

THE DEVELOPMENT OF A MULTI-PURPOSE SPOKEN DIALOGUE SYSTEM

 João P. Neto Nuno J. Mamede Renato Cassaca Luís C. Oliveira
Instituto Superior Técnico / INESC ID Lisboa

L2F - Spoken Language Systems Laboratory
INESC ID Lisboa, R. Alves Redol, 9, 1000-029 Lisboa, Portugal

{Joao.Neto, Nuno.Mamede, Renato.Cassaca, Luis.Oliveira}@l2f.inesc-id.pt
http://l2f.inesc-id.pt

Abstract
In this paper we describe a multi-purpose Spoken Dialogue
System platform associated with two distinct applications as
an home intelligent environment and remote access to
information databases. These applications differ substantially
on contents and possible uses but gives us the chance to
develop a platform where we were able to represent diverse
services to be accessible by a spoken interface. The
implemented voice input/output possibilities and the service
independence level opens a wide range of possibilities for the
development of new applications using the current
components of our Spoken Dialogue System.

1. Introduction
Only recently the Spoken Dialogue Systems (SDS) started
emerging as a practical alternative for a conversational
computer interface, mainly due to the progress in the
technology of speech recognition and understanding [1]. They
are more effective than an IVR system since they allow a more
free and natural interaction and can be combined with other
input modalities and visual output.

In the last few years in our lab we have been building different
SDS tailored to very specific applications. We started by
developing an application for voiced-based interactive control
of a set of home appliances as lights, air conditioning and hi-
fi, creating an intelligent home environment. Later on, this
application was extended to also include spoken access to an
e-mail server, which enabled a user to navigate through his/her
own messages using voice and also listen to them. In parallel,
other applications were developed in quite different domains
such as the remote access to databases with weather informa-
tion [2], cinema schedules and bus trip information [3].

Despite the differences between all these applications, namely
in terms of the type of inputs, our systems were built using an
architecture with a set of common features. This experience
led us to develop a multi-purpose SDS platform that is
actually being used as a show case for different applications
and demonstrations by our group.

This platform makes use of a generic Audio Manager where
different pairs of input/output devices can be plugged-in:
table, head mounted or wireless microphones, standard audio
speakers or headphones, fixed or GSM telephones or PDA
devices.

On the other end of the platform, a generic device
representation was created using an XML description to be
used by the Service Manager. This description can be used to
represent devices of very different types like a light control

module or an e-mail messaging service.

Hopefully, the generalization level at the input of the system
will make these services available to anyone, anywhere at
anytime.

In the future, we plan to incorporate additional modalities and
to port the system or, at least, part of it to hand held devices,
by creating small footprint versions of the different modules.

This paper is divided into five sections. The next section
describes the structure of the overall platform. Its central
block, the spoken dialogue system itself, is described in detail
in Section 3. The following section is a brief discussion on the
advantages of device independency achieved by this
architecture, and in Section 5 some concluding remarks.

2. System Structure
This section describes the overall structure of our platform
which is divided into 5 main blocks: Input/Output, Audio
Manager, Spoken Dialogue System, Service Manager and
Services. The next subsections describe each block.

2.1. Input / Output
One of our main objectives was to create a platform available
to anyone, anywhere at anytime. To accomplish this goal we
need different input/output facilities, adaptable to the different
possible uses of the system. In our system we have available a
set of different audio interfaces:

• head or table mounted microphone with speakers;
• lapel mounted wireless microphone with speakers;
• fixed telephone;
• GSM telephone;
• PDA using the built in mic and speakers;
• Bluetooth mic to a direct access to the system or

through GSM telephone or PDA.

In the near future, we plan to incorporate also VoIP facilities
in order to make the system available from the Web. These
different accessibilities could imply complete different uses of
the system according to the specific application.

2.2. Audio Manager
Figure 1 shows the positioning of the Audio Manager as an
interface between the input/output devices and the Spoken
Dialogue System itself.

The Audio Manager connects the different input/output
devices with the ASR and TTS in the Spoken Dialogue
System. With this layer we create an independency between

the specific devices and the processing that will be done on the
speech signal.

