (0.00026) (0.00089)

C-RSM 0.00323 0.00236 0.00762 0.00327 0.00238 0.00779

(0.00035) (0.00027) (0.00088) (0.00036) (0.00027) (0.00088)

MT 0.00314 0.00231 0.00734 0.00318 0.00232 0.00757

(0.00034) (0.00026) (0.00080 (0.00034) (0.00026) (0.00079)

SAY 0.00397 0.00291 0.00701 0.00402 0.00293 0.00730

(0.00051) (0.00039) (0.00088) (0.00052) (0.00039) (0.00086)

NEV 0.00446 0.00339 0.01037 0.00461 0.00348 0.01213

(0.00055) (0.00042) (0.00146) (0.00055) (0.00066) (0.00143)

LSM 0.00505 0.00366 0.00816 0.00512 0.00369 0.00844

(0.00082) (0.00065) (0.00153) (0.00083) (0.00066) (0.00158)
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Table C.24: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 10, M = 9, scale [1/9, 9], T = 500) [Continued]

CSM 0.00415 0.00323 0.00950

(0.00097) (0.00092) (0.00214)

R-EV 0.00338 0.00248 0.00854

(0.00041) (0.00030) (0.00106)

L-EV 0.00341 0.00248 0.00969

(0.00041) (0.00030) (0.00138)

AM-EV 0.00340 0.00248 0.00953

(0.00042) (0.00030) (0.00138)

GE-EV 0.00336 0.00246 0.00857

(0.00040) (0.00029) (0.00108)

EV[AA'] 0.00469 0.00338 0.01292

(0.00066) (0.00046) (0.00205)

EV[A'A] 0.00538 0.00393 0.00430

(0.00177) (0.00137) (0.00152)

AM - EV[AA'] 0.00449 0.00323 0.01222

AND EV[A'A] (0.00069) (0.00048) (0.00216)

GE - EV[AA'] 0.00361 0.00264 0.00663

AND EVIA'A] (0.00083) (0.00065) (0.00098)

GE 0.00339 0.00246 0.00781

(0.00040) (0.00029) (0.00099)

C-RSM 0.00382 0.00281 0.00746

(0.00057) (0.00044) (0.00100)

MT 0.00336 0.00246 0.00740

(0.00040) (0.00029) (0.00090)

SAY 0.00577 0.00425 0.00541

(0.00132) (0.00102) (0.00143)

NEV 0.00479 0.00361 0.01053

(0.00068) (0.00050) (0.00174)

LSM 0.00778 0.00570 0.00608

(0.00184) (0.00141) (0.00197)
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Table C.25: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 12, M = 3, scale [1/9, 9], T = 500)

M=3 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00367 0.00273 0.00902 0.00400 0.00288 0.01150
(0.00071) (0.00060) (0.00234) (0.00066) (0.00058) (0.00236)

R-EV 0.00358 0.00267 0.00958 0.00360 0.00268 0.00989

(0.00069) (0.00058) (0.00187) (0.00069) (0.00058) (0.00181)

L-EV 0.00358 0.00267 0.01029 0.00360 0.00268 Om058

(0.00069) (0.00059) (0.00209) (0.00069) (0.00058) (0.00200)

AM-EV 0.00357 0.00266 0.00988 0.00358 0.00267 0.01009

(0.00069) (0.00058) (0.00200) (0.00069) (0.00058) (0.00192)

GM-EV 0.00355 0.00265 0.00920 0.00355 0.00265 0.00928

(0.00068) (0.00058) (0.00180) (0.00068) (0.00058) (0.00175)

EV[AA'] 0.00477 0.00348 0.01366 0.00480 0.00349 0.01399

(0.00093) (0.00078) (0.00289) (0.00092) (0.00078) (0.00277)

EV[A'A] 0.00411 0.00285 0.00557 0.00418 0.00289 0.00616

(0.00130) (0.00092) (0.00149) (0.00129) (0.00091) (0.00147)

AM - EV[AA'] 0.00426 0.00309 0.01169 0.00430 0.00311 0.01201

AND EV[A'A] (0.00084) (0.00071) (0.00252) (0.00083) (0.00070) (0.00243)

GE - EV[AA'] 0.00318 0.00227 0.00726 0.00321 0.00229 0.00756

AND EV[A'A] (0.00070) (0.00051) (0.00145) (0.00069) (0.00051) (0.00140)

GE 0.00359 0.00265 0.00864 0.00358 0.00265 0.00861

(0.00069) (0.00058) (0.00169) (0.00069) (0.00058) (0.00168)

C-RSM 0.00365 0.00272 0.00872 0.00366 0.00272 0.00884

(0.00070) (0.00058) (0.00169) (0.00070) (0.00058) (0.00165)

MT 0.00357 0.00265 0.00860 0.00358 0.00266 0.00884
(0.00069) (0.00058) (0.00159) (0.00068) (0.00057) (0.00154)

SAY 0.00457 0.00335 0.00809 0.00458 0.00336 0.00847
(0.00094) (0.00071) (0.00150) (0.00094) (0.00071) (0.00146)

NEV 0.00542 0.00408 0.01227 0.00561 0.00416 0.01442

(0.00119) (0.00093) (0.00282) (0.00115) (0.00091) (0.00278)

LSM 0.00595 0.00428 0.00940 0.00600 0.00430 0.00986
(0.00140) (0.00105) (0.00240) (0.00138) (0.00105) (0.00247)
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Table C.26: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 12, M = 3, scale [1/9, 9], T = 500) [Continued]

M=3 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00366 0.00273 0.00896 0.0040 0.00291 0.01147

(0.00071) (0.00060) (0.00227) (0.00067) (0.00059) (0.00240)

R-EV 0.00358 0.00267 0.00950 0.00362 0.00270 0.01000

(0.00069) (0.00058) (0.00183) (0.00069) (0.00059) (0.00184)

L-EV 0.00358 0.00267 0.01021 0.00362 0.00270 0.01070

(0.00069) (0.00058) (0.00205) (0.00069) (0.00059) (0.00204)

AM-EV 0.00356 0.00266 0.00981 0.00360 0.00269 0.01021

(0.00069) (0.00058) (0.00196) (0.00069) (0.00059) (0.00196)

GE-EV 0.00354 0.00265 0.00913 0.00357 0.00267 0.00940

(0.00068) (0.00058) (0.00176) (0.00069) (0.00059) (0.00179)

EV[AA'] 0.00476 0.00348 0.01345 0.00483 0.00353 0.01412

(0.00092) (0.00078) (0.00278) (0.00092) (0.00079) (0.00281)

EV[A'A] 0.00410 0.00285 0.00555 0.00420 0.00292 0.00619

(0.00129) (0.00091) (0.00147) (0.00130) (0.00092) (0.00152)

AM - EV[AA'] 0.00425 0.00309 0.01156 0.00432 0.00314 0.01213

AND EV[A'A] (0.00084) (0.00071) (0.00245) (0.00084) (0.00072) (0.00247)

GE- EV[AA'] 0.00318 0.00227 0.00723 0.00323 0.00231 0.00764

AND EV[A'A] (0.00069) (0.00051) (0.00143) (0.00070) (0.00052) (0.00144)

GE 0.00358 0.00265 0.00859 0.00361 0.00267 0.00873

(0.00069) (0.0005S) (0.00166) (0.00069) (0.00059) (0.00171)

C-RSM 0.00365 0.00272 0.00867 0.00368 0.00275 0.00895

(0.00070) (0.00058) (0.00167) (0.00070) (0.00059) (0.00169)

MT 0.00357 0.00265 0.00854 0.00361 0.00268 0.00895

(0.00069) (0.00057) (0.00157) (0.00069) (0.00058) (0.00157)

SAY 0.00456 0.00335 0.00804 0.00462 0.00339 0.00855

(0.00094) (0.00071) (0.00148) (0.00094) (0.00072) (0.00150)

NEV 0.00541 0.00407 0.01207 0.00563 0.00419 0.01441

(0.00118) (0.00093) (0.00270) (0.00116) (0.00093) (0.00282)

