
Journal of Intelligent Manufacturing (2019) 30:959–978

https://doi.org/10.1007/s10845-018-1427-6

The development of an ontology for describing the capabilities
of manufacturing resources

Eeva Järvenpää1 · Niko Siltala1 ·Otto Hylli2 ·Minna Lanz1

Received: 14 November 2017 / Accepted: 31 May 2018 / Published online: 15 June 2018

© The Author(s) 2018

Abstract

Today’s highly volatile production environments call for adaptive and rapidly responding production systems that can adjust

to the required changes in processing functions, production capacity and dispatching of orders. There is a desire to support

such system adaptation and reconfiguration with computer-aided decision support systems. In order to bring automation to

reconfiguration decision making in a multi-vendor resource environment, a common formal resource model, representing the

functionalities and constraints of the resources, is required. This paper presents the systematic development process of an

OWL-based manufacturing resource capability ontology (MaRCO), which has been developed to describe the capabilities of

manufacturing resources. As opposed to other existing resource description models, MaRCO supports the representation and

automatic inference of combined capabilities from the representation of the simple capabilities of co-operating resources.

Resource vendors may utilize MaRCO to describe the functionality of their offerings in a comparable manner, while the

system integrators and end users may use these descriptions for the fast identification of candidate resources and resource

combinations for a specific production need. This article presents the step-by-step development process of the ontology by

following the five phases of the ontology engineering methodology: feasibility study, kickoff, refinement, evaluation, and

usage and evolution. Furthermore, it provides details of the model’s content and structure.

Keywords Manufacturing ontology · Resource description · Capability description · Adaptive manufacturing · Reconfigurable

manufacturing

Introduction

The requirements for production systems are continuously

shifting towards higher flexibility, making rapid respon-

siveness a new strategic goal for manufacturing enterprises

along with quality and cost-effectiveness (Koren and Shpi-

B Eeva Järvenpää

eeva.jarvenpaa@tut.fi

Niko Siltala

niko.siltala@tut.fi

Otto Hylli

otto.hylli@tut.fi

Minna Lanz

minna.lanz@tut.fi

1 Laboratory of Mechanical Engineering and Industrial

Systems, Tampere University of Technology,

Korkeakoulunkatu 6, 33720 Tampere, Finland

2 Laboratory of Pervasive Computing, Tampere University of

Technology, Korkeakoulunkatu 1, 33720 Tampere, Finland

talni 2010). This is due to increasing volatility in the global

and local economies, shortening innovation and product life

cycles, and a dramatically increasing number of product vari-

ants. Manufacturing companies need production systems that

can rapidly adapt to the required changes in processing func-

tions, production capacity, and dispatching of orders. Such

system adaptation and reconfiguration are required on phys-

ical, logical and parametric levels (ElMaraghy 2006). The

realization of these requirements calls for new solutions,

such as planning methods and tools, that would drastically

reduce the time and effort put into planning and imple-

menting the alterations in a factory (Westkämper 2006),

or allow autonomous adaptation during runtime, based on

machine-to-machine communication and self-organization

(Leitão et al. 2016).

Modular architecture paradigms for new production sys-

tems aim to promote system reconfigurability by inter-

changeable resources and components. These paradigms

focus on the clear functional decoupling of module func-

tionalities and the use of standardized interfaces (ElMaraghy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-018-1427-6&domain=pdf
http://orcid.org/0000-0001-6513-135X
http://orcid.org/0000-0001-6456-1251
http://orcid.org/0000-0003-2182-4669


960 Journal of Intelligent Manufacturing (2019) 30:959–978

2006; Koren and Shpitalni 2010; Mehrabi et al. 2000), which

opens up possibilities for developing automated adaptation

methods. The fourth industrial revolution, in Europe referred

to as “Industry 4.0” and in the US as “Smart Manufacturing”,

aims to tackle the above-mentioned issues by introducing the

Internet of Things and servitization concepts into manufac-

turing (Thoben et al. 2017). These initiatives target so-called

“cyber-physical systems” (CPS), which are physical systems,

e.g. machines or workpieces, which combine with the digital

world, i.e. sensors and intelligence, and are thus able to com-

municate, act and control themselves and each other (Baheti

and Gill 2011; Yao et al. 2017). In Thoben et al.’s (2017)

review of the current Industry 4.0 and Smart Manufacturing

initiatives they identified the standardization of both inter-

faces and information models as one of the most relevant

research issues for smart manufacturing.

