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Abstract

Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with an unknown etiology. Early
diagnosis and intervention are key to improving outcomes for patients with ASD. Structural magnetic resonance imaging (sMRI)
has been widely used in clinics to facilitate the diagnosis of brain diseases such as brain tumors. However, sMRI is less frequently
used to investigate neurological and psychiatric disorders, such as ASD, owing to the subtle, if any, anatomical changes of the
brain.

Objective: This study aimed to investigate the possibility of identifying structural patterns in the brain of patients with ASD as
potential biomarkers in the diagnosis and evaluation of ASD in clinics.

Methods: We developed a novel 2-level histogram-based morphometry (HBM) classification framework in which an algorithm
based on a 3D version of the histogram of oriented gradients (HOG) was used to extract features from sMRI data. We applied
this framework to distinguish patients with ASD from healthy controls using 4 datasets from the second edition of the Autism
Brain Imaging Data Exchange, including the ETH Zürich (ETH), NYU Langone Medical Center: Sample 1, Oregon Health and
Science University, and Stanford University (SU) sites. We used a stratified 10-fold cross-validation method to evaluate the
model performance, and we applied the Naive Bayes approach to identify the predictive ASD-related brain regions based on
classification contributions of each HOG feature.
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Results: On the basis of the 3D HOG feature extraction method, our proposed HBM framework achieved an area under the
curve (AUC) of >0.75 in each dataset, with the highest AUC of 0.849 in the ETH site. We compared the 3D HOG algorithm with
the original 2D HOG algorithm, which showed an accuracy improvement of >4% in each dataset, with the highest improvement
of 14% (6/42) in the SU site. A comparison of the 3D HOG algorithm with the scale-invariant feature transform algorithm showed
an AUC improvement of >18% in each dataset. Furthermore, we identified ASD-related brain regions based on the sMRI images.
Some of these regions (eg, frontal gyrus, temporal gyrus, cingulate gyrus, postcentral gyrus, precuneus, caudate, and hippocampus)
are known to be implicated in ASD in prior neuroimaging literature. We also identified less well-known regions that may play
unrecognized roles in ASD and be worth further investigation.

Conclusions: Our research suggested that it is possible to identify neuroimaging biomarkers that can distinguish patients with
ASD from healthy controls based on the more cost-effective sMRI images of the brain. We also demonstrated the potential of
applying data-driven artificial intelligence technology in the clinical setting of neurological and psychiatric disorders, which
usually harbor subtle anatomical changes in the brain that are often invisible to the human eye.

(JMIR Med Inform 2020;8(5):e15767) doi: 10.2196/15767
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Introduction

Background

Autism spectrum disorder (ASD) is a heterogeneous disorder
characterized by social impairments, communicative deficits,
and restricted, repetitive behaviors. According to the 2018
Centers for Disease Control and Prevention report on autism,
approximately 1% (1/59) of US children aged 8 years have been
diagnosed with ASD, which represents an increase compared
with previous reports [1]. The diagnosis and intervention costs
of ASD are growing in concert with the increasing prevalence.
A recent study predicted that treatment costs will rise to US
$461 billion in 2025 if the prevalence rate of ASD holds steady
at present rates and that costs will rise to US $1 trillion by 2025
if the prevalence rate of ASD continues to steeply rise as seen
over the last decade [1]. However, concerns have been raised
about the accuracy and validity of the reported increase in ASD
prevalence, as many other neurobehavioral conditions, as well
as variations in developmentally normal behaviors, share
common features with ASD and may be misdiagnosed as ASD
[2]. Inappropriate ASD diagnoses, and therefore potentially
inappropriate applications of ASD-related therapies, stand to
increase economic burden. Conversely, deferred or missed ASD
diagnosis in children meeting the diagnostic criteria, which
appears to be a particular problem for certain sociodemographic
[3] and clinical groups [4], lead to a delay in receipt of services
and place children at risk for worse outcomes. Therefore,
appropriate and early ASD diagnosis and intervention is of
crucial importance to improve prognostic outcomes and reduce
economic costs.

ASD is now diagnosed mainly by clinical behavior-based
approaches, which incorporate standardized tools such as the
Autism Diagnostic Observation Scale and Autism Diagnostic
Interview-Revised scale. However, this approach is subjective
and time consuming [5]. Although it has been reported that
ASD has a strong genetic basis, genetic markers are not currently
used in the diagnostic process as ASD etiology is complex and
the full complement of autism-associated genes is unclear. As
magnetic resonance imaging (MRI) is a widely used noninvasive

examination method to detect brain abnormalities in clinical
practice, there is much interest in its potential to improve or
refine the ASD diagnostic process. In clinics, structural MRI
(sMRI) has been successfully used to facilitate the diagnosis or
treatment of space-occupying lesions such as tumors [6,7].
However, the structural changes of the brain in neurological
and psychiatric disorders are not as salient as tumors; thus, it is
difficult for clinicians to discover the subtle anatomical changes
in the brain. Many studies have focused on finding the functional
connectivity abnormalities in the brain using functional MRI
(fMRI). Indeed, investigators have explored the use of fMRI to
identify ASD. For example, Guo et al [8] developed a deep
neural network model using the functional connectivities
between brain regions based on the resting-state fMRI. Price et
al [9] combined dynamic functional connectivity features in a
multinetwork algorithm to classify childhood autism. Huang et
al [10] fused multiple functional connectivity networks for ASD
diagnosis. However, although fMRI can image cerebral
hemodynamics with high spatial resolution, the high cost may
limit its potential as a widely used ASD diagnostic tool in clinics
[11]. More importantly, it is difficult to interpret the functional
connectivity-based results owing to the impact of the underlying
brain structure, cognitive state, and subject motion during data
acquisition [12]. Furthermore, a recent study suggested that the
statistical software used to analyze the raw data from fMRIs
might be significantly flawed [13].