LSM 0.00593 0.00427 0.00931 0.00603 0.00434 0.00993

(0.00139) (0.00104) (0.00233) (0.00140) (0.00106) (0.00249)
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Table C.2?: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 12, M = 3, scale [1/9, 9], T = 500) [Continued]

CSM 0.00515 0.00405 0.01201

(0.00159) (0.00146) (0.00423)

R-EV 0.00395 0.00293 0.00997

(0.00089) (0.00065) (0.00217)

L-EV 0.00397 0.00293 0.01168

(0.00090) (0.00064) (0.00286)

AM-EV 0.00397 0.00292 0.01148

(0.00090) (0.00064) (0.00282)

GE-EV 0.00393 0.00290 0.01005

(0.00089) (0.00064) (0.00225)

EV[AA'] 0:00556 0.00399 0.01532

(0.00127) (0.00093) (0.00348)

EV[A'A] 0.00698 0.00516 0.00510

(0.00269) (0.00198) (0.00253)

AM - EV[AA'] 0.00535 0.00384 0.01458

AND EV[A'A] (0.00124) (0.00092) (0.00346)

GE - EV[AA'] 0.00450 0.00326 0.00791

AND EVIA'A] (0.00132) (0.00101) (0.00188)

GE 0.00397 0.00290 0.00908

(0.00090) (0.00064) (0.00203)

C-RSM 0.00457 0.00335 0.00862

(0.00111) (0.00077) (0.00189)

MT 0.00394 0.00291 0.00872

(0.00088) (0.00064) (0.00176)

SAY 0.00707 0.00520 0.00627

(0.00213) (0.00146) (0.00208)

NEV 0.00589 0.00445 0.01256

(0.00146) (0.00109) (0.00334)

LSM 0.00977 0.00721 0.00685

(0.00299) (0.00218) (0.00311)
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Table C.28: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 12, M = 5, scale [1/9, 9], T = 500)

M=5 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00316 0.00233 0.00775 0.00349 0.00248 0.01012

(0.00044) (0.00035) (0.00143) (0.00040) (0.00034) (0.00148)

R-EV 0.00308 0.00228 0.00820 0.00309 0.00228 0.00835

(0.00042) (0.00034) (0.00117) (0.00041) (0.00034) (0.00115)

L-EV 0.00309 0.00228 0.00887 0.00309 0.00229 0.00898

(0.00043) (0.00034) (0.00126) (0.00042) (0.00034) (0.00123)

AM-EV 0.00308 0.00228 0.00850 0.00308 0.00228 0.00858

(0.00042) (0.00034) (0.00122) (0.00042) (0.00034) (0.00119)

GM-EV 0.00305 0.00226 0.00789 0.00305 0.00226 0.00791

(0.00042) (0.00034) (0.00111) (0.00041) (0.00034) (0.00109)

EV[AA'] 0.00411 0.00298 0.01172 0.00413 0.00299 0.01182

(0.00060) (0.00048) (0.00180) (0.00059) (0.00048) (0.00173)

EV[A'A] 0.00353 0.00250 0.00482 0.00357 0.00252 0.00521

(0.00085) (0.00062) (0.00098) (0.00085) (0.00062) (0.00099)

AM - EV[AA'] 0.00367 0.00265 0.01005 0.00369 0.00265 0.01017

AND EV[A'A] (0.00055) (0.00045) (0.00163) (0.00055) (0.00045) (0.00158)

GE - EV[AA'] 0.00273 0.00195 0.00624 0.00275 0.00196 0.00641

AND EV[A'A] (0.00043) (0.00033) (0.00093) (0.00043) (0.00034) (0.00091 )

GE 0.00309 0.00226 0.00741 0.00309 0.00226 0.00738

(0.00042) (0.00034) (0.00105) (0.00042) (U.00034) (0.00104)

C-RSM 0.00315 0.00231 0.00748 0.00315 0.00231 0.00754

(0.00043) (0.00034) (0.00105) (0.00042) (0.00034) (0.00103)

MT 0.00307 0.00226 0.00737 0.00308 0.00227 0.00750

(0.00041 ) (0.00033) (0.00103) (0.00041) (0.00033) (0.00100)

SAY 0.00393 0.00285 0.00690 0.00393 0.00285 0.00713

(0.00058) (0.00045) (0.00100) (0.00058) (0.00045) (0.00098)

NEV 0.00457 0.00348 0.01058 0.00474 0.00355 0.01253

(0.00073) (0.00058) (0.00187) (0.00070) (0.00057) (0.00186)

LSM 0.00511 0.00365 0.00799 0.00513 0.00366 0.00825

(0.00092) (0.00071) (0.00165) (0.00091) (0.00070) (0.00166)
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Table C.29: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 12, M = 5, scale [1/9, 9], T = 500) [Continued]

M=5 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00315 0.00233 0.00770 0.00350 0.00249 0.01012

(0.00044) (0.00035) (0.00140) (0.00041) (0.00034) (0.00151)

R-EV 0.00308 0.00228 0.00815 0.00312 0.00230 0.00842

(0.00042) (0.00034) (0.00115) (0.00042) (0.00034) (0.00115)

L-EV 0.00309 0.00228 0.00880 0.00313 0.00230 0.00905

(0.00042) (0.00034) (0.00124) (0.00043) (0.00034) (0.00124)

AM-EV 0.00307 0.00227 0.00844 0.00311 0.00229 0.00865

(0.00042) (0.00034) (0.00120) (0.00043) (0.00034) (0.00120)

GE-EV 0.00305 0.00226 0.00784 0.00309 0.00228 0.00798

(0.00041 ) (0.00034) (0.00110) (0.00042) (0.00034) (0.00110)

EV[AA'] 0.00410 0.00298 0.01156 0.00417 0.00300 0.01190

(0.00060) (0.00048) (0.00174) (0.00060) (0.00048) (0.00175)

EV[A'A] 0.00352 0.00249 0.00480 0.00360 0.00253 0.00524

(0.00085) (0.00062) (0.00097) (0.00086) (0.00062) (0.00101)

AM - EV[AA'] 0.00366 0.00264 0.00994 0.00373 0.00267 0.01023

AND EV[A'A] (0.00055) (0.00045) (0.00159) (0.00055) (0.00045) (0.00160)

GE - EV[AA'] 0.00272 0.00195 0.00621 0.00278 0.00197 0.00646

AND EV[A'A] (0.00043) (0.00033) (0.00092) (0.00044) (0.00034) (0.00092)

GE 0.00309 0.00226 0.00737 0.00312 0.00227 0.00745

(0.00042) (0.00034) (0.00103) (0.00043) (0.00034) (0.00104)

C-RSM 0.00315 0.00231 0.00744 0.00319 0.00233 0.00761

(0.00042) (0.00034) (0.00104) (0.00043) (0.00034) (0.00104)

MT 0.00307 0.00226 0.00733 0.00311 0.00228 0.00758

(0.00041 ) (0.00033) (0.00101) (0.00042) (0.00033) (0.00101)

SAY 0.00392 0.00285 0.00686 0.00398 0.00287 0.00719

(0.00058) (0.00045) (0.00098) (0.00059) (0.00045) (0.00099)

NEV 0.00455 0.00348 0.01042 0.00476 0.00357 0.01257

(0.00072) (0.00058) (0.00179) (0.00072) (0.00058) (0.00190)

LSM 0.00509 0.00364 0.00792 0.00518 0.00368 0.00828

(0.00091) (0.00070) (0.00160) (0.00092) (0.00071) (0.00167)
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Table C.30: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 12, M = 5, scale [1/9, 9], T = 500) [Continued]

CSM 0.00422 0.00328 0.00992

(0.00112) (0.00106) (0.00271)

R-EV 0.00332 0.00246 0.00844

(0.00051) (0.00037) (0.00125)

L-EV 0.00333 0.00245 0.00979

(0.00054) (0.00037) (0.00166)

AM-EV 0.00333 0.00245 0.00963

(0.00054) (0.00037) (0.00165)

GE-EV 0.00330 0.00243 0.00845

(0.00051) (0.00037) (0.00130)