The information needed for system design, reconfigura-

tion planning and reactive adaptation, is based on extensive

knowledge from different distributed sources in various fields

of expertise. A major problem is the poor interoperability

between the information and design support systems used to

create, save, manage, and utilize this information. The major-

ity of these systems use their own proprietary data structures

and vaguely described semantics (Ray and Jones 2006; Lohse

2006; Matsokis and Kiritsis 2010). Also, the different actors

involved in the process—humans or organizations—may

have different understanding of the used terms, leading to

interoperability issues (Ray and Jones 2006). Retrieving and

utilizing information from multiple diverse sources puts high

demands on semantic integration solutions (Ameri et al.

2012; Borgo and Leitão 2007; Jardim-Goncalves et al. 2011;

Leitão et al. 2016).

Formal engineering ontologies are emerging as popular

solutions for addressing the semantic interoperability issue in

heterogeneous distributed environments and for bridging the

gap between the legacy systems and organizational bound-

aries (Ameri et al. 2012; Borgo and Leitão 2007; Strzelczak

2015). One of the most quoted definitions of ontology in

the literature and in the ontology community is Gruber’s

(1993) “Ontology is a formal, explicit specification of a

shared conceptualization”. According to Studer et al. (1998),

“‘Conceptualization’ refers to an abstract model of some

phenomenon in the world by having identified the relevant

concepts of that phenomenon”. Ontology has classes repre-

senting things in reality, properties giving details to classes,

and restrictions limiting and creating rules for the ontology.

Ontology itself is just a formal definition, but when com-

bined with instances of the ontology, it forms a knowledge

base (Noy and McGuinness 2001). In the context of dis-

tributed intelligent systems, such as agent-based, holonic,

or SOA- (Service Oriented Architecture) based systems,

ontologies play a key role as they provide a shared, machine-

understandable vocabulary for information exchange among

dispersed actors (Leitão et al. 2016; Ameri et al. 2012).

To allow rapid system design and reconfiguration decision-

making in heterogeneous multi-vendor production system

environments, a common formal resource capability model

is needed. Such information model should allow resource

vendors to describe the functionality of their offerings in

a comparable manner, and system designers to make a

match between product requirements and resource capabil-

ities. The contribution of this paper is twofold. Firstly, it

presents the Manufacturing Resource Capability Ontology

(MaRCO), developed to support the rapid semi-automatic

system design, reconfiguration, and auto-configuration of

production systems. Secondly, it describes the systematic

development process of MaRCO model following the ontol-

ogy engineering methodology. The objective is to bring

forward the intentions and reasoning behind the model’s

development, and to give a solid example of the ontology

development process. Compared to other existing approaches

to describe resource functionalities, the main contribution of

MaRCO lies in its ability to model and infer information

about combined capabilities of aggregated resources on a

parametric level.

The remainder of the paper is organized as follows. In

“Related work” section, the related work on manufactur-

ing ontologies and resource descriptions is briefly reviewed,

and the need for a new manufacturing resource ontology is

justified. “Ontology engineering methodology” section intro-

duces the ontology engineering methodology followed in the

development process, while “Manufacturing resource capa-

bility ontology development process” section discusses the

results of applying the methodology, i.e. the development

process and results of MaRCO. Last of all, the discussion

and conclusions are presented.

Related work

The aim of bringing automation to system design, re-

configuration, and order dispatching requires a formal,

structured representation of the product requirements, as well

as of the resource capabilities, properties, and constraints.

Several researchers have recently addressed the issue of man-

ufacturing resource modeling using different methods, with

different purposes and viewpoints, and with different levels

of detail.

