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ABSTRACT

Cognitive ability is perhaps the most studied individual difference available to 

researchers, being measured quickly and effectively while demonstrating a predictable 

influence on many life outcomes. Historically, the evolution of the psychometric study of 

cognitive abilities has pivoted on the development of new and better methodologies 

allowing for a more complete and efficient capture o f intellect. For instance, recent 

advances in computer and Internet technology have largely replaced traditional 

pencil-and-paper methods, allowing for innovative item development and presentation. 

However, concerns regarding the potential adverse impact and test security of online 

measures of cognitive ability, particularly in unproctored situations, are well documented 

and have limited the use of such measures in organizational settings. Methods, such as 

the use of multiple test forms and computer adaptive testing coupled with item exposure 

algorithms, have addressed some test-security concerns. However, these methods require 

the costly and tedious development o f extensive item pools. The burgeoning area of 

automatic item generation potentially addresses many of the test-security and 

item-development concerns through the creation of assessment items based solely on an 

item model and a computer algorithm. Moreover, once the elements that contribute to 

item difficulty are calibrated, the psychometric properties o f the items are known, 

meaning that little to no human review of the items is required before their use. The 

purpose o f the current study was to develop an experimental non-verbal measure of



cognitive ability through automatic item generation, using an innovative item type. Using 

a sample o f 333 adults, the results o f the current analysis support the proposed cognitive 

model’s ability to explain item difficulty. Likewise, the temporal stability and predictive 

validity o f the experimental measure are supported. In doing so, the experimental 

measure answers some o f the test-security and item-generation concerns that are 

associated with the development and administration of cognitive-ability measures in 

organizational settings.
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CHAPTER ONE

INTRODUCTION

The measurement of cognitive ability has been heralded as one o f the crowning 

achievements of the psychological sciences (Lamb, 1994). For an investment o f an hour 

or less, psychologists can gain insights into an individual’s functioning that may not be 

uncovered through long and costly observations (Nettlebeck & Wilson, 2005). It is the 

easiest, most reliable, and most valid individual difference available to psychologists and 

researchers, measured cheaply and quickly (Cohen & Swerdlik, 2009; Fumham, 2008; 

Schmidt & Hunter, 1998). Moreover, the scores obtained from broad measures of 

cognitive ability (e.g., I.Q.) conform to the terms commonly used in society to describe 

individuals as intelligent or smart (Hermstein & Murray, 1994). As such, the terms 

cognitive ability and general mental ability (GMA) are often used synonymously with 

intelligence (Gottfredson, 2002).

However, change is a defining feature o f the cognitive-abilities research. 

Throughout the history o f psychometric investigations of cognitive abilities, researchers 

have embraced methodological advances leading to better and more efficient methods of 

understanding the nature o f intellect. For instance, the development o f sophisticated 

statistical procedures such as exploratory and confirmatory factor analysis allowed
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cognitive theorists to peer beyond the data and develop models that explain the nature of 

intellectual ability (Carroll, 1993; Cattell, 1971; Guilford, 1988; McGrew, 1997; 

Spearman, 1904; Thurstone, 1938). These advanced statistical procedures have also aided 

in the nullification or outright dismissal of competing theories of intelligence that fail to 

produce consistent or logical evidence concerning their validity (Carroll, 2003; Keith & 

Reynolds, 2010). Thus, methodological advances have aided cognitive abilities 

researchers in the pursuit o f greater clarity with regard to what it means to be clever.

Change is also a constant in the measurement o f cognitive abilities. For instance, 

early investigations of intellectual functioning focused primarily on measures o f sensory 

ability as proxy measures of intellectual ability (Hergenhahn, 2009). However, once it 

was demonstrated that sensory abilities failed to explain real-world performance (e.g., 

academic achievement), attention was turned to the measurement of higher level mental 

processes and their practical benefits in differentiating the performance of individuals. 

Likewise, the circumstances o f World War I dictated a paradigm shift in assessment 

administration. The result of this shift was the advent of group testing, allowing for the 

quick and efficient collection of vast amounts o f information on a large number of 

individuals for whom personnel decisions could be made (Boake, 2002). As such, 

cognitive-abilities research and measurement can be seen as an evolving field marked by 

innovation resulting in more accurate and efficient measures of intellectual ability 

(Drasgow & Olson-Buchanan, 1999; Gierl & Haladyna, 2012; Parshall & Harmes, 2009).

Throughout much of the 20th century, paper-and-pencil-based measures of 

cognitive abilities were the dominant medium by which intelligence was tested. As it has 

in almost all other areas of society, the technological revolution has transformed our daily
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lives. Computers are now small, fast, and cheap, allowing much of society to embrace 

their use (Chernyshenko & Stark, 2015). However, advances in computer and Internet 

technology have opened a new universe of methodological considerations from which 

cognitive ability can be tapped (Naglieri et al., 2004). While early versions of 

computer-based assessments were little more than direct translations of paper-and-pencil 

measures to a computerized medium, the measurement o f cognitive ability is no longer 

restricted to static statements and images (Barak & English, 2002; Bartram, 2006).

Rather, a diverse array o f innovative and dynamic auditory and visual items can be 

administered via computer, potentially tapping cognitive ability in ways that were 

previously impossible to achieve (Parshall & Harmes, 2009). Moreover, computerized 

assessments realize practical benefits such as standardized item administration and 

automatic scoring, thus reducing error and improving test reliability. Likewise, 

administering computerized assessments online allows for an immense pool of test takers 

to sit for the same measure from anywhere in the world and at a time of their choosing, 

reducing the costs associated with testing programs (Drasgow & Olson-Buchanan, 1999; 

Naglieri et al., 2004). Thus, many test developers have embraced the technological 

revolution as more and more tests are being developed that can exploit the advantages 

afforded by computers and the Internet.

Despite the practical and measurement advantages offered by computer and 

online administration, problems in the areas o f test construction and administration 

persist. For instance, large item pools are generally required as part o f the 

test-development process. This problem is compounded when multiple forms of the same 

measure or advanced item-presentation methods (e.g., computer-adaptive testing) are
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used, necessitating an even larger number of items (Drasgow, Nye, Guo, & Tay, 2009). 

However, not all items that are created are useable. Despite the need for quality items and 

despite care taken to generate items that tap the construct of interest, many items must be 

removed at the item-analysis phase due to insufficient psychometric characteristics 

(Geerlings, Glas, & van der Linden, 2011; Wainer, 2002). This problem is particularly 

relevant to human item writers who often fail to construct items that conform to the 

construct of interest or at a desirable level of difficulty, further limiting the number of 

usable items (Homke & Habon, 1986). Moreover, some cognitive researchers have 

questioned the validity o f the results obtained from measures of intelligence administered 

in unproctored environments (Naglieri et al., 2004). The administration of measures in 

uncontrolled environments introduces a host of test-security threats (e.g., cheating) that 

distort test taker scores in ways that are difficult to detect. Since these distortions are not 

systematic, the validity o f a measure is often greatly reduced due to the lessened 

predictive power it possesses (Foster, 2010). Thus, although technological advances have 

afforded greater options in how and where tests are administered, persistent issues remain 

that stunt researchers’ ability to obtain convenient and accurate results.

The burgeoning arena o f automatic item generation (AIG) seeks to address the 

concerns raised through the generation of a vast number o f unique items strictly through 

an algorithm (Gierl, Ball, Vele, & Lai, 2015). Using an item model, the structural 

elements that relate to item difficulty are identified and manipulated, producing an array 

of items with known psychometric characteristics. Thus, little or no human review of the 

items is required before their administration (Doebler & Holling, 2015). Moreover, recent 

advances in AIG methodology allow for the creation of items directly from the calibrated
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structural elements, thereby addressing several issues associated with traditional test 

construction and administration (Geerlings, van der Linden, & Glas, 2012).

Despite the advantages posed through its use, limited research exists concerning 

the construction and subsequent validation o f cognitive ability measures developed using 

AIG methodology (Gierl & Lai, 2012). Many researchers studying AIG measures have 

only examined the construct validation of the items, ignoring the predictive validity of 

these measures. Furthermore, the capability to create dynamically generated and 

presented items on-the-fly though AIG methodology has received little attention 

(Geerlings et al., 2012).

The purpose o f the current research is to build on the existing AIG 

methodological framework through the construction and validation of an on-the-fly 

measure o f cognitive ability that is generated at the time o f item presentation. As such, 

this measure will not draw from a preexisting pool o f items. Rather, the current measure 

will create items dynamically through predefined computer algorithms. The benefits of 

such a measure will address many o f the issues that surround current test development. 

First, such a measure will be capable of generating a vast number o f items through the 

use of an algorithm applied to an item model, producing items with known psychometric 

characteristics. As such, once calibrated, thousands o f unique items o f varying difficulty 

can be generated, without the need o f human intervention. Second, many issues o f test 

security will be addressed as each test taker will be administered different items. 

Although different items will comprise the measure for each test taker, the items will be 

calibrated such that the measure has identical construct adherence and psychometric 

properties. Third, once created, the criterion related validity o f the measure will be
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assessed by examining the relationship that the experimental AIG measure shares with 

established indicators of cognitive ability. Thus, the experimental AIG measure created 

through this research is expected to advance the field’s understanding of AIG item 

development and its relationship to other measures of cognitive ability.

Cognitive Ability

Although cognitive ability is one of the most studied individual differences in all 

of psychology (Gottfredson, 2002), reaching definitional agreement has proven 

problematic. In general terms, cognitive ability can be conceptualized as the basic mental 

capacity to reason, plan, solve problems, think abstractly, understand sophisticated and 

complex ideas, and acquire new information quickly and efficiently (Gottfredson, 2004). 

Similarly, Neisser (1967) defines intelligence as the “ability to understand complex ideas, 

to adapt effectively to the environment, to learn from experience and to engage in various 

forms o f reasoning to overcome obstacles by taking thought” (p.7). Despite these 

seemingly straightforward descriptions o f intelligence, substantial disagreement remains 

among cognitive ability theorists regarding the number of facets that are considered 

essential and how they should be arranged (Carroll, 1993; Cattell, 1971; Guilford, 1988; 

McGrew, 1997; Spearman, 1904; Sternberg, 1999). As quipped by Ackerman, Beier, and 

Boyle (2005), “there are as many intelligence theories as there are intelligence 

theorists...” (p. 31).

From a practical standpoint, people are readily able to recognize intelligence in 

others. Sternberg, Conway, Ketron, and Bernstein (1981) attempted to uncover this 

implicit conceptualization of intelligence by asking laypersons going about their daily 

lives in places such as grocery store parking lots to describe the behaviors associated with



various portrayals o f intelligence. The researchers then asked cognitive ability experts 

(i.e., psychologists) the same question. After analyzing the statements produced, the 

researchers found that although the two groups differed in their academic familiarity with 

the construct, both groups produced a pattern of relatively consistent descriptive terms of 

intellectual ability. For example, the attributes most associated with prototypical 

intellectual ability included problem solving, reasoning, and open-mindedness. 

Conversely, the hallmarks of unintelligence are characterized by personality trait-like 

behaviors (Costa & McCrae, 1992) including a lack of curiosity and a lack o f tolerance 

of the views held by others. However, despite the consistency of responses obtained by 

the researchers, the variety of the descriptors of prototypical intellectual ability is 

indicative of the difficulty cognitive theorists have had in reaching definitional 

agreement.

Factor Analytic Theories

Although obtaining definitive agreement on a definition o f intelligence has been 

elusive (Sternberg & Detterman, 1986), the emergence of several theories o f intelligence 

can be traced to an important development in the field o f statistics. In the early 1900s, 

Charles Spearman (1904) developed a primitive form of modem factor analysis allowing 

researchers to clarify the latent relationships shared by specific variables or phenomena. 

The purpose of factor analysis is to reduce and represent the number o f observed 

variables into a smaller number of underlying hypothetical variables or "factors" 

(Anastasi & Urbina, 1997). The interpretation and measurement of each factor is 

dependent on a determination of the observed variables that make up the factor. Thus, by 

examining the interrelationships shown from factor analyzing measures o f intellect,



theorists are able to construct models of cognitive abilities that account for the results 

obtained.

Importantly, the latent structure of the factors that emerges from factor analysis is 

often open to interpretation. The choices made in conducting factor analysis (e.g., 

rotations, eigenvalue and factor loading cutoffs) complicate the convergence of 

interpretations that are made (DeVellis, 2012). Moreover, the labels that are applied to 

the factor(s) that emerge are dependent on the researcher’s ability to subjectively 

determine the content and associated psychological processes of the measures that load 

most heavily on a particular factor. Thus, the interpretation of factors can be viewed as an 

art grounded in empirical data.

As stated by Humphreys (1962), “test behavior can almost endlessly be made 

more specific...factors can almost endlessly be fractionated or splintered” (p. 475). Thus, 

competing theories o f intelligence have emerged stipulating a variety o f structures and a 

diverse set o f factors that make up cognitive functioning. However, as pointed out by 

Vernon (1950), only the factors that are “shown to have significant practical value in 

daily life are worth incorporating in the picture” (p. 25).

Two-Factor Theory. Perhaps the most famous and influential of the cognitive 

theorists is Charles Spearman. Noting that students who performed well on one measure 

o f intelligence tended to perform well on other cognitive measures, Spearman (1904) 

used his factor analytic technique to identify the commonalities across performance 

across measures. Based on his findings, Spearman developed his theory o f general 

intelligence, tapped by all measures of cognitive ability. Known as the Two-Factor theory 

o f Intelligence, Spearman found that two factors or forms of intelligence emerged from
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the data: a general factor (g) and a test specific (5) factor. According to Spearman (1927), 

g  is an innate general mental ability that contributes to all cognitive processes. This g  

factor is a "general fund o f mental energy” (Spearman, 1914, p. 103) that explains why 

an individual’s score on any given measure o f cognitive ability is correlated with the 

scores obtained from other measures of cognitive ability. Conversely, .v-factors explain 

why someone may obtain higher or lower scores on any given intellectual measure, but 

not performance across measures or task-domains. That is, specific factors, along with 

error, explain why performance on different cognitive measures is less than perfectly 

correlated. As such, 5-factors do not add to the prediction of additional variance in 

cognitive ability because they operate only within specific measures of intelligence 

(Anastasi & Urbina, 1997). Thus, g  and 5 are differentiated in that g  is responsible for an 

individual’s performance across all measures of cognitive ability, while 5-factors are 

restricted to performance on independent measures of mental abilities. As such, g  is 

thought to explain intellectual test performance (Jensen, 1998), conforming to what 

people describe as intelligence and leading most psychologists to adopt it as their 

operational definition o f intelligence (Gottfredson, 2002). Thus, the importance of g  to 

intellectual ability cannot be overstated as indicated by Ree and Earles (1993), “g is to 

psychology what carbon is to chemistry” (p.l 1).

Evidence of Spearman’s theory is provided by the positive correlation observed 

across measures o f cognitive ability. The g  factor emerges regardless o f whether mental 

test batteries are administered to different ages, sexes, races, and national groups and 

subsequently factor analyzed (Jensen, 1998). As such, although mental tests are designed 

to measure specific areas o f cognitive functioning (e.g., verbal, spatial, and quantitative



ability), individuals who perform well in one area, also tend to perform well on the others 

(Gardner, 1999), a phenomenon that Spearman termed "indifference o f the indicator" 

(Spearman, 1927).

The core o f cognitive ability research rests on this positive manifold (van der 

Maas, Kan, & Borsboom, 2014), the observation that the subtests o f all intelligence tests 

ranging from academic measures to measures of social intelligence are positively 

correlated, g refers to a latent variable that results from the intercorrelation o f several 

measures o f cognitive ability (Spearman, 1927). Tests that correlated well with other 

measures of intelligence are indicative o f higher levels of g-saturation. As such, 

g-saturation indicates the degree that a measure is tapping the general fund of mental 

energy. In contrast, cognitive tests that demonstrate a lesser relationship to other 

measures are thought to tap s factors such as residual variance due to test-specific 

abilities or otherwise contain error (e.g., unreliability). Therefore, higher levels of 

g-saturation are considered better predictors o f intelligence. As such, Spearman suggests 

that a single highly g-saturated test be substituted for heterogeneous collections o f tasks 

and items found in measures o f intelligence (Spearman, 1927).

In order to select a measure that best approximated g, Spearman (1927) described 

g as the ability to extrapolate principles from one’s experience and observations, best 

measured by abstract reasoning problems in formal tests. According to Spearman (1938), 

the Penrose and Raven (1936), later named Raven’s Progressive Matrices (Raven & 

Court, 1989) well represented the abilities associated with g. As such, the defining 

characteristics o f tests that tap g  are non-verbal assessments of spatial or inductive 

reasoning.
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Spearman noted that the Two-factor theory must be qualified, allowing for an 

intermediate class of factors that fall between g  and .s-factor. These intermediate factors, 

termed group factors, relate to some but not all intellectual tasks. Group factors are 

neither as universally broad as g, nor as specific as .v (Anastasi & Urbina, 1997). Through 

the continued research of Spearman and his students, group factors such as mathematical, 

mechanical, and linguistic abilities were uncovered, laying the groundwork for future 

research and the development o f more complex models o f intellectual ability.

Primary Mental Abilities. On the heels of Spearman’s work in identifying group 

factors, theories of intelligence moved from the existence of a single underlying mental 

ability to the identification o f several abilities, and then to many. One such theory of 

multiple-intelligence was promoted by Louis Thurstone. Thurstone (1947) developed an 

advanced factor analytic technique allowing for the discovery o f a multiple-factor 

structure of intelligence using orthogonal and oblique rotations, improving the 

interpretability o f the data. Employing these techniques, Thurstone identified g  as a 

second order factor subsuming narrower mental abilities.

Thurston (1938) concluded that intelligence could best be explained by seven 

primary mental abilities: Word Fluency, Verbal Comprehension, Number, Space, 

Perceptual Speed, Associative Memory, and Induction. Thus, in contrast to Spearman, 

Thurstone believed that cognitive ability was the result o f multiple factors o f cognitive 

abilities rather than a single overarching factor.

Despite Thurstone’s assertion that intelligence was comprised of seven 

independent abilities, subsequent studies failed to replicate his findings. Rather, later 

studies showed that the original factors that Thurston obtained were less orthogonal than
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originally believed (Thurstone & Thurstone, 1941). Thus, after noting the 

intercorrelations obtained between mental ability measures specifically designed to assess 

discrete facets of cognitive ability, Thurston (1947) doubted the possibility that an 

orthogonal structure of intelligence could be developed that did not capture g, reconciling 

his ideas with those o f Spearman.

Structure-of-Intellect. Despite Thurstone’s assertion, other theorists have denied 

the existence of g. For instance, based on his own factor analytic research, Guilford 

(1967, 1988) developed a model that eliminated the role o f g  in explaining performance 

on intelligence measures. Guilford's Structure-of-Intellect (S-I) is a box-like schema from 

which intellectual traits are classified along three dimensions: Operations, Contents, and 

Products. Operations represent the mental activities or processes that are performed by 

the individual. Operations can be further classified as cognition, memory recording, 

memory retention, divergent production, convergent production, and evaluation. Contents 

represent the information or materials that receive the operations. Contents include 

auditory, visual, semantic, symbolic, and behavioral information. Products represent the 

various forms in which content may be processed. Products can be further classified as 

units, classes, relations, systems, transformations, and implications.

Each factor of cognitive ability in Guilford’s S-I model is derived from the 

sub-classifications of the Operations, Contents, and Products dimensions. Since at least 

one factor is expected from each cell in the schema, 180 (6 x 5 x 6 = 180) or more factors 

constitute intellectual ability. As such, abilities represent a specific operation, in a 

specific content area, leading to a specific output (e.g., Evaluation o f Semantic 

Implications). Since Guilford considered the factors that were produced from the S-I
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model to be orthogonal, he rejected the value of g  and hierarchical relationships of mental 

abilities. Like Thurstone’s model, the S-I model was derived from an orthogonal rotation 

of test scores (Guilford, 1967). However, unlike other factor analytic theories, the S-I 

theory o f intelligence was derived from a theoretical basis and tests were then constructed 

to measure the hypothesized components.

However, the S-l model failed to gain an influential foothold in cognitive ability 

testing (Carroll, 1993). Likewise, re-analyses o f Guilford’s factor-analytic data indicate 

that other models provide better fit to the data, including randomly generated models. As 

such, Carroll (1993) described the considerable amount of attention paid to the S-I model 

as disturbing and as providing the impression that the model is a widely accepted and 

valid theory o f cognitive ability, which it is not.

Gf-Gc. In contrast to the S-I theory, a model that is widely accepted is the Gf-Gc 

theory forwarded by Cattell (1941). Based on the works o f Thurstone in the 1930s, the 

original Gf-Gc theory suggests that intellectual ability is comprised o f two primary 

abilities: Fluid and Crystalized Intelligences.