EV[AA'] 0.00164 0.00335 0.01289

(0.00078) (0.00058) (0.00213)

EV[A'A] 0.00590 0.00423 0.00429

(0.00186) (0.00135) (0.00169)

AM - EV[AA'] 0.00447 0.00322 0.01226

AND EV[A'A] (0.00078) (0.00059) (0.00219)

GE - EV[AA'] 0.00379 0.00271 0.00662

AND EV[A'A] (0.00089) (0.00066) (0.00108)

GE 0.00333 0.00243 0.00763

(0.00052) (0.00037) (0.00117)

C-RSM 0.00386 0.00280 0.00725

(0.00069) (0.00049) (0.00111)

MT 0.00331 0.00244 0.00736

(0.00051) (0.00037) (0.00105)

SAY 0.00598 0.00433 0.00525

(0.00151) (0.00105) (0.00146)

NEV 0.00491 0.00374 0.01062

(0.00086) (0.00065) (0.00208)

LSM 0.00827 0.00601 0.00583

(0.00213) (0.00156) (0.00215)
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Table C.31: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 12, M = 7, scale [1/9, 9], T = 500)

M=7 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00277 0.00205 0.00682 0.00309 0.00218 0.00900

(0.00033) (0.00027) (0.00105) (0.00030) (0.00026) (0.00110)

R-EV 0.00270 0.00200 0.00721 0.00271 0.00200 0.00729

(0.00031) (0.00025) (0.00082) (0.00031) (0.00025) (0.00080)

L-EV 0.00271 0.00200 0.00784 0.00272 0.00200 0.00790

(0.00031) (0.00025) (0.00093) (0.00031) (0.00025) (0.00090)

AM-EV 0.00270 0.00199 0.00752 0.00270 0.00199 0.00755

(0.00031) (0.00025) (0.00090) (0.00031) (0.00025) (0.00087)

GM-EV 0.00268 0.00198 0.00695 0.00268 0.00198 0.00696

(0.00030) (0.00025) (0.00080) (0.00030) (0.00025) (0.00078)

EV[AA'] 0.00362 0.00261 0.01034 0.00363 0.00261 0.01037

(0.00045) (0.00036) (0.00134) (0.00045) (0.00036) (0.00128)

EV[A'A] 0.00311 0.00222 0.00427 0.00314 0.00223 0.00457

(0.00066) (0.00048) (0.00073) (0.00066) (0.00048) (0.00076)

AM - EV[AA'] 0.00323 0.00232 0.00886 0.00325 0.00233 0.00892
AND EV[A'A] (0.00042) (0.00034) (0.00122) (0.00042) (0.00034) (0.00118)

GE - EV[AA'] 0.00240 0.00172 0.00550 0.00241 0.00172 0.00562

AND EV[A'A] (0.00033) (0.00026) (0.00067) (0.00033) (0.00026) (0.00066)

GE 0.00271 0.00198 0.00653 0.00271 0.00198 0.00650

(0.00031) (0.00025) (0.00077) (0.00031) (0.00025) (0.00076)

C-RSM 0.00277 0.00203 0.00660 0.00277 0.00203 0.00664

(0.00031) (0.00025) (0.00076) (0.00031) (0.00025) (0.00074)

MT 0.00270 0.00199 0.00647 0.00270 0.00199 0.00656

(0.00031) (0.00025) (0.00072) (0.00030) (0.00025) (0.00070)

SAY 0.00345 0.00251 0.00606 0.00345 0.00251 0.00623

(0.00043) (0.00034) (0.00077) (0.00043) (0.00034) (0.00075)

NEV 0.00403 0.00307 0.00931 0.00418 0.00313 0.01104

(0.00053) (0.00043) (0.00140) (0.00051) (0.00043) (0.00143)

LSM 0.00448 0.00323 0.00704 0.00449 0.00323 0.00721

(0.00071) (0.00055) (0.00132) (0.00070) (0.00055) (0.00133)
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Table C.32: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 12, M = 7, scale [1/9, 9], T = 500) [Continued]

M=7 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00277 0.00205 0.00678 0.00308 0.00219 0.00900

(0.00033) (0.00027) (0.00103) (0.00031) (0.00026) (0.00111)

R-EV 0.00270 0.00200 0.00716 0.00273 0.00201 0.00736

(0.00031) (0.00025) (0.00081) (0.00031) (0.00025) (0.00081)

L-EV 0.00271 0.00200 0.00778 0.00274 0.00201 0.00796

(0.00031) (0.00025) (0.00091) (0.00031) (0.00026) (0.00092)

AM-EV 0.00270 0.00199 0.00746 0.00273 0.00200 0.00762

(0.00031) (0.00025) (0.00088) (0.00031) (0.00025) (0.00088)

GE-EV 0.00268 0.00198 0.00691 0.00270 0.00199 0.00703

(0.00030) (0.00025) (0.00079) (0.00031) (0.00025) (0.00079)

EV[AA'J 0.00362 0.00261 0.01020 0.00365 0.00263 0.01045

(0.00045) (0.00036) (0.00129) (0.00045) (0.00036) (0.00131)

EV[A'AJ 0.00310 0.00221 0.00425 0.00316 0.00224 0.00460

(0.00066) (0.00047) (0.00073) (0.00066) (0.00048) (0.00078)

AM - EV[AA'J 0.00323 0.00232 0.00877 0.00327 0.00234 0.00899

AND EV[A'AJ (0.00042) (0.00034) (0.00119) (0.00042) (0.00034) (0.00120)

GE - EV[AA'J 0.00240 0.00172 0.00548 0.00243 0.00173 0.00568

AND EV[A'AJ (0.00033) (0.00026) (0.00066) (0.00033) (0.00026) (0.00068)

GE 0.00271 0.00198 0.00649 0.00273 0.00199 0.00656

(0.00031) (0.00025) (0.00076) (0.00031) (0.00025) (0.00076)

C-RSM 0.00277 0.00203 0.00656 0.00279 0.00204 0.00670

(0.00031) (0.00025) (0.00075) (0.00031) (0.00026) (0.00075)

MT 0.00269 0.00198 0.00644 0.00272 0.00200 0.00663

(0.00030) (0.00025) (0.00071) (0.00031) (0.00025) (0.00071)

SAY 0.00344 0.00251 0.00603 0.00348 0.00253 0.00628

(0.00043) (0.00034) (0.00076) (0.00043) (0.00034) (0.00076)

NEV 0.00401 0.00306 0.00916 0.00417 0.00314 0.01107

(0.00053) (0.00043) (0.00134) (0.00052) (0.00043) (0.00146)

LSM 0.00447 0.00322 0.00698 0.00453 0.00325 0.00724

(0.00070) (0.00055) (0.00129) (0.00070) (0.00055) (0.00134)



266

Table C.33: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 12, M = 7, scale [1/9, 9], T = 500) [Continued]

CSM 0.00365 0.00284 0.00862

(0.00092) (0.00087) (0.00240)

R-EV 0.00291 0.00215 0.00739

(0.00036) (0.00029) (0.00088)

L-EV 0.00292 0.00215 0.00856

(0.00038) (0.00028) (0.00119)

AM-EV 0.00292 0.00215 0.00842

(0.00038) (0.00028) (0.00119)

GE-EV 0.00289 0.00213 0.00739

(0,00037) (0.00028) (0.00091)

EV[AA'] 0.00405 0.00294 0.01121

(0.00057) (0.00043) (0.00162)

EV[A'A] 0.00511 0.00370 0.00375

(0.00153) (0.00109) (0.00127)

AM - EV[AA'] 0.00390 0.00283 0.01067

AND EV[A'A] (0.00058) (0.00044) (0.00167)

GE - EV[AA'] 0.00330 0.00238 0.00576

AND EV[A'A] (0.00072) (0.00052) (0.00079)

GE 0.00292 0.00213 0.00670

(0.00037) (0.00028) (0.00082)

C-RSM 0.00337 0.00245 0.00635

(0.00053) (0.00038) (0.00081)

MT 0.00290 0.00213 0.00646

(0.00036) (0.00028) (0.00074)