For the past two decades, in the manufacturing domain,

there has been an increasing interest in using emerging tech-

nologies, such as ontologies, semantics, and semantic web

technologies, to support collaboration, interoperability, and

adaptation needs. One of the earliest manufacturing ontolo-

gies was the Process Specification Language (PSL) that was

developed with the goal of providing a neutral language

123



Journal of Intelligent Manufacturing (2019) 30:959–978 961

for representing process-related knowledge and to support

application integration. PSL used Knowledge Interchange

Format (KIF) as its modelling formalism (Gruninger and

Menzel 2003). MASON (Manufacturing’s Semantics Ontol-

ogy) shared the same goals with PSL, but was modelled

with Web Ontology Language (OWL) (Lemaignan et al.

2006). During the EU FP6 project Pabadis’Promise a manu-

facturing ontology (P2 ontology) and reference architecture

focusing on factory floor control was developed by Chapurlat

et al. (2007). Borgo and Leitão (2007) developed the ADA-

COR ontology for distributed holon-based manufacturing,

focusing on processes and system-interaction descriptions.

It consists of an ontological classification of ADACOR con-

cepts according to DOLCE foundational ontology. During

the EU FP6 EUPASS project, an ontology for modeling

evolvable, modular, ultra-precision assembly systems was

developed by Lohse (2006). Kitamura et al. (2006) pre-

sented an ontological definition of an assembly device’s

capabilities based on the function-behavior-structure (FBS)

framework.

An ontology-based capability management approach for

multi-agent-based manufacturing systems was developed by

Timm et al. (2006). In the SIARAS project, an intelligent sys-

tem, called a “skill server”, was built to support automatic

and semi-automatic reconfiguration of production processes

(Malec et al. 2007; Bengel 2007). Barata et al. (2008) pre-

sented a multi-agent-based control architecture for a shop

floor system (CoBaSa) which supports fast re-engineering

and plug-and-play capabilities based on skill descriptions.

Frei et al. (2010) applied CoBaSa in Self-Organizing Evolv-

able Assembly Systems (SO-EAS). Obitko et al. (2010)

proposed an ontology for agent-based manufacturing sys-

tems. Terkaj and Urgo (2012) developed an ontological

Virtual Factory Data Model, which acts as a shared meta-

language providing a common definition of the data that are

shared among different software tools along a factory process

lifecycle. Salonen et al. (2011) created methods and mod-

els for semantically rich machine system design processes,

which relied on the domain-specific ontology dedicated to

capturing the design and lifecycle information of that partic-

ular machine system type.

The Manufacturing-as-a-Service paradigm has been

adopted by many researchers who have produced different

approaches to formally describe service requests and offer-

ings. Manufacturing Service Description Language (MSDL)

was developed as a formal domain ontology for represent-

ing the capabilities of manufacturing services, focusing on

mechanical machining services (Ameri and Dutta 2006).

Later on, it was extended to other application domains,

such as metal casting (Ameri et al. 2012), and used for a

matchmaking methodology which aims to connect buyers

and sellers of manufacturing services in distributed dig-

ital manufacturing environments (Ameri and Patil 2012).

Shin et al. (2013) enriched the MSDL further to com-

ply better with the requirements of Manufacturing Service

Capability (MSC) models. Hu et al. (2009) developed an

ontology-based digital description of resource services for

grid manufacturing. In the ManuCloud project, an XML-

based manufacturing service description was developed to

enable the Manufacturing-as-a-Service operation principle

in production networks (Rauschecker and Stöhr 2012). In

the SkillPro project, the AutomationML-based format was

used to store and communicate the resource skill descriptions

to facilitate the autonomous setup and execution of produc-

tion tasks (Pfrommer et al. 2014). Backhaus and Reinhart

(2017) presented a similar concept aiming to simplify the

task-oriented programming of assembly systems by vendor-

independent skill descriptions.

Most of the existing resource description approaches are

domain-specific and offer only partial solutions for very

specific applications and hence lack a comprehensive view.

Some of them are very detailed, focusing on a specific pro-

cess domain (e.g. machining), while others are more high

level representations of the whole production domain, better

suited to production planning and scheduling applications,

rather than to capability matchmaking. Generally, the ontolo-

gies or other data models are not publicly available, making

their re-use practically impossible. The previous research

efforts to describe manufacturing resource capabilities are

limited in that they either do not consider the combined

capabilities of multiple co-operating resources, or they do

not incorporate parameter information into the capability

descriptions. Furthermore, most of the approaches rely on

static resource descriptions that lack the lifecycle aspect.