Fluid Intelligence (Gf) consists of the focused attention to process information 

and solve problems that cannot be performed automatically and/or are independent of any 

learned information (Schneider & McGrew, 2012). Since the abilities that are associated 

with G f  are biologically rooted, they are thought to be culture-free, non-verbal, and 

independent of any form of instruction allowing individuals to adapt to new situations 

and learn from their environments (Cattell, 1957, 1971). Thus, individuals who possess 

high levels of G f  are able to act quickly and encode short-term memories that enable 

abstract problem solving. The mental operations associated with G f  that promote problem
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solving include recognizing and transforming information and concepts, perceiving 

relationships among patterns, drawing inferences or otherwise extrapolating answers, and 

comprehending the implications of the solution reached. Inductive and deductive 

reasoning are the defining characteristics of fluid intelligence best measured through 

tasks including figural matrices, number series, analogical reasoning, and figural analyses 

(Sattler, 2001).

Crystalized Intelligence (Gc) consists o f the acquired skills and knowledge that 

are derived from one’s experience and valued by one’s culture (Schneider & McGrew, 

2012). As described by Horn and Blankson (2005), the abilities associated with Gc are 

verbally based, developed through an investment of mental energies into educational and 

other life experiences. The types o f knowledge that are subsumed by Gc include both 

static declarative (e.g., factual information, comprehension, concepts, rules, and 

relationships) and dynamic procedural (e.g., process of reasoning based on previously 

learned information). As such, Gc is not only a repository o f information, but is also a set 

of processing abilities wherein memory retrieval and the application of general 

knowledge are components.

Cattell-Horn. Through his own factor analytic research, Horn ( 1968, 1988, 1991) 

expanded on Cattell's dichotomous Gf-Gc model, adding several additional factors: visual 

perception or processing (Gv), speed o f processing (Gs), short-term memory (Gsm), 

long-term memory (Glr), auditory processing ability (Ga). Later, Horn added factors 

representing reaction time and decision speed (Gt), quantitative (Gq), and broad 

reading-writing (Grw) abilities. This conglomerate eight-factor model became known as 

the Cattell-Horn theory (Horn, 1991).
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Three-Stratum Theory. Carroll (1993) reported the exploratory factor analytic 

results o f over 460 datasets, building on the research of influential theorists such as 

Cattell, Horn, Thurstone, and Thorndike. The magnitude and comprehensiveness o f this 

analysis was not lost on other researchers. As indicated by Jensen (2004), "Carroll's 

magnum opus thus distills and synthesizes the results of a century of factor analyses of 

mental tests. It is virtually the grand finale o f the era o f psychometric description and 

taxonomy of human cognitive abilities. It is unlikely that his monumental feat will ever 

be attempted again by anyone, or that it could be much improved on" (p. 5).

Carroll's influential Three-Stratum theory of intelligence differentiates factors and 

abilities into three hierarchically arranged levels (Carroll, 1997). In geological terms, a 

stratum is a bed o f sedimentary rock or soil that distinguishes itself from adjacent strata. 

Similarly, Carroll proposed that intelligence is best modeled in hierarchical terms. The 

top stratum, Stratum III, is g  or general intellectual ability. As represented by Spearman 

(1904), g  is a broad processing ability that is behind all higher-order thinking and 

subsumes the other two strata in the models. Known as broad or Stratum II abilities, the 

second stratum is comprised of eight abilities, incorporating Cattell's fluid (Gf) and 

crystalized (Gc) intelligences, along with broad visual perception (Gv), broad auditory 

perception (Ga), broad retrieval capacity (Gr), broad cognitive speediness (G.s), 

processing/decision speed (Gt), and general memory and learning (Gy), each requiring 

differing processes, tasks, and content. These abilities are the most recognized and 

prominent abilities in Carroll’s model, representing "basic constitutional and long 

standing characteristics o f individuals that can govern or influence a wide variety of 

behaviors in a given domain" (Carroll, 1993; p. 634). Below each Stratum II ability lays
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II ability (Jensen, 1998). These narrow abilities "...represent greater specializations of 

abilities, often in quite specific ways that reflect the effects of experience and learning, or 

the adoption of particular strategies o f performance” (Carroll, 1993, p. 634). Although 

other theorist such as Burt (1949) and Vernon (1950) proposed hierarchical models of 

intellectual ability, Carroll’s model was the first “empirically based taxonomy of 

cognitive ability... presented in a single organized framework” (McGrew, 2009, p. 2).

Importantly, the abilities in Carroll’s model exhibit positive relationships with one 

another. As such, the mutual relationships shared between the narrow Stratum I abilities 

gives rise to the broader Stratum II abilities. Likewise, the positive relationships that 

associate Stratum II abilities allows for the approximation of the g-factor at Stratum III. 

Although these positive relationships indicate that the abilities are not completely 

orthogonal to one another, a vast amount o f research indicates that the factors can be 

consistently differentiated from one another, thus indicating that they are in fact unique 

facets of cognitive ability (Keith & Reynolds, 2010).

Cattell-Horn-Carroll. Carroll (1993) stated that the Cattell-Horn Gf-Gc model 

"appears to offer the most well-founded and reasonable approach to an acceptable theory 

o f the structure o f cognitive abilities” (p. 62). Perhaps due to his admiration of the work 

o f Cattell and Horn, the Carroll’s Three Stratum and the Cattell-Horn models are quite 

similar. For example, both of the proposed models contain broad abilities that subsume 

narrower abilities. Likewise, both models share similar classifications o f these abilities. 

However, the models are distinguished from one another. Several o f the differences 

between the models involve the definitions attributed to specific abilities and the
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groupings of narrower facets. The biggest difference between the models is existence of 

g. That is. Carroll’s model suggests that an overarching g-factor subsumes narrower 

abilities, while the Cattell-Horn model does not include a g-factor.

Despite the differences embodied by the Cattell-Horn and Carroll models, 

researchers recognized the need for a common framework to describe, organize, select, 

and interpret assessments and assessment batteries. To meet this need, McGrew (1997) 

proposed a hybrid model combining the Cattell-Horn and Carroll models in to what 

became known as the Cattell-Hom-Carroll (CHC) theory, with the order o f the names 

reflecting the chronological order in which the theorists made their contributions. As 

such, CHC theory represents over 60 years o f factor analytic research o f cognitive ability.

The CHC model is arranged in three hierarchal levels. Like Carroll’s 

Three-Stratum theory, at Stratum III, the top level, the general factor o f intelligence or g 

resides. Stratum II contains the broad cognitive abilities while the narrow abilities lie at 

the bottom level in Stratum I. In its original configuration, CHC theory contained 10 

broad cognitive abilities and over 70 narrow abilities. However, CHC theory is not static. 

Rather, CHC is continuously refined, reorganized, and restructured as additional research 

is conducted (McGrew & Flanagan, 1998; Flanagan, 2000). As stated by Jensen (2004), 

CHC is "an open-ended empirical theory to which future tests o f as yet unmeasured or 

unknown abilities could possibly result in additional factors at one or more levels in 

Carroll's hierarchy” (p. 5). Carroll (2005) reiterates this point noting that CHC most 

assuredly contains errors that may be rectified through continued research. In its current 

form, CHC theory consists o f 16 broad stratum abilities and over 80 narrow abilities 

(Schneider & McGrew, 2012). The 16 broad stratum abilities o f CHC currently include
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Knowledge (Gkn), Quantitative Knowledge (Gq), Reading/Writing Ability (Grw), 

Short-Term Memory (Gsm), Long-Term Storage and Retrieval (Glr), Visual Processing 

(Gv), Auditory Processing (Ga), Olfactory Abilities (Go), Tactile Abilities (Gh), 

Psychomotor Abilities (Gp), Kinesthetic Abilities (Gk), Processing Speed (Gs), Decision 

Speed/Reaction Time (Gt), and Psychomotor Speed (Gps). However, o f the Stratum II 

abilities, G f  and Gc are the most related to g  (Carroll, 2003).

Although the CHC model was forwarded by McGrew (1997) to pragmatically 

classify narrow cognitive ability measures that are contained in individually administered 

intellectual assessments, this model is the most theoretically sound and empirically 

supported model of intelligence available (Ackerman & Heggestad, 1997; McGrew, 

2009; Stankov, 2000). For instance, the factor structure of CHC is supported by factor 

analytic evidence that not only demonstrates the consistency of the factors derived, but 

the invariance of the three-stratum factor structure across one’s life (Bickley, Keith, & 

Wolfle, 1995) and across gender, ethnic, and cultural groups (Carroll, 1993). Likewise, 

evidence provided from studies o f developmental, neurocognitive, and heritability lend 

support to the CHC model (Horn & Blankson, 2005). As such, the CHC model is backed 

by a more extensive array o f validation evidence than any other modem theory of 

cognitive ability (Schneider & McGrew, 2012).

The core practice in scientific fields is the classification of empirical observations 

(Bailey, 1994). As argued by Miller (1996), useful taxonomies draw distinctions of 

conceptual importance, raise contrasts that enable empirical advancement, and possess 

elements that form a coherent whole. Given the substantial amount o f evidence
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supporting the structure o f the CHC model, the value o f such a model is the common 

framework that allows practitioners to think alike regarding the measurement of cognitive 

abilities and the usefulness o f the broad vs. narrow facets. The CHC model is particularly 

relevant to the area o f school psychology and psychoeducational assessment as several 

measures o f cognitive abilities have incorporated CHC as a theoretical foundation. For 

instance, CHC provides researchers a means to design and evaluate cognitive assessments 

and a common language for describing research findings that stimulates the empirical 

investigation o f the structure and nature o f cognitive abilities (Keith & Reynolds, 2010). 

Theoretical Approaches to Intelligence

Despite the advances that have been made through the factor analysis of test 

scores, some researchers maintain that theories of intelligence that are derived from such 

exploratory analyses fail to capture the extent of cognitive functioning. In contrast to 

factor analytical accounts, a variety of theoretical frameworks have been constructed that 

purport to better conceptualize and measure intellectual ability.

Successful Intelligence. While Boring (1923) famously stated that intelligence is 

what the tests test, Sternberg was dissuaded by conventional measures o f intelligence that 

consisted solely o f measures of analytical and memory items. Rather, Sternberg (2005) 

proposed a competing information-processing model that has received considerable 

attention. The Successful Intelligence theory, also known as Triarchic theory of 

intelligence (Sternberg, Grigorenko, Ferrari, & Clinkenbeard, 1999), suggests that 

traditional measures of cognitive ability focus too much on analytical abilities, ignoring 

creativity and practical thinking that allow an individual to deal effectively with the 

world. Sternberg acknowledged that the measures of analytical abilities and memory used
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in traditional measures of cognitive ability are important indicators of success in 

academic environments. However, to achieve success “one needs not only to remember 

and analyze concepts; also one needs to be able to generate and apply them” (Sternberg, 

2005; p. 190). As Sternberg argued, there is a multitude of ways for someone to be 

successful at their job. That is, people achieve goals though selecting, shaping, and 

adapting to their environment and contexts. What works for one person may not work for 

another, but successful people modify their environments or circumstances to exploit 

their skills and mitigate or eliminate their weaknesses. In contrast, the unsuccessful fail to 

capitalize on their limited talents.

Since each path to success is different, Sternberg (2005) argued that what is meant 

by intelligence will have a different meaning to each individual. Rather than an 

overarching general intelligence or g, success is achieved through the combination and 

utilization of varied forms of thinking, namely Analytical, Creative, and Practical 

intelligences. Analytical intelligence is used to analyze, judge, evaluate, compare, and 

contrast relatively familiar, but abstract problems. Creative intelligence is used to cope 

with relative novelty. Practical intelligence is used to select, shape, and adapt 

environments to suit oneself. As suggested by Sternberg (2005), the strong relationship 

noted between measures of g  and academic success is in part due to the failure of 

traditional measures to assess creative and practical intelligence.

Core to Sternberg’s theory are the universal component processes that contribute 

to the information processing required for analytical, creative, and practical thinking. A 

component is defined as “an elementary information process that operates upon internal 

representations o f objects or symbols” (Sternberg, 1977; p. 65). Components are thought
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to be universally applied across cultures, but their application will depend on the nature 

of the problem faced (Sternberg, 2004). The theory of successful intelligence proposes 

that three component processes underlie human intellect: Metacomponents, Performance 

components, and Knowledge-acquisition components. Metacomponents are the executive 

processes that are responsible for the identification of problems, strategizing a solution, 

monitoring progress towards a goal, and evaluating the effectiveness of the resultant 

solution. Performance components set the plans of the metacomponents into action. 

Knowledge-acquisition components are used to learn new declarative information and/or 

how to solve problems.

Although Sternberg (2005) has supplied evidence to support the efficacy of 

Successful Intelligence theory, the procedures used in these studies have met with strong 

criticisms, limiting the interpretability and veracity of evidence provided. For example, 

the measures o f the Sternberg Triarchic Abilities Test (STAT; Sternberg et al., 1999) are 

inherently unreliable (Brody, 2003). When corrected for range and unreliability, the 

correlations between the STAT and measures o f g  are highly related. Thus, Successful 

Intelligence appears to substantially related to g. Brody further demonstrates that 

Sternberg’s three forms of intelligence correlate at .62 or higher, indicating substantial 

overlap between the supposedly independent factors. Likewise, the measures fail to 

demonstrate convergent validity with other measures with which they should be 

theoretically related. Gottfredson (2002) strongly criticized Sternberg’s assertions, 

indicating that the authors “can support their...major theoretical propositions only by 

ignoring the most relevant evidence on g  and making implausible claims about practical
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intelligence'’ (p. 3). As such, the conclusions drawn by Sternberg that Successful 

Intelligence theory is measuring attributes independent o f g  are highly suspect.

Multiple Intelligences. However, Stenberg is not alone in the assertion that 

intelligence is not well explained by g. Dismayed by the fact that traditional measures of 

intelligence and academics in general focus predominantly on logical and linguistic 

abilities, Gardner (2011) proposed his theory of Multiple Intelligences (TMI). According 

to Gardner’s TMI, intelligence is often defined too narrowly, including only those 

capacities that are important for academic success. Rather, Gardner suggests that 

intelligence is better represented by a spectrum of abilities. In practice, people draw on 

one or more of these abilities at a time to produce outcomes or “end states.” For instance, 

Gardner and Hatch (1989) argue that few occupations rely on a single form of 

intelligence. A surgeon, for example, must be able to not only solve problems as they 

arise in an operating room, but also possess the manual dexterity to manipulate a scalpel 

to correct the issue. As such, the surgeon is drawing on multiple forms of intelligence to 

influence success on-the-job.

In its current form, TMI consists of nine distinct but closely related intelligences: 

Verbal-Linguistic, Logical-Mathematical, Spatial-Visual, Body-Kinesthetic, Musical, 

Naturalistic, Existential, Interpersonal, and Intrapersonal (Gardner, 2011). Since each 

form of intelligence is hypothesized to be independent o f all of the others, a person can 

be described by a unique intellectual profile of the nine intelligences, highlighting one’s 

intellectual strengths and weaknesses. Gardner advocates that academic environments 

and curricula be tailored to suit the needs of individual students and their pattern of 

intellectual abilities. Thus, schools will be equipped to identify and remediate a child’s
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weaker intelligence(s). However, since all intelligences are also interrelated, as one 

becomes more proficient in a specific area, all areas o f intelligence are enhanced. As 

such, Gardner believes that schools should be filled with a variety of interesting toys, 

books, games, and objects which can be manipulated and explored, thus providing 

students with a multitude o f options to explore the world and enhance their intellectual 

capacity. Many schools have adopted the principles of TMI, producing a substantial 

impact on the American educational system (Lubinski & Benbow, 1995).

Despite the acclaim and attention that Gardner’s TMI theory has obtained in 

academic settings, critics remain unconvinced of the merits of TMI. From a theoretical 

perspective, the fact that all o f the forms of intelligence are supposedly interrelated and 

performance in one area can promote growth in another supports the influence of an 

overall g  factor. In fact, Gardner’s intelligences correlate well with standard measures of 

intelligence (e.g., the Wonderlic Personnel Test) and form a substantial g-factor (Visser, 

Ashton, & Vernon, 2006). From a psychometric perspective, no empirical evidence has 

been provided to demonstrate the claims made by Gardner, nor has the theory been 

specified in enough detail to be effectively evaluated (Hunt, 2001). In Lubinski & 

Benbow’s (1995) critical review o f TMI, the authors note that Gardner has gone to great 

lengths to describe the various forms of intelligence reinforcing the face validity o f the 

theory. However, Gardner has failed to demonstrate that these intelligences are related to 

real world outcomes. Likewise, Gardner has failed to provide reliability estimates for any 

of his scales. Thus, any inferences that can be drawn from his measures’ relationship to 

outcomes are suspect at best. As such, until meaningful evidence supporting the 

reliability and validity o f TMI is available, it poses limited utility.



Planning, Attention, Simultaneous, and Successive. Derived from Luria’s 

(1966) organization of brain functioning, the Planning, Attention, Simultaneous, and 

Successive (PASS) cognitive processing theory of intelligence (Naglieri & Das, 1997; 

Naglieri, Das, & Goldstein, 2014) focuses on how information is processed rather than 

the kinds of information that are processed. The PASS theory represents the integration 

of cognitive and neuropsychological research, positing four interrelated, yet distinct 

neurocognitive abilities associated with various regions of the brain. Planning is the 

ability to control and direct one’s thoughts and actions to obtain an efficient solution to a 

problem. Attention is the ability to direct one’s mental energy toward a target stimulus 

while inhibiting responses to competing stimuli. Simultaneous processing is the ability to 

integrate disparate parts into groups or an integrated whole. Successive processing is the 

ability to recognize and sequential or serially order information. Since various parts of the 

brain are involved in different kinds of information processing, the PASS theory does not 

allow for a higher order g-factor.

Proponents of the PASS model argue that planning has not been adequately 

measured by other intellectual instruments, resulting in the misspecification o f specific 

academic deficits associated with specific cognitive problems. As such, the Cognitive 

Assessment System (CAS; Naglieri & Das, 1997) and revised version (CAS-2; Naglieri 

et al., 2014) were developed, explicitly measuring processes that other psychometrically 

derived measures of intelligence have failed to assess.

However, despite the validation evidence supporting the criterion and 

construct-related validity o f the CAS and CAS-2, evidence indicates that the abilities 

measured by the PASS model are more consistent with the CHC model (Keith &
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Reynolds, 2010; Kranzler & Keith, 1999). Namely, when subjected to confirmatory 

factor analysis, the PASS model produces a poor fit to the data. When competing 

theoretical models are applied to the same data, the best model fit is provided by a 

third-order hierarchical model with a general factor (g) of intelligence at the top, an 

intermediate Planning/Attention factor, and four narrow facets associated with the PASS 

abilities. Moreover, although the PASS model was bom out of strong theoretical origins 

and designed to measure non-g related abilities, when students were administered 

measures, the g-factor derived from the CAS and g-factor o f the Woodcock-Johnson-III 

correlated at .98 suggesting that the two are nearly indistinguishable (Keith, Kranzler, & 

Flanagan, 2001). As such, the CAS appears to have the same measurement characteristics 

o f the widely replicated CHC models.

The Nature of g  and Gf

Despite the attention that the theoretical accounts o f intelligence of have received, 

thus far none have shown the utility exhibited by the CHC model. Moreover, although 

theoretical models of intelligence deny the existence o f an overarching general mental 

ability, when critically analyzed, these models show substantial relationships with g 

(Brody, 2003; Keith et al., 2001; Visser et al., 2006). As such, despite attempts to 

measure aspects of intelligence that are independent of g, the construct continues to 

emerge. Thus, the measurement of g remains the best estimate of GMA.

As noted earlier, the strength o f the CHC model rests on its ability to serve as a 

bridge from theory to practice, guiding the design and selection o f cognitive ability 

instruments and batteries capturing the qualities that relate to our current understanding 

o f intellectual functioning. Through multiple replications and substantial validation
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efforts, the CHC model has emerged as the most complete, structurally sound, and valid 

model o f cognitive ability. Thus, most new measures of cognitive abilities are based on 

the CHC model, acknowledging its fidelity (Keith & Reynolds, 2010).

In order to capture the complete range of mental abilities, the CHC prescribes a 

battery of assessments that provide the mosaic measurement o f intellect. Given that the 

CHC model currently denotes 16 broad abilities and a host of narrower facets, a complete 

CHC-based assessment battery would necessitate a lengthy administration. In developing 

measures o f cognitive ability or any other psychological construct, test developers are 

faced with a tradeoff between thoroughness and accuracy. For example, the length of a 

test is directly related to its reliability (DeVellis, 2012). Using classical test theory, longer 

tests are inherently more reliable since they capture items of increasing redundancy. In 

doing so, error variance is reduced, providing a more focused and hence, reliable 

measure. Thus, it would seem that an infinitely long measure would be desirable. Yet, 

due to test taker fatigue, it is a commonly recommended practice in psychometrics to 

consider reducing the number of items in a scale once the reliability coefficient reaches 

an adequate threshold. This same sentiment is a consideration for assessment batteries 

where a universe o f items is possible, but the administration of a large number o f items 

will result in test taker fatigue. A developer o f a test of cognitive ability must balance the 

creation of a measure that covers the breadth of mental abilities with the expediency of 

producing useful and valid results.