 M
A a
u n
d a
 i g
o e
 r

Spoken
Dialogue
System

Figure 1: Functional diagram of input/output connections to

the SDS through the Audio Manager.

2.3. Spoken Dialogue System (SDS)
Figure 2 presents a general block diagram of our
implementation of the SDS.

S M
 e a
 r n
 v a
 i g
 c e
 e r

 M
A a
u n
d a
 i g
o e
 r

 SDS

Hub

Dixi+
(TTS)

Audimus

(ASR)

Language
Interpretation

STAR
(Dialogue
Manager)

Language
Generation

Email2voice
mail ...

GUI

Figure 2: Block diagram of SDS.

This system connects the Audio Manager, from where it
receives the speech input and generates speech output, to the
Service Manager, where the requests from the user are
executed.

This system is based on a hub framework similar to the
Galaxy II architecture. The speech input coming from the
Audio Manager is passed to the Audimus [4] recognizer,
whose output is transferred to the Language Interpretation
module, responsible for transforming the recognized text into
speech acts [5]. The speech acts are interpreted in the STAR
[3] Dialogue Manager. When the dialogue manager completes
filling up all the necessary information about the requested
service, it sends a demand to the Service Manager, which is
responsible for the service execution. If the service outputs a
message to the user, that information is dully formatted in the
Language Generation block and synthesized through the
DIXI+ [6] text-to-speech system. The generated audio is then
played to the user, using the Audio Manager and the active
output device. The individual components of the SDS are
described in detail in section 3.

2.4. Service Manager (SM)
This block establish the connection between the SDS and the
services and/or devices representing the specific applications,
as depicted in Figure 3.

 S M
 e a
 r n
 v a
 i g

 c e
e r

Spoken
Dialogue
System

X10

Figure 3: View of the Service Manager as the interface

between the SDS and the real services.

Since we want to use the same SDS across different
applications we need to create a representation level that
guarantees the independency of the SDS relative to the
services. This question is discussed in more detail in section 4.

2.5. Services
The flexibility of the multi-purpose platform can be illustrated
by its application to two significantly different types of
service: in a home environment, and on database retrieval. In
the first, based on X10 and IRDA protocols, we control a
wide range of home devices, such as lights, air conditioning,
hi-fi, TV, etc.. We can extend the application to include any
infra-red controllable device or whose control functions may
be programmed by the X10 protocol.

The second type of application, information retrieval via voice
from remote databases, has been tested with weather
information, cinema schedules and bus trip information. This
type of application can easily be extended to other different
domains.

3. Spoken Dialogue System (SDS)
In Figure 2, we sketch the block diagram of our SDS
implementation. In this section we will describe in detail each
block.

3.1. Audimus recognizer
Audimus [4] is a hybrid speech recognizer that combines the
temporal modeling capabilities of Hidden Markov Models
(HMMs) with the pattern discriminative classification
capabilities of multilayer perceptrons (MLPs). This same
recognizer is being used for different complexity tasks based
on a common structure but with different components.

The acoustic models are dependent on the input facilities since
we are using separated models for telephone speech or for
microphone speech. The same occurs with the lexical and the
language models which are dependent on the specific
application domain. Since we can have several subsequent
uses of the system, we built a pool of components for each

appropriate model that Audimus makes active according to the
needs. These models can be associated to single domain or
multiple domains.

The domains where we are applying our system requires
different capabilities from the ASR. There are simple actions,
as turn on the lights, but there are domains, as the e-mail,
where is necessary a large vocabulary and language model and
adapted acoustic models.

Having different components implies the availability of
material (spoken and/or written) collected for that domain.
Audimus is based on the same type of context-independent
acoustic models of phone-like units, independently of the task
complexity. That is, even simple tasks that could be addressed
using whole word models are handled via generic sub-word
models.