Compared with fMRI, sMRI has less data requirements, is more
commonly used in clinical settings, and is more amenable to
populations for whom compliance is a challenge as it can be
performed under sedation. Many ASD sMRI studies have used
morphometric features, such as brain surface area, volume, and
thickness, to distinguish ASD from control images [14,15]. For
example, a recent study of infants at high risk for ASD found
hyperexpansion of the cortical surface area and expanded brain
volumes in those later diagnosed with ASD [16]. In addition,
some studies have made strides toward elucidating ASD brain
morphology. Specifically, Bigler et al [17] observed differences
in the frontal lobe, parietal lobe, temporal lobe, limbic system,
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and cerebellum structures for patients with ASD versus healthy
controls.

Related Work

Although sMRI images can provide brain anatomical change
information, errors in interpretation can occur owing to difficulty
in verifying these subtle changes solely by visual examination.
In addition, as there is abundant genetic, phenotypic, and clinical
heterogeneity among individuals with ASD, these morphometric
features alone are insufficient for diagnosing ASD in clinical
settings given that each individual feature is unlikely to be
present in the full range of individuals meeting the ASD criteria.
To address such barriers, in recent years, machine learning
algorithms have been developed to identify underlying brain
change patterns in other neurobehavioral conditions marked by
similar degrees of heterogeneity. When applying machine
learning algorithms to sMRI data, image features representing
the sMRI image need to be extracted first. Some of these
features are adapted from traditional morphology approaches,
while others are developed specifically for machine learning
approaches. The traditional morphometric features can be
classified into region of interest (ROI), voxel-based
morphometry (VBM) [18], surface-based morphometry (SBM)
[19], deformation-based morphometry (DBM) [20], and
tensor-based morphometry (TBM) [21,22]. Unfortunately, the
ROI, VBM, SBM, DBM, and TBM approaches all have
significant limitations. Owing to requiring manual or
semimanual delineation of brain regions, the ROI process may
be labor intensive and time consuming [23]. The performance
of VBM, DBM, and TBM methods is highly sensitive to
registration accuracy, which is difficult to achieve [24], and is
reliant on deformation registration, which may cause
over-alignment problems [25]. The SBM method is unable to
admit subcortical structures, such as the amygdala and basal
ganglia, which may play crucial roles in ASD [26]. To address
the limitation of traditional image features discussed earlier,
local image features developed specifically for machine learning
approaches, such as scale-invariant feature transform (SIFT)
[27], do not depend on precise deformation registration. SIFT
is assumed to be invariant to image translation, scaling, and
rotation and robust to local geometric distortion, which has
already been applied to analyze brain images [25,28-31].
However, SIFT itself has several shortcomings. Although SIFT
can improve classification accuracy compared with traditional
morphometry features, it uses an expert-designed approach to
identify visually salient changes that may not relate to the
disease. Moreover, SIFT can only describe the characteristics
of a limited number of key points and the regions around the
key points. However, given that abnormal brain regions in
neurodevelopmental disorders/diseases may occur in any
position and may be very small, they may be overlooked by the
SIFT modality.

Given the above limitations in traditional image features as well
as SIFT, another prominent local image feature called histogram
of oriented gradients (HOG) [32] has been widely used in
computer vision applications (eg, human detection [33,34],
vehicle classification [35,36], traffic sign detection [37], pose
estimation [38], and general image classification [39]). As HOG
can describe the distribution of intensity gradients or edge

directions well, it is useful for characterizing local object
appearance and shape [32]. In addition, as HOG features can
filter most of the nonessential information (eg, a constant
colored background) while providing an output of multiple
bidimensional histograms for a brain region to reflect the
changes within a brain region, HOG features are good at
reflecting small or subtle anomalies that may be ignored by
SIFT. In prior studies, HOG has generally been used to describe
2D images. Although 2D HOG can be applied to a 3D image,
the 3D image needs to be sliced into a series of 2D images along
a certain orientation, which can be problematic as changes
induced by the disease may be evident only at specific
orientations. Fortunately, a recently developed modality called
3D HOG can be analyzed directly inside the 3D volumetric
image, which allows image gradient information for the
abnormal region to be kept in a more discriminative 3D form
and therefore improves classification performance.

Objectives

To address the unique challenges inherent in the neuroimaging
studies of ASD, we therefore proposed a novel 2-level
classification framework called histogram-based morphometry
(HBM), which is based on the 3D HOG feature extraction
method. Instead of processing the whole brain image, we divided
the entire brain into a few local regions with a given size, which
is the foundation of our 2-level hierarchical framework. The
first-level classifier is designed for the local regions related to
diseased or healthy status, while the second-level classifier or
final classifier is for the entire brain that is represented with the
concatenation of each region’s status. The 3D HOG is computed
not for the entire brain but for each local brain region. By using
the HBM classification framework, we can classify individuals
as patients with ASD or healthy controls. Moreover, the
classification contribution of each local HOG feature can be
calculated and those features contributing most to the disease
classification result can be used to distinguish the predictive
brain regions associated with ASD.

This paper has presented the development of the 3D HOG and
HBM methods, as well as their application to ASD datasets. In
the Methods section, we have described the data source, data
preprocessing, 3D HOG feature design, 2-level HBM framework
development, and the experimental design. In the Results
section, we have discussed the experiment results derived from
the analysis of data from the second edition of the Autism Brain
Imaging Data Exchange (ABIDE II) [40]. We have concluded
by contextualizing our results and discussing the outlook for
future ASD neuroimaging research.

Methods

Data Acquisition and Preprocessing

In this study, we used sMRI data from ABIDE II, which includes
19 datasets collected at 18 sites (2 datasets were collected at the
same site) and 1114 subjects (521 patients with ASD and 593
healthy controls). For each subject, the ABIDE II datasets
consist of resting-state fMRI images, T1-weighted sMRI images,
and phenotypic information. Some sites also include diffusion
tensor imaging data that may be used to investigate the structural
abnormalities of white matter. As an enhancement to the first
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edition of the Autism Brain Imaging Data Exchange (ABIDE
I) datasets, ABIDE II provides greater phenotypic
characterization than ABIDE I data to better address the 2 key
sources of heterogeneity: psychiatric co-occurring illness and
female sample percentage [40]. The inclusion and diagnostic
criteria for patients with ASD and healthy controls are different
between each site, and details of the criteria are described in
the study by Martino et al [40]. From the 17 datasets, we chose
4 datasets collected from 4 sites, including ETH Zürich (ETH),
NYU Langone Medical Center: Sample 1 (NYU), Oregon Health
and Science University (OHSU), and Stanford University (SU).
Data from a total of 119 patients with ASD and 131 healthy
controls from across these 4 sites were used for these analyses.
Table 1 lists the sample overview for each site. Age is an
important factor that may affect different characteristics, for
example, cortical thickness, of the brain in ASD. To evaluate
the applicability of our proposed HBM method to different age

ranges, we chose the 4 datasets that represent distinct age
distributions among all the datasets. Specifically, to reduce the
impact of multisite data heterogeneity, we first used single-site
data for model classification performance evaluation. Then, we
combined all the data from the 4 datasets to evaluate model
capability to deal with data heterogeneity.