The same tradeoff must be made when developing a more focused measure of 

general cognitive ability. Spearman’s psychometric g  is implied through the positive 

correlations among mental ability measures. Therefore, it is not possible to measure g
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with any single measure. Rather, intelligence is approximated through the aggregation of 

highly g-saturated measures (Carroll, 1993). Similarly, Ackerman et al. (2005) notes that 

the uses of a single measure o f cognitive ability raises the possibility that s factors will be 

captured in addition to g. Despite this, Ree, Earles, and Teachout (1994) have questioned 

the practicality and necessity o f obtaining a comprehensive estimate of cognitive ability 

through an extensive battery of mental measures. Likewise, Spearman recommended that 

the use o f a single highly g-saturated measure is preferable to the use o f several 

heterogeneous cognitive measures that capture a variety of abilities (Spearman, 1927).

At Stratum 11 o f the CHC model, G f  and Gc are the two most highly g-saturated 

broad abilities, with G f  more closely relate to g  (Carroll, 1993). As originally conceived 

by Cattell (1971), G f is used as a means to enhance other mental abilities, such as the 

accumulation o f Gc through focused attention. As asserted by Gustafsson (1984,1989, 

2001) and others, G f is indistinguishable from g  when subjected to confirmatory factor 

analyses. This suggests that fluid abilities represent the foundation of general 

intelligence. For instance, Arendasy, Hergovich, and Sommer (2008) tested the 

g-saturation o f the Stratum II factors, finding that G f is virtually identical to psychometric 

g. As such, G f  measures produce large g-saturations even without averaging over several 

subtests. Therefore, G f  can be thought o f as the raw horsepower o f cognitive functioning, 

indicative of general mental ability.

However, contrary to the contention made by Gustafsson (1984, 1989, 2001), g 

and G f  do not appear to be the same construct. Rather, Carroll’s (2003) analysis 

demonstrates that G /“ . . .is significantly separate and different from g, tending to 

disconfirm any view that G f  is identical to g” (p. 14). However, Carroll points out that the
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issue has not been completely resolved, speculating that it is likely difficult to develop a 

measure o f G f that is reliably independent of g, stating that "better tests o f G f  are needed 

to establish this factor as linearly independent o f factor g, if  indeed this is possible..." 

(Carroll, 2003, p. 19). Whatever qualities are associated with g, measures o f non-verbal 

reasoning and novel problem solving through the use of spatial elements and inductive 

reasoning seem to best capture it. As such, tests o f G f  are thought o f as good 

approximations of Spearman’s g  (Ackerman et al., 2005).

While the types o f items that best capture G f  are known, substantial confusion 

surrounds the measurement o f the Gc construct. Adding to the confusion related to its 

measurement, various terms such as crystalized intelligence, comprehension, and 

academic achievement are used by professionals to describe the construct (Keith & 

Reynolds, 2010). Gc implies a depth of knowledge that would describe someone who 

possesses a vast repository of information. However, as pointed out by Horn and 

McArdle (2007), measures o f Gc rarely measure beyond surface knowledge. Likewise, 

individuals who score well on Gc measures tend to have a wide breadth o f knowledge. 

Therefore, it is impossible to distinguish the Gc abilities of experts and those of 

individuals who have a superficial knowledge on a wide variety o f topics based solely on 

Gc scores. As such, Gc scores may not be as useful as believed.

There is also reason to believe that Gc is becoming less relevant as technological 

advances permeate society. Although Gc measures are good indicators o f academic and 

business success from which hard work can positively influence test scores, advances in 

computer technology can store far more information than any one person can accumulate, 

holding it accurately, securely, and cheaply. That is, while crystalized knowledge is a
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repository o f information that comes with experience and education, Fumham (2008) 

argues that the future belongs to quick-witted individuals who are able to think on their 

feet, adapt to rapidly changing circumstances, and reason effectively.

Taken together, the evidence suggests that at its core, g  is best tapped by G f  

measures. As indicated by Cattell (1971), G f  is the governor o f intellectual ability. Lesser 

abilities are dependent on the investment of Gf. Likewise, due to its high g-saturation, 

tests consisting of reasoning and novel problem solving abilities that are associated with 

G f should be the predominant item types for brief measures of GMA (Arendasy & 

Sommer, 2012; Carroll, 1993, 2003; Gustafsson, 1984, 1989, 2001).

The Power of Intelligence

The relationship between intellect and success is most noticeable in academic 

settings (Ones, Viswesvaran, & Dilchert, 2006) where measures o f intelligence are used 

in predicting exam scores, amount o f learning, and academic success in schools and 

universities, regardless o f the subject or specialty. Likewise, education has a strong 

reciprocal impact on intelligence (Ceci, 1991). This relationship is important because it 

leads to compounding life-advantages. As noted by Feldman (1966), individuals with 

more education seek out and acquire more information. For instance, individuals who 

obtain higher levels o f education use periodicals such as books, newspapers, and 

magazines to a greater extent than their less educated peers. This is the precise reason that 

higher cognitive ability promotes additional learning; higher levels o f g  are associated 

with increased exposure to information, which is in turn exploited to a greater degree 

(Gottfredson, 2004).
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Skeptics o f g  argue that intelligence is little more than an academic skill 

(Sternberg et al., 2000). However, the non-academic value o f g  has a clear and predicable 

influence on occupational attainment, social life, and even one’s life span (Deary, 2004; 

Gottfredson, 1997; Lubinski, 2004; O’Toole & Stankov, 1992; Schmidt & Hunter, 2004). 

This general cognitive ability or ability to deal effectively with cognitive complexity 

(Gottfredson, 1998) is the hallmark o f intelligence across contexts, allowing for the 

processing of information of any sort, constituting the backbone of human mental ability 

(Gottfredson, 2004). For example, the effects that cognitive ability has on problem 

solving and learning in everyday situations are robust (Gottfredson, 2002). Intellect is 

shown to predict important life outcomes such as incarceration, poverty, health, and 

mortality due to engaging in risky health behaviors (Gottfredson, 2004). Likewise, a 

variety o f important occupation-related outcomes such as job performance, income level, 

and occupational attainment are predicted by intelligence (Schmidt & Hunter, 2004). 

Thus, the effects of g  are pervasive because it is highly transportable. In other words, 

there is a linear relationship between an individual’s level of g  and performance in 

school, work, and social situations (Gottfredson, 2004). The general effect o f this 

relationship results in greater life success, producing dividends across situations, time, 

and cultures (Gottfredson, 2004; Nettlebeck & Wilson, 2005).

As argued by Gottfredson (2004), life itself can be thought of as a cognitive 

abilities test. There are virtually no aspects o f our daily lives, no matter how trivial, that 

do not require the ability to reason, plan, or solve problems. For example, everyday 

activities such as reading the directions listed in a recipe, determining how much to tip a 

waiter at lunch, or reading a map exert a cognitive load, requiring the ability to reason
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and solve problems. As such, there are few situations where being less intelligent is 

advantageous. However, the choices that are made on a daily basis produce compounding 

returns that can result in large differences (Gottfredson, 2004). For example, there are 

many reasons why someone may fail a given task that are unrelated to cognitive ability, 

such as misreading the headline of a newspaper or becoming lost while looking at a street 

map in an unfamiliar city. The person may be distracted, tired, and/or hungry, but these 

effects tend to be transient and unreliable. Conversely, the effects of cognitive ability are 

pervasive and fairly consistent across life situations. Just as casinos know that small 

gaming odds in their favor can produce huge dividends over time, small edges in 

cognitive ability aggregate and produce large effects over a lifetime (Gordon, Lewis, & 

Quigley, 1988). Individuals with higher levels o f cognitive ability make better judgments 

by exercising better problem-solving and reasoning abilities in everyday situations (e.g., 

managing finances or reading a map). In contrast, individuals who are less adept at 

planning and budgeting slowly slip behind others who initially began with the same 

resources. As such, when this slippage occurs, it occurs in many realms o f life, producing 

pronounced effects. Moreover, these slippage effects are expected to become more 

pronounced as the world becomes increasingly connected (Cascio & Aguinis, 2005). 

Technological and societal advances have amplified the complexity of daily life, 

increasing the number of choices that must be made, placing a premium on cognitive 

ability (Gottfredson, 2003). As such, intelligence is more pervasive and inclusive than a 

narrow abstract skill that allows one student to shine academically where another 

languishes. Rather, cognitive ability is a broad intellectual capacity to interact with the 

world effectively.
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Intelligence in the Workplace

Measures o f cognitive ability are among the most predictively valid employee 

selection measures available to organizations (Schmidt & Hunter, 1998). Based on data 

collected on over 32,000 employees in a variety o f jobs conducted for the U.S. 

Department of Labor (Hunter, 1980; Hunter & Hunter, 1984), meta-analytic evidence 

indicates that the overall predictive validity of cognitive ability to job performance is .51 

for jobs o f median complexity (Schmidt & Hunter, 1998). Since performance data are 

only available for those applicants who are hired, Hunter, Schmidt, & Le (2006) estimate 

that the true validity coefficient of cognitive ability may be well over .60 once corrected 

for range restrictions.

The predictive validity of cognitive ability also rises as job complexity increases 

(Ones et al., 2006; Schmidt, Hunter, & Pearlman, 1981). The most complex jobs are 

those that are abstract, cannot be routinized, and are autonomous, thus allowing workers 

to exercise more discretion (Schmidt & Hunter, 2004). As such, complex jobs place a 

premium on workers’ ability to reason, solve problems, and make judgments without 

supervision. For instance, Hunter and Hunter (1984) reported that the highest mean 

validity o f cognitive ability that they found was for professional-managerial jobs (.58), 

followed by highly technical jobs (.56), medium complexity jobs (.51), semi-skilled jobs 

(.40), and unskilled laborer (.23). Conversely, only in the lowest, least complex, and most 

routinized positions, do constructs such as tenure and psychomotor abilities better predict 

on-the-job performance than cognitive ability (Gottfredson, 2002). Moreover, since the 

utility o f a selection device is directly tied to its validity (Schmidt & Hunter, 1998), the 

dividends of using valid selection devices can reach millions o f dollars over time,



whereas organizations that make poor decisions using invalid instruments stand to lose 

millions o f dollars in reduced production.

The relationship between possessing a high intellect and employment success has 

been known to researchers for quite some time. For example, Harrell and Harrell (1945) 

noted that employees o f lower intelligence were less likely to rise up the organizational 

hierarchy to obtain the prestigious “white-collar” positions. This assertion is buttressed 

by U.S. Employment Service data, showing a strong correlation (.72) between cognitive 

ability and job level (Jensen, 1998). However, cognitive ability has also been shown to 

predict job movement into positions o f either higher or lower complexity. For instance, 

using a sample o f 3,887 young adults, Wilk, Desmarais, and Sackett (1995) demonstrated 

that cognitive ability measured in 1980 predicted job movement over a five-year period 

(1982-1987). Specifically, the results of this study show that individuals with greater 

cognitive ability tended to move up the organizational hierarchy while those with less 

cognitive ability moved down. In a follow-up study, Wilk and Sackett (1996) found that 

job mobility was predicted by the congruence o f cognitive ability and job complexity. 

Individuals who possessed a cognitive ability that was greater than the complexity of 

their job tended to move into positions o f greater complexity. Conversely, individuals 

who possessed a cognitive ability that was less than the level o f complexity of the job 

tended to move into less complex positions. Likewise, greater variability in cognitive 

ability scores are seen in less complex positions, but a consistent upper range o f scores 

are found across occupations suggesting a minimal level of intellect is required as one 

rises in the hierarchy (Harrell & Harrell, 1945). Thus, while people of high intelligence 

occupy low complexity jobs, access to higher-level positions require greater levels of
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cognitive ability. This point is also echoed by Gottfredson (2004) who indicates that in 

the United States, the most coveted and highest paying jobs go to the cognitive elite, 

while the less cognitively endowed workers are doomed to a life o f menial labor and low 

pay in our informationally based economy. As such, it quite literally pays to be smart.

The relationship between cognitive ability and job success is not limited to the 

United States. The findings o f Schmidt and Hunter (1998) and Ones et al. (2006) are 

reinforced by Salgado, Anderson, Moscoso, Bertua, and De Fruyt (2003) who conducted 

a similar meta-analytic investigation of the relationship between intelligence and 

on-the-job performance in a European sample consisting of over 25,000 workers. After 

corrections were made for measurement error, the findings o f this study suggest that the 

operational validity o f cognitive ability is .62, but the value was smaller for specific 

forms of intelligence. Similarly, Bertua, Anderson, and Salgado (2005) and Hulsheger, 

Maier, and Stumpp (2007) examined cognitive ability in British and German samples, 

respectively. Consistent with previous findings, the data revealed that as job complexity 

increases, the predictive validity o f cognitive ability increases. In sum, not only do the 

data suggest that cognitive ability is the single best predictor o f occupational success for 

any occupation or industry, but cognitive ability is the best predictor o f job performance 

internationally too.

Why Does Cognitive Ability Affect Performance?

Although the link between cognitive ability and job performance is strong, why is 

the relationship so robust? As suggested by Schmidt and Hunter (2004), cognitive ability 

is thought to influence performance indirectly. Cognitive ability allows for the faster and 

more thorough absorption o f essential job knowledge. In turn, the information learned is
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exploited to a greater degree, allowing employees to go beyond their current knowledge 

of the job and to make judgments in novel and changing situations. Similarly, Borman, 

Hanson, Oppler, Pulakis, and White (1993) suggest that the relationship between 

intelligence and job performance is mediated. Higher intelligence results in individuals 

having more opportunities to obtain additional job experience. The experience gained 

then leads to additional job knowledge.

Given the vast amount of evidence showing the relationship between cognitive 

ability and job performance, it is no surprise that higher cognitive ability is also related to 

employee training outcomes. Schmidt & Hunter (1998) report that no other measure has 

the predictive power of cognitive ability (r = .56) in predicting training success.

Moreover, similar results (r = .54) were found when intelligence was used to predict 

training performance in European samples (Salgado et al., 2003). Thus, when an 

employer uses cognitive ability as a selection measure, the employer is also selecting 

individuals who are better able to rapidly learn on the job. Consequently, Schmidt and 

Hunter (1998) recommend that cognitive ability should be considered the primary tool for 

selection decisions.

Adverse Impact

Despite the high predictive validity and other advantages associated with 

cognitive ability testing, organizations remain hesitant to use such devices to make 

employment decisions due to the consistent and near universal finding that cognitive 

ability measures produce differential scoring across racial subgroups (Campbell, 1996; 

Hartigan & Wigdor, 1989; Sackett & Ellingson, 1997). Specifically, lower than average 

scores are observed in African-American and Hispanic samples, while groups such as
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Asian-Americans tend score higher than average (Rushton & Jensen, 2005). Comparing 

racial subgroups, African-Americans score about 1 standard deviation in the population 

lower than Caucasians, while Japanese and Chinese samples obtain the highest scores.

As a result, occupational outcomes can be partially explained by the gap in 

cognitive ability scores. According to Gottfredson (2002), only about 22% of Caucasians 

and 59% of African-Americans produce cognitive ability scores below 90. As such, fewer 

African-Americans are considered competitive for mid-level jobs and trades such as 

firefighters and clerical workers. The average cognitive ability score for incumbent to 

these types of jobs is one standard deviation above the average score of 

African-Americans. Conversely, on the other end of the continuum, the ratio of 

African-Americans to Caucasians producing cognitive ability scores of 125 or greater is 

1:30 the average for the most socially desirable professional positions such as lawyers, 

physicians, and engineers.

Despite the racial gap in cognitive ability scores noted in the general population, 

McDaniel and Banks (2010) argue that for two reasons, these differences should be less 

pronounced when actual job applicants compete for jobs. First, individuals at the lowest 

levels of cognitive ability do not have the mental capabilities to perform effectively in 

common jobs and therefore are not job applicants. Second, job applicants must meet 

minimal job requirements (e.g., education and experience) when applying for a position. 

Pools of qualified job applicants who have obtained formal education and possess the 

requisite relevant job experience are more likely to be homogenous in respect to 

cognitive ability than random samples drawn from the general population. Therefore, due 

to the pre-screening of applicant qualifications, larger racial gaps in cognitive ability
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scores are more likely to be found in lower level jobs that do not require lofty education 

and experience requirements. Conversely, smaller racial gaps should be noted in 

positions that require high levels of education and experience. Substantiation o f this 

assertion is provided by Roth, BeVier, Bobko, Switzer, and Tyler (2001) who note that 

the standardized mean difference between white and black applicants shrinks from 1.0 in 

the general population, to .86 for low complexity jobs, .72 for medium-complexity jobs, 

and .63 for high-complexity jobs.

Despite the reduction in test score differences seen across job complexity, the 

observed deviations can still cause disparate hiring practices if cognitive ability measures 

were used as the sole selection instrument. As such, challenges to the legality of cognitive 

ability testing began in 1971 with the influential Griggs v. Duke Power (1971) case. As a 

result of this case, the Supreme Court ruled that when a selection procedure or device 

produces adverse impact against a protected group, the organization must be able to 

demonstrate that the use of the measure is a “business necessity,” imperative to 

organizational functioning and operation. However, as indicated by Grover (1996), courts 

have generally held rather narrow interpretations on what constitutes a business necessity 

that hamper the use o f alternative selection options. As a result, many organizations 

curtailed their usage o f cognitive ability measures in making employment decisions.

The Measurement of Cognitive Ability 

Despite the legal challenges that surround cognitive-ability measures, Nisbett et 

al. (2012) believe that the measurement o f intelligence is one o f the greatest 

accomplishments of psychology. As stated by DeVellis (2012), “measurement is a 

fundamental activity o f science” (p. 2). As such, despite cognitive theorists who have
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devised theoretical accounts of intelligence that elude measurement, Cronbach (1990) 

notes, “If a thing exists, it exists in some amount. If it exists in some amount, it can be 

measured” (p. 34).

The History of Testing and Measurement

The historical roots o f measurement stretch into antiquity. Duncan (1984) argues 

that measurement is an inherently social process that emerged in ancient humans as a 

means to overcome the problems faced on a daily basis as opposed to an attempt to 

satisfy scientific curiosities. For example, ancient people were able to determine basic 

measurements such as length, distance, volume, weight, and time as a means to solve 

practical problems (Duncan, 1984). This assertion is backed by biblical references to the 

use of measurement and the writings o f Aristotle mentioning civil officials checking 

weights and measures.

The first documented use o f psychological testing dates back to 2,200 B.C. China 

where public officials were obligated to participate in civil service examinations every 

three years (DuBois, 1970). This competitive exam system assessed a variety of 

competencies such as archery, military affairs, agriculture, horsemanship, revenue, 

geography, music, writing, Confusion principles, knowledge of ceremonies, and civil 

laws. Examinees who scored well obtained appointments to governmental positions. 

Although these exams were rudimentary by modem standards, anecdotal evidence 

suggests a positive impact was produced, reducing the biases associated with nepotism 

and other political manipulations.

Darwin. Nevertheless, the roots o f intelligence testing are embedded in the work 

of evolutionary theory and the use of systematic observation. According to Charles
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Darwin’s theory of evolution, the natural environment cannot support the reproductive 

capacity o f organisms, leading to a struggle to survive (Darwin, 1859). Non-systematic 

mutations in the offspring of organisms result in variations or individual differences. 

These differences provide the offspring with adaptations which are more or less 

conducive to survival (Mader, 1996). As a result, when placed in a given environment, 

the characteristics that promote survival evolve through a natural process. Thus, over 

time, species undergo a slow transmutation whereby the characteristics that are associated 

with survival in a habitat occur with greater regularity.

Through his systematic observations o f the variations across species, Darwin set 

in motion the development o f scientific and statistical methods, producing a widespread 

impact on the field o f modem psychology (Hergenhahn, 2009). For example, the roots of 

child and developmental psychology, comparative psychology, learning, abnormal 

psychology, testing and measurement, and, o f course, evolutionary psychology can be 

traced directly to Darwin. In doing so, Darwin stimulated a curiosity in studying 

individual differences, raising questions regarding the link between human and animal 

intelligence.

Galton. The next major leap in the study o f individual differences was advanced 

by Darwin’s half-cousin, Francis Galton. Galton shared Darwin’s infatuation with 

systematic observation (Clayes, 2001). In fact, Galton was so enamored with 

measurement that he attempted to measure a variety of phenomena such as the 

effectiveness o f prayer (he did not find it effective), the degree o f boredom at science 

lectures, and determine which country had the most beautiful women (Galton, 1883).
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Galton is also credited with suggesting the use of fingerprints as personal identification, a 

practice later adopted by Scotland Yard (Forrest, 1974).

However, Gabon’s greatest advances to the field of measurement came when he 

opened the Anthropometric Laboratory in London’s Health Exhibition. Visitors to the 

laboratory paid three or four pence each to have their sensory and motor abilities 

assessed, or for a smaller fee (two pence) an individual could be measured again at 

another time. In a little over a year, Galton collected measures on 9,337 subjects on 

variables such as height (standing), height (sitting), weight, arm span, lung capacity, pull 

strength, grip strength, keenness o f sight, speed o f blow (the time taken for someone to 

punch a pad), color discrimination, memory o f form, hand steadiness, length o f the 

middle finger, and auditory acuity (the ability to perceive or discriminate auditory tones) 

(Hergenhahn, 2009; Hothersall, 1995). Each individual received a copy o f the results and 

Galton kept a copy on file (Irvine, 1986). Later, these data lead to the development of 

core statistical concepts such as correlation, regression to the mean, and the realization 

that as compared to mean (average) scores, median scores were less influenced by 

extreme scores (Bynum, 2002).