3.2. Language Interpretation
This module is responsible for extracting the intentions of the
user’s utterances. The text version of the user’s utterance is
sent through a process pipeline. The module first lemmatises
the text using an external dictionary. The resulting text is then
passed to a post-morphological processor that detects and
forms special groups according to recomposition and
correspondence rules. The text is sent to a syntactic analyser
that, using a surface grammar, groups the phrase constituents.
The last process, the Speech Act Finder (SAF) extracts the
speech acts candidate list, which will be sent as the output of
the Language Interpretation module. SAF uses the services of
the Service Manager to assign a meaning to each object
referred to in speech acts.

We are only recognizing “forward-looking acts” (assertions,
re-assertions, offer, commit, opening, close), and “backward-
looking acts” (accept, accept part, reject-part, reject, signal-
non-understanding, signal-understanding, acknowledge,
repeat-rephrase, completion, correct-misspeaking). As in [7]
we use decision trees to identify the speech acts.

The structure of the speech acts handled by our system is
described in Table 1.

3.3 STAR Dialogue Manager
Our dialogue manager is able to handle multiple domains
simultaneously, and consists of three main modules:
Interpretation Manager (IM), Discourse Context (DC) and
Behavioural Agent (BA).

We use frames to represent both the domain and the
information collected during the interaction with the users [3].
Each domain handled by the dialogue system is internally
represented by a frame, which is composed by slots and rules.
Slots define domain data relationships, and rules define the
system’s behaviour. Rules are composed by operators (logical,
conditional, and relational) and by functions.

To keep the filling of the frame slots consistent, it is necessary
to indicate the set of values with which a slot can be
instantiated. To avoid invalid combination of values, we have
defined a meta-language to express the constraints that must
be satisfied. So each frame definition includes a set of
RECOGNITION_RULES, used to specify the set of values
that each slot may hold; a set of VALIDATION_RULES, to

Table 1: Speech Act Structure.

Type The speech act type

Subject The author of the utterance

Object
The objects referred within the
speech act, and their role on the
domain

Start The objects that may identify a
departure place (optional)

Destination The objects that may identify an
arrival place (optional)

Start Time The objects that may identify the
starting time of an action (optional)

End Time The objects that may identify the
ending time of an action (optional)

Action The action implicitly associated
with the speech act (optional)

Quantity
The object quantifiers or the number
of times an action must be executed
(optional)

Optional The objects that may identify the
start time of an action (optional)

express a set of domain restrictions, i.e., invalid combination
of slot values; and CLASSIFICATION_RULES, used to
specify the actions that must be performed when some
conditions are satisfied, i.e., the valid combinations of values.
This approach has the advantage of making the dialogue
control independent of the domain.

The IM receives a set of speech acts and generates the
correspondent interpretations and discourse obligations.
Interpretations are frame instantiations that represent possible
combinations of speech acts and the meaning associated to
each object it contains. To select the most promising
interpretation two scores are computed The recognition score
to evaluate the rule requirements already accomplished, and
the answer score, a measure of the consistency of the data
already provided by the user. A more detailed description of
this process can be found in [8].

The DC manages all knowledge about the discourse, including
the discourse stack, turn-taking information, and discourse
obligations.

The BA enables the system to be mixed-initiative: regardless
of what the user says, the BA has its own priorities and
intentions. When a new speech act includes objects belonging
to a domain that is not being considered, the BA assumes the
user wants to introduce a new dialog topic: the old topic is put
on hold, and priority is given to new topic. Whenever the
system recognizes that the user is changing domains, it first
verifies if some previous conversation has already taken place.

3.4. Language Generation
This module coordinates the generation activities, having to
find the best way to express what the Behavioral Agent has
decided. For the moment, we are using pre-defined templates
with blanks to produce a natural answer from prewritten
questions and response templates.

In this module we also plug in an email-to-voicemail module
where we were able to enrich an email message through a set
of tags.

3.5. DIXI+ text-to-speech
Our TTS module (DIXI+) [6] is a concatenative-based
synthesizer, based on the Festival framework. This framework
supports several voices and two different types of unit - fixed
length units (such as diphones), and variable length units. This
latter data-driven approach can be fine tuned to a limited
domain of application, by adequate design of the corpus.

This is the case of weather information, since we have a
limited number of possibilities in terms of information to
supply to the user, but completely different from an e-mail,
where the possibilities of message subjects are very large.