As the ABIDE II data are original Digital Imaging and
Communications in Medicine (DICOM) images, in the first step
of data preprocessing, we used the MRIcron tool to convert
DICOM images to NifTI images. Then, data processing was
performed using SPM12 (UCL Queen Square Institute of
Neurology, United Kingdom), which is a third-party package
for MATLAB (MathWorks, Natick, Massachusetts, United
States). All converted structural images were segmented and
normalized to an Montreal Neurological Institute (MNI) standard
space.

Table 1. Overview of participants in the 4 training datasets.

Age range (years)Age (years), mean (SD)Healthy controls, n (male/female)ASDa, n (male/female)DatasetIndex

14-3122.7 (4.4)24 (24/0)13 (13/0)ETHb1

5.2-34.89.8 (4.9)30 (28/2)48 (43/5)NYUc2

7-1510.9 (2.0)56 (27/29)37 (30/7)OHSUd3

8-1311.1 (1.2)21 (19/2)21 (19/2)SUe4

5.2-34.812.4 (5.6)131 (98/33)119 (105/14)Mixedf5

aASD: autism spectrum disorder.
bETH: ETH Zürich.
cNYU: NYU Langone Medical Center: Sample 1.
dOHSU: Oregon Health and Science University.
eSU: Stanford University.
fMixed: dataset combining data from all the 4 datasets.

Developing the 3D Histogram of Oriented Gradients

Feature

In the process of extending the concept of HOG from a 2D space
to 3D space, we needed to define the methods for calculating
the image gradient (including direction and magnitude) and
partitioning the gradient directions into a few orientation bins
(or channels) in a 3D space. The gradient directions in the 3D
space were represented by using 2 angles, theta and phi, as
shown in Figure 1. Then, the gradient of each image voxel is
calculated based on these 2 angles (see Multimedia Appendix
1 for more details).

Similar to 2D HOG, the gradient direction in 3D HOG also
needed to be partitioned into several orientation bins. The
difference lies in that the partitions in 2D HOG are spread over
360° in just one 2D plane, while the partitions in 3D HOG are
spread over the entire volumetric space. There are many partition
schemes to divide the orientation space. We have introduced
the 2 partition schemes as follows.

The first scheme is to allocate the orientation bins in horizontal
and vertical directions with equal-space angle ranges, such as
the 2D HOG, and each bounded area between the 2 directions

is considered as one 3D partition. The partition results are shown
in Figure 2.

When every partition area is projected onto the sphere surface,
they correspond to the surface area between the latitude and
longitude lines. For this partition scheme, the number of
orientation bins, which is equal to the dimension number of the
3D HOG features, is calculated using the following equation
in:

where NDIR3 is the number of directions in 3D space and NDIR2

is the number of directions in 2D space.

In Figure 2, part (a), for the partitions near the poles, a slight
change in the angles will result in a different orientation bin
assignment. This causes the features to be overly sensitive to
the angle differences in some but not all directions. To avoid
potential performance loss because of this phenomenon, we
proposed an additional partition scheme, in which the partitions
adjacent to the pole points are combined into 1 partition as
shown in Figure 2, part (b).
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The number of orientation bins for this second partition scheme,
which merges the direction areas near the pole into 1 direction,
is calculated using the equation in:

For the convenience of calculation, the value of NDIR2 is

constrained to be an even number. For example, if NDIR2 is set

to 8, NDIR3 will be 32 as calculated in the first scheme while in

the second scheme NDIR3 will be 26.

Figure 1. Two angles related to gradient direction calculation in 3D space.

Figure 2. Two partition schemes of the orientation bins in 3D space.

Overall Classification Framework

In this paper, we proposed a 2-level HBM classification
framework based on 3D HOG features to differentiate between
patients with ASD and healthy controls. Each brain image was
firstly divided into a densely overlapping grid of regional cells,
and the 3D HOG feature of each cell was computed. On the
basis of the brain division, we developed a first-level
classification algorithm to predict whether a given cell provides
strong evidence to support a final disease/health classification.

As there is no label for each cell, a clustering algorithm was
used to first find the labels for each cell (the details have been
discussed in the following sections). Then, a second-level
classification was used to make a final classification based on
all the evidence from each cell. Figure 3 shows the 2-level
classification framework using a 2D image example for
convenient illustration. The bottom-right part of the figure
represents the testing process, while the remaining part shows
the training process.
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Figure 3. Overview of the proposed histogram-based morphometry (HBM) classification framework.

Algorithm Steps

Brain Image Division and Local Feature Extraction

Before the feature extraction step, we first divided the entire
3D MRI brain image into regional cells in step 1. This brain
division method can be applied not only to 3D MRI volumetric
images, in which a regional cell equates to a cube, but to 2D
MRI slices, in which a regional cell equates to a square. In our
algorithm, we computed the HOG feature for each cell but did
not collect it into a combined feature vector used to represent
the entire image. In the standard HOG usage, all the local HOG
features were combined into a high-dimensional feature vector
used as input to the classifier [32]. In our hierarchical
classification framework, these local features were transformed
into high-level forms that can reduce the dimensionality of the
features input to the final classifier, which has the benefit of
reducing overfitting in the relatively small-sized datasets that
are often available in medical studies. Furthermore, using local
features is helpful to identify the ASD-related brain regions that
have large feature contributions to the disease classification
result. In image division, cell size and cell overlapping
percentage are 2 important parameters that will affect the
classification accuracy. Therefore, different brain image division
schemes should be evaluated to determine which has the best
classification performance.