Galton was primarily interested in the inheritance o f anatomical and cognitive 

abilities. According to Galton, intelligence was related to sensory acuity (Forrest, 1974). 

That is, the outside world is taken in through the senses. As such, individuals who 

possess keen senses were better able to acquire information. Since Galton believed that 

one’s sensory acuity was directly related to intelligence, his laboratory is seen as the first 

effort to measure intelligence. However, Galton’s contribution to the field of 

measurement is further realized through substantial methodological advances such as the
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Likewise, many psychometric instruments in use today can be traced back to the work of 

Galton including rating scales, questionnaires, and self-report inventories (Hergenhahn, 

2009).

Cattell. The popularization of psychological measurement in the United States is 

traced to the work o f James McKeen Cattell. In addition to forming the first 

undergraduate psychology laboratory in the United States at the University of 

Pennsylvania, Cattell coined the term “mental test” (Cattell, 1890; Cattell, 1928; 

Hergenhahn, 2009). Moreover, Cattell is largely responsible for the encouragement of 

mental-testing research through his founding of several influential publications such as 

Psychology Review Science and American Men o f Science. Likewise, Cattell founded 

the Psychological Corporation, which continues to be an industry leader in psychological 

testing and assessment.

From a methodological standpoint, Cattell introduced some critical assumptions 

about the validity o f cognitive ability measures. For example, Cattell noted that if 

Galtonian measures were all measuring the same thing (i.e., intelligence), then they 

should all be highly correlated. Likewise, if  a test is measuring intelligence, then it should 

demonstrate a substantial relationship with other indices of intelligence such as academic 

success. However, through his research, Cattell noted that Galtonian measures failed to 

demonstrate substantial relationships with one another or with other practical measures of 

intelligence such as college success (Guilford, 1967; Sternberg, 1990). As a result, 

sensory measures were deemed invalid indicators o f intelligence and the interest in such 

measures faded.



Binet. Unlike Galton and Cattell who relied on sensory abilities as a proxy 

measure of intelligence, Alfred Binet proposed the study o f mental abilities directly, by 

measuring higher mental processes through the use of variables such as memory, 

imagination, imagery, comprehension, attention, suggestibility, aesthetic judgment, force 

of will, moral judgment, and visual space judgment. Binet and Theodore Simon were 

commissioned by the French government to study children with mental retardation in 

French schools, culminating in the development of the Binet-Simon Scale of Intelligence, 

consisting of 30 tasks arranged in order o f difficulty (Fancher, 1985). The measure was 

able to distinguish the performance of normal functioning and mentally delayed children, 

but later revisions also distinguished levels of intelligence in normal children, and 

provided normative information on adults (Siegler, 1992). Coupled with the addition of 

William Stem’s coining of the term “mental age,” a child’s intelligence quotient (IQ) 

could be calculated as the child’s mental age as derived from the Binet-Simon, divided by 

their chronological age (Fancher, 1985; Hergenhahn, 2009). The scale was again revised 

again by Lewis Terman, this time for American test takers, and validated against 

academic achievement ratings demonstrating the veracity o f the test (Minton, 1988). The 

revised measure created by Terman is known as the Stanford-Binet Scale (Roid, 2005; 

White, 2000) and remains a measure o f cognitive abilities.

Yerkes. The next major advance in cognitive assessment came as World War I 

dawned. The United States Army was faced with the problem of systematically 

evaluating and classifying the cognitive ability and emotional functioning o f new soldiers 

(Boake, 2002). The influx of young men into the Army necessitated a method to quickly 

and efficiently assess and identify soldiers for selective training (e.g., officer training).
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Robert Yerkes became familiar with intelligence testing while working at the 

Boston Psychopathic Hospital, suggesting a new scoring method to the Binet-Simon scale 

in which test takers are administered all items o f the Binet-Simon scale, receiving credit 

(points) for the items passed (Hergenhahn, 2009). As such, intelligence could be 

measured by the items passed rather than by IQ, removing age as a factor and broadening 

the statistical analyses that could be performed leading to higher quality inference. 

However, the scoring and administration system devised by Yerkes had another benefit. 

Since the administration of the scale was not dependent on the age or ability level of the 

test taker, the items could be administered in a group setting.

When commissioned to develop an assessment device for soldiers, Yerkes 

maintained that such a test must measure innate intelligence and be easily administered 

and scored. The result was the Army Alpha, introduced in 1917, measuring verbal ability, 

knowledge or information, and ability to follow directions (Dahlstrom, 1985). A 

non-verbal equivalent version of the measure, the Army Beta, was introduced and 

administered to illiterate and non-English speaking soldiers. When testing was halted in 

1919 following the end o f the war, over 1.75 million people had been tested (Larson, 

1994; McGuire, 1994). The success o f the Army Alpha and Army Beta has led to the 

widespread use of group testing in schools and industry.

Cognitive Ability Testing in the Modern Era

Riding on the success of the Army Alpha and Army Beta, the use of 

paper-and-pencil cognitive ability measures has gained considerable popularity. The most 

commonly used measure o f adult intelligence is the Wechsler Adult Intelligence Scale, 

currently in its fourth edition (WAIS-IV; Wechsler, Coalson, & Raiford, 2008).
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Explicitly, Wechsler’s tests are designed to measure “the global capacity o f a person to 

act purposefully, to think rationally, and to deal effectively with his/her environment” 

(Wechsler, 1939, p. 229). As such, the WAIS-IV, which consists o f 15 subtests, is 

primarily used in clinical settings due to the lengthy administration time, which is 

typically well over an hour. However, in occupational settings, where shorter measures 

are preferred, a comprehensive measure is neither required nor feasible 

(Chamorro-Premuzic, & Fumham, 2010).

Currently, the most widely used cognitive ability instrument in personnel 

assessment is the Wonderlic Personnel Test (WPT; Hunter, 1989; Wonderlic, 1992; 

Wonderlic, 2007). The WPT is a brief measure of cognitive ability that can be completed 

in approximately 15 minutes. Examinees are asked to answer as many of the 50 

free-response verbal, quantitative, and spatial ability WPT items as possible within the 

allotted time limit (12 minutes). Despite its popularity, the relationship between WPT 

scores and intelligence is unclear. For instance, Bell, Matthews, Lassiter, and Leverett 

(2002) examined the relationship between WPT scores and the Kaufman Adult and 

Adolescent Intelligence Test (KAIT) finding the Wonderlic to be a robust predictor of 

both G f  and Gc. Conversely, Matthews and Lassiter (2007) conducted a similar study, 

examining the relationship between WPT scores and the Woodcock-Johnson-Revised 

(WJ-R), demonstrating that the Wonderlic is related to Gc but not Gf. As such, while 

WPT scores have been shown to reliably predict acquired knowledge, WPT have not 

been shown a reliable predictor o f novel reasoning abilities. Likewise, the predictive 

power o f WPT scores may be sample dependent whereas measures o f G f  demonstrate
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robust relationships regardless o f the administration samples (Hicks, Harrison, & Engle, 

2015).

Another popular measure of cognitive ability, the Raven’s Progressive Matrices 

Test (RPMT; Raven, Raven, & Court, 2003), is considered by some to be the best single 

measure o f G f and GMA available (Jensen, 1998; Nisbett et al., 2012). The RPMT is a 

“test o f observation and clear thinking” (Raven, Court, & Raven, 1978, p. 3), requiring 

the examinee to inspect a matrix o f geometric shapes linked by a common rule and 

extrapolate the next figure in the matrix that would satisfy the rule from several 

alternatives. Consisting o f 60 items, the RPMT can be administered in 20 minutes and 

has been used extensively in the United States and the United Kingdom to make 

personnel selection decisions (Bertua et al., 2005; Jensen, 1998; Raven, Court, & Raven, 

1998). Due to the non-verbal nature o f the RPMT, it can be used across cultures without 

the need for item translations. As such, the terms culture-free (Cattell, 1940), culture-fair 

(Cattell & Cattell, 1963), and culture-reduced (Jensen, 1980) are all used to describe the 

Raven’s and other similar non-verbal measures that require little cultural knowledge to 

answer test items. The advantage o f culture-fair measures o f cognitive ability is that they 

are thought to reduce the adverse impact seen in more culturally-loaded cognitive 

measures. Although culturally-fair tests have thus far not been shown to eliminate the 

adverse impact associated with measures o f cognitive ability (Arvey & Faley, 1988), 

evidence suggests that reductions in adverse impact are obtainable using such measures 

over global intelligence measures (Hausdorf, LeBlanc, & Chawla, 2003).
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Computer-Based Testing

Over the last 20 years, affordable, reliable, portable, and powerful computers have 

become a ubiquitous feature of our modem society, as seen in the omnipresence of 

desktop computers, laptops, tablets, and smartphones (Chernyshenko & Stark, 2015). 

Coupled with advances in online technology, computers offer an array o f possibilities in 

the selection and presentation of assessment items, as well as where testing takes place 

(Sireci & Zenisky, 2006; Zenisky & Sireci, 2013). While early computerized assessments 

were little more than direct translations o f paper-and-pencil measures (Barak & English, 

2002), researchers are creating innovative computerized assessments that take advantage 

of the computing power afforded by such ubiquitous devices (e.g., Condon & Revelle, 

2014). The technological revolution has led computerized assessment to rival the use of 

traditional pencil-and-paper methods as the dominate medium (Weiss, 2011).

No longer are assessments restricted by the limitations associated with traditional 

paper-and-pencil methods, such as static text statements and graphics. Rather, stimuli can 

be presented either audibly through computer speakers/headphones or graphically, 

moving through space on a computer monitor. The dynamic capabilities o f computers 

allow for the creation and presentation o f creative item formats previously unavailable to 

test developers. For example, three-dimensional computerized simulations and digital 

media are increasing the range of knowledge, skills, and other attributes that can be 

measured (Bartram, 2006; Jacobs & Chase, 1992; Zenisky & Sireci, 2002). Likewise, 

complex items that change over time can be created to improve the coverage of the 

constructs measured and their associated cognitive processes (Drasgow & 

Olson-Buchanan, 1999; Parshall & Harmes, 2009). For example, measures can be made
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response, expanding the type and amount o f information that can be obtained regarding 

test taker performance. As such, not only can the veracity of an examinee’s response be 

called into question if only a few milliseconds elapsed between presentation of the item 

and the elicitation of a response (i.e., he or she did not read the question), but 

computerized testing allows for the complex scoring of the processes associated with 

producing a response (DiCerbo & Behrens, 2012).

Beyond the innovative item formats that are afforded by computerized testing, 

when coupled with the worldwide reach of the Internet, the benefits to organizations are 

staggering. For instance, organizations can reach a vast pool of potential applicants 

around the globe using a variety of measures without incurring the costs associated with 

printing and distributing measures via mail (Naglieri et al., 2004). As such, Internet-based 

test administration is more scalable and efficient than traditional pencil-and-paper 

measures all while presenting a consistent and positive image or culture to applicants o f a 

company that uses advanced technology to staff employees (Tippins, 2009). Online 

measures also promote the standardization o f measurement, uniformly presenting all test 

items in the exact same manner while improving the speed of processing applicants 

(Drasgow & Mattem, 2006; Drasgow & Olson-Buchanan, 1999; Tippins, 2009; Thurlow, 

Lazarus, Albus, & Hodgson, 2010; van der Linden & Glas, 2010). Due to these immense 

advantages, organizations see computer and Internet-based testing as an appealing 

alternative to traditional paper-and-pencil measures (Karim, Kaminsky, & Behrend,
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Test Security Specific to Technology-Based Testing

Despite the advantages associated with computerized assessment, as with any 

technological advance, new and exploitable security threats arise. These security threats 

have caused some organizations to be hesitant to completely abandon the use of 

paper-and-pencil measures (Castella-Roca, Herrera-Joancomarti, & Dorca-Josa, 2006). 

Test security refers to a number of issues surrounding the test taker’s ability to “cheat” or 

manipulate assessment scores through tactics such as possessing prior knowledge o f the 

items, using outside sources, or using outsiders to answer test items (Karim et al., 2014). 

Online assessment is typically conducted in an unproctored testing environment, 

providing examinees a multitude of options to cheat, such as surfing the Internet or 

communicating with others to locate test answers (Al-Saleem & Ullah, 2014). Likewise, 

the proliferation o f technological devices, such as smart phones, allow test takers to 

photograph, record, or otherwise document test content, and receive information virtually 

undetectably even under proctored conditions (Reynolds & Dickter, 2010). As such, 

although similar results are obtained from cognitive measures administered on computers 

and via traditional paper and pencil methods (Mead & Drasgow, 1993; Randall, Sireci,

Li, & Kaira, 2012), practitioners and researchers have raised concerns that unproctored 

environments provide too great an opportunity to cheat. Consequently, test developers 

have warned against the administration o f cognitive ability measures via online media 

(Naglieri et al., 2004).

Test security is a critical issue for test developers because it directly affects the 

validity o f a measure (Foster, 2010). The use o f impermissible sources or possessing 

prior knowledge of test items artificially inflates an examinee’s score on the construct of
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interest. When compared to the scores of examinees that did not benefit from such a 

nefarious advantage, it erroneously appears that differing levels of the construct of 

interest are possessed. As such, any judgments or inferences based on compromised 

measures cannot be justified (Karim et al., 2014). Likewise, reductions in a test’s validity 

directly affect its utility, which can have staggering financial implications for 

organizations (Schmidt & Hunter, 1998).

Security threats can be classified into six general categories of cheating (Foster,

2010). Threats include pre-exposing the test taker to test content, using a proxy to take 

the test, receiving help from someone at the exam center, using inappropriate aids during 

the assessment, hacking into the scoring database to raise or lower test scores, and 

copying the responses of another person during the exam. All of these methods represent 

an inappropriate or possibly illegal way in which test takers have attempted to inflate 

their assessment scores. However, none of these threats is limited to computer-based 

testing (Meyer & Zhu, 2013) and as such should not deter organizations from using such 

measures. Rather, these concerns shed light on designing and implementing improved 

methods to mitigate or eliminate such risks.

The most serious threat to exam security concerns test takers obtaining prior 

exposure to the test content (Foster, 2010). As compared to other threats to test security, 

prior knowledge o f test content is often obtained inexpensively and with relative ease 

making it difficult to discriminate between honest and dishonest test takers. Moreover, 

the risk o f being caught with prior knowledge of test content is extremely low. For 

example, an examinee may be provided information regarding the types o f questions 

asked or specific item content and the associated correct answers prior to the



administration. This form of cheating may be accomplished on computerized assessments 

by taking screenshots or otherwise documenting the items administered and then 

subsequently sharing the content with future test takers (Cook & Eignor, 1991). This 

problem is further compounded as testing windows become larger as is seen when 

organizations must continuously screen applicants (Croft, 2014). For instance, if 

thousands o f examinees complete a measure comprised o f the same items, the risk of 

sharing items increases greatly over time. This phenomenon was observed on a large 

scale by Asian students sitting for the Graduate Records Exam (GRE; Kyle, 2002). 

Examinees sitting for the exam at the beginning o f the testing window copied exam 

content and shared it via online message boards. As a result, abnormally high scores were 

observed in the following months from countries such as China. Alarmed, GRE officials 

launched an investigation and uncovered websites containing exact test item content. As 

a result, the computerized version of the GRE was discontinued in the region, allowing 

only the paper-and-pencil version. Similarly, many organizations use only a single test 

form from which personnel decisions are based. As such, given a short measure, 

likeminded conspirators could memorize an entire scale in only a few administrations 

(Drasgow et al., 2009).

Combating Test-Security Issues

Traditionally, item sharing and other test security concerns have been combated 

by creating multiple forms of the same measure (Cook & Eignor, 1991). For example, 16 

alternate forms o f the WPT are available for use (Wonderlic, 1983). However, 

developing alternate forms is costly in both the time and financial resources required to 

generate them. As such, few alternate test forms are in use today (Freund & Holling,
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2011). Moreover, while multiple forms may reduce an examinee’s ability to memorize 

items from one administration to the next, developing parallel forms that are o f similar 

content, difficulty, and reliability through traditional test development methods is 

virtually impossible, resulting in inequities across test forms (Cook & Eignor, 1991). 

Therefore, despite attempts to improve test security and fairness, test developers could 

inadvertently create a measure that is unfair in other respects.

Another method used to curb cheating is computer adaptive testing (CAT; Weiss,

2011). CAT creates a personalized test administration tailored to the examinee’s ability 

level (Baylari & Montazer, 2009). Based on item response theory (IRT) methodology, 

CAT assumes that the test taker’s ability level (i.e., amount of the latent trait) can be 

estimated by administering items of varying levels o f difficulty. Examinees that possess 

greater ability levels of the latent trait are more likely to pass items of higher difficulty. 

Conversely, individuals with lower levels of the same trait may only pass items of lesser 

difficulty. Likewise, items that more finely discriminate a test taker’s performance at a 

given ability level are said to provide more information at a given ability level since the 

ability level in question is tested more precisely. CAT takes advantage o f IRT scaling by 

administering items of greater or lesser difficulty until the test taker’s ability level can be 

estimated with an acceptable level of certainty (Babcock & Weiss, 2012; Weiss, 2011). 

Given that different items are administered to different examinees, some of the issues 

surrounding test security are addressed, but inequities in the items presented across test 

administrations may still exist. Likewise, advanced item exposure methods have sought 

to reduce test security concerns by controlling the frequency with which items are 

presented to specific geographic regions or time periods by adjusting a control parameter
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of an item exposure algorithm based on repetitive simulations (Chang & Ansley, 2003). 

However, CAT and item exposure algorithms do not prohibit test users from 

photographing or otherwise recording the items and distributing them to future test users. 

As such, given a large enough samples o f test takers, test security in a CAT environment 

with exposure controls remains an issue necessitating the continual monitoring o f item 

statistics to locate abnormal improvement in examinee performance (Drasgow &

Mattem, 2006).

While the use of multiple test forms and CAT have been shown to reduce 

small-scale cheating, these methods require very large item pools (Drasgow et al., 2009). 

For instance, it is estimated that at least 2,000 items are needed to administer a 40-item 

CAT licensure exam twice a year (Breithaupt, Ariel, & Hare, 2009). As such, human test 

developers are strained to keep up with the demand for high quality items. Item 

generation is also a time consuming and costly process (Geerlings et al., 2011; Wainer, 

2002). For instance, it is estimated that 10% of Educational Testing Service’s (ETS) total 

testing costs are directly related to item writing (Wainer, 2002). Rudner (2009) suggested 

that development costs associated with the generation of a single item for a high-stakes 

licensure exam range from $1,500 to $2,000. As such, when Breithaupt et al.’s (2009) 

estimated number of items needed to create a 40-item item bank is combined with 

Rudner’s (2009) cost-per-item estimate, the cost o f the development o f a high-stakes 

examination could reach $4,000,000.

However, not all items are created equal and the items generated by human test 

developers are often o f questionable quality. The items created by human content 

specialists do not always conform to the construct o f interest, nor can humans develop
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items that are o f greater difficulty than they can conceived, placing a ceiling on the range 

of items that are possible (Homke & Habon, 1986). The costs associated with test 

development are further increased as a substantial number of the items created by human 

developers must be eliminated from the item pool due to insufficient psychometric 

characteristics. For instance, Henryssen (1971) estimates that between 20 percent to 80 

percent o f the items generated by human test developers must be discarded during the test 

development process due to flaws. Thus, the use o f automatic test development 

procedures has gained increased attention for the creation o f cognitive ability measures, 

which are known to contribute to the prediction of occupational success (e.g., Schmidt & 

Hunter, 2004).

Automatic Item Generation

Given the need to quickly and efficiently generate large pools o f items, automatic 

item generation (AIG) is a rapidly advancing field with roots in cognitive theory, 

computer technology, and psychometrics (Bejar et al., 2003). Also known as rule-based 

item construction, AIG is an alternative approach to traditional item development using 

computer technology to generate items based on item models and a set o f rules (i.e., 

algorithm) that define item complexity (Gierl et al., 2015). The aim of AIG is to generate 

a large number o f items that require little or no human review prior to administration 

(Doebler & Holling, 2015). Developing items in an AIG framework solves several of the 

practical issues associated with traditional test development. For instance, given an item 

model and a set of rules, AIG increases the flexibility o f test administration through the 

generation of large pools of items of varying complexity with a negligible investment of 

time and money, reducing item exposure concerns (Geerlings et al., 2011). Additionally,
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since the items are generated through algorithms, precise information regarding how the 

items were constructed, their relation to the construct in question, and their psychometric 

properties is known (Geerlings et al., 2011). Moreover, the variety of AIG item types that 

can be created is ever expanding with research supporting their psychometric 

characteristics and test-retest applications (Arendasy & Sommer, 2013; Freund &

Holling, 2011). As such, AIG is an attractive method for developing cognitive ability 

items (Freund, Hofer, & Holling, 2008; Poinstingl, 2009).