SAY 0.00521 0.00379 0.00458

(0.00123) (0.00086) (0.00119)

NEV 0.00430 0.00327 0.00930

(0.00063) (0.00048) (0.00155)

LSM 0.00720 0.00525 0.00512

(0.00174) (0.00126) (0.00168)
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Table C.34: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 12, M = 9, scale [1/9, 9], T = 500)

M=9 A-GE(V) A-GE(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00250 0.00184 0.00614 0.00279 0.00196 0.00815

(0.00026) (0.00021) (0.00083) (0.00024) (0.00020) (0.00089)

R-EV 0.00244 0.00179 0.00649 0.00244 0.00179 0.00655

(0.00024) (0.00019) (0.00068) (0.00024) (0.00019) (0.00066)

L-EV 0.00244 0.00179 0.00706 0.00244 0.00179 0.00709

(0.00024) (0.00019) (0.00072) (0.00024) (0.00019) (0.00070)

AM-EV 0.00243 0.00179 0.00677 0.00243 0.00179 0.00678

(0.00024) (0.00019) (0.00069) (0.00023) (0.00019) (0.00067)

GM-EV 0.00242 0.00178 0.00626 0.00242 0.00178 0.00626

(0.00023) (0.00019) (0.00063) (0.00023) (0.00019) (0.00062)

EV[AA') 0.00325 0.00234 0.00930 0.00326 0.00235 0.00930

(0.00037) (0.00030) (0.00108) (0.00036) (0.00030) (0.00104)

EV[A'A) 0.00278 0.00201 0.00385 0.00280 0.00202 0.00409

(0.00055) (0.00039) (0.00060) (0.00055) (0.00039) (0.00062)

AM - EV[AA') 0.00290 0.00208 0.00797 0.00291 0.00209 0.00800

AND EV[A'A) (0.00034) (0.00028) (0.00100) (0.00034) (0.00028) (0.00097)

GE - EV[AA') 0.00215 0.00155 0.00495 0.00216 0.00155 0.00504

AND EV[A'A] (0.00027) (0.00021) (0.00054) (0.00027) (0.00021) (0.00053)

GE 0.00244 0.00178 0.00588 0.00244 0.00155 0.00586

(0.00023) (0.00019) (0.00062) (0.00023) (0.00021) (0.00062)

C-RSM 0.00249 0.00182 0.00593 0.00249 0.00182 0.00596

(0.00024) (0.00019) (O.OOOHO) (0.00024) (0.00019) (0.00059)

MT 0.00243 0.00178 0.00584 0.00243 0.00178 0.00590

(0.00024) (0.00019) (0.00060) (0.00023) (0.00019) (0.00058)

SAY 0.00310 0.00226 0.00547 0.00310 0.00226 0.00560

(0.00036) (0.00027) (0.00064) (0.00040) (0.00027) (0.00062)

NEV 0.00361 0.00275 0.00840 0.00375 0.00281 0.00997

(0.00041) (0.00035) (0.00114) (0.00040) (0.00034) (0.00118)

LSM 0.00402 0.00291 0.00635 0.00403 0.00291 0.00647

(0.00061) (0.00046) (0.00112) (0.00060) (0.00046) (0.00113)
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Table C.35: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 12, M = 9, scale [1/9, 9J, T = 500) [ContinuedJ

M=9 A-AM(V) A-MDM(M)

ABBREVIATIONS UF LN GA UF LN GA

CSM 0.00250 0.00183 0.00610 0.00359 0.00197 0.00816
(0.00026) (0.00021) (0.00082) (0.00036) (0.00020) (0.00092)

R-EV 0.00244 0.00179 0.00645 0.00320 0.00180 0.00661

(0.00024) (0.00019) (0.00066) (0.00035) (0.00019) (0.00066)

L-EV 0.00244 0.00179 0.00701 0.00322 0.00180 0.00715

(0.00024) (0.00019) (0.00070) (0.00035) (0.00019) (0.00071)

AM-EV 0.00243 0.00179 0.00672 0.00321 0.00180 0.00685

(0.00023) (0.00019) (0.00068) (0.00035) (0.00019) (0.00069)

GE-EV 0.00241 0.00178 0.00622 0.00318 0.00178 0.00632

(0.00023) (0.00019) (0.00062) (0.00035) (0.00019) (0.00063)

EV[AA'] 0.00325 0.00234 0.00918 0.00424 0.00236 0.00937

(0.00036) (0.00030) (0.00106) (0.00053) (0.00030) (0.00106)

EV[A'A] 0.00278 0.00201 0.00384 0.00335 0.00203 0.00413

(0.00054) (0.00039) (0.00059) (0.00081) (0.00039) (0.00063)

AM - EV[AA'] 0.00290 0.00208 0.00789 0.00377 0.00210 0.00807

AND EV[A'A] (0.00034) (0.00028) (0.00098) (0.00051) (0.00028) (0.00098)

GE- EV[AA'] 0.00215 0.00155 0.00493 0.00271 0.00156 0.00510

AND EV[A'A] (0.00027) (0.00021) (0.00053) (0.00037) (0.00021) (0.00054)

GE 0.00244 0.00178 0.00585 0.00321 0.00179 0.00591

(0.00023) (0.00019) (0.00062) (0.00035) (0.00019) (0.00062)

C-RSM 0.00249 0.00182 0.00590 0.00327 0.00183 0.00603

(0.00024) (0.00019) (0.00060) (0.00036) (0.00020) (0.00060)

MT 0.00243 0.00178 0.00580 0.00318 0.00179 0.00597

(0.00024) (0.00019) (0.00059) (0.00034) (0.00019) (0.00058)

SAY 0.00309 0.00226 0.00544 0.00402 0.00227 0.00566

(0.00036) (0.00027) (0.00063) (0.00052) (0.00027) (0.00063)

NEV 0.00360 0.00275 0.00828 0.00461 0.00282 0.01001

(0.00040) (0.00034) (0.00109) (0.00055) (0.00035) (0.00122)

LSM 0.00401 0.00290 0.00629 0.00512 0.00293 0.00650

(0.00061) (0.00046) (0.00109) (0.00083) (0.00046) (0.00113)
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Table C.36: Mean and Standard Deviation of Group Disagreement (d2 ) from Sim

ulation (With N = 12, M = 9, scale [1/9, 9], T = 500) [Continued]

CSM 0.00326 0.00252 0.00779

(0.00080) (0.00076) (0.00234)

R-EV 0.00261 0.00192 0.00665

(0.00028) (0.00023) (0.00070)

L-EV 0.00262 0.00192 0.00769

(0.00028) (0.00022) (0.00096)

AM-EV 0.00262 0.00191 0.00756

(0.00028) (0.00022) (0.00096)

GE-EV 0.00259 0.00190 0.00665

(0.00027) (0.00022) (0.00073)

EV[AA'] 0.00363 0.00263 0.01007

(0.00047) (0.00035) (0.00131)

EV[A'A] 0.00458 0.00330 0.00334

(0.00129) (0.00090) (0.00101)

AM - EV[AA'] 0.00350 0.00253 0.00958

AND EV[A'A] (0.00048) (0.00037) (0.00138)

GE - EV[AA'] 0.00296 0.00213 0.00517

AND EV[A'A] (0.00061 ) (0.00043) (0.00063)

GE 0.00262 0.00190 0.00601

(0.00028) (0.00022) (0.00065)

C-RSM 0.00303 0.00219 0.00570

(0.00044) (0.00032) (0.00065)

MT 0.00260 0.00191 0.00581

(0.00027) (0.00022) (0.00058)

SAY 0.00469 0.00338 0.00410

(0.00107) (0.00074) (0.00101)

NEV 0.00384 0.00292 0.00832

(0.00049) (0.00038) (0.00124)

LSM 0.00647 0.00469 0.00460

(0.00152) (0.00108) (0.00140)



Appendix D

Paired Comparison Data for

Empirical Test

The entries of the following tables are the assigned values to the elements of

pairs placed on the first row. These values are expressed on the constant-sum

measurement scale (1 to 100). Indices of pairs indicate two of six decision elements.
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Student/Pair 12 13 14 15 16 23 24 25 26 34 35 36 45 46 56