In step 2, we extracted local HOG features using 2 different
gradient direction partition schemes: HOG-32 and HOG-26, as

shown in parts (a) and (b) in Figure 2, respectively. A
comparison between these 2 schemes is also necessary to
determine which has superior performance. Of note, better
classification performance using the 3D HOG algorithm usually
results from MRI scans with high spatial resolution, while the
performance of the 3D HOG algorithm may degrade if the MRI
scan has a low spatial resolution. In this case, an alternative 2D
HOG algorithm may be used.

Local Feature Clustering and Regional Classifier

Training

In step 3, we worked on each cell independently. For each cell,
the goal was to find a binary representation to indicate whether
it is related to the diseased status or healthy status. However,
we did not have a class label for each cell. Although the class
label of the whole brain is known in training samples, it does
not mean that each cell should have the same class label as the
whole brain. Even in a diseased subject, there may be a lot of
cells in the brain that look perfectly normal. Owing to the
unknown class label for each cell, we applied a clustering
algorithm to the training samples to get the class labels of
individual cells. As the distribution of clusters is unknown, we
tried 2 different clustering algorithms, such as K-means and
hierarchical clustering, that are suitable for different cluster
distributions. Although the clustering algorithm works well
during the training stage, we proposed to use a classification
algorithm to generate the binary representation during the testing
stage. The reason we used classification instead of clustering
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during the testing stage was because we did not need to keep
all the training features while using the approach to make a
prediction, which makes the method more scalable and practical.
Thus, based on the clustering labels of cells in training samples,
we built regional classifiers in step 4 for predicting the cell
status of test samples. When the K-means algorithm is used for
clustering, the resulting clusters usually have a spherical shape
in feature space and the centroids are good exemplars for the
corresponding clusters. Therefore, the nearest centroid
classification method was used in this case. If the hierarchical
algorithm is used for clustering, the centroids of the clusters
may not be representative of the cluster, and therefore, the
nearest centroid classifier is not appropriate. In this case, the
support vector machine (SVM) can be used to build regional
classifiers for testing samples.

Compact Feature Representation and Final Classifier

Training

The labeled local features only reflect the status of brain regions
and not the whole picture of the characteristics of the brain.
Therefore, in step 5, we concatenated each local feature status
of 1 brain image into a new high-level compact feature
representation of that image. For model training, we constructed
the high-level feature by directly concatenating the clustering
results obtained in step 4. Of note, the clustering result of each
feature was concatenated according to a certain sequence, for
example, from top-left to bottom-right on the grid. Such a
sequence is actually determined by the HOG feature extraction
algorithm, and the same sequence is also used when
concatenating the binary status of HOG features, thus ensuring
the unified meaning of feature representation for all samples.
On the basis of the new feature representation and diagnosis
labels of the training data, we trained the final classifier using
the SVM classification method in step 6. SVM is one of the
most widely used classifiers that can perform not only linear
classification but also nonlinear classification [41]. It has already
been applied to various diseases and neurodevelopmental
disorders, for example, Parkinson disease [42], Alzheimer
disease [43,44], ASD [45,46], attention-deficit/hyperactivity
disorder [47], and schizophrenia [48].

Process for the Test Sample Classification

The abovementioned steps describe the whole training process
of obtaining the 2-level classification models including the
regional classifier and the final classifier. We could then apply
these classifiers to unknown test samples. First, 3D local HOG
features of the cells in a test brain image are extracted with the
same method as the training process. Then the regional
classifiers, such as the nearest centroid, are used to classify each
local HOG feature into disease-related or healthy-related labels.
These labels are then concatenated to generate the compact
representation of that test image. Finally, the final classifier is
applied to predict whether the test sample is a patient with ASD
using the compact feature vector as the input to the classification
model.

Feature Contribution Calculation

Besides using the HBM framework to make a classification of
the test sample, we could also investigate each cell’s feature

contribution to the algorithm’s prediction that each participant
is a patient with ASD versus a healthy control. A higher value
of the feature contribution indicates more likelihood of a cell
being disease-related. As we used the SVM method in the final
classification level, the feature contribution could be calculated
based on the coefficients of the linear SVM classifier. However,
this method can cause problems as we do not know which
clustered label represents the diseased status. Thus, we chose
the Naive Bayes approach instead to calculate the feature
contribution for both clustered labels. In the strictest sense, the
feature contribution calculated by the Naive Bayes method
should be called feature importance, which only reflects the
feature contribution given that the final classifier is a Naive
Bayes classifier. We will explore more interpretable mapping
from the local features to the final classification results in future
research.

First, we will introduce the Naive Bayes approach, which is
based on Bayes’ theorem. This approach has been widely used
for classification in many domains owing to its simplicity and
strong performance. It is assumed that predictive features X0,

X1, …, Xn are independent of each other given the state of a

class variable Y. Although it is difficult to reduce the dependence
for a neuroimage analysis because different brain regions are
correlated in many ways by nature, empirical observations have
suggested that the Naive Bayes works quite well even when
there is dependence between features [49]. Therefore, we used
Bayes’ theorem to derive the posterior probability P (Y | X0, X1,

…, Xn) as follows:

where Xi ∈{0, 1} represents the ith cell clustering result, and Y

∈ {D, H} represents the training sample label. In addition, PD

and PH refer to the probability of being classified as a patient

with ASD versus a healthy control, respectively, conditioned
on the state of each cell. If PD > PH, we predicted that the test

sample is more likely to be a patient with ASD than a healthy
control. To avoid underflow in the Bayesian computation, we
used the log ratio as follows:

where we defined the log sum item as the feature
contribution at the ith cell. A higher value of this item indicates
a more predictive feature. It is worth noting that because we did
not know exactly which cell state (0 or 1) indicates a
disease-related feature and these 2 feature states can both
contribute to the disease, we calculated both of their feature
contributions.