Under the AIG paradigm, item models (Bejar, 2002) serve as the basic structure 

upon which future items will be generated. Item models are either selected from exiting 

measures or uniquely created in such a way that the features of the model can be 

manipulated to create new items (Arendasy & Sommer, 2012; Gierl & Haladyna, 2012). 

That is, new items are generated from item models by specifying the construct-relevant 

features that can be varied, providing researchers a foundation for making inferences 

regarding test taker ability (Alves, Gierl, & Lai, 2010; Gierl et al., 2015).

Item model features known as “radicals” (Irvine, 2002), maximize the 

content-related variance in the items generated. That is, radical features define the 

processes or actions required to answer items. It is assumed that radicals systematically 

impact the psychometric characteristics (e.g., item difficulty) o f items since they are 

selected based on the cognitive processes that test takers use to solve items. That is, 

radicals define the elements that are critical to solving an item and thus relate directly to 

item difficulty. Items that share radicals of the same complexity also share the same 

psychometric characteristics, such as measuring the same construct and item parameters 

(Doebler & Holling, 2015). Moreover, radicals can be varied independently o f one
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another or used in tandem to generate an array of items that exhibit varying psychometric 

qualities (Arendasy & Sommer, 2012; Gierl et al., 2015). As such, researchers can create 

items of varying difficulty by manipulating of one or more radical elements. Thus, 

radicals improve the usefulness o f the inferences that can be drawn from test taker 

performance since they allow for a widened range of the content domain to be tapped 

(Alves et al., 2010).

Unlike radicals, “incidentals” serve as the basis for generating variation in the 

surface features of items (Irvine, 2002) that do not directly relate to item difficulty. 

Incidentals do not exert an effect on the psychometric characteristics of an item, but 

rather change the “look” o f items, creating variation within items of the same difficulty 

(Bejar et al., 2003). As such, the similarity among items with regard to psychometric 

characteristics is caused by radicals whereas item dissimilarity in terms of item 

appearance is caused by incidentals.

While it is a basic assumption of AIG that the effect o f radicals affect test-taker 

performance in a similar way, this assumption may not hold in specific situations 

(Geerlings et a l ,  2011). That is, test takers may use different strategies to arrive at the 

same solution. In such circumstances, researches familiar with the cognitive processes 

used to answer items, as well as the radicals and incidents used to generate items, may 

not the potential for interference among the generative elements. As such, functional 

constraints (Arendasy et al., 2008) can be specified to omit certain combinations of 

radicals and/or incidentals that produce invalid test items, or items that interfere with the 

cognitive processes required to answer the question (Geerlings et al., 2012). For example, 

a researcher creating a mathematical ability measure may constrain the largest number
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that will be used in multiplication items to be less than 10 and omit all items that require 

the test taker to multiply by zero. These constrains not only serve as a quality control 

mechanism in AIG, but also avoid the generation of items that lead to solving items 

through the use of cognitive processes unrelated to the construct o f interest and potential 

differential item functioning (Penfield & Camilli, 2007).

Moreover, since radicals exert a consistent effect on item difficulty, the effects of 

the radicals can be used to pre-calibrate items. As such, through the generation of items 

directly from previously calibrated item radicals and the random application of 

incidentals, items can be generated on the fly with predicable psychometric 

characteristics (Bejar et al., 2003). On-the-fly item generation is advantageous in that a 

large number o f items are created in a fully automated fashion directly from calibrated 

radicals that define the item or item families (Geerlings et al., 2012). Moreover, test 

security concerns are lessened in that each test taker is provided a unique experience.

Item Model Development

As is the case in traditional item development, the expertise and creativity o f 

content specialists is critical to designing meaningful AIG item models (Gierl, Lai, & 

Turner, 2012). Several published examples of the procedures and methods that 

researchers have used to generate item models exist (e.g., Arendasy & Sommer, 2012; 

Doebler & Holling, 2015; Freund et al., 2008; Geerlings et al., 2012; Gierl et al., 2015). 

However, despite the range o f available tactics, AIG item modeling best practices is an 

under-researched area (Gierl & Lai, 2012).

As described by Arendasy and Sommer (2012), the number o f useable items that 

are generated is related to the theoretical backing o f the item model used in item
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construction. According to the authors, three AIG methods have been successfully used 

to generate cognitive ability items: (a) item modeling, (b) cognitive design system 

approach, and (c) automatic min-max approach.

Item modeling. Using the item-modeling approach, the researcher begins by 

selecting existing items from an operational measure. These parent items, also known as 

item models (Bejar, 2002), have radical features that can then be systematically varied to 

produce isomorphic iterations of the item. Due to their similarity to the parent item, the 

items created from this process are known as item clones (Glas & Van der Linden, 2003). 

Likewise, the item cloning process can be used to generate item sets or families of items 

that look different from one another, but are generated by the same combinations of 

radicals (Geerlings et al., 2011), resulting in item families that share similar psychometric 

characteristics. In theory, the newly created items would not need to be calibrated since 

their parameters can be drawn from known family distributions (Geerlings et al., 2011). 

Item modeling has been successfully used by ETS to supplement existing item pools. For 

example, Bejar (2002) developed a measure of quantitative ability through AIG item 

modeling methodology in which the researchers examined an existing pool o f GRE 

quantitative items, choosing a subset o f which to create item models.

The benefit o f such an approach is that a test taker cannot simply memorize or 

solve the item by remembering an earlier solution (Gierl et al., 2015). For instance, a 

series o f geometry items requiring the test taker to find the area o f a rectangle could be 

created by simply changing the length o f each side. Likewise, as indicated by Drasgow, 

Luecht, & Bennett (2006), item modeling, or the weak theory o f item modeling, is well 

suited for a wide variety of content domains where few theoretical descriptions of the
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cognitive skills required in solving problems exist or unique item types are required. 

However, a drawback to this practice is that a large percentage o f the items generated 

must be eliminated due to insufficient psychometric characteristics. Likewise, a relatively 

limited number of psychometrically distinct items can be created through the item 

modeling process. Since cloned items are vulnerable to the effects of test coaching 

(Morley, Bridgeman, & Lawless, 2004), and the ease with which examinees are able to 

recognize such items, the practice o f item modeling is viewed negatively and regarded as 

overly simplistic (Gierl et al., 2015).

Cognitive design system approach. A more advanced approach to AIG relies on 

cognitive theory to guide item model construction. This strong theory of item model 

development (Irvine, 2002) begins with the examination and specification o f the radicals 

that can be systematically varied on the basis of a cognitive model. As such, the level o f 

difficulty resulting from the use of radicals can be predicted and subsequently tested to 

evaluate the contribution that the radical has to the prediction of item difficulties and to 

verify the use o f the cognitive model. Subsequently, new item models are constructed to 

overcome the limitations exhibited by the current measure and the validity o f the newly 

created item model is reexamined (Embretson, 2005). The use o f cognitive theory and 

associated cognitive processes to guide decisions regarding which radicals will be 

manipulated as part o f the item model is what differentiates this method from the weak 

theory item modeling approach.

The primary benefit of using a strong theoretical approach is the reduced need for 

extensive pilot testing since the factors that govern item difficulty can be specified, 

modeled, and controlled, allowing for the prediction o f item difficulty (Gierl & Lai,
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2012). Likewise, through the structured use o f a cognitive model, item generation is 

enhanced through established empirical studies of cognitive functioning and 

individual-differences research. However, in practical applications, a considerable 

number of the items generated through the cognitive system design approach must be 

removed due to insufficient psychometric characteristics (Arendasy & Sommer, 2012). 

This issue is compounded due to the lack of available cognitive theories to guide item 

model development (Lai, Alves, & Gierl, 2009), limiting the use of the cognitive design 

system approach to narrow content domains such as mental rotation (Bejar, 1990) and 

abstract reasoning (Embretson, 2002). As such, similar to item modeling, researchers 

often resort to selecting items from existing measures to use as item models and 

constructing additional items that do not interfere with the other items, further restricting 

the number and quality o f the items that can be generated (Arendasy & Sommer, 2012).

Automatic min-max approach. In order to overcome the limitations and loss of 

items resulting from insufficient psychometric characteristics associated with the item 

modeling and cognitive design system approaches, the automatic min-max approach was 

developed as a more sophisticated method o f AIG which builds construct relatedness 

directly into the item construction process (Arendasy et al., 2008; Arendasy & Sommer,

2012). Compared to the cognitive design approach, the cognitive model specified in the 

automatic min-max approach initially covers a greater range of possible item formats, 

opening the possibly of a variety o f innovative item types to tap the latent construct. As 

argued by Drasgow et al., (2006), AIG item modeling should be guided by the same 

design principles that are used in traditional test development (e.g., Downing &

Haladyna, 2006). For example, the first step in traditional scale development is the clear
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statement o f the latent construct that is intended to be measured from which future items 

can be written (Hinkin, 1998). Likewise, the first step in producing an item model 

through the top-down automatic min-max approach is a clear statement of the latent 

construct being measured along with the specification of the cognitive model that details 

the relevant knowledge, cognitive processes, and solution strategies that characterize the 

latent trait. Based on the cognitive model, the researcher then selects an item format to 

measure the latent trait. The cognitive model is then reduced to a more specific cognitive 

item model. This reduced model specifies the radicals that are thought to trigger the 

cognitive processes required to solve the item. Additionally, functional constraints are 

specified to omit specific item radicals and incidentals that may interfere with the 

cognitive processes o f interest. As such, the automatic min-max approach is 

differentiated from the cognitive design approach through the use of a quality control 

mechanism and has been used to successfully generate algebra problems (Arendasy & 

Sommer, 2007), figural matrices (Arendasy & Sommer, 2005), mental rotation (Arendasy 

& Sommer, 2010), number series (Arendasy & Sommer, 2012), and English and German 

word-fluency (Arendasy, Sommer, & Mayr, 2012) items with little to no loss in items due 

to insufficient psychometric characteristics.

Procedural Framework of the Automatic Generation of 

Analogical Reasoning Problems 

As detailed by Arendasy and Sommer (2012), the automatic min-max approach to 

AIG-model development includes the specification o f the latent trait under consideration; 

choice o f item format; specification of the cognitive model; and specification o f the 

radicals, functional constraints, and incidentals. Likewise, items of the type discussed in
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the following section require the generation of alternative answer choices. This section 

describes the procedural framework of item model construction for the experimental AIG 

measure used in this study.

Definition of the Latent Trait

Previous research has indicated that G f is closely related to g  and is characterized 

by the ability to solve novel problems and adapt to new situations (Cattell, 1957, 1971; 

Gustafsson, 1984, 1989, 2001; Schneider & McGrew, 2012). Measures that best capture 

G f  are relatively culture-free, non-verbal, spatial measures o f inductive reasoning 

(Carroll, 2003; Sattler, 2001). To clarify, inductive reasoning is the ability to identify 

trends or patterns and extrapolate this information to reach a logical conclusion (Raven, 

1938). In contrast, deductive reasoning is the ability to apply one or more given rules to 

obtain a solution (Shye, 1988). Therefore, inductive reasoning entails the discovery of 

relationships while deductive reasoning does not. As modeled by Spearman (1938), 

inductive-reasoning items are solved by examining the elements of a problem, 

determining the logical relationships between them, and extrapolating these relationships 

to other elements. As such, the abilities associated with inductive reasoning are typically 

measured by tests consisting o f analogies, classifications, matrices, and series (Goldman 

& Pellegrino, 1984; Sternberg & Gardner, 1983; van de Vijver, 1991).

Choice of the Item Format

In order to capture the latent trait and capitalize on AIG methodology, the 

researcher chose a unique analogical item type. Analogical reasoning is the ability to 

draw relationships between objects in one context and use this information to explain the 

same relationship in another context (French, 2002; Holyoak, 2005). As such, the
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substantial cognitive component o f tasks such as these is the integration o f multiple 

complex relationships (Robin & Holyoak, 1995). Closely related to Raven’s-type tasks 

(Snow, Kyllonen, & Marshalek, 1984), analogical reasoning items require the examinee 

to describe, generalize, or explain new phenomena based on familiar concepts, and serves 

as a basis for dealing with novelty. Thus, the ability to reason through analogy is critical 

for everyday situations and is closely linked to G/'(Duncan et al., 2000; Holyoak & 

Morrison, 2005; Prabhakaran, Smith, Desmond, Glover, & Gabrieli, 1997).

In the current study, the experimental AIG measure of G f  was assessed through 

the use of analogical reasoning number sets (See Figure 1). The choice o f the item type 

was not taken lightly. In order to create a measure as devoid o f cultural influences as 

possible, numbers were chosen as a medium due to their near universal use (Porter,

1995). While numbers are used to represent values or quantities, it can be argued that 

other symbols (e.g., letters, arrows, shapes) may impart unintended representations 

depending on the cultural lens from which they are viewed (Bradley, 2010). As compared 

to other symbols, numbers provide a means to assess examinee G f  abilities through 

symbols that are familiar to most cultures.

In the experimental AIG measure, examinees were presented with a series of 

automatically-generated number sets consisting o f three numbers in an A:B::C:D (A is to 

B as C is to D) sequence. Specifically, a randomly generated number set is presented in 

Term A. In Term B, the number set is transformed according to one or more “rules.” The 

examinee’s task is to identify the rule(s) that govern the number set transformation from 

Term A to Term B. The examinee is then asked to apply the previously identified rule(s)
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to another randomly generated number set in Term C to obtain the number set that would 

occupy Term D from three multiple-choice alternatives.

1011 1 2 : 1 3 1 4 1 5

! ( 1 2 1 4 1 6 : _________|
i

1 6 1 4 1 2

1718 19

18 20 22

Figure 1. Sample Experimental AIG Measure Item

Specification of the Cognitive Item Model

The cognitive processes that are involved in solving analogical reasoning items 

can be arranged into a series of stages (Evans, 1968; Mulholland, Pellegrino, & Glaser, 

1980; Sternberg, 1977). Although various models and terms have been used to describe 

the cognitive processes associated with answering analogical reasoning items 

(Mulholland et al., 1980), Sternberg’s (1977), cognitive process and naming conventions 

are used below. In the first stage, Encoding, a mental representation of the individual 

terms of the analogy are created, allowing further mental operations to be performed. In 

the second stage, Inferring, the relationship between the corresponding attributes o f first 

two terms (A -  B) is inferred and stored in working memory. In the third stage, Mapping,



64

the relationship between the first and third terms (A and C) is discovered and, likewise, is 

stored in working memory. In the fourth stage, Application, the relationships discovered 

in the Inferring and Mapping stages are used to identify the correct answer for the fourth 

term (D). In an optional stage, Justification, particularly used in answering True-False 

analogical reasoning items (e.g., Mulholland et al., 1980), the previous stages are checked 

to determine if an error is made or to determine if additional information is required to 

answer the question. In the final stage, Response, an answer is physically selected or 

marked on an answer sheet from response alternatives.

Specification of Radicals, Functional 

Constraints, and Incidentals

The automatic min-max approach to AIG item model development requires the 

formal specification o f the radicals, functional constraints, and incidentals that promote 

content representation within the items generated (Arendasy & Sommer, 2012). Each of 

these elements is described in this section.

Radicals. As previously described, radicals define the processes or actions 

required to answer items. As such, radicals relate to the difficulty o f the items generated. 

Primi (2001) describes the complexity factors that influence the difficulty o f G/items. 

These complexity factors are analogous to item radicals in AIG methodology. Primi 

details four complexity factors: the number o f elements, the number o f rules, the types of 

rules, and the perceptual organization o f items. The “number o f elements” refers to the 

number o f attributes contained in an item, while the “number o f rules” refers to the 

number o f radical elements that are invoked by a given item. Both o f these factors are 

associated with the cognitive load that is placed on the operational capacity o f working
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memory (Mulholland et al., 1980; Salthouse, 1994). As noted by Carpenter, Just, and 

Shell (1990), participants completing matrices items decompose the items into smaller 

sub-goals, requiring participants to track an increased number o f elements in order to 

satisfy higher goals. Thus, as additional attributes and rules are applied to items, strain is 

placed on the limited capacity o f working memory. The “types of rules” refers to the 

complexity of the content that is applied to the item attributes. For example, Jacobs and 

Vandeventer (1972) created a taxonomy o f the transformations that can be used to 

manipulate figural matrices items. These transformations range from simple rules (e.g., 

changes in object size) to complex transformations (e.g., adding matrices attribute) that 

influence item difficulty. However, as noted by the authors, in practice, matrices items do 

not cover the content domain well in that certain transformations tend to be 

overrepresented or oversampled. Finally, “perceptual organization” refers to the visual 

complexity or esthetics o f the items. As described by Primi (2001), “visually harmonious 

items display perceptual and conceptual combinations that represent congruent 

relationships between elements, whereas nonharmonic items tend to portray competitive 

or conflicting combinations between visual and conceptual aspects that must be dealt 

with in reaching a solution" (p. 51). For example, Carpenter et al. (1990) noted that 

misleading cues such as superposed elements in matrices items increase item complexity. 

Likewise, Primi (2001) demonstrated that over 50% of the variance in item complexity is 

accounted for by perceptual organization.

Number o f  elements. The experimental AIG measure was designed to allow for 

the lengths of the number sets used to be variable. However, for practical purposes, the 

number sets in the current study were restricted to three numbers. Since the number o f



66

elements included in each item is consistent, the length o f the number sets is not expected 

to exert a cognitive load on examinees.

Number o f  rules. The number sets used in the experimental AIG measure were 

generated according to a set of rules described in the next section. Since it is possible to 

generate items that result from the application of one or more rules, additional cognitive 

load is expected to be exerted as additional rules are applied to the analogical numbers 

sets.

Type o f  rules. The type of rule applied to the number sets should also influence 

item difficulty. In order to link and manipulate the terms o f the experimental AIG 

measure, mathematical operations were applied to the number sets. Namely, consistent 

mathematical operations and mixed mathematical operations were used as radicals. 

Consistent mathematical operations included problems in which the examinee was 

presented with a randomly generated number and then addition was applied to obtain the 

second number in the sequence; the third number was then obtained by again applying 

addition to the second number (e.g., 1 5 - 1 6 - 1 7 :  2 2 - 2 3 -  24). The same consistent 

mathematical operation applied if subtraction was used to obtain the second number from 

the first, and the third from the second. Conversely, mixed mathematical operations 

consisted o f items in which addition (or subtraction) was applied to the first number to 

obtain the second, and then the opposite mathematical operation subtraction (or addition) 

was applied to the second number to obtain the third (e.g., 14 -  16 -  12 : 20 -  22 -  18). 

Likewise, numbers within the number series could duplicate. As such, the duplication of 

numbers will also be used as a radical.
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Perceptual organization. As noted by Primi (2001), the perceptual organization 

of item stimuli substantially impacts item difficulty. As such, the visual complexity of the 

automatically-generated number sets is expected to influence the overall difficulty o f the 

items. For example, number sets that maintain the same perceptual organization across 

terms (e.g., 7 -  8 -  9 : 12 -  13 -  14) are expected to be less difficult than items in which 

the perceptual organization o f the items is flipped between terms (e.g., 5 - 6 - 7 : 1 4 - 1 3  

-  12). As such, the visual dissimilarly o f the numbers within a number sets should 

influence item difficulty.

Functional constraints. Functional constraints are specified to minimize the 

influence o f unintended cognitive processes in solving AIG items. The goal o f functional 

constrains is to enhance the construct relatedness o f the AIG items created such that the 

abilities other than that of the construct of interest are removed from the item model. As 

such, the AIG items created conform more closely to the intended construct.

Based on the item type and cognitive model, the constraints placed on the AIG 

item model can take many forms. For instance, the random numbers contained in the 

number sets will be constrained to two digits (10-30) to control the cognitive complexity 

o f the items generated (Horn & Noll, 1997). Likewise, ambiguous items that permit more 

than one solution should be prohibited (Scharroo & Leeuwenberg, 2000). That is, it is 

conceivable that AIG items could be generated in which a correct solution and a 

distractor number series are identical. In this case, a comparison can be made between 

answer choice alternatives. If two answers are identical, another item can be generated. 

Similarly, studies of analogical reasoning tasks demonstrate the effect o f stimulus 

priming on task performance (Blanchette & Dunbar, 2002; Spellman, Holyoak, &
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Morrison, 2001; Wharton, Holyoak, & Lange, 1996). Therefore, the radicals presented to 

the test takers should be randomized to mitigate the effects of pre-exposure o f identical 

radicals.

Incidentals. Incidentals are designed to create variation in item appearances, but 

have no effect on item difficulty. In the current study, item variation is achieved by 

randomly generating numbers to populate the number sets.