While a resource is being used, its condition, capabilities,

and other important parameters may change. Thus, instead

of only incorporating information about the nominal capabil-

ity, it is also important to include information about the actual

capability in the resource description in order to ensure that

feasible design and reconfiguration decisions can be made.

These above mentioned deficiencies are what is motivat-

ing the development of the MaRCO model presented in this

work.

Ontology engineeringmethodology

The ontology engineering methodology deals with the pro-

cess and methodological aspects of ontology engineering, i.e.

by providing guidelines on how to develop ontologies. The

widely used ontology engineering methodology, presented

by Sure et al. (2009), consists of five phases: (1) Feasibility

Study, (2) Kickoff, (3) Refinement, (4) Evaluation, (5) Appli-

cation and Evolution. Each of these phases will be discussed

in detail below and appended by other sources.

123



962 Journal of Intelligent Manufacturing (2019) 30:959–978

1. Feasibility study: In the feasibility study phase, the

problem area, opportunities, and possible solutions are

evaluated (Sure et al. 2009). Furthermore, the most

promising focus areas, goals, and desirable solutions are

selected. The feasibility study helps to view problems

from a wider perspective and to determine economical

and technical project feasibility (Staab et al. 2001).

2. Kickoff: The requirements for an ontology need to be

identified before the actual ontology development starts.

Kickoff is an extensive phase, which can basically be

divided into two parts: (a) Detailed requirements defi-

nition, and (b) Semi-formal ontology definition. During

the kickoff phase, the ontology requirement specifica-

tion document should be generated, defining the goals,

domain, and scope of the ontology, i.e. describing what

the ontology should support, its area of application, and

the valuable knowledge sources for generating the semi-

formal ontology description (Sure et al. 2009; Staab et al.

2001). To determine the scope, competency questions

can be used. Competency questions are simple questions

representing queries made about the ontology. These

questions can be used later to verify the ontology (Noy

and McGuinness 2001). Re-use of pre-existing ontolo-

gies should be considered (Sure et al. 2009).

Furthermore, during kickoff, a semi-formal descrip-

tion of the ontology is generated. This forms the baseline

taxonomy for the ontology (Sure et al. 2009; Staab et al.

2001) and is often conducted in the ontology refinement

phase when formally modeling the target ontology (Sug-

umaran and Storey 2002). The first phase in building an

actual ontology is ontology capturing. This means iden-

tifying key concepts and relationships, producing textual

definitions, and finally defining the terms (Uschold and

Gruninger 1996). Noy and McGuinness (2001) describe

the ontology creation process, which starts from the def-

inition of the domain concepts. After the concepts are

identified, they are placed in a taxonomical hierarchy.

Then, the concepts’ properties, including their relations,

limitations, and rules are defined (Noy and McGuinness

2001). Use-cases may be used to bring the terminology

together. The relations between the terms can be formed

in three ways: through generalization, synonyms, or asso-

ciations. Generalizations define the different levels of

terminology and allow the subclassing of the defined

terms. Synonyms are required for the incorporation of

multiple views. Associations are the most important

link as they mark a direct semantic connection between

classes (Sugumaran and Storey 2002).

3. Refinement: In the refinement phase, the semi-formal

description of the ontology is formalized, or coded, into

the target ontology by using some ontology represen-

tation language. First, the taxonomy is formed out of

the semi-formal description of the ontology, and then the

relations between the concepts are defined (or just coded,

if they were previously defined in the kickoff phase) (Sure

et al. 2009). Re-using existing ontologies may provide

speed and quality for the development in this phase as

they can guide the development and give ideas (Staab

et al. 2001). Capturing and codifying the ontology are

often merged as a single step, or they are cyclical pro-

cesses that follow each other (Uschold and Gruninger

1996).