Then, according to the first-level classification results of each
cell in a test patient sample, the most predictive features whose
contribution values are above a preset threshold can be
identified. We set a threshold on the feature contribution to just
show the top features to the patients (in a hypothetic clinical
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use case). The threshold is usually set to different values when
using heterogeneous sMRI data from different sites or when
the parameter values (eg, cell size and cell overlapping
percentage) are changed. The cells that contribute most to the
classification result of ASD are considered to be the candidate
regions related to the disease.

Experimental Design

In the 2-level HBM framework, we evaluated the 2 different
3D gradient direction partition schemes using the algorithm
combinations for feature clustering, regional classifier training,
and final classifier training listed in Table 2. The performance
of the 4 instances listed in the table will be compared later. The
instance name in the table (eg, KNS32) is the abbreviation
created using the first letter from the local feature clustering
algorithm name (K-means), the regional classification algorithm
name (nearest centroid), the final classification algorithm name
(SVM), and 32 orientation bins.

After the final classification model is trained, its performance
is evaluated, typically via the cross-validation (CV) method.
The widely used CV methods in brain image analysis include
leave-1-out CV [25,48,50], leave-2-out CV [45,51,52], k-fold
CV [53,54], and stratified k-fold CV [55,56]. Although there
are conflicting reports in the literature, most papers, including
a review of brain image classification methods, suggest that
10-fold CV is the most appropriate method [57]. In this study,
we trained our model using the stratified 10-fold CV method.

The stratified CV method provides the following advantages.
First, the stratified method can keep the ratio of 2 sample classes
in each fold as close to that of all samples as possible, retaining
the original data distribution pattern of the entire dataset.
Second, the variance of model performance estimations will
decrease by performing several random runs, in each of which
all samples are first shuffled and then split into a pair of training
and test sets. The stratified CV method proposed in this paper
is implemented as the pseudo-code shown in Figure 4.

In the 3D HOG partition scheme, there is a parameter NDIR2 that

represents the number of orientation bins in either the horizontal
or vertical direction of the 3D space. If NDIR2 is set too high,

the computation speed of the algorithm will be slowed.
However, more importantly, the feature will be more sensitive
to noise and other noninformative signals in the images.
Furthermore, the dimension of the feature will be high, which
usually requires more samples to avoid the curse of

dimensionality. Otherwise, if NDIR2 is set too low, details of the

image will be lost. In this paper, we set the number of NDIR2 to

the frequently used value 8, and the total number of directions
in 3D space was 32 and 26 for the two 3D HOG partition
schemes. The other parameters for the HOG features, including
cell size and overlapping percentage, were evaluated using the
CV method. The performance measures we used to evaluate
our algorithm included classification accuracy, sensitivity,
specificity, positive predictive value, negative predictive value,
F1 score, and the area under the curve (AUC).

Table 2. The 4 instances of the proposed histogram-based morphometry framework used for performance evaluation.

Final classificationImage feature processing for each cellImage featureInstance name

ClassificationClustering

SVMc,dNearest centroidK-meansHOGa-32bKNS32

SVMcNearest centroidK-meansHOG-26eKNS26

SVMcLinear kernel SVMHierarchicalHOG-32bHSS32

SVMcLinear kernel SVMHierarchicalHOG-26eHSS26

aHOG: histogram of oriented gradients.
bHOG-32 is the histogram of oriented gradients feature with 8 directions in a 2D plane and 32 directions in 3D space.
cThree different kernels have been tested, for example, the linear kernel, the polynomial kernel, and radial base function kernel.
dSVM: support vector machine.
eHOG-26 is the HOG feature with 8 directions in a 2D plane, and the 2 poles are considered as 2 directions in 3D space; therefore, the total number of
directions is 26.
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Figure 4. Algorithm of the stratified cross-validation with multiple random runs.

Results

Comparing the Classification Performance of Different

Histogram-Based Morphometry Instances

To compare the performance of the 4 HBM instances listed in
Table 2, we used the stratified 10-fold CV evaluation method
to obtain each performance measure. As the size of cell and the
overlapping between 2 cells may influence the model’s
performance, we performed a parameter scan for the best values
of these 2 parameters. The cell size ranged from 10 voxels to
20 voxels and cell overlapping percentage ranged from 20% to
50%. In the final classification step, we tested 3 different SVM
kernels, including the linear kernel, the polynomial kernel, and
radial base function kernel. We then chose the linear kernel for
use owing to its superior performance.

Figure 5 shows the stratified 10-fold CV average accuracies
based on the data from the NYU site when using different HBM
instances and different parameter values. The expanded form

of the abbreviations of the HBM instances in Figure 5 can be
found in Table 2. From the figure, it can be seen that although
the classification accuracies fluctuate as the parameter values
change, KNS26 and KNS32 performed significantly better than
HSS26 and HSS32, which means that the combination of
K-means and centroid algorithms is more suitable for our
proposed HBM framework. Meanwhile, Figure 5 shows that
KNS26 outperformed KNS32 and HSS26 outperformed HSS32,
which supports the rationality and effectiveness of the HOG-26
partition scheme. In addition, among the different parameter
values, KNS26 obtained the best average classification accuracy,
74% (58/78), when the cell size was set to 14 voxels and the
cell overlapping percentage was set to 50%. For the other 3
sites, ETH, OHSU, and SU, KNS26 also outperformed KNS32,
although the best parameter values may be different (see
Multimedia Appendix 2 for the results of these additional
analyses). Of note, our method was not overly sensitive to the
parameters, so model performance was generally good for a
wide range of parameters.
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Figure 5. Classification accuracies for the NYU Langone Medical Center: Sample 1 dataset using 4 histogram-based morphometry (HBM) instances
including KNS26 (a), KNS32 (b), HSS26 (c), and HSS32 (d).

Comparing the Classification Performance of Different

Local Feature Extraction Algorithms

In this paper, we used the HOG algorithm for local image feature
extraction in the HBM framework. This algorithm helps to
generate high-quality representations that depict image edge
and texture. To evaluate the effects of different local feature
extraction algorithms on classification performance, we also
used SIFT, another widely used local feature detection
algorithm, to extract features from brain images and developed
an SVM approach to analyze the extracted SIFT features. This
approach has been applied to neurological diseases such as
Alzheimer disease [25,31], Parkinson disease [31], and bipolar
disease [31]. As shown in Figure 5, KNS26 was the best
performing HBM instance, so we compared it (rather than
KNS32) with the SIFT-based SVM approach.