Distractor Generation

As in traditional test development, AIG item difficulty is dependent on producing 

distractors that are plausible enough to be endorsed (Doebler, 2015; Downing & 

Yudkowsky, 2009). For example, in developing a static multiple-choice measure, 

incorrect options that are endorsed by at least 5% percent o f test takers are considered 

“functional distractors” while response options that are endorsed to a lesser degree add 

little value to a measure (Downing & Yudkowsky, 2009). In AIG, algorithms are used to 

create distractors (Gierl et al., 2012). However, simplistic strategies such as randomly 

selecting items from the universe o f options will result in items that are too easy since the 

correct option is easily identified (Doebler, 2015). Rather, the psychometric soundness of 

AIG measures can be improved by systematically switching or removing the radicals or 

combinations o f radicals that were used to generate the item stem (Arendasy & Sommer, 

2005; Doebler, 2015). For example, if  the numbers in Term C are linked by adding 2, a 

distractor item may fail to add 2 or add a number other than 2 to generate an incorrect 

option for Term D. As such, controlled variation is produced in the response options, 

masking the correct answer and improving the measurement o f the construct o f interest. 

While the procedures just mentioned represent the current best practices in AIG, the



69

effects that distractors have on the psychometric properties o f items is difficult to 

ascertain and is an under represented area o f researcher (Gierl et al., 2012).

Formulation of the Problem 

The purpose o f the current research is to build on the existing AIG 

methodological framework through the construction and validation of an on-the-fly 

measure of cognitive ability that is generated at the time of item presentation. In order to 

fulfill this purpose, the proposed measure will be developed using the automatic min-max 

approach (Arendasy & Sommer, 2012). Next, the psychometric characteristics and the 

nomological network of the experimental AIG measure will be examined. The general 

expectations are that the proposed measure will demonstrate unidimensionality and 

construct relatedness and will correlate with other measures of G f

A fundamental concern in the development of a psychological instrument is the 

establishment of the unidimensionality o f the measure. Dimensionality refers to the 

number of latent traits that contribute to responding to the items of an instrument 

(DeVellis, 2012). Commonly, the dimensionality of psychometric instruments is 

evaluated through the use o f exploratory and confirmatory factor analysis. However, as 

recommended by Arendasy and Sommer (2012), the unidimensionality o f AIG measures 

can be assessed through the use o f the Rasch model as a prerequisite for testing the 

constructed relatedness o f AIG items. The fit of the data to the Rasch is examined 

through the use o f likelihood ratio tests (e.g., Andersen, 1973; Martin-Lof, 1973), which 

relate the likelihood o f the item parameter data to a null model. If the tests fail to reach 

significance, then the hypothesis that the experimental AIG measure demonstrates Rasch 

model fit can be retained. As such, Hypothesis 1 concerns the dimensionality o f the



70

experimental AIG measure. It is expected that the experimental AIG measure will display 

unidimensionality.

Hypothesis 1: The experimental AIG measure will display unidimensionality.

Construct representation (Embretson, 1983) concerns the identification o f the 

theoretical operations that contribute to performance on a measure. For AIG measures, 

the construct representativeness of a measure is determined by examining the effects that 

the specified item radicals contribute to item difficulty (Embretson & Daniel, 2008; 

Freund et al., 2008; Gierl & Haladyna, 2012; Poinstingl, 2009). As such, construct 

representation provides evidence supporting the inclusion of the item radicals in the item 

model since these elements are hypothesized to affect item difficulty. Thus, initial 

evidence for the construct representation of the experimental AIG measure is established 

through the examination of these features (Arendasy & Sommer, 2012). The ultimate 

goal is to produce a model that accounts for as much item difficulty as possible, based on 

the features of the item model (Gierl & Haladyna, 2012). As such, Hypothesis 2 concerns 

the content representation of the experimental AIG measure. It is expected that the item 

radicals specified will predict item difficulty.

Hypothesis 2: The experimental AIG measure will display satisfactory construct 

representation.

Hypothesis 2a: Consistent Mathematical Operations will significantly predict 

item difficulty.

Hypothesis 2b: Mixed Mathematical Operations will significantly predict item 

difficulty.
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Hypothesis 2c: Duplicate Numbers will significantly predict item difficulty.

Hypothesis 2d: Flipped Relationships will significantly predict item difficulty.

In traditional test-development applications, test-retest reliability is commonly 

used to demonstrate the stability o f test scores across administrations (Anastasi & Urbina, 

1997). As noted by Shuttleworth (2009), measures of cognitive ability are good 

candidates for such analyses because it is unlikely that participant ability level will 

suddenly change. Thus, it is expected that participants will obtain similar scores across 

test administrations. Therefore, Hypothesis 3 concerns the temporal stability of the 

experimental AGI measure.

Hypothesis 3: The experimental AIG measure will show adequate test-retest 

reliability.

Another method used to demonstrate the validity o f a measure is to examine its 

nomological network (Cronbach & Meehl, 1955). As described by Campbell and Fiske 

(1959), convergent validity provides an indication that a measure shares a substantial 

relationship to other measures to which it should be theoretically related. As noted 

previously, non-verbal and culture-free measures of inductive reasoning best capture G f 

(Carroll, 2003; Sattler, 2001). As conceived by Thurstone, tasks such as Letter Sets and 

Number Series tap inductive reasoning abilities well (Freedheim & Weiner, 2003). When 

subjected to confirmatory factor analysis, along with matrices measures, a substantial G f 

factor is formed by Letter Sets and Number Series tasks (Hicks et al., 2015). The purpose 

of this series of analysis is to examine the criterion relatedness of the experimental AIG 

measure. As such, Hypotheses 4a and 4b concern the predictive relationship shared 

between the experimental AIG measure and established measures o f cognitive ability. It
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is expected that the experimental AIG measure of G f will correlate with other measures 

o f Gf.

However, G f  is also known to share a relationship with demographic variables.

For instance, previous research indicates that G f tends to decrease with age (Cattell,

1943). Therefore, Hypothesis 4c concerns the predictive relationship shared between the 

experimental AIG measure and examinee age. It is expected that the experimental AIG 

measure o f G f will correlate negatively with examinee age.

Hypothesis 4: The experimental AIG measure will demonstrate satisfactory 

criterion validity.

Hypothesis 4a: The experimental AIG measure will significantly predict scores 

on the Letter Sets task.

Hypothesis 4b: The experimental AIG measure will significantly predict scores 

on the Number Series task.

Hypothesis 4c: The experimental AIG measure will demonstrate a significant 

negative relationship with examinee age.
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CHAPTER 2 

DEVELOPMENT OF THE EXPERIMENTAL AIG MEASURE

The development of the experimental AIG measure began with a content analysis. 

The purpose of the content analysis was to identify the item radicals, incidentals, and 

functional constraints that could be manipulated and controlled. Four content specialists 

who hold advanced degrees in psychological sciences served as subject matter experts 

(SMEs) in this analysis. SMEs were provided with a definition of the latent trait, the 

cognitive model, and a prototypical item model. SMEs were then asked to examine the 

item model and verbally describe the process an examinee would take to solve a given 

item. Likewise, SMEs were asked to indicate the various elements of the item model that 

could be varied in order to trigger the appropriate solution strategy. Using the information 

provided by the SMEs, radicals, incidentals, and functional constraints were specified. 

Generative Matrix

Based on the information obtained from the content analysis, the experimental 

AIG measure was created using the PHP programing language, a popular open source 

server-side scripting language (PHP.net, 2016). In order to generate the analogical 

reasoning items, first, a randomly-generated base number was produced for each of the 

four analogical reasoning terms (A through D) and multiple-choice alternatives. Base
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number values were constrained to numbers between 10 and 30 in order to reduce the 

cognitive load associated with interpreting number values greater than two digits in 

length and to add perceptual uniformity to the look of AIG items. Likewise, this 

constraint served to eliminate the possibility o f negative values. These randomly- 

generated numbers were intended to serve as incidental elements, creating variation in 

how the items look without affecting difficulty. Next, term manipulation numbers were 

randomly generated for use in subsequent mathematical manipulations. These term 

manipulation numbers were used to create patterns in the analogical reasoning terms. 

Term manipulation numbers were constrained to values between 1 and 4 in order to limit 

the cognitive load associated with adding and subtracting numbers o f lower or higher 

values. The term manipulation values of Terms A and B were identical as were the values 

for Terms C and D. For instance, if  the number 4 was generated to manipulate Term A, 4 

was also used to manipulate Term B. Likewise, if  the number 3 was generated to 

manipulate Term C, 3 was also used to manipulate Term D.

Next, mathematical and logical manipulations were applied to the base numbers 

using the term manipulation numbers as controlled by an item generation matrix. The 

item generation matrix consisted o f 14 variables (See Table 1) dictating item and 

distractor construction. The leftmost column represents the item being generated. The 14 

columns to the right (labeled 1 through 14) represent the variables manipulated to 

generate the items. In the table, each variable is listed below the aspect o f the item that is 

controlled. Further clarification on how the items are generated is presented in the 

following paragraphs.



The mathematical manipulation between the first and second value of each term 

was controlled by Variable 1. Variable 1 could take one o f three values (1 = subtraction;

2 = addition; 3 = duplicate). For example, suppose the base number for Term A was 10 

with a term manipulation number of 3. The value of Variable 1 dictates if  3 is added or 

subtracted from 10. If Variable 1 had a value of 2, 3 was added to 10 to generate the 

second value (13) in Term A. Likewise, if the value of Variable 1 was /, then 3 would be 

subtracted from 10 to generate the second value (7) in Term A. However, if instead the 

value of Variable 1 was 3, then the term manipulation number (3) would be ignored and 

10 would be a duplicated value (10). Variable 2 acted in the same manner, controlling the 

relationship between the second and third number in the term.
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Table 1. Item Generation Matrix

Item

Item
Gen FL FR Disl Dis2 Dis3 FD1 FD2 FD3 #Ds

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 1 1 1 1 1 2 2 1 2 1 1 2 2
2 1 2 1 1 1 2 2 1 1 3 1 2 2 2
3 1 3 1 1 1 3 3 1 2 1 1 1 2 2
4 2 1 1 1 2 1 1 2 2 2 1 2 2 2
5 2 2 1 1 2 2 1 1 2 3 1 1 2 2
6 2 3 1 1 2 3 3 2 3 1 1 2 2 2
7 3 1 1 1 3 1 1 3 3 2 1 1 2 2
8 3 2 1 1 3 2 2 3 1 1 1 2 2 2
9 1 1 2 1 1 1 2 2 1 2 1 1 2 2
10 1 2 2 1 1 2 2 1 1 3 1 2 2 2
11 2 1 2 1 2 1 1 2 2 2 1 2 2 2
12 2 2 2 1 2 2 1 1 2 3 1 1 2 2
13 3 1 2 1 3 1 1 3 3 2 1 1 2 2
14 3 2 2 1 3 2 2 3 1 1 1 2 2 2
15 1 2 1 2 1 2 2 1 1 3 2 2 1 2
16 2 1 1 2 2 1 1 2 2 2 2 2 1 2
17 3 1 1 2 3 1 1 3 3 2 2 1 1 2
18 3 2 1 2 3 2 2 3 1 1 2 2 1 2
19 1 2 2 2 1 2 2 1 1 3 2 2 1 2
20 2 1 2 2 2 1 1 2 2 2 2 2 1 2
21 3 1 2 2 3 1 1 3 3 2 2 1 1 2
22 3 2 2 2 3 2 2 3 1 1 2 2 1 2

Note. Item Gen = item generation; FL = flip left; FR = flip right; Disl = distractor 1; Dis 
2 = distractor 2; Dis3 = distractor 3; FD1 = flip distractor 1; FD2 = flip distractor 2; FD3 
= flip distractor 3; #Ds = number of distractors.

In addition to Variables 1 and 2 that generate differentiation in the pattern of 

numbers in each term, Variables 3 and 4 were used to influence the perceptual 

complexity of analogical reasoning items. These variables allowed for the pattern created 

by Variables 1 and 2 to be “flipped,” expanding the construct space, requiring the test 

taker to examine and draw relationships across item terms. For example, a term
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consisting of the numbers 1 5 - 1 6 - 1 7  could be inverted to 17 -  16 -  15 if indicated by 

Variables 3 or 4. Variables 3 and 4 could take one of two values (1 = no flip; 2 = flip) 

with Variable 3 controlling Terms A and C and Variable 4 controlling Terms B and D.

The remaining variables in the item matrix were used to generate item distractors. 

Variables 5 through 10 are analogous to Variables 1 and 2, controlling the generation of 

the pattern of numbers that comprise the three distractor terms. Variables 5 and 6 

controlled Distractor 1; Variables 7 and 8 controlled Distractor 2; and Variables 9 and 10 

controlled Distractor 3. The patterns of variable values were systematically manipulated 

to create plausible distractor choices. For example, if Variables 1 and 2 contained values 

of 1 and 2 respectively, Variables 5 and 6 may consist o f values 1 and 2, 2 and 7, 7 and 7, 

or 2 and 2. Additional variation in distractor items was produced by systematically 

manipulating the term manipulation number. For example, if the term manipulation 

number was 3, distractor items may contain values surrounding this value (e.g., 1,2, or 

4). Variables 11, 12, and 13 are analogous to Variables 3 and 4 controlling the “flip” of 

the terms in Distractors 1, 2, and 3 respectively. Thus, the “flip” variables applied to the 

distractors allow for additional variation and further mask the identification o f the correct 

answer. Additionally, constraints were placed on distractor terms eliminating the 

possibility that a distractor matched the correct answer. Finally, Variable 14 was used to 

indicate the number o f distractors to generate. Variable 14 could take on values o f 1, 2, or 

3 indicating how many distractors to generate. In the current study, this variable was held 

constant at 2, allowing for the presentation o f only two distractors and a correct answer. 

However, future research may examine the effects of greater or fewer distractors.
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The values of the 14 variables in the item generation matrix were counterbalanced 

to create uniform variation and broad construct coverage in the 22 AIG analogical 

reasoning item families and the multiple-choice distractors. Moreover, since item 

generation was controlled using an item matrix, precise information about how the items 

were constructed allowed for the precise testing of the radicals and incidental involved.

A 22-item measure comprised of the items generated from the item generation 

matrix was administered online along with a demographic form which asked basic 

information including age, gender, ethnicity, and educational attainment. Consistent with 

scale development best practices (DeVellis, 2012; Freund & Holling, 2011), a 

demonstration o f the rules (i.e., radicals) that were used to manipulate analogical 

reasoning terms was presented via an instructional video. Additionally, written 

instructions were made available to participants. As noted by Freund et al. (2008), tests of 

inductive reasoning frequently suffer from a lack o f clarity regarding the types o f tasks 

that are involved in solving items. For instance, the rules that govern the relationship 

between corresponding analogical reasoning terms must be discovered before the 

relationship discovered can be extrapolated (Sternberg, 1977). However, with no 

additional information, it is plausible that test takers may disagree on the rules that 

govern the relationship between terms. Thus, unintended rules may be applied to items 

that allow a test taker to reach a solution that is quite different from the “correct” 

solution. In order to avoid this issue, test takers can be presented information regarding 

the various rules that govern the relationship between analogy terms prior to test 

administration.
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In addition to clarifying the task, test fairness and accuracy o f the measure is 

increased since no participant is unfairly disadvantaged by misunderstanding the patterns 

imbedded in the items (Freund et al., 2008). As such, before the measure is administered, 

practice items were made available to participants, allowing them to become familiar 

with the task and item format that was used. Participants were allowed to complete as 

many practice items as they wished without time constraints. During the practice session, 

participants were provided feedback regarding the correctness o f each response.

After completing the practice session, the presentation o f the item radicals used to 

generate the 22-item experimental measure was randomized to control for order effects. 

Once participants selected a response, they were not able to return to the previous item.

In order to reduce examinee fatigue and to limit the amount of time taken to 

complete the experimental AIG measure, a pilot study was conducted to determine the 

amount o f time provided to answer each item. Participants (N  = 4) were asked to answer 

the items of the experimental AIG measure as quickly as possible. The mean response 

time was 16.51 seconds (SD = 8.45). As a result o f the pilot study, a 30-second time limit 

was established for examinees to answer each item.

Scoring

Raw scores for the experimental AIG measure were calculated using the 

following scheme. First, the average response time for items that were answered correctly 

was calculated from the total sample (M =  15.06 seconds). Due to its approximation of 

the midpoint o f the time allowed to answer the items, this figure was rounded down to 

15.00 seconds, and this served as a benchmark value. Next, a score o f 1 was awarded to 

participants who answered the item correctly and submitted their response prior to the
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benchmark value. A 0 was awarded for items that were either answered incorrectly and/or 

elicited a response after the benchmark value. Since the experimental AIG measure 

contained 22 items, scores could range from 0 to 22.



81

CHAPTER 3: STUDY 1 

CONTENT VALIDATION RESULTS AND DISCUSSION

The purpose o f the current research is to build on the existing AIG 

methodological framework through the construction and validation o f an on-the-fly 

measure of cognitive ability that is generated at the time of item presentation. In order to 

accomplish the aims of the research, three studies were conducted examining the 

construct representation, temporal stability, and criterion relatedness o f the scores 

produced by the experimental AIG measure. The aim of Study 1 is to assess Hypotheses 

1 and 2 relating to the unidimensionality and construct representation o f the experimental 

AIG measure.

Participants

The sample consisted of 333 respondents (193 male and 140 female) from the 

United States between the ages of 18 and 81 (M =  35.3; SD = 13.8). Guidelines for 

traditional scale development suggest that a sample o f approximately 300 participants is 

required to ensure the stability of the findings (Nunnally, 1978). Likewise, Downing 

(2003) indicates that a sample of at least 200 participants is required to assess Rasch 

model fit. As such, the size of the sample in the current study seems adequate.
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The majority o f the participants (80.8%) were recruited through Amazon’s 

Mechanical Turk (mTurk). mTurk has become a popular crowdsourcing platform from 

which behavioral science researchers may solicit research participants (Chandler,

Mueller, & Paolacci, 2014; Krupnikov & Levine, 2014). Previous research has indicated 

that the results obtained from mTurk workers are comparable to conventional sources of 

data collection such as convenience and snowball sampling (Buhrmester, Kwang, & 

Gosling, 2011; Casler, Bickel, & Hackett, 2013). Likewise, previous scale-development 

initiatives have sourced mTurk workers as participants, producing scales with acceptable 

psychometric characteristic (Buhrmester, et al., 2011). The remaining participants 

(19.2%) were recruited via snowball sampling through social media. In exchange for their 

participation, participants sourced from mTurk were provided monetary compensation. 

Prior to data collection, a pilot study was conducted to estimate the average amount of 

time required to complete the experimental AIG measure. mTurk workers were 

compensated according to this time estimate and to the median minimum wage for the 

United States to ensure fair wage compensation. All participants were provided feedback 

regarding their performance on the AIG measure (number o f items answered correctly).

O f the sample, 76.6 % identified as White/Caucasian, 9.3% as African-American, 

6.9% as Hispanic-American, 2.1% as Asian-American, 0.6% as American-Indian, and 

8.4% as other. The reported educational attainment levels were as follows: 0.3% some 

school, no high school diploma; 13.2% high school diploma or equivalent; 18.9% some 

college credit; no degree; 3.9% trade/technical/vocational training; 10.8% Associate 

degree; 36.9% Bachelor’s degree; 11.1% Master’s degree; 1.5% Professional degree;
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2.7% Doctorate degree. The average time spent working on the test was 8:31 minutes (SD  

= 3:18 minutes) ranging between 2:21 and 25:27 minutes.

Procedure

Study data were collected via an online measure hosted by the researcher. In order 

to access the scale, participants were provided a link to the experimental AIG measure. 

Before beginning the measure, participants were presented with an informed-consent 

form stating the purpose o f the project, instruments involved, risks and alternative 

treatments, compensation (if any), and the contact information of the researcher. The 

letter of approval from the Louisiana Tech University institutional review board (IRB) is 

presented in the appendix. Participants were then asked to provide basic demographic 

information (age, gender, race, and educational attainment). Participants were instructed 

to answer items as quickly as possible and were given the opportunity to complete as 

many practice items as they wished. Practice items were administered without time 

limitations, and feedback regarding the correctness of responses was provided after an 

answer was selected. Once comfortable with the task, participants could advance to the 

actual experimental AIG measure. Participants were provided 30 seconds in which to 

respond to each item. If an answer was not submitted in less than 30 seconds, participants 

were automatically advanced to the next question. No feedback was given regarding the 

correctness o f items in the non-practice portion of the measure.

Results

Analyses were conducted using SAS 9.1, SPSS 17.0 (descriptive and correlational 

values), and RStudio (LLTM analysis). Prior to performing the analyses, item responses 

that were submitted in less than one second were recoded as missing data. These suspect
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responses were likely the result o f participants inadvertently double clicking the response 

button to the previous question. Since the presentation of the items was randomized, 

these suspect items can be classified as missing completely at random (Little & Rubin, 

2002). Maximum likelihood estimation was used to impute the missing data points. 