1 65 55 45 60 40 40 30 45 25 40 55 35 65 45 30
2 60 55 45 55 40 40 35 45 35 45 60 35 60 48 40

3 60 52 48 58 45 40 35 48 33 45 52 42 60 48 40

4 50 50 40 50 40 50 40 50 35 40 50 35 55 50 35

5 65 55 45 60 40 40 35 45 30 45 60 40 35 45 35

6 60 52 49 60 45 45 40 48 40 45 55 42 60 48 60

7 60 53 46 55 45 44 40 46 35 44 52 41 58 47 39

8 35 55 45 60 40 60 30 45 30 40 55 35 65 45 33

9 60 54 47 56 47 43 40 44 33 44 53 43 43 47 40

10 60 55 45 57 42 40 35 45 33 45 53 40 60 47 40

11 62 55 48 60 45 61 34 45 35 45 55 40 60 47 37

12 60 55 45 55 40 40 35 45 35 45 60 35 60 48 40

13 61 48 47 61 46 53 35 45 34 41 53 42 60 48 38

14 62 54 47 57 45 42 36 46 33 43 54 41 60 47 37

15 62 55 48 57 45 43 35 43 33 45 55 43 60 48 38

16 62 55 47 60 45 40 33 45 33 45 55 40 60 47 40

17 65 55 45 42 40 35 30 45 30 40 55 35 65 47 30

18 60 47 46 55 43 43 36 44 33 43 52 40 42 47 39

19 65 53 45 60 45 35 35 45 33 47 60 45 60 45 40

20 60 55 47 48 45 45 30 45 35 45 57 42 60 49 40
21 61 59 45 56 45 43 40 48 33 43 57 42 54 48 35

22 38 55 47 57 44 44 36 46 33 42 52 40 60 47 37
23 60 53 45 55 40 44 40 45 33 45 52 45 60 48 40

24 63 62 38 60 40 37 33 40 33 37 60 37 63 40 28
25 60 45 45 60 45 40 35 45 20 45 55 45 40 45 35

26 70 55 40 70 40 40 30 45 30 40 55 30 70 45 30

27 59 55 47 56 48 45 43 45 34 42 54 44 58 49 40

28 65 55 45 60 40 40 30 45 35 40 60 35 60 45 35
29 60 55 47 55 44 45 40 45 33 45 55 35 40 53 35

30 46 43 40 37 35 47 44 41 39 48 45 42 47 45 48

31 65 55 45 60 40 40 37 45 35 44 52 41 58 49 40

32 59 53 52 55 45 40 38 47 37 45 53 43 58 48 40
33 66 60 45 60 40 40 30 45 66 45 60 35 40 48 35

34 60 52 48 57 45 46 35 47 33 53 53 42 60 48 35

35 60 47 47 57 43 45 35 45 35 47 55 40 62 48 40
36 62 55 48 58 46 43 36 46 34 43 53 40 61 48 37

37 60 55 45 57 45 40 35 45 33 43 55 40 60 47 37

38 62 55 45 57 40 45 70 45 33 45 60 40 65 48 33

39 60 55 45 60 40 40 40 40 35 40 60 45 60 45 40
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Table D.2: Category 2 - Air Distance between Pittsburgh and Other Cities

Student/Pair 12 13 1<1 15 16 23 24 25 26 34 35 36 45 46 56

1 20 20 10 5 45 50 20 10 20 20 10 70 45 90 95
2 50 50 45 20 45 50 40 20 40 40 30 50 30 60 80

3 40 33 10 25 25 45 20 30 35 35 40 50 50 65 65

4 50 33 25 25 50 33 25 25 50 40 40 67 50 75 75

5 33 25 10 11 30 40 20 20 44 25 27 55 53 78 76

6 25 33 10 11 33 60 17 20 50 17 20 50 53 83 80

7 33 30 10 15 33 45 20 23 50 23 25 53 55 20 75
8 35 40 10 20 35 45 20 25 45 25 25 50 55 70 70
9 36 26 10 12 26 29 18 19 28 24 27 49 53 72 74

10 40 25 15 15 33 '50 20 20 40 25 25 50 50 75 75

11 75 70 90 95 80 55 90 65 65 65 55 40 50 30 30

12 65 35 10 10 30 50 20 30 45 35 40 55 50 60 25

13 25 15 7 5 20 40 25 15 45 30 25 55 47 75 75

14 35 40 15 30 40 55 35 40 55 30 15 50 55 70 70

15 33 22 25 10 23 36 17 18 37 26 28 52 53 75 27

16 33 35 20 25 40 40 30 33 50 33 40 50 60 75 70
17 33 20 15 10 25 33 20 85 40 33 30 37 40 75 78
18 25 33 20. 17 14 60 43 38 33 33 29 25 44 60 45
19 45 20 30 10 20 30 20 20 40 30 30 50 50 70 70
20 45 40 10 20 35 50 20 30 45 30 40 50 50 70 80
21 40 40 10 20 45 50 25 30 50 20 30 50 55 70 20

22 33 25 8 8 20 40 42 14 33 21 20 43 48 73 75
23 20 17 27 8 30 44 24 26 50 28 31 56 54 76 73

24 37 27 9 6 26 39 14 10 37 21 15 48 40 78 84
25 33 30 15 20 33 45 25 33 45 25 40 50 60 66 67
26 38 47 20 25 38 50 25 30 30 75 20 45 52 70 67
27 40 40 10 10 40 50 30 30 50 30 35 50 45 65 65
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Table D.3: Category 3 - Number of Times Football Teams Have Won the Super

Bowl

Student/Pair 12 13 14 15 16 23 24 25 26 34 35 36 45 46 56

1 80 80 70 60 60 50 40 30 30 40 30 30 40 40 50

2 55 80 65 55 65 75 60 50 60 35 25 35 40 50 60

3 65 70 65 65 65 60 50 50 50 40 40 40 50 50 50

4 65 80 65 55 65 65 50 40 60 35 25 40 50 50 60

5 67 67 67 57 67 50 50 40 50 50 40 50 40 50 60

6 6'7 80 67 E.7 67 67 50 60 50 33 25 33 40 50 60

7 60 75 60 55 60 25 50 50 66 40 25 34 50 60 70

8 67 80 67 57 67 67 50 40 50 33 25 33 40 50 60

9 30 75 60 65 75 50 40 45 40 35 50 50 55 55 45

10 70 90 55 70 55 50 20 50 50 35 40 40 70 50 35

11 57 99 57 67 67 99 50 60 60 1 1 1 60 60 50

12 67 67 67 55 67 50 50 40 50 50 40 50 40 50 60

13 66 80 67 57 66 67 50 40 50 33 40 34 40 50 60

14 60 67 60 67 80 60 50 60 75 40 50 33 60 75 67

15 57 66 66 66 80 40 60 60 75 50 50 66 50 66 66

16 67 80 67 56 67 67 50 40 50 33 25 33 40 50 60

17 33 42 65 50 40 59 55 25 54 51 80 50 47 68 10

18 99 80 67 57 67 1 1 1 1 33 25 33 40 50 60

19 80 80 67 67 67 50 40 33 33 33 40 34 50 50 50

20 57 67 67 57 57 60 60 50 50 50 40 40 40 40 50

21 60 80 67 60 66 75 40 50 60 33 25 34 40 50 60

22 57 80 67 57 67 75 60 50 40 33 25 33 40 50 60

23 70 90 65 60 70 50 30 20 20 20 30 50 50 70 60



Table D.4: Category 4 - Metropolitan Area Population in 1980
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Student/Pair 12 13 14 15 16 23 24 25 26 34 35 36 45 46 56