We trained both classifiers using the stratified 10-fold CV, and
the training data were the same for them in each fold. The results
show that a HOG-based KNS26 HBM approach achieves much
better performance than the SIFT-based SVM approach (Tables
3 and 4). Overall, comparison results depicted in Tables 3 and
4 demonstrate that HOG features are more suitable for
delineation of the underlying structural change patterns in sMRI
images than SIFT features. By transforming the low-level HOG
features into high-level features, our proposed 2-level HBM
classification framework can effectively employ the high-level
features to differentiate individuals as either patients with ASD
or healthy controls. In the last row of Table 3, we can see that
the performance degraded when building the model on data
from the 4 datasets. We have discussed the reason in the
Discussion section.
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Table 3. Classification performance using histogram-based morphometry on the second edition of the Autism Brain Imaging Data Exchange datasets.

Histogram-based morphometry (KNS26)Best parameterDataset

AUCgF1fNPVePPVdSPEcSENbACCaOverlapping
(%)

Cell
size

n (%)Nn (%)Nn (%)Nn (%)Nn (%)N

0.8490.79022 (88)2510 (83)1222 (92)2410 (77)1332 (86)372010ETHh

0.7870.80518 (69)2640 (77)5218 (60)3040 (83)4858 (74)785014NYUi

0.7940.66246 (77)6023 (70)3346 (82)5623 (62)3770 (75)934019OHSUj

0.7630.75113 (77)1717 (68)2513 (62)2117 (81)2130 (71)422017SUk

0.6500.66276 (70)10887 (61)14276 (58)13187 (73)119162 (65)2503012Mixedl

aACC: accuracy is the ratio of correctly classified subjects over all subjects.
bSEN: sensitivity is the ratio of correctly classified subjects with autism spectrum disorder (ASD) over all subjects with ASD.
cSPE: specificity is the ratio of correctly classified subjects without ASD over all subjects without ASD.
dPPV: positive predictive value is the ratio of correctly classified subjects with ASD over all predicted subjects with ASD.
eNPV: negative predictive value is the ratio of correctly classified subjects without ASD over all predicted subjects without ASD.
fF1: F1 score.
gAUC: area under the curve.
hETH: ETH Zürich.
iNYU: NYU Langone Medical Center: Sample 1.
jOHSU: Oregon Health and Science University.
kSU: Stanford University.
lMixed: dataset combining data from all the 4 datasets.

Table 4. Classification performance using scale-invariant feature transform and support vector machine on the second edition of the Autism Brain
Imaging Data Exchange datasets.

Performance using scale-invariant feature transform and support vector machineDataset

AUCgF1fNPVePPVdSPEcSENbACCa

n (%)Nn (%)Nn (%)Nn (%)Nn (%)N

0.7090.53316
(76)

218 (50)1616 (67)248 (62%)1324 (65)37ETHh

0.5950.62415
(44)

3429 (66)4415 (50)3029 (60)4844 (56)78NYUi

0.6050.48233
(65)

5119 (45)4233 (59)5619 (51)3752 (56)93OHSUj

0.3670.4498 (42)1910 (44)238 (38)2110 (48)2118 (43)42SUk

aACC: accuracy is the ratio of correctly classified subjects over all subjects.
bSEN: sensitivity is the ratio of correctly classified subjects with autism spectrum disorder (ASD) over all subjects with ASD.
cSPE: specificity is the ratio of correctly classified subjects without ASD over all subjects without ASD.
dPPV: positive predictive value is the ratio of correctly classified subjects with ASD over all predicted subjects with ASD.
eNPV: negative predictive value is the ratio of correctly classified subjects without ASD over all predicted subjects without ASD.
fF1: F1 score.
gAUC: area under the curve.
hETH: ETH Zürich.
iNYU: NYU Langone Medical Center: Sample 1.
jOHSU: Oregon Health and Science University.
kSU: Stanford University.
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Comparing 3D Histogram of Oriented Gradients and

2D Histogram of Oriented Gradients

HOG features represent image edge and texture, and the feature
quality is affected by MRI acquisition parameters, especially
spatial resolution that is decided by slice thickness, matrix size,
and field of view. Low spatial resolution will decrease image
sharpness and cause fuzzy edges, which may degrade the
classification performance. By contrast, high spatial resolution
helps to retain more fine-grained and high-contrast information
of the brain tissues, which enable us to extract HOG features
directly in its inherent 3D form. From the anatomical scan
parameters, we can see that the T1-weighted sMRI images are
all high-resolution images in these 4 datasets. In our proposed
3D HOG algorithm, the features were extracted directly inside
the 3D volumetric image. In the 2D HOG algorithm, the features
were extracted from the 2D MRI slices. The hypothesis is that
the 3D HOG algorithm will generate highly discriminative
representations with higher quality than those generated by the
2D HOG algorithm.

To validate the hypothesis, we tested all the HBM instances
listed in Table 2 for the 4 datasets. Here, data from the NYU
site and KNS26 instance are used as examples to compare 3D
HOG with 2D HOG. The evaluation scheme for both algorithms
was the 10-fold CV, and the same parameter scan scope was
used as discussed in the Comparing the Classification
Performance of Different Histogram-Based Morphometry
Instances section. Figure 6 presents the classification accuracy
obtained from 3D HOG and 2D HOG. We can see from the
figures that 3D HOG outperforms 2D HOG for some scan
parameters and obtains the highest accuracy when the cell size
is set at 14 voxels and cell overlapping percentage is set at 50%.
The other 3 sites show a comparison result similar to NYU (see
Multimedia Appendix 2 for the results of these additional
analyses). Thus, the comparison between these 2 HOG
algorithms supports the hypothesis that 3D HOG can generate
more competitive representations for the ASD diagnosis task.

Figure 6. Classification accuracies for the NYU Langone Medical Center: Sample 1 dataset using a 3D histogram of oriented gradients (HOG; a) and
2D HOG (b).