Previous research has indicated that maximum likelihood estimation is advantageous to 

other methods of handling missing data including listwise and pairwise deletion, as well 

as mean imputation techniques (Baraldi & Enders, 2010; Newman, 2003). Of the total 

sample, 70 o f the cases required the imputation o f one or more items. Subsequent 

analysis o f imputed and non-imputed cases revealed that the scores o f these measures 

correlated highly (r = .99). On average, participants answered 17.15 (SD = 4.30) o f the 22 

items correctly within the 30 seconds provided for each item. However, once the item 

scoring algorithm was applied, the mean score obtained on the measure was 9.20 (SD = 

5.12). A one-sample Kolmogorov-Smimov (p -  .001) and Shapiro-Wilk test (p < .001) 

indicate that participant total score data were not normally distributed. However, after a 

visual inspection of a histogram plot (Figure 2), it was determined that the dataset 

exhibited sufficient normality (Howell, 2013).
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Histogram

Score

Mean =9.2 
Std. Dev. =5.121 

N =333

Figure 2. Histogram of Experimental AIG Scores

Previous research examining gender differences in G f  reveal no systematic 

differences (Colom & Garcia-Lopez, 2002). This is not to say that males and females 

perform equally well on all G f tasks. For example, meta-analytic evidence indicates that 

in adult samples, males tend to outperform females (d  = .33) on tasks such as Raven’s 

Advanced Progressive Matrices (Lynn & Irwing, 2004). In general, females tend to 

outperform males on verbal tasks while males outperform females on spatial-ability 

measures (Halpern, 1997; Neisser et al., 1996). Thus, when measures o f verbal, 

reasoning, and spatial ability are combined to obtain broad ability estimates, gender gaps 

are largely eliminated. However, as reported by Casey, Nuttall, Pezaris, and Benbow 

(1995), males are particularly advantaged in mathematical-ability tasks. This difference is 

principally seen at the upper end o f the ability continuum. In contrast, no gender
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differences in mathematical ability are seen in low-ability and average-ability samples.

As noted by Brody (1992), the difference in mathematical ability may be due to highly 

developed visual-spatial skills in such high-ability males.

The experimental AIG measure tasks the examinee with quickly identifying 

mathematical manipulations and drawing relationships across a visual-spatial field. 

Therefore, one may expect to see differential scoring on such a measure. An independent- 

samples Mest was conducted to compare gender differences in scoring on the 

experimental AIG measure. Results of the analysis indicate a significant effect for 

gender, /(326.11) = 3.69, p  < .001, with men receiving higher scores than women. 

Likewise, an independent-samples t-test was conducted to compare score differences 

between the mTurk and snowball samples. Results o f the analysis indicate a significant 

sample effect, /(331) = -2.74, p  = .007, with the mTurk sample receiving higher scores 

than the snowball sample. For examinees who provided demographics, the scores 

produced by male and females at six age intervals for the total, mTurk, and snowball 

samples are presented in Tables 2, 3, and 4 respectively. Likewise, the scores produced 

by males and females by educational attainment are presented in Table 5.
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Table 2. Experimental AIG Measure Score Means and Standard Deviations 
by Gender fo r  Six Age Intervals.______________________________________

Male Female Total Sample
Age intervals n M SD n M SD n M SD
18-29 63 11.0 5.6 52 8.1 3.9 115 9.7 5.1
30-39 75 10.3 5.2 37 8.0 5.1 112 9.6 5.2
40-49 24 9.0 4.5 22 7.3 3.7 46 8.2 4.2
50-59 15 8.9 5.3 15 9.5 4.4 30 9.2 4.8
60-69 7 5.9 6.4 4 10.3 7.9 11 7.5 6.9
70+ 6 7.7 8.0 4 3.5 1.3 10 6.0 6.4

Total 190 10.0 5.5 134 8.0 4.4 324 9.2 5.2

Table 3. Experimental AIG Measure Score Means and Standard Deviations 
by Gender for Six Age Intervals for the mTurk sample.___________________

Male  Female Total Sample
Age intervals n M SD n M SD n M  SD
18-29 59 11.0 5.8 40 8.3 4.0 99 9.9 5.3
30-39 65 10.3 5.2 28 8.3 5.2 93 9.7 5.2
40-49 22 9.1 4.7 21 7.2 3.8 43 8.2 4.3
50-59 15 8.9 5.3 11 9.9 4.8 26 9.3 5.0
60-69 2 14.0 5.7 2 13.0 9.9 4 13.5 6.6
70+ 2 16.5 .7 0 n/a n/a 2 16.5 .7
Total 165 10.4 5.3 102 8.3 4.5 267 9.6 5.1

Table 4. Experimental AIG Measure Score Means and Standard Deviations
by Gender fo r  Six Age Intervals fo r  the snowball sample.

Male Female Total Sample
Age intervals n M SD n M SD n M  SD
18-29 4 11.3 4.0 12 7.7 3.7 16 8.6 3.9
30-39 10 10.3 5.6 9 7.0 5.0 19 8.7 5.4

40-49 2 7.5 .7 1 8.0 n/a 3 7.7 .6
50-59 0 n/a n/a 4 8.5 3.8 4 8.5 3.8
60-69 5 2.6 2.6 2 7.5 7.8 7 4.0 4.5
70+ 4 3.3 5.3 4 3.5 1.3 8 3.4 3.5
Total 25 7.6 5.7 32 7.1 4.1 57 7.3 4.8



88

Table 5. Experimental AIG Measure Score Means and Standard Deviations by
Gender fo r  Eight Educational Attainments.

Educational attainment
Male Female Total Sample

n M SD n M SD n M SD
High school grad 27 9.5 5.0 17 7.1 5.9 44 8.6 5.4
Some college 33 11.2 5.8 30 7.4 3.8 63 9.4 5.2
Trade/technical 5 8.4 4.7 8 5.6 3.0 13 6.7 3.8
Associate's degree 24 9.5 5.5 12 8.7 4.8 36 9.3 5.3

Bachelor's degree 74 9.5 5.6 49 8.4 3.9 123 9.1 5.0

Master's degree 18 10.4 4.2 19 9.9 4.6 37 10.2 4.3

Professional degree 4 12.8 5.1 1 4.0 n/a 5 11.0 5.9
Doctorate degree 6 11.3 6.8 3 4.0 4.4 9 8.9 6.9

Total 191 10.0 5.4 139 8.0 4.4 330 9.1 5.1

Some classical test theory results. Using the precedent set by Doebler and 

Holling (2015), classical test theory analyses commonly reported in scale development 

research are presented here to aid in the interpretation of the psychometric characteristics 

of the experimental AIG measure. These statistics are meant to provide the reader with a 

more complete understanding of how the measure is performing. In general, Cronbach 

alpha values o f .70 or greater indicate acceptable internal consistency (Kline, 1999). 

However, Kline also notes that cognitive ability measures should strive for alphas of .80 

or greater. The experimental AIG measure demonstrated adequate internal consistency (a 

= .86; SEM =  1.91). Likewise, Nunnally and Bernstein (1994) suggest that item 

discrimination values o f greater than .20 are sufficient while Anastasi and Urbina (1997) 

propose that item difficulty values between .15 and .85 are acceptable. Item 

discrimination values ranged from .34 to .52 (median = .43) while difficulty values
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ranged from .14 to .63 (median = .46) indicating that the item statistics largely conform to 

recommended tolerances.

Linear Logistic Test Model (LLTM). The evaluation of item radicals and 

incidentals can be accomplished either through the LLTM (De Boeck & Wilson, 2004; 

Fischer, 1973, 1995) or multiple regression analyses (Gorin & Embretson, 2006). In AIG 

studies, the LLTM is more commonly employed since it provides a means to evaluate 

cognitive models (Arendasy et al., 2008; Arendasy & Sommer, 2010, 2012; Arendasy et 

al., 2012; Freund et ah, 2008). That is, LLTM allows for the empirical testing o f the 

cognitive processes that contribute to item difficulty, thus demonstrating construct 

validity o f the items generated from the item model (Fischer, 1973). Under the LLTM, 

the difficulty parameter o f the Rasch model is reduced into a linear combination of 

radical effects, allowing for their contribution to the prediction o f item difficulty to be 

assessed (Freund et ah, 2008; Holling, Bertling, & Zeuch, 2009). That is, the LLTM 

assumes that the difficulty parameter of the Rasch model is comprised of several 

cognitive operations that sum to the overall difficulty parameter estimate (Baghaei & 

Kubinger, 2015). As such, there is no point in decomposing the difficulty parameter o f a 

Rasch model that lacks fit, as the data produced would lack meaning (Fischer, 2005). 

Therefore, assessing the fit of the Rasch model is prerequisite for applying the LLTM 

(Fischer, 1973; Poinstingl, 2009).

The consistency of the Rasch model can be assessed through likelihood ratio tests 

determining the fit of the data to the model. As noted by Rost (1982), the Rasch model 

assumes both item and person homogeneity. As such, both forms o f homogeneity must be 

tested. Tests o f item homogeneity determine if more than one person parameter is
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needed. Conversely, checking for person homogeneity entails determining if  more than 

one item parameter is needed for each item to describe the data.

The Martin-Lof (1973) test for unidimensionality is a likelihood ratio test used to 

examine the fit o f the Rasch model by separating the items of a measure into two groups 

o f items. The item parameters o f these groups of items are subsequently examined for 

homogeneity (Mair, Hatzinger, & Maier, 2013). If the maximum likelihood values of 

both sets of items are approximately equal to the maximum likelihood calculated for both 

sets of items together, then the Rasch model holds, and it is assumed that both sets of 

items tap the same dimensions (Verguts & De Boeck, 2000). Thus, non-significant values 

indicate that Rasch model holds. The Martin-Lof results failed to reveal a significant

■y

difference (median raw score: % [120] = 82.36, p  > .05).

The Andersen (1973) likelihood ratio test was also used to determine the fit of the 

data to the Rasch model. This test compares the item parameters of two predefined 

subgroups in the total sample to determine if differential item functioning is present as a 

result of the splitting criterion (Futschek, 2014). In AIG studies, median raw scores are 

commonly used as the partitioning criterion (Freund et al., 2008; Arendasy & Sommer, 

2012). If the likelihood ratio test fails to reach significance, then the fit o f the data to 

Rasch model is retained and the LLTM can be estimated (Baghaei & Kubinger, 2015). 

The results o f the Andersen test indicate that the data fit the Rasch model (median raw 

score: %2 [21] = 24.79,/? > .05). As such, Hypothesis 1 concerning the unidimensionality 

o f the AIG measure is supported.

Under the LLTM, item difficulty is calculated based on the weighted contribution 

o f the item radicals through a design matrix, indicating the degree to which these
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elements are related to the cognitive complexity o f AIG items (Embretson & Daniel,

2008). As a result, the combined effects of radicals can be used to account for the 

difficulty parameter in the Rasch model, supporting the construct representation of the 

item model (Arendasy & Sommer, 2012). The hypothesized cognitive components that 

are required to solve assessment items are entered as a Q-matrix. The Q-matrix used in 

the current analysis is presented in Table 6. The columns o f the Q-matrix represent the 

cognitive operations measured by the experimental AIG measure, and the column values 

indicate the weights applied to each o f the cognitive process for each item. For instance, 

the number series pattern in Item 1 (e.g., 1 0 - 8 - 6 :  1 7 - 1 5 - 1 3 )  consisted of 

subtraction between the first and second number, and subtraction between the second and 

third number (Consistent Mathematical Operation). However, Item 2 (e.g., 10 -  8 -  12 : 

1 7 - 1 5 - 1 9 )  consisted o f subtraction between the first and second number and addition 

between the second and third numbers (Mixed Mathematical Operations). As such, the Q- 

matrix details the hypothetical cognitive components (i.e., radicals) that are thought to 

influence item difficulty.
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Table 6. Q-Matrix fo r  the Experimental AIG Measure

Item

Consistent
Mathematical

Operations

Mixed
Mathematical

Operations

Duplicate
Numbers

Flipped
Relationship

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 1 0 0
5 1 0 0 0
6 0 0 1 0
7 0 0 1 0
8 0 0 1 0
9 1 0 0 1
10 0 1 0 1
11 0 1 0 1
12 1 0 0 1
13 0 0 1 1
14 0 0 1 1
15 0 1 0 1
16 0 1 0 1
17 0 0 1 1
18 0 0 1 1
19 0 1 0 0
20 0 1 0 0
21 0 0 1 0
22 0 0 1 0

Radical difficulties are assessed through an easiness parameter (i.e., eta). The 

easiness parameters, standard errors, and 95% confidence intervals for each o f the four 

hypothesized radicals in the LLTM analysis are presented in Table 7. Negative easiness 

parameter values indicate cognitive operations that increase the difficulty o f items while 

positive values indicate radicals that can reduce the difficulty o f items (Baghaei & 

Kubinger, 2015). As such, the item radicals o f “Mixed Mathematical Operations” and 

“Flipped Relationships” increase the difficulty o f items, while “Consistent Mathematical
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Operations” and “Duplicate Numbers” decrease the difficulty of items. As suggested by 

Baghaei and Kubinger (2015), if the confidence intervals that surround the easiness 

parameters fail to include zero, the radical specified significantly contributes to item 

difficulty. Radicals that fail to support the predicted relationship with item difficulty can 

be excluded from the item generation process and the cognitive model can be redefined. 

All radicals of the experimental AIG measure significantly predict item difficulty. As 

such, Hypotheses 2a through 2d regarding the ability o f the radicals to significantly 

predict item difficulty is supported.

Table 7. Parameter Estimates, Standard Error, and Confidence Intervals fo r  the Item 
Radicals o f  the Experimental AIG Measure____________________________________

Parameter Estimate SE Lower Cl Upper Cl
Consistent Mathematical Operations 0.500 0.171 0.166 0.834
Mixed Mathematical Operations -1.050 0.133 -1.310 -0.790
Duplicate Numbers 0.550 0.177 0.204 0.896
Flipped Relationships -0.703 0.058 -0.815 -0.590

Further demonstration o f the construct representation of the LLTM analysis is 

indicated by the correlation of the empirically generated Rasch easiness parameters to 

those predicted by the LLTM analysis. As indicated by Arendasy and Sommer (2013), R2 

values o f .70 and greater are desirable. The empirically derived and predicted item 

difficulty parameters o f the experimental AIG measure were highly correlated (r = .97). 

Thus, the R2 value in this analysis was .93, indicating that 93% of the variance in the 

Rasch difficulty parameter could be accounted for by the cognitive model. The plot o f the 

empirically derived and predicted item difficulty parameters is presented in Figure 3. As
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such, Hypothesis 2 regarding the construct representation of the radicals o f the 

experimental AIG measure is supported.
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Figure 3. Plot o f Empirically and LLTM Generated Item Difficulty Parameter Estimates

Discussion

The purpose o f the current study was to understand the construct representation of 

an experimental AIG measure by assessing the influence of the hypothesized cognitive 

components on item difficulty. Conventional item analysis suggests that although the 

items of the AIG measure were generated from a random base number and the 

presentation of radicals was randomized, the measure demonstrates adequate internal 

consistency (.86) for a measure o f mental abilities. Likewise, median item discrimination 

(.43) and difficulty (.46) values produced are within established guidelines. From a
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classical test construction perspective, the items o f the experimental AIG measure are 

well correlated, able to distinguish test taker performance, and of appropriate difficulty.

The results of Study 1 also show that it is possible to model the experimental AIG 

measure data through Rasch and LLTM, allowing for an estimation of the contribution of 

the influence that radicals impart on item difficulty. According to the Martin-Lof and 

Andersen tests, item and person homogeneity are present, supporting unidimensionality 

of the experimental AIG Measure and fit to the Rasch model.

Using LLTM, Mixed Mathematical Operations had the greatest impact on 

increasing the difficulty o f items followed by Flipped Relationships. Presumably, each of 

these radicals placed a cognitive load on working memory reducing the likelihood of 

obtaining a correct answer within the time allotted. In contrast, Consistent Mathematical 

Operations and the inclusion of a duplicate number within a term had the opposite effect, 

lowering the difficulty of the items generated. As such, this result provides evidence 

supporting the inclusion of the hypothesized item radicals in the item model since these 

elements affect item difficulty. Likewise, the hypothesized cognitive model accounted for 

a large portion (93%) of the variance in the Rasch difficulty parameter, producing results 

that are similar to other LLTM investigations (e.g., Arendasy, 2000, 2005; Arendasy & 

Sommer, 2005, 2007; Arendasy et al., 2007; Gittler, 1990; Gittler & Arendasy, 2003). As 

such, the cognitive model specified demonstrates substantial coverage of the processes 

test takers use to obtain a correct response to the items of the measure. Thus, the analyses 

detailed in Study 1 support the assertion that experimental AIG measure demonstrates 

adequate unidimensionality and construct representation.
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CHAPTER 4: STUDY 2 

TEMPORAL STABILITY RESULTS AND DISCUSSION

Study 2 was designed to assess the temporal stability of the experimental AIG 

measure across test administrations. Although this type of analysis is not commonly 

performed on on-the-fly AIG measures, test-retest correlations are commonly used in 

classical test design to describe scale functioning. As such, this study is designed to 

provide insights into the stability o f experimental AIG measure scores over time. 

Participants

A subset of Study 1 examinees elected to participate in Study 2. The sample 

consisted o f 36 respondents (22 male and 14 female) from the United States between the 

ages of 21 and 71 (M =  37.69; SD  = 14.59). According to Field (2009), samples of this 

size (N>  30) are generally sufficient for research purposes. The majority o f the 

participants were recruited through mTurk (77.8%). The remaining 22.2% of participants 

were recruited via snowball sampling through social media. O f the sample, 66.7% 

identified as White/Caucasian, 11.1 % as African-American, 8.3% as Hispanic-American, 

5.6% as Asian-American, 2.8% as American-Indian, and 11.1% as other. Likewise, 

participant educational attainment levels were as follows: 16.7% high school diploma or 

equivalent (e.g., GED); 8.3% some college credit, no degree; 2.8%
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trade/technical/vocational training; 8.3% Associate degree; 50.0% Bachelor’s degree; 

11.1% Master’s degree; 2.8% Doctorate degree.

Procedure

Experimental AIG measure data were collected on two occasions. Participant data 

for the first administration was collected as part of Study 1. A subset o f the participants 

who completed Study 1 was invited to complete the measure for a second time. 

Approximately one week following the first administration, participants were provided 

with the link to the experimental AIG measure for a second time and asked to complete 

the scale. For each administration, total scores were calculated using the same scoring 

scheme described in Chapter 2. A total of 47 participants completed the experimental 

AIG measure twice. Due to suspected changes in the manner in which examinees 

approached the second administration, examinees who obtained score differences greater 

than 3 SEMs across administrations were removed from the test-retest sample. As a 

result, 11 people were removed from the sample to arrive at the total sample (N  = 36).

The mean number of days between administrations was 8.78 (SD = 2.38).

Results

The current analysis tests the temporal stability o f the experiential AIG measure 

by assessing the reliability o f the measure over two testing sessions. As noted by McCrae, 

Kurtz, Yamagata, and Terracciano (2011), test-retest reliability is conceptually 

independent o f internal consistency, reflecting the consistency o f scores obtained on 

separate occasions. Anastasi and Urbina (1997) state that test-retest reliability “shows the 

extent to which scores on a test can be generalized over different occasions; the higher 

the reliability, the less susceptible the scores are to random daily changes in the
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conditions of the examinee or the testing environment” (p. 92). In general, test-retest 

values of .70 or greater are considered acceptable (Andrews, Peter, & Teesson, 1994; 

Burlingame, Lambert, Reisinger, Neff, & Mosier, 1995). The administration means, 

standard deviations, and test-retest correlation are presented in Table 8. As shown, the 

correlation between two experimental AIG measure administrations is acceptable. 

Therefore, the results of this study support Hypothesis 3 and the temporal stability of the 

experimental AIG measure.

Table 8. Test-Retest Reliability fo r  the Experimental AIG Measure
First Testing Second Testing

Experimental AIG Measure M SD M SD r
Total Score 9.50 4.14 9.89 4.96 .80*

Note. N  = 36; *p < .001.

Discussion

Study 2 was designed to assess the relationship that the experimental AIG 

measure shares with itself across test administrations. The results o f this analysis indicate 

that the experimental AIG measure correlates well with itself (.80). Previous test-retest 

research using AIG measures has obtained similar results (Freund & Holling, 2011). 

However, to the researcher’s knowledge, this is the first test-retest study of an on-the-fly 

AIG measure. Rather, previous research used static items created using AIG 

methodology, mimicking traditional test-retest methods. As such, these measures are 

susceptible to the same practice effects seen in paper-and-pencil measures of cognitive 

ability. Given that each participant was administered assessments consisting of different 

items at an average interval of slightly over one week, the results obtained from the 

current analysis are promising. Although a higher test-retest value is desirable, the items



of the experimental AIG measure may contain item features (e.g., radicals and 

incidentals) that we have yet to identify or control. Likewise, modified scoring schemes 

allowing for partial credit may improve the temporal consistency o f the scores obtained 

from the measure. As such, supplemental research examining the manipulation o f the 

basic item model and score calculations may produce more robust test-retest figures.
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CHAPTER 5: STUDY 3 

SCALE VALIDATION RESULTS AND DISCUSSION

Study 3 was designed to assess the relationship between the experimental AIG 

measure and other measures o f G f  To this end, the experimental AIG measure was 

correlated with two established measures of G f Likewise, the relationship between the 

AIG measure and age, which is known to be related to Gf, was examined. Thus, the aim 

of Study 3 is to assess Hypotheses 3 concerning the criterion validity o f the experimental 

AIG measure.