1 60 30 33 75 70 60 35 40 70 20 55 50 80 75 60

2 30 45 30 50 45 60 45 60 60 35 50 50 65 65 50

3 40 50 30 55 50 50 30 70 50 30 60 40 80 70 40

4 15 25 10 60 45 65 30 15 80 15 80 70 95 10 40

5 35 55 30 60 75 60 45 70 85 35 60 70 75 85 60

6 50 40 11 60 67 50 10 60 58 11 53 73 92 92 52

7 40 50 33 67 67 60 40 75 75 33 67 67 80 80 50

8 34 50 34 66 60 67 55 85 70 25 75 60 90 75 33

9 40 50 25 60 65 55 35 75 50 30 60 40 80 65 25
10 26 46 19 72 47 70 39 87 71 21 75 52 92 80 26

12 47 54 41 58 52 57 56 61 55 37 54 48 67 61 55

13 40 40 30 60 45 65 40 75 65 35 65 55 80 70 35

14 35 67 25 50 33 60 35 70 60 25 60 50 80 67 35

15 70 55 20 52 47 25 38 72 67 16 49 40 18 75 42

16 35 40 30 52 50 50 40 70 65 35 60 40 80 70 50

17 45 41 20 59 58 45 25 66 60 40 70 58 80 75 45
18 10 39 7 56 47 86 43 92 90 11 67 59 94 92 42

19 38 38 27 26 42 50 38 38 55 38 37 66 49 66 33

20 20 40 10 50 45 60 40 90 80 30 60 60 90 90 50

21 50 38 25 75 50 38 25 75 50 35 84 62 90 75 25

22 30 40 30 70 30 35 30 70 40 20 70 35 80 60 30

23 33 33 25 20 33 50 40 33 50 40 33 50 57 60 33

24 17 34 7 55 47 75 34 85 82 13 68 64 94 91 49

25 40 50 25 50 30 65 40 67 55 30 45 35 70 55 35

26 45 42 40 51 45 51 45 67 65 46 70 55 52 55 42

27 10 21 9 70 14 71 47 96 60 26 90 38 96 63 7

28 50 45 40 58 50 50 40 57 55 42 60 50 65 60 50



Table D.5: Category 5 - Annual Number of Air Passengers in Airports
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Student/Pair 12 13 14 15 16 23 24 25 26 34 35 36 45 46 56

1 45 55 50 45 80 60 45 60 80 50 50 75 50 75 75

2 40 60 50 30 60 25 60 40 80 40 30 50 40 70 80

3 45 75 63 63 65 30 65 65 67 40 40 45 50 55 55

4 55 75 33 33 80 75 33 33 75 15 25 67 50 90 90

5 40 45 40 40 60 55 50 45 70 40 45 65 45 65 70

6 33 50 25 20 60 50 60 35 60 42 36 63 33 30 75
7 33 55 56 42 83 71 71 59 91 51 37 80 36 80 87

8 43 60 54 48 62 67 61 55 69 44 39 53 45 59 64

9 50 70 50 65 75 65 50 60 60 35 50 50 50 50 65

10 38 58 52 43 70 70 60 55 70 40 39 54 36 60 80

11 75 65 75 60 90 38 50 34 75 62 45 84 34 75 83

12 70 60 70 65 60 10 35 48 50 67 80 80 45 45 44
13 50 75 50 45 70 80 50 49 78 20 17 50 48 80 90

14 62 71 56 56 83 60 43 43 75 33 33 67 50 80 80

15 45 48 42 43 60 53 48 49 63 47 47 41 51 49 62
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Table D.6: Category 6 - Number of Professionals in Major Occupation in the Unite

State

Student/Pair 12 13 14 15 16 23 24 25 26 34 35 36 45 46 56

1 50 40 65 60 33 30 30 50 40 60 80 40 80 55 20
2 50 25 50 33 67 25 33 33 40 75 75 85 40 50 67
3 60 55 75 85 80 45 60 70 65 62 70 65 60 55 45
4 50 20 14 17 33 25 20 25 33 33 50 60 67 60 45
5 66 66 80 60 95 30 25 50 98 75 65 80 40 70 35

6 50 65 35 80 75 50 75 80 75 60 65 70 55 50 50
7 65 45 60 70 60 30 45 53 45 60 80 60 60 47 45
8 50 65 75 70 80 60 75 75 80 65 65 75 50 65 60
9 60 60 33 75 33 50 25 67 25 25 67 25 85 50 14
10 60 57 56 67 40 25 14 33 14 43 60 33 71 45 25
11 70 50 50 80 40 30 40 60 40 70 70 70 70 50 40
12 60 50 70 70 60 40 40 60 40 65 70 70 45 60 30
13 57 44 62 80 73 37 55 75 67 67 83 77 71 63 40
14 50 40 75 75 75 40 75 75 75 80 60 80 50 50 50
15 50 34 34 66 20 25 50 66 30 50 75 34 67 33 20
16 65 60 80 65 80 40 70 60 70 60 60 70 40 55 70



Table D.7: Category 7 - Country Population
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Student/Pair 12 13 14 15 16 23 24 25 26 34 35 36 45 46 56

1 10 35 5 20 25 80 55 70 75 10 35 45 80 90 55
2 25 45 10 35 20 70 40 60 45 20 25 20 70 60 40
3 5 71 6 9 14 50 5 17 6 2 7 3 91 86 20
4 25 35 5 15 15 65 35 35 35 15 25 10 65 35 40

5 33 50 5 20 16 60 5 25 10 3 25 15 90 67 33
6 10 50 3 40 10 90 40 70 50 4 35 25 75 70 45

7 25 40 10 40 33 55 35 65 45 22 55 30 80 60 34
8 15 49 31 30 28 85 41 71 31 11 31 29 78 76 47

9 20 50 30 30 20 80 80 70 60 20 40 40 60 60 45
10 50 40 70 35 80 35 30 20 90 50 30 70 40 75 95

11 20 50 12 25 25 83 45 62 63 13 25 25 67 70 50
12 39 60 72 40 38 56 30 52 40 19 35 71 62 59 45



Appendix E

The Results of Empirical Test for

Accuracy and Group

Disagreement

The entries of the following tables are the results of empirical test. for the

accuracy measurement and group disagreement measurement. All them are in pairs,

the numbers inside the parenthesis is the results of group disagreement, and the

number without parenthesis is the the results of accuracy measurement. All the

notations in tables follow the definition of Table 4.1 and 4.2. The 01 to 07 indicate

the category 1 to category 7 in this Appendix.
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Table E.l: The Results of Empirical Test for Accuracy and Group Disagreement

with Geometric Mean Operated on Pairwise Comparison Matrix

CSM 0.00590 0.0314 0.0194 0.0278 0.0346 0.0598 0.0637

(0.0023) (0.0120) (0.0081) (0.0117) (0.0140) (0.0174) (0.0237)

R-EV 0.0059 0.0314 0.0193 0.0277 0.0345 0.0600 0.0632

(0.0023) (0.0120) (0.0083) (0.0117) (0.0142) (0.0176) (0.0244)

L-EV 0.0059 0.0313 0.0194 0.0278 0.0348 0.0597 0.0642

(0.0024) (0.0125) (0.0082) (0.0116) (0.0142) (0.0181) (0.0251)

AM-EV 0.0059 0.0313 0.0194 0.0278 0.0347 0.0598 0.0641

(0.0023) (0.0123) (0.0082) (0.0116) (0.0141) (0.0180) (0.0250)

GM-EV 0.0059 0.0314 0.0194 0.0278 0.0346 0.01:98 0.0637

(0.0023) (0.0121) (0.0082) (0.0116) (0.0141) (0.0177) (0.0247)

EV[AA'] 0.0065 0.0322 0.0169 0.0268 0.0338 0.0594 0.0602

(0.0022) (0.0118) (0.0086) (0.0123) (0.0144) (0.0179) (0.0287)

EV[A'A] 0.0467 0.1340 0.0561 0.0953 0.0376 0.0774 0.1500

(0.0014) (0.0125) (0.0097) (0.0126) (0.0096) (0.0146) (0.0284)

AM - EV[AA'] 0.0167 0.0507 0.0253 0.0354 0.0313 0.0648 0.0675

AND EV[A'A] (0.0018) (0.0111) (0.0081) (0.0111) (0.0128) (0.0160) (0.0274)