Identifying Predictive Autism Spectrum

Disorder–Related Brain Regions

Those predictive features contributing most to the classification
prediction of being a patient with ASD versus a healthy control
were identified by calculating each cell’s feature contribution.
Then, the abnormal regions identified as algorithm high

contribution features were annotated automatically on the MRI

image according to the cell’s voxel-based coordinates. Figure
7 shows the annotation of the abnormal regions of 1 specific
patient with ASD from the ETH dataset. For the convenience
of illustration, we annotated these regions in the form of 2D
slices. In Figure 7, the number suffix of the legend on top of
each slice is the slice number, and each rectangle with the red
border indicates an ASD-related region.
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Figure 7. Annotation of the autism spectrum disorder–related brain regions for a sample in the ETH dataset. sMRI: structural magnetic resonance
imaging.

To give a sound biological interpretation of our results, we
located the standard brain regions defined in the anatomical
automatic labeling (AAL) brain atlas, which is one of the most
widely used cortical parcellation maps. As the AAL brain atlas
is constructed on an MNI-based coordinate system, we
transformed the coordinates from the voxel space into the MNI
space using an affine transformation. Table 5 lists the union of
ASD-related regions for all patients in the ETH dataset. The
table columns X, Y, and Z represent the central coordinates of

the disease-related cells in a 3D MNI-based space. The brain
region names in the table are located based on the central
coordinates. Owing to the unique set of sulcal folds for each
individual, we assigned the closest region to the cell if the cell’s
center did not fall in any AAL atlas region. The same method
can be applied to the other 3 datasets to identify the ASD-related
brain regions relevant to each dataset, and the findings show
the consistency between these datasets.
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Table 5. Autism spectrum disorder–related anatomical automatic labeling brain regions identified by a histogram-based morphometry framework on
the ETH dataset.

StudiesCentral Montreal Neurological Insti-

tute–based coordinatesa

Region nameIndex

Huang et al [10]Guo et al [8]ZYX

NY42250Frontal_Inf_Tri_R1

NN4−3838Temporal_Sup_R2

YN4−6832Calcarine_R3

YN34−3828Postcentral_R4

YY342226Frontal_Mid_R5

NN34−820Caudate_R6

YN4−3816Precuneus_R7

NN42216Caudate_R8

YN34−68−2Precuneus_L9

NY3422−6Cingulum_Mid_R10

YN4−38−8Precuneus_L11

NY3422−8Cingulum_Mid_L12

NY34−38−14Cingulum_Mid_L13

YN34−68−18Precuneus_L14

YY452−20Frontal_Sup_L15

YN34−8−42Postcentral_L16

NN4−38−48Temporal_Mid_L17

YN34−8−50Postcentral_L18

NN4−6818Lingual_R19

YY4−846Insula_R20

YY452−2Cingulum_Ant_L21

NN4−826Pallidum_R22

YY4528Frontal_Sup_Medial_R23

YN34−68−32Occipital_Mid_R24

NN34−38−36Parietal_Inf_L25

NN4−8−50Temporal_Sup_L26

NN4−68−12Lingual_L27

NN4−38−24Hippocampus_L28

NN4−38−46Temporal_Mid_R29

NN4−3828Hippocampus_R30

YY342216Cingulum_Ant_R31

a
X, Y, and Z represent the central Montreal Neurological Institute–based coordinates of each disease-related cell that is located in the closest anatomical

automatic labeling region. The last 2 columns represent the overlapping brain regions between our study and 2 functional magnetic resonance imaging
(fMRI)–based studies (Y means a brain region overlaps with the fMRI-based study, whereas N means the opposite).

Discussion

Principal Findings

In this study, we developed an innovative 2-level HBM
classification framework for distinguishing patients with ASD
from healthy controls based on sMRI data and the 3D HOG
feature extraction method. Of note, many of the brain regions

utilized in our algorithm to indicate ASD—such as frontal gyrus,
temporal gyrus, cingulate gyrus, postcentral gyrus, precuneus,
caudate, and hippocampus—have been implicated in autism in
prior neuroimaging literature [8,58-63]. Currently, ASD is a
behaviorally defined disorder, diagnosed through careful clinical
assessment. Our intention is not to replace the diagnostic criteria
but to begin developing more objective tools which may
someday augment the current ASD diagnostic process. At this
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juncture, we provide a proof of principle that it may be possible
to develop an ASD computer-aided tool based on sMRI images
alone by utilizing machine learning techniques. Of note, these
techniques offer novel ways to examine neuroimaging data to
probe additional clues regarding the neural underpinnings of
the disorder.

Although machine learning techniques have been used in prior
ASD neuroimaging studies, it is striking that most of these
previous studies used fMRI rather than sMRI approaches. Our
sMRI approach may represent a significant advancement given
that the high cost and lower availability of fMRI likely limits
its clinical applicability, while developing clinical approaches
to ASD diagnosis that incorporate sMRI may be more practical
given sMRI’s smaller data requirements, lower cost, and higher
clinical availability. Furthermore, given that fMRI evaluates
brain activation by measuring cerebral blood flow, typically
during the completion of informative tasks, it is often not
amenable to use for individuals with ASD. Patients being
evaluated for ASD are particularly likely to have difficulty
adhering to directions to complete tasks and remain still during
fMRI given that they are usually children and have cognitive
and/or behavioral impairments that have prompted the diagnostic
evaluation. On the contrary, these concerns are well-addressed
by the well-developed sedation protocols available for sMRI.
In this project, using the more cost-effective sMRI approach,
our ASD classification results (32/37, 86% accuracy for the
ETH site) were comparable to more expensive and cumbersome
fMRI approaches. For example, 2 fMRI studies based on the
ABIDE I datasets have been conducted: Huang et al [10]
achieved an ASD classification accuracy of 79%, while the
fMRI study from Guo et al [8] obtained a classification accuracy
of 86%. It should be noted that these 2 studies also used 1 site.