A significant effort has been recently devoted to the
development of a small footprint version of DIXI+, based on
Flite.

3.6. Graphic User Interface (GUI)
The GUI serves as an administration tool to the system. It can
be used to monitorize all the messages in the hub and extract a
log with all the necessary information to evaluate the behavior
of the system and of its sub-blocks. It can also be used to
install new services and control existing ones.

4. Device independency
We designed the Service Manager (SM) as the interface
between the spoken dialogue platform and a set of
heterogeneous devices. As we are working with different types
of devices there is a need for a representation that gives us a
uniform access to all of them.

The SM is the only block with a direct interaction with the
devices. The other blocks on the SDS only have access to a
description of the set of available services. The SM is
responsible for the mapping between the services and the
corresponding device.

The SM was built from three main blocks:

• Connection to the hub to receive the requests and
send the answers to the SDS.

• A processing stage for the management of the
description structure associated to the devices
(processing of queries to the device functionalities
and the generation of the most probable hypothesis
to satisfy the service).

• Management of the communication with each of the
devices routing the requests and answers.

The representation of the services available from each device
is based on an XML description, according to a generic DTD,
mapping the device functions to be executed for each service.
DOM trees, resulting from the XML processing, are used for
the internal representation of each device. A device has more
than one state associated, and at a given instant it is only
possible to have access to the hierarchy of services under the
actual state of the device. The device is responsible to update
its state on the SM. When the device executes a service that
results in a new state it should inform the SM of that new

state. Based on that update a new set of services corresponding
to that new state may become available.

The addition of a new service is very simple, being only
necessary the XML description of services and the piece of
code to be executed, a kind of device driver. The installation
of the service on the system occurs through administration
facilities available from the GUI.

5. Concluding remarks
The work reported in this paper results from an integration of
several components being developed in our lab. This system is
the result of a collaborative effort between people working in
the different technologies, and it became a common platform
where the different components can be associated to produce
multiple applications.

This system is currently being used in our “intelligent”
demonstration room where a set of appliances and services can
be controlled by voice. It is also being used on a
demonstration system, accessible by telephone, where people
can ask for weather conditions, stock hold information, bus
trip information and cinema schedules.

We expect to conduct some formal evaluation of our system in
order to quantify the user satisfaction.

Acknowledgements
This work was partially funded by FCT project
POSI/33846/PLP/2000. INESC ID Lisboa had support
from the POSI Program of the "Quadro Comunitário de
Apoio III".

References
[1] M. McTear, "Spoken Dialogue Technology: Enabling the

Conversational User Interface", in ACM Computing
Surveys, pp. 1-85, 2002.

[2] P. Cardoso, L. Flores, T. Langlois and J. Neto, "Meteo: a
telephone-based Portuguese conversation system in
Weather domain", in Proc. PORTAL2002, Portugal, 2002.

[3] P. Madeira, M. Mourão, N. Mamede, "STAR Frames - A
step ahead in the design of conversational systems
capable of handling multiple domains", in Proc. ICEIS,
Angers, France, 2003.

[4] J. Neto, C. Martins, H. Meinedo and L. Almeida,
"AUDIMUS - Sistema de reconhecimento de fala contínua
para o Português Europeu", in Proc. PROPOR IV, Évora,
Portugal, 1999.

[5] J. Allen, G. Ferguson, A. Stent, "An architecture for more
realistic conversational systems", in Proc. of Intelligent
User Interfaces (IUI-01), Santa Fe, USA, 2001.

[6] S. Paulo and L. Oliveira, "Multilevel Annotation Of
Speech Signals Using Weighted Finite State Transducers",
in Proc. 2002 IEEE Workshop on Speech Synthesis, Santa
Monica, USA, 2002.

[7] M.Poesio and D.Traum, "Towards an axiomatization of
dialogue acts", in Proc. of TWENDIAL, Twente, 1998.

[8] M. Mourão, P. Madeira, N. Mamede, "Interpretations and
Discourse Obligations in a Dialog System", in Proc.
Propor’2003, Faro, Portugal, 2003.