4. Evaluation: After the ontology has been developed, it

needs to be evaluated and verified by comparing it to the

requirements. By instantiating the ontology, its structure

and expressiveness can be tested. This means creating

individual elements in the class-structure and complet-

ing their properties and relations (Noy and McGuinness

2001). For an ontology-focused evaluation, ontology-

evaluation rules and approaches, such as OntoClean

(Guarino and Welty 2009), may be used. An easy way

to test and validate class hierarchies, especially transi-

tivity, is to run “is-a” or ”is-kind-of” tests against two

classes in the hierarchy. This especially helps to detect

flaws in deep hierarchies (Noy and McGuinness 2001).

Testing the ontology in an application environment is rec-

ommended. The evaluation phase is strongly linked with

the refinement phase, and together they form a cyclical

process of ontology development in which the ontology

will be improved in iterations (Staab et al. 2001).

5. Application and evolution: The final phase in the ontol-

ogy development is its application and evolution. Ontol-

ogy requires maintenance to fulfill the changing require-

ments during its use. Continuous feedback from both

users and applications helps to improve the ontology

(Staab et al. 2001). Even if the models built are static, the

real world is changing continuously. Through this natural

evolution, the definitions, terms, or constrains may vary,

which affects the ontology needs as well. The changes

may add, subtract, or split the ontologies or their contents

in order to evolve new ontologies to match the changing

reality (Sugumaran and Storey 2002). It is important to

clarify who is responsible for the maintenance, as well

as how and in which time intervals it is to be performed

(Sure et al. 2009).

Manufacturing resource capability ontology
development process

The Manufacturing Resource Capability Ontology (MaRCO)

was developed following the ontology engineering method-

ology discussed in the previous section. In the following

sub-sections, the development process and associated results

are described.

123



Journal of Intelligent Manufacturing (2019) 30:959–978 963

Feasibility study

During the feasibility study, the scope and requirements of

the ontology were defined. The need for the resource capa-

bility model was previously justified in the Introduction and

Related Work section, and will not be repeated here. The

scope of MaRCO is to formally model capabilities of manu-

facturing resources, initially concentrating solely on machine

and tool, but not human, resources. The resource vendors

should be able to utilize the capability model to represent the

capabilities of their resource offerings in a formal, vendor-

independent manner, and to publish these descriptions in

local or global resource catalogues and digital marketplaces.

System integrators and manufacturing companies can then

browse these machine- and human-interpretable representa-

tions when designing new production systems from scratch

or when reconfiguring the existing systems. Furthermore, the

resource end users (i.e. manufacturing companies) should

be able to maintain local knowledge bases of the exist-

ing in-house resources and append the nominal resource

descriptions with updated capability information through-

out the lifecycle of the individual resources. The aim is

to allow automatic matchmaking methods to suggest suit-

able resources and resource combinations for certain product

requirements from large search spaces (resource pools),

facilitating semi-automatic system design and reconfigura-

tion decision-making, and consequently faster adaptation to

changing demands. The resource capability model should

allow the definition of functional configurations of resources,

but the detailed behavior of resources (e.g. movement trajec-

tories) is not in the model’s scope. Also in this phase, the

decision was made to concentrate first on resource capabil-

ities and to leave other aspects, such as resource interface

descriptions, as a future work.

Kickoff

Kickoff was divided into two phases: the detailed require-

ment definition and the definition of the important concepts.

The results of these phases, including the conceptual model

of MaRCO, will be presented in the following sub-sections.

Definition of the detailed requirements

In this phase, the following issues were addressed: (a) the

aim and intended use of the ontology, (b) the information that

must be provided by the ontology, (c) users of the ontology,

and (d) the questions which the ontology needs to be able to

answer, i.e. the competency questions.

(A) Aim and use of the ontology

In order to define the aim and intended use of the ontol-

ogy, a use-case approach was utilized. Two main use cases

were identified: the reconfiguration and greenfield design

scenarios. In the reconfiguration scenario, the model should

support the comparison of the product requirements with

the capabilities of the resource combinations in the current

system layout. If no match is found for all product require-

ments, reconfiguration actions should be suggested. This

implies that new resource combinations within the existing

in-house resources and catalogue resources, that match with

the product requirement, should be generated and suggested

for the reconfiguration planner. In the greenfield design sce-

nario, new resource combinations from the given catalogue

resources should be generated that match with the product

requirements.