GE - EV[AA'] 0.0224 0.0834 0.0335 0.0508 0.0309 0.0678 0.0936

AND EV[A'A] (0.0015) (0.0100) (0.0095) (0.0094) (0.0109) (0.0142) (0.0233)

GE 0.0059 0.0314 0.0194 0.0278 0.0346 0.0598 0.0637

(0.0022) (0.0117) (0.0081) (0.0112) (0.0141) (0.0177) (0.0248)

C-RSM 0.0059 0.0311 0.0192 0.0277 0.0349 0.0599 0.0620

(0.0022) (0.0120) (0.0083) (0.0114) (0.0142) (0.0180) (0.0249)

MT 0.0059 0.0314 0.0193 0.0277 0.0345 0.0600 0.0631

(0.0022) (0.0115) (0.0080) (0.0114) (0.0140) (0.0173) (0.0236)

SAY 0.0057 0.0303 0.0204 0.0281 0.0358 0.0602 0.0610

(0.0023) (0.0123) (0.0089) (0.0116) (0.0151) (0.0198) (0.0241)

NEV 0.0065 0.0331 0.0221 0.0261 0.0417 0.0609 0.0652

(0.0029) (0.0144) (0.0087) (0.0115) (0.0146) (0.0200) (0.0283)

LSM 0.0061 0.0308 0.0190 0.0276 0.0364 0.0597 0.0589

(0.0022) (0.0131) (0.0096) (0.0119) (0.0157) (0.0207) (0.0250)

o A-GE(M) U
~-A-:-:B=B=R::-.-----'Ur--"-:::C=1-"--""""C=2"'--'---=C3:--l""I~-:::C:-:-4-"""-""""C=5"'-- -=C"'""6-r---::C=7----,O
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Table E.2: The Results of Empirical Test for Accuracy and Group Disagreement
with Arithmetic Mean Operated on Priority Vector

A-AM(V) U
C3 1"---::::C"""'4- --::::CC=-5- --::::CC=-6-r----=C=7--lUC2~ C1

CSM 0.0061 0.0361 0.0219 0.0285 0.0346 0.0661 0.0662

(0.0023) (0.0119) (0.0078) (0.0115) (0.0140) (0.0173) (0.0233)

R-EV 0.0063 0.0348 0.0219 0.0283 0.0339 0.0675 0.0598

(0.0023) (0.0120) (0.0079) (0.0116) (0.0142) (0.0175) (0.0241)

L-EV 0.0059 0.0349 0.0220 0.0288 0.0356 0.0635 0.0615

(0.0024) (0.0124) (0.0080) (0.0115) (0.0142) (0.0180) (0.0248)

AM-EV 0.0061 0.0348 0.0219 0.0287 0.0351 0.0638 0.0613

(0.0023) (0.0123) (0.0079) (0.0115) (0.0141) (0.0179) (0.0247)

GM-EV 0.0061 0.0348 0.0219 0.0284 0.0347 0.0654 0.0606

(0.0023) (0.0121) (0.0079) (0.0115) (0.0141) (0.0176) (0.0245)

EV[AA'] 0.0062 0.0323 0.0217 0.0271 0.0329 0.0648 0.0585

(0.0022) (0.0118) (0.0084) (0.0122) (0.0144) (0.0178) (0.0283)

EV[A'A] 0.0460 0.1440 0.0616 0.0987 0.0400 0.0897 0.1630

(0.0014) (0.0122) (0.0094) (0.0125) (0.0093) (0.0140) (0.0280)

AM - EV[AA'] 0.0156 0.0468 0.0289 0.0330 0.0296 0.0681 0.0628

AND EV[A'A) (0.0018) (0.0111) (0.0080) (0.0111) (0.0127) (0.0159) (0.0272)

GE - EV[AA'] 0.0217 0.0870 0.0400 0.0533 0.0295 0.0750 0.1050

AND EV[A'A) (0.0015) (0.0099) (0.0093) (0.0093) (0.0108) (0.0140) (0.0230)

GE 0.0060 0.0330 0.0217 0.0281 0.0345 0.0647 0.0603

(0.0022) (0.0117) (0.0078) (0.0112) (0.0141) (0.0176) (0.0246)

C-RSM 0.0061 0.0327 0.0223 0.0276 0.0347 0.0665 0.0587

(0.0022) (0.0119) (0.0079) (0.0113) (0.0142) (0.0179) (0.0247)

MT 0.0063 0.0339 0.0217 0.0280 0.0338 0.0665 0.0600

(0.0022) (0.0114) (0.0076) (0.0113) (0.0140) (0.0172) (0.0233)

SAY 0.0061 0.0317 0.0234 0.0280 0.0350 0.0709 0.0574

(0.0023) (0.0123) (0.0085) (0.0115) (0.0150) (0.0195) (0.0241)

NEV 0.0059 0.0402 0.0223 0.0256 0.0384 0.0679 0.0550

(0.0029) (0.0143) (0.0084) (0.0115) (0.0146) (0.0198) (0.0278)

L5M 0.0058 0.0299 0.0227 0.0282 0.0361 0.0726 0.0584

(0.0022) (0.0130) (0.0093) (0.0119) (0.0157) (0.0203) (0.0250)

~ ABBR.
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Table E.3: The Results of Empirical Test for Accuracy and Group Disagreement
with Geometric Mean Operated on Priority Vector

A-GE(V;,-)--:::::-:----,..----::=-__ - - - ; ; ~ . . . , - ~ = _ - I I
C3 I C4 C5 C6 C7 ~C2

CSM 0.0061 0.0411 0.0224 0.0308 0.0358 0.0659 0.0697
(0.0023) (0.0121) (0.0082) (0.0117) (0.0142) (0.0177) (0.0239)

R-EV 0.0062 0.0392 0.0224 0.0305 0.0350 0.0671 0.0679
(0.0023) (0.0122) (0.0083) (0.0118) (0.0144) (0.0179) (0.0249)

L-EV 0.0059 0.0411 0.0230 0.0310 0.0368 0.0636 0.0718
(0.0024) (0.0127) (0.0084) (0.0117) (0.0143) (0.0185) (0.0256)

AM-EV 0.0060 0.0406 0.0227 0.0309 0.0363 0.0639 0.0715
(0.0023) (0.0125) (0.0083) (0.0117) (0.0143) (0.0184) (0.0256)

GM-EV 0.0061 0.0400 0.0226 0.0306 0.0359 0.0652 0.0698
(0.0023) (0.0123) (0.0083) (0.0117) (0.0143) (0.0180) (0.0252)

EV[AA'J 0.0061 0.0385 0.0238 0.0295 0.0350 0.0647 0.0718
(0.0022) (0.0120) (0.0088) (0.0124) (0.0146) (0.0184) (0.0295)

EV[A'AJ 0.0461 0.1400 0.0678 0.0954 0.0398 0.0895 0.1480
(0.0014) (0.0124) (0.0098) (0.0128) (0.0094) (0.0142) (0.0294)

AM - EV[AA'J 0.0157 0.0517 0.0292 0.0344 0.0313 0.0681 0.0729
AND EV[A'A] (0.0018) (0.0113) (0.0083) (0.0113) (0.0129) (0.0165) (0.0282)

GE - EV[AA'] 0.0218 0.0883 0.0418 0.0528 0.0309 0.0749 0.0971
AND EV[A'A] (0.0015) (0.0101) (0.0094) (0.0094) (0.0109) (0.0143) (0.0238)

GE 0.0060 0.0378 0.0223 0.0302 0.0356 0.0648 0.0704
(0.0022) (0.0119) (0.0082) (0.0114) (0.0143) (0.0181) (0.0254)

C-RSM 0.0060 0.0382 0.0228 0.0298 0.0359 0.0662 0.0673
(0.0022) (0.0121) (0.0083) (0.0115) (0.0144) (0.0184) (0.0255)

MT 0.0062 0.0382 0.0219 0.0301 0.0350 0.0665 0.0671
(0.0022) (0.0116) (0.0080) (0.0115) (0.0142) (0.0176) (0.0239)