Participants

A subset of Study 1 examinees elected to participate in Study 3. The sample 

consisted o f 31 respondents (12 male and 19 female) from the United States between the 

ages of 19 and 81 (M=  43.76; SD = 17.58). According to the central limit theorem, 

samples o f greater than 30 participants will approximate a normal distribution (Field,

2009). As such, the size of the sample in the current study is adequate. All participants 

were recruited via snowball sampling through social media. O f the sample, 74.1% 

identified as White/Caucasian, 6.5% as Hispanic-American, and 19.4 % as other. 

Likewise, participant educational attainment levels were as follows: 9.7% some college



101

credit, no degree; 3.2% trade/technical/vocational training; 38.7% Bachelor’s degree; 

32.2% Master’s degree; 16.1% Doctorate degree.

Procedure

Study data were collected using three measures (described below). Participant 

data on the experimental AIG measure were collected as part o f Study 1. A subset o f the 

participants who completed Study 1 was invited to complete the criterion validation 

measures. Following the completion of the experimental AIG measure, participants were 

provided with a unique identifying code and redirected to a survey containing the 

criterion validation measures hosted on Qualtrics.com. Before beginning the criterion 

validation measures, participants were instructed to enter a unique identifying code 

allowing the scores obtained from the experimental AIG measure and validation 

measures to be linked.

Measures

AIG Measure. The independent measure of G f  was assessed using the same 

experimental AIG measure used in Study 1. The researcher invited a subset o f the Study 

1 participants to participant in the current analysis after completing the 22 item 

experimental AIG measure. Total scores were based on the scoring procedure described 

in Chapter 2.

Letter Sets. Letter Sets (Set 1) (Ekstrom, French, Harman, & Dermen, 1976) 

measures an examinee’s ability to identify patterns in groups of letters and was used as a 

measure G f  Each item consists of five four-letter strings (e.g., NLIK, PLIK, QLIK, 

THIK, VLIK). The examinee’s task was to identify the rule shared by four o f the five 

strings and eliminate the string that does not conform to the rule. Seven minutes were
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provided to complete the 15-item measure. Scores range from 0-15 with higher scores 

indicating better performance. Previous research indicates that Letter Sets are relatively 

culture-free measures, independent of quantitative or verbal abilities, provide an efficient 

measure o f G f  and require only a minimal investment o f time (Duran, Powers, &

Swinton, 1987). Redick, Unsworth, Kelly, & Engle (2012) estimate the internal 

consistency o f Letter Sets to be .78. Likewise, when subjected to confirmatory factor 

analysis, the Letter Sets task loads substantially (.81) on the G f  factor, indicating 

appreciable fit to the construct (Hicks et al., 2015).

Number Series. Number Series (Thurstone & Thurstone, 1962) measures 

mathematical-inductive reasoning, and is thought to be primarily influenced by G f  (Kvist 

& Gustafsson, 2008). Each item of the measure consists o f a series of numbers (e.g., 10, 

11, 12, 13, 14). The examinee’s task is to identify the underlying mathematical 

relationship shared between terms and extrapolate the next number in the sequence. 

Examinees have 4.5 minutes to complete the 15-item measure. In a longitudinal study, 

Schaie (2005) reports that the Number Series task displays a test-retest reliability o f r = 

.77 and a seven-year test retest reliability r = .74. Likewise, Kvist and Gustafsson (2008) 

report that the Number Series task loads substantially (.81) on the G f  factor when 

subjected to confirmatory factor analysis, suggesting a strong fit to the construct.

Results

In this analysis, the correlational relationships between the experimental AIG 

measure and established measures o f G f  are presented. Since this analysis assesses the 

theoretical relationship between the experimental measure and criterion measures, it is 

necessary to correct for a lack o f reliability in the criterion (Letter Sets and Number
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Series), but not the independent measure (experimental AIG measure) (Ghiselli, 

Campbell, & Zedeck, 1981; Guilford, 1954; Guion & Highouse, 2006; Schmitt & 

Klimoski, 1991). Failure to correct for unreliability artificially weakens coefficient values 

and masks the true relationship (Salgado, Moscoso, & Anderson, 2016). The means, 

standard deviations, and corrected and uncorrected correlations for the experimental AIG 

and criterion measures are presented in Table 9. As suggested by Hopkins (2002), the 

following guidelines can be used to interpret the correlations: coefficients between .00 

and .09 are very small or trivial; coefficients between .10 and .29 are small; coefficients 

between .30 and .49 are moderate; coefficients between .50 and .69 are large; coefficients 

between .70 and .89 are very large; and coefficients between .90 and 1.00 are nearly 

perfect. Using Hopkins’s conventions, the correlations between the experimental AIG 

measure and the criterion measures in Table 9 are classified as “large.” As such, the 

results o f this analysis support Hypotheses 4a and 4b as indicated by a significant 

relationship between the experimental AIG measure and criterion measures o f Letters 

Sets and Number Series, respectively.

Table 9. Means, Standard Deviations, and Correlations Between the Experimental AIG  
Measure and Criterion Measures
Measure M SD 1 2 3

1. Experimental AIG Measure 7.58 4.48 —

2. Letter Sets 9.61 3.35 .50 (.44*) —

3. Number Series 7.71 2.87 .61 (.54**) .90 (.70***) -
Note. n = 31; Corrected correlation coefficients are outside o f parentheses;
Uncorrected correlation coefficients inside o f parentheses; *p < .05; ** p  < .01; ***p 
<.001



Previous research has also noted that G f  is related to demographic variables. For 

instance, Cattell (1943) suggests that G f  tends to decrease with age. Therefore, the scores 

of the experimental AIG measure should decrease as a function of examinee age. Using 

the participant data described in Study 1, the means, standard deviations, and corrected 

and uncorrected correlations for the experimental AIG measure and age are presented in 

Table 10. The result of this analysis supports Hypothesis 4c as indicated by a significant 

negative relationship between the experimental AIG measure and examinee age.

Table 10. Means, Standard Deviations, and Correlations Between the Experimental AIG  
Measure and Age____________________________________________________________

Measure M SD  1 2
1. Experimental AIG Measure 9.20 5.12
2. Age 36.30 12.67 -0.16** —

Note. N =  333. *p < .05; **p < 01; ***p < .001

Discussion

Study 3 was designed to assess the relationship that the experimental AIG 

measure shares with established measures o f Gf. After correcting for unreliability in the 

criterion measures, the scores obtained from the experimental AIG measure and Letter 

Sets (Ekstrom et al., 1976) produced a correlation of .50. Likewise, using the same 

correction, the scores of the experimental AIG measure and Number Series (Thurstone & 

Thurstone, 1962) produced a correlation o f .61. Using Hopkins’s (2002) evaluative 

guidelines, these correlations are described as “large.” As such, the results o f this study 

indicate that the experimental AIG measure is tapping the construct of G f  as measured by 

other established measures.
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The negative relationship between age and G f  has been noted for some time. As 

described by Cattell (1943), the nature o f G f is such that ability gains are seen through 

adolescence and then diminishes with age. Past research examining the longitudinal 

relationship between G f and perceptual speed support the generalized slowing of 

processing abilities as one ages (Schaie, 1989). Likewise, Bors and Forrin (1995) found 

that the relationship between age and G f was reduced to a nonsignificant value after 

controlling for mental speed, indicating that the decrement of G f  with age is substantially 

related to processing speed. These findings are buttressed by findings linking G f  and 

shorter reaction times (Grabner, Fink, Stipacek, Neuper, & Neubauer, 2004). The 

experimental AIG measure was designed as a brief measure o f G f  forcing examinees to 

respond quickly to items. As such, it is not surprising that in the current study, a 

significant negative relationship was found between the experimental AIG measure and 

age. This result provides limited support o f the assertion that the experimental measure is 

tapping aspects of G f

While the results obtained from the current study are promising, it should be 

noted that the measures used in this study consisted of relatively brief criterion measures 

o f G f  McGrew (2009) notes that G f  is associated with myriad of inductive and deductive 

tasks. As such, future studies should be conducted on a diverse array o f G/instruments to 

better understand the relationship that the experimental AIG measure has with G f 

However, taken together, the results of this study largely support the assertion that the 

experimental AIG measure conforms to the G f  construct, particularly as measured by 

established criterion measures.
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CHAPTER 6 

DISCUSSION

In the psychological sciences, perhaps no construct has received as much attention 

as cognitive ability. Although competing perspectives and theoretical orientations have 

emerged regarding the nature of intellectual functioning, there is overwhelming evidence 

that generalized intelligence plays a key role. Across situations g  demonstrates a 

predictable influence on academic success (Ones et al., 2006), workplace performance 

(Schmidt & Hunter, 1998), and problem solving in everyday situations (Gottfredson, 

2002). Due to the substantial relationship shared with g, G f is regarded as the backbone 

of intellect (Arendasy et al., 2008; Gustafsson, 1984, 1989,2001). Consisting of the 

ability to adapt to new situations and solve novel problems (Cattell, 1957,1971; 

Gustafsson, 1984,1989, 2001; Schneider & McGrew, 2012), G f  is best measured by non­

verbal and culture-free tasks such as number series and analogical reasoning problems 

(Sattler, 2001).

Despite a long psychometric tradition associated with the measurement of 

cognitive abilities, researchers have embraced technological advancements as a means to 

uncover what it means to be smart. For instance, computer technology has provided test 

developers with a dynamic platform to present an immense array o f unique test items
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types. Computers can display graphical figures and images o f greater complexity than 

could be conveyed through paper-and-pencil administration. Coupled with internet 

technology, assessments can be delivered to all comers of the globe in a cost effective 

and convenient manner. However, such unproctored administrations raise the issue o f test 

security, such as cheating and item sharing (Cook & Eignor, 1991), limiting the 

acceptance o f the results produced (Naglieri et al., 2004).

Historically, test developers have used multiple test forms or CAT administrations 

to combat test security issues. While these methods are able to curtail some of the threats 

to test security as compared to fixed measures (Guo, Tay, & Drasgow, 2009), these 

methods also require large pools o f continuously updated, psychometrically sound items. 

However, it has become clear that costly and inefficient methods o f traditional item 

construction by human item writers cannot keep pace with the growing demand.

Likewise, the items created by such means often lack the psychometric rigor needed to 

seed item pools. As such, researchers have begun to explore advanced methods to 

generate high-quality test items.

Rooted in cognitive and computer sciences, AIG methodology allows researchers 

to specify the structural elements that define item difficulty to produce large pools of 

items with known psychometric characteristics (Geerlings et al., 2011). The rapidly 

advancing field o f AIG methodology has gained a considerable amount of attention from 

the psychometrics community for its ability to quickly, efficiently, and cost effectively 

produce vast pools o f items based solely on an item model and a computer algorithm 

(Gierl et al., 2015). In doing so, the AIG framework solves many of the practical issues 

and threats to test security that have hindered test construction and administration.
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In the present study, a unique item type designed to measure G f  was developed 

using AIG methodology, allowing for items to be generated on-the-fly at the moment of 

item presentation. The item type was specifically designed such that the structural 

elements o f the item model could be manipulated by a computer algorithm to guide item 

construction. Using the automatic min-max approach (Arendasy & Sommer, 2010,2012) 

as a guiding force, the latent trait, item format, cognitive model, and radicals and formal 

constraints were specified and deduced by the researcher. Thus, the current research 

builds upon previous research by creating a unique measure o f G f that combines two 

highly ^-saturated measures: number series and analogical reasoning tasks. The benefit of 

using such methodology is that construct relatedness o f the measure is built directly into 

the items generated through the systematic manipulation o f the item characteristics 

thought to relate to item difficulty. Likewise, the elements that could potentially interfere 

with the cognitive processes involved with solving the items were constrained or omitted. 

Consequently, the approach taken in the current study allows for the generation of 

potentially thousands o f unique items generated on-the-fly at the moment o f presentation, 

without the need for human review before their administration. The result of this process 

was a brief 22-item experimental AIG measure o f G f  combining two highly g-saturated 

tasks.

The current research was designed to investigate the efficacy o f the experimental 

AIG measure in a sample o f adults residing in the United States. In a series o f studies, the 

construct representation, temporal stability, and criterion-relatedness of the experimental 

AIG measure were examined.
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Study 1

In Study 1, along with conventional psychometric analyses, the unidimensionality 

and construct representation of the experimental AIG measure were assessed. 

Conventional psychometric statistics indicate that the experimental AIG measure is 

internally consistent with acceptable discrimination and difficulty values. Likewise, the 

results of the Martin-Lof and Andersen likelihood ratio tests indicate that the 

experimental measure data conform well to the Rasch model, supporting its 

unidimensionality. Using an LLTM analysis (Fischer, 1973; Van den Noortgate, de 

Boeck, & Meulders, 2003) to test the efficacy of four hypothesized radicals (Consistent 

Mathematical Operations, Mixed Mathematical Operations, Duplicate Numbers, Flipped 

Relationships), the results indicated that each significantly contributed to scale difficulty. 

Therefore, the results of this analysis can be seen as a validation o f the use o f the 

hypothesized radicals, thus supporting the construct representation o f the experimental 

AIG measure (Embretson, 1983). Likewise, the results of the LLTM analysis support the 

inclusion of the radicals not only in the current cognitive model, but also in the 

generation of future AIG items as they are now calibrated. Furthermore, the hypothesized 

cognitive model accounted for a substantial portion o f the empirically derived difficulty 

parameter produced by the Rasch model. As such, the proposed model displays adequate 

content coverage as accounted for by the item radicals. Flowever, an examination o f the 

plot of empirically and LLTM derived difficulty parameters does indicate that the 

experimental AIG measure tests a limited range o f theta with items confined to the range 

of +2 to -2. As such, the inclusion o f a more diverse set o f item radicals into the 

construction o f the items may tap a wider breadth of intellectual functioning. While the
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elements that may improve the content coverage o f G f  using the present item type are 

addressed in the Limitations and Future Directions section, the results obtained in Study 1 

provide initial evidence for the construct representation of the items generated by the 

experimental AIG measure.

Study 2

In Study 2 the temporal stability o f the experimental AIG measure was assessed 

by administering the measure on two different occasions approximately one week apart. 

The results of this analysis indicate that the scores produced by the experimental AIG 

measure are consistent across testing situations. Specifically, the experimental AIG 

measure that was administered to participants on two different occasions consisted o f a 

diverse set o f items that had varying surface features and resulted in scores that were 

consistent.

Study 3

In Study 3, the criterion relationships shared between the experimental AIG 

measure and other established measures o f G f  were examined. The results o f the study 

indicate that large correlations coefficients were observed between the experimental 

measure and criterion measures. Likewise, using the total sample o f participants, a 

negative relationship was seen between the experimental AIG measure and age, a 

phenomenon that has been noted in other investigations o f the nature o f G f  (Cattell,

1943). Taken together, the scores obtained from the experimental AIG measure conform 

to the scores obtained from other criterion measures of G f  indicating that the scale is 

tapping aspects o f the construct of interest.
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Limitations and Future Directions

As in all empirical studies, certain inherent limitations are evident that should be 

addressed, but also pave the way for future research. Given the many choices that were 

made in the creation o f the experimental AIG measures using an innovative item type, 

several aspects o f item development can be clarified through additional studies to 

improve the measurement precision o f the instrument. For instance, in the current 

experimental AIG measure, constraints were placed on the size of the randomly 

generated number used to seed the base number in each term, disallowing numbers to 

obtain values below zero. Likewise, the same constraint disallowed the numbers that 

comprised the terms to obtain values greater than 30. Similarly, constraints were placed 

on the change number that was used to advance each number o f the sequence to values of 

1 to 4. Future research could relinquish such constraints and then compare the restricted 

and unrestricted models. As such, additional research is required to assess the need for 

and effectiveness of limiting seed and change values to such a limited range.

Likewise, while the LLTM analysis described in Study 1 demonstrated that the 

proposed cognitive model showed substantial content coverage, a more diverse array of 

potential radical elements is possible. For instance, the current version o f the 

experimental AIG measure limited the size o f each analogical reasoning term to three 

numbers (e.g., 3 - 5 - 7 ) .  While this choice was made in the development phase to limit 

the cognitive complexity o f the items generated, as noted by Primi (2001), increasing the 

number of elements to which examinees must attend in G f tasks is expected to influence 

item complexity. Therefore, future research on the experimental AIG measure may 

choose to include number series terms with length as few as two numbers, or increase
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series length to include four or more numbers. Such changes to the scale may result in a 

more diverse array o f psychometric item attributes, exhibiting a greater range of 

difficulties.

Additionally, the number o f answer choices in the current version o f the 

experimental AIG measure was limited to three. Similar to the length of the number 

series in each term, varying the number o f answer choice from which the participant must 

choose could lower or raise the cognitive complexity of the items generated as the 

number o f elements from which the examinee must attend changes. Taken together, these 

two modifications to the experimental AIG measure could serve as radicals in future 

research, allowing for the production o f an extensive array o f items exhibiting diverse 

psychometric properties while still conforming to the G f  construct.

The experimental AIG measure also employed a relatively simplistic dichotomous 

scoring protocol in order to utilize the LLTM analysis. However, future iterations of the 

experimental AIG measure, or similar measures, could utilize a partial-credit scoring 

model, allowing for a more diverse range of scores. That is, a more complex scoring 

algorithm may be applied to the data, allowing item scores to take on a range of values 

depending on how quickly a correct answer is obtained. As such, participants could be 

awarded partial credit for answers, better allowing their score to reflect both their speed 

and accuracy. Hypothetically, a modified scoring scheme such as this may improve the 

internal consistency, temporal stability, and criterion relatedness o f the experimental AIG 

measure. Simply stated, a modified scoring algorithm may improve the measurement 

precision of G f



Importantly, although previous research has shown the value of the data collected 

from mTurk samples (Buhrmester et al., 2011; Casler et ah, 2013), and such crowd­

sourcing methods provide psychological researchers an expedient means to obtain 

variance on a range of psychological attributes (Chandler et ah, 2014; Krupnikov & 

Levine, 2014), their use should be further scrutinized. Logically, the compensation of 

participants from such sources is tied to how quickly they are able to complete as many 

of the competing tasks (e.g. the current experimental AIG measure) as are available at the 

time. Moreover, given the rising costs associated with acquiring participants from such 

sources (e.g., Bensinger, 2015), the data obtained from these participant pools deserves 

additional critical analysis as well as potential screening methods to identify high-quality 

workers.

Likewise, in addition to both video and written instructions detailing the tasks 

involved in answering the experimental AIG measure, participants were provided an 

opportunity to practice an unlimited number o f items before beginning the actual 

measure. In addition to becoming familiar with the tasks involved in answering a given 

item type, practice may allow for a more accurate assessment o f an individual’s true 

performance on a given task. As such, given that research has consistently found racial 

gaps in the scores obtained on cognitive measures (e.g., Roth et al., 2001), limiting their 

use in organizational settings, the availability o f practice items may serve to lessen such 

gaps. Likewise, such practice items may also serve to reduce examinee apprehension 

regarding the testing situation and bolster perceptions o f fairness. Future research may 

gauge the impact o f practice on G f  scores and examinee perceptions, potentially allowing 

for broader use in selection contexts.
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However, given the results, and pending replication, it is possible that an on-the- 

fly CAT measure can be developed based on the calibrated item radicals o f the 

experimental AIG measure. Using combinations o f item radicals, the length o f the 

experimental measure may be greatly reduced, providing a more expedient estimation of 

Gf. Thus, the creation o f such an adaptive measure would serve to reduce examinee 

fatigue while addressing some o f the test security threats associated with assessments 

derived from conventional methods. Likewise, AIG methodology as seen in the current 

on-the-fly measure also provides stable and effective alternate test forms for use in 

repeated measures studies and evaluations. As such, researchers and practitioners alike 

may use these types o f scales to evaluate the impact o f a variety o f psychological 

interventions. In addition to the test construction and test security issues associated with 

traditional item construction, researchers may also use these types o f measures to assess 

performance without concerns of item memorization.

Conclusion

The field o f cognitive abilities research can be seen as an evolving science. From 

the early days o f Galtonian measures to the advances brought by computerized 

technology, the field o f psychometrics has embraced methodological and technical 

advances. The advent o f AIG methodology serves as the next step in attempting to 

provide a more complete coverage o f the construct space. The current collection of 

studies introduces an experimental AIG measure as a means to overcome the limitations 

associated with conventional item creation methods and threats to test security. In sum, 

the results of these studies highlight the benefits o f using AIG methodology to quickly, 

economically, and effectively generate high-quality on-the-fly G f  test items. The
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experimental AIG measure fulfills the goal of delivering a measure o f cognitive ability 

that is well suited for large-scale cognitive ability assessment via online administration. 

Thus, as additional research is conducted in the development and calibration o f such 

instruments, researchers and organizations alike may realize the benefit o f using AIG 

methodology to produce effective measures.
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