Of note, using our sMRI approach, we identified ASD-related
brain regions that overlap with brain regions pinpointed in the
above 2 fMRI studies. For example, Guo et al [8] detected
ASD-associated brain function connectivities in regions, such
as the inferior and superior frontal cortex, temporal cortex,
cingulate cortex, and insula, which were also found to be
associated with ASD in our study. Similar to Huang et al [10],
we also implicated the middle frontal gyrus, middle occipital
gyrus, superior frontal gyrus, calcarine cortex, and insula in
ASD. The last 2 columns of Table 5 show the overlapping brain
regions between our method and the above 2 fMRI-based
studies. In the table cell, Y means a brain area identified by our
method that is also reported in the studies by Guo et al [8] and
Huang et al [10] and N means the opposite. These brain regions
found to be associated with ASD by our study have striking
functional correlates with the autism spectrum phenotype.
Specifically, regions such as the superior temporal cortex,
inferior frontal cortex, several regions of the cingulum, and the
insula have been linked to social cognition and language [64].
Variations in the superior temporal gyrus have been linked to
ASD-related deficits in the theory of mind (the ability to
attribute mental states, such as desires and beliefs, to the self
and others [65]) and face processing [66]. The inferior frontal
gyrus has been associated with social functioning (including
processing of facial expressions [67]) and language processing
[68]. The anterior cingulate cortex has been implicated in

ASD-related social impairment and repetitive behaviors [68],
while the insula is involved in affective and empathic processes
[69].

Strengths and Limitations

In addition, our work represents advances over previous
sMRI-based ASD neuroimaging studies, as those approaches
have typically been limited by the extracted morphometry
measures, such as cortical surface area and cortical thickness
[16]. Importantly, these sMRI approaches are often unable to
probe subcortical features, such as the amygdala and basal
ganglia, which have demonstrated importance in ASD and other
brain-based disorders such as Parkinson disease and depression.
Our approach is amenable to the full breadth of brain structures
implicated in ASD and can be easily adapted for use in other
brain-based disorders. Indeed, the sMRI-based machine learning
algorithm methods described herein can be adapted to study
any brain disease provided that enough training data are
available.

To our knowledge, this study was the first to apply a 2-level
classification framework based on the 3D HOG feature
extraction method to distinguish patients with ASD from healthy
controls. We did not rely on 2D HOG as the layer-by-layer
slicing method needed can dramatically increase training time
and can lead to reduced classification accuracy owing to the
separation of the image gradient information from adjacent
slices. Of note, in this study we compared 3D to 2D HOG and
found that 3D HOG had higher classification accuracy, as
demonstrated in Figure 6. Other papers have discussed using
the 3D HOG in the medical image domain [70,71]: although
the 3D HOG approach may be similar to our approach, we did
not concatenate the local HOG features to form a vector
representing the entire image. In our framework, we extracted
the 3D HOG features for local brain regions and analyzed them
individually. In the first-level classification stage, we converted
these local features into high-level features with the
classification of diseased versus healthy, and then combined
these high-level features into a vector. This means the feature
dimension input to the final classifier can be considerably
reduced, which helps to prevent overfitting. On the contrary,
the individual local HOG features can be analyzed further to
obtain their respective feature contributions to the ASD
classification. These feature contributions actually depict the
possibility distribution of the ASD-related brain regions based
on the training data. When classifying novel individuals, the
feature contributions can be used to discern the most predictive
ASD-related brain regions. Importantly, our findings (Tables 3
and 4) also demonstrate that the HOG features outperform SIFT,
another widely used local feature, in ASD classification. This
is likely due to the ability of the HOG features to cover the
entire sMRI image, ensuring that no subtle morphological
abnormalities occurring in the brain are overlooked.

In addition to the strengths discussed earlier, our study has
several limitations. Specifically, our HOG feature extraction
method is based on the artificial division of the brain image
with a fixed cell size. The abnormal regions may be located
across adjacent cells, and our proposed method considers that
such features have the same contribution to the classification

JMIR Med Inform 2020 | vol. 8 | iss. 5 | e15767 | p. 15https://medinform.jmir.org/2020/5/e15767
(page number not for citation purposes)

Chen et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


result, which may not entirely reflect the actual grouping
complexity. In the future, the HBM framework can be improved
by replacing binary classification results like 0 or 1 with fuzzy
numbers between 0 and 1 that represent the degree to which the
image feature should be classified as a disease-related feature.

Our use of data from 4 ABIDE II sites also presents some
challenges. Compared with some other available datasets such
as ABIDE I, the ABIDE II datasets and sites are more
heterogeneous, which may introduce classification challenges
and lead to decreased case versus control classification accuracy.
We noted that both Tables 3 and 4 display obvious performance
variations between different sites owing to data heterogeneity
(eg, differences in scanner types, data collection protocol,
demographic information, and disease evaluation). When we
applied the HBM method to all the data from the 4 datasets in
the 10-fold CV, the resulting classification accuracy reduced to
65% (162/250). This is a common challenge when analyzing
multisite data based on neuroimaging techniques. The multisite
data heterogeneity makes the classifiers learn site-specific
variabilities instead of important information in data themselves.
If the data heterogeneous factors are not eliminated, the model
performance would not improve even if trained on more data.
This is evident in 4 previous studies; the accuracy ranged from

64% to 70% when data from all sites in ABIDE I were integrated
[72-75]. In addition, the 2 studies that we compared also used
fewer than 4 sites. In our future studies, we will endeavor to
reduce the impact of sample site heterogeneity by including
scanner parameters and demographic characteristics such as
age, sex, and clinical measurements in the analytic models.
Another method to address this limitation is through multitask
learning, which considers each site as 1 task, and learning of
task-shared and task-specific features simultaneously [76,77].

Conclusions

Although ABIDE II study site heterogeneity may have limited
case classification accuracy in this study, thus weakening the
predictive value of our model, this study nonetheless represents
the first steps in developing a classification framework that can
distinguish patients with ASD from healthy controls based on
the sMRI images that probe the full range of brain regions
(subcortical as well as cortical) implicated in ASD. Further
development of such sMRI methods—which are more affordable
and clinically available than fMRI approaches—to augment the
subjective clinical information currently used in the ASD
diagnostic process holds much promise, as it could in the future
lead to the creation of more accurate and expeditious diagnostic
methods.
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