SAY 0.0060 0.0370 0.0237 0.0301 0.0359 0.0694 0.0630
(0.0023) (0.0125) (0.0087) (0.0117) (0.0152) (0.0200) (0.0247)

NEV 0.0056 0.0477 0.0261 0.0277 0.0392 0.0678 0.0696

(0.0029) (0.0147) (0.0088) (0.0116) (0.0148) (0.0204) (0.0289)

LSM 0.0057 0.0369 0.0242 0.0302 0.0375 0.0716 0.0681

(0.0022) (0.0133) (0.0097) (0.0121) (0.0159) (0.0210) (0.0259)

~ R = - " ~ ' - - - - ~ C1
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Table E.4: The Results of Empirical Test for Accuracy and Group Disagreement
with MDM Operated on Priority Vector

CSM 0.00360 0.0259 0.0144 0.0299 0.0376 0.0569 0.0623
(0.0023) (0.0121) (0.0081) (0.0116) (0.0140) (0.0182) (0.0234)

R-EV 0.0037 0.0256 0.0142 0.0286 0.0381 0.0611 0.0534
(0.0023) (0.0122) (0.0082) (0.0117) (0.0143) (0.0178) (0.0244)

L-EV 0.0032 0.0244 0.0149 0.0301 0.0369 0.0551 0.0581
(0.0024) (0.0126) (0.0082) (0.0117) (0.0142) (0.0189) (0.0249)

AM-EV 0.0035 0.0242 0.0140 0.0297 0.0372 0.0623 0.0607

(0.0024) (0.0125) (0.0081) (0.0116) (0.0141) (0.0180) (0.0249)

GM-EV 0.0036 0.0230 0.0139 0.0293 0.0376 0.0563 0.0568

(0.0023) (0.0124) (0.0081) (0.0116) (0.0141) (0.0178) (0.0246)

EV[AA'J 0.0045 0.0207 0.0131 0.0285 0.0382 0.0507 0.0530
(0.0022) (0.0121) (0.0086) (0.0123) (0.0145) (0.0190) (0.0285)

EV[A'A] 0.0046 0.0147 0.0564 0.0856 0.0371 0.0807 0.0153

(0.0014) (0.0124) (0.0095) (0.0129) (0.0095) (0.0144) (0.0283)

AM - EV[AA'] 0.0166 0.0341 0.0213 0.0359 0.0329 0.0557 0.0598

AND EV[A'A] (0.0018) (0.0114) (0.0082) (0.0112) (0.0129) (0.0171) (0.0274)

GE - EV[AA'] 0.0218 0.0820 0.0306 0.0526 0.0309 0.0760 0.1010

AND EV[A'A] (0.0016) (0.0101) (0.0095) (0.0094) (0.0112) (0.0149) (0.0231)

GE 0.0036 0.0233 0.0141 0.0288 0.0370 0.0557 0.0558

(0.0023) (0.0119) (0.0080) (0.0113) (0.0142) (0.0179) (0.0248)

C-RSM 0.0035 0.0229 0.0148 0.0293 0.0361 0.0567 0.0544
(0.0023) (0.0121) (0.0082) (0.0114) (0.0143) (0.0189) (0.0248)

MT 0.0036 0.0269 0.0144 0.0285 0.0384 0.0640 0.0583

(0.0023) (0.0116) (0.0079) (0.0114) (0.0141) (0.0176) (0.0235)

SAV 0.0037 0.0216 0.0136 0.0289 0.0389 0.0566 0.0569
(0.0023) (0.0125) (0.0088) (0.0117) (0.0152) (0.0204) (0.0256)

NEV 0.0041 0.0266 0.0149 0.0265 0.0376 0.0617 0.0456
(0.0030) (0.0146) ~ 0 . 0 0 8 7 ) (0.0115) (0.0147) (0.0202) (0.0280)

LSM 0.0035 0.0186 0.0123 0.0270 0.0373 0.0616 0.0558

(0.0023) (0.0133) (0.0096) (0.0120) (0.0159) (0.0208) (0.0250)

II r----=:--,..----:::::-=- A-MDM(V) n
Uf-A"'""'B=B=R=-.---U C1 C2 I C3 1-'--::::C"""4-"'--""'C='=5- - - ' : ; C ~ 6 -r-'C:;;:;7-U
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Table E.5: The Results of Empirical Test for Accuracy and Group Disagreement:
with MDM Operated on Pairwise Comparison Matrix I

CSM 0.00510 0.0196 0.0107 0.0267 0.0350 0.0573 0.059'7

(0.0023) (0.0124) (0.0081) (0.0116) (0.0142) (0.0175) (0.0240)

R-EV 0.0051 0.0192 0.0107 0.0267 0.0351 0.0572 0 . 0 5 9 ~

(0.0023) (0.0124) (0.0083) (0.0117) (0.0143) (0.0177) (0.0245)

L-EV 0.0052 0.0192 0.0107 0.0266 0.0349 0.0573 0.0601

(0.0024) (0.0128) (0.0084) (0.0116) (0.0143) (0.0181) (0.0253)

AM-EV 0.0051 0.0199 0.0107 0.0266 0.0350 0.0573 0.0600

(0.0024) (0.0127) (0.0083) (0.0115) (0.0143) (0.0180) (0.0252)

GM-EV 0.0051 0.0196 0.0107 0.0267 0.0350 0.0573 0.059'(

(0.0023) (0.0125) (0.0083) (0.0115) (0.0142) (0.0177) (0.0249)

EV[AA'] 0.0055 0.0232 0.0096 0.0249 0.0343 0.0577 0 . 0 5 4 ~

(0.0022) (0.0121) (0.0088) (0.0123) (0.0145) (0.0180) (0.028'1)

EV[A'A] 0.0459 0.1530 0.0519 0.0886 0.0391 0.0737 0 . 1 6 3 ~

(0.0014) (0.0139) (0.0098) (0.0128) (0.0095) (0.0147) (0.0282)

AM - EV[AA'] 0.0156 0.0360 0.0193 0.0362 0.0314 0.0624 0 . 0 6 1 ~

AND EV[A'A] (0.0018) (0.0114) (0.0083) (0.0112) (0.0129) (0.0161) (0.0275)

GE- EV[AA'] 0.0215 0.0849 0.0284 0.0504 0.0309 0.0653 0.0980

AND EV(A'A] (0.0016) (0.0104) (0.0097) (0.0095) (0.0110) (0.0143) ( 0 . 0 2 3 ~ 1 )
GE 0.0051 0.0197 0.0107 0.0266 0.0350 0.0573 0.0597

(0.0023) (0.0120) (0.0081) (0.0113) (0.0142) (0.0178) ( 0 . 0 2 4 ~ )
C-RSM 0.0052 0.0178 0.0106 0.0265 0.0353 0.0573 0 . 0 5 8 ~

(0.0023) (0.0123) (0.0083) (0.0113) (0.0143) (0.0181) ( 0 . 0 2 5 ~ )
MT 0.0051 0.0197 0.0108 0.0267 0.0351 0.0573 0.059S

(0.0023) (0.0118) (0.0080) (0.0114) (0.0142) (0.0174) ( 0 . 0 2 3 ~ )
SAY 0.0050 0.0143 0.0114 0.0273 0.0363 0.0572 0 . 0 5 8 ~ '

(0.0024) (0.0129) (0.0089) (0.0116) (0.0151) (0.0199) (0.0244)

NEV 0.0037 0.0265 0.0074 0.0245 0.0402 0.0534 0 . 0 6 0 ~

(0.0030) (0.0149) (0.0090) (0.0115) (0.0147) (0.0202) (0.0283)

LSM 0.0052 0.0172 0.0112 0.0271 0.0372 0.0572 0 . 0 5 6 ~

(0.0023) (0.0137) (0.0097) (0.0120) (0.0158) (0.0208) ( 0 . 0 2 5 ~ )

fl A-MDM(M) 3 '
Or-A70B""'B;";:;R:-.--~""--C=l"""- --=CC=-2--"r----:::c=3-'-'-1"-=C:-:"4- -O;::;C"::-5---'--;:;C;';;'"6-,~ :

I
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