Furthermore, some general requirements for the digital

knowledge representation of the resources and their capabil-

ities were defined:

1. The model must represent a selected domain, which is

manufacturing and assembly resource capability model-

ing;

2. The model must be both human- and computer-

interpretable, it must be formalized and have a mean-

ing that can be understood and used by different users,

applications, and systems;

3. Semantics need to be defined in such a way that the mean-

ing of each structure in the knowledge representation is

clear and there is no ambiguity in terminology;

4. The resource capability descriptions should be estab-

lished easily and rapidly, and the descriptions should be

easily re-used and extended;

5. The proposed knowledge representation must be suit-

able for reasoning, and it should support activities

such as matching the resource capabilities against prod-

uct requirements, searching for and selecting suitable

resources, and proposing feasible system configurations.

(B) Information that must be provided by the ontology

Specific requirements for the MaRCO’s content were defined

as:

1. The model should allow the representation of the func-

tions (capabilities) that a resource is able to perform and

the parameter values within which the resource is able to

perform these functions;

2. The capability model should define the generic capabil-

ities that can be assigned to resources, including their

name and related capability parameters;

3. The model should provide a process-oriented definition

of capabilities which allows the matching of a product’s

123



964 Journal of Intelligent Manufacturing (2019) 30:959–978

processing requirements with the resource capabilities

(i.e. requirements and offerings);

4. The model must support the aggregation of the capabil-

ities of multiple co-operating resources, i.e. combined

capabilities;

5. The model should allow the description of capabilities

with the lowest level of granularity at which the recon-

figuration takes place. This enables the separation of

resources and the treatment of system components as

exchangeable entities which can be organized in a wide

variety of different configurations. It also allows the

reconfiguration decisions to be taken based on the capa-

bility model (e.g. separating the description of a drill from

that of a drill bit);

6. The model should be flexible, in the sense that it

allows also the capabilities to be described with different

abstraction (granularity) levels, e.g. describing the drill

+ drill bit combination as a single resource with a single

combined capability description;

7. The model should classify the process capabilities in a

hierarchy, allowing subsumption-based reasoning of dif-

ferent levels of processes (e.g. riveting is classified as a

joining process);

8. The model must take the lifecycle of the resources into

account. Therefore, there needs to be a separate represen-

tation for each individual resource instance into which the

lifecycle information can be collected and updated.

(C) Users

The users of the ontology were analyzed by dividing them

into three categories:

1. Contributing the information The ontology is developed

based on manufacturing engineering text books, on sys-

tem and component provider datasheets and web pages,

and on discussions with the manufacturing companies,

both with the end users and with the resource providers.

The main contributors of the instance information to the

knowledge base will be the resource providers describ-

ing the capabilities of their offerings, i.e. the supplied

machines, tools, and systems. Also, the end users of

the manufacturing resources may update the capability

information of specific individual resources during their

lifecycle;

2. Using the information The main users of the information

will be the system designers, system integrators, and end

users who want to search for resources matching their

specific processing requirements;

3. Maintaining and modifying the model Capability model

evolution needs to be in the hands of some sort of har-

monization or standardization organization. The descrip-

tions need to follow common syntax and semantics to

allow automatic capability matchmaking from global

multi-vendor resource catalogues. This goal cannot be

achieved without centralized maintenance of the ontol-

ogy. For local usage, such centralized management is not

required.

(D) Competency questions

Based on the requirement analysis and anticipated use cases,

competence questions for MaRCO were formulated:

1. What capabilities does a specific resource have?

2. What simple capabilities are needed to form combined

capability X?

3. What capabilities does a combination of specific

resources have?

4. What are the parameter values of combined capability

X when the required simple capabilities are combined?

5. What resources are involved in the current system con-

figuration?

6. What resources form functional combinations in the cur-

rent system configuration?

7. What capabilities exist in the current layout?

8. What capabilities satisfy a certain upper-level process

requirement at the concept-name level, e.g. what capa-

bilities can be used to perform a “material removing”

process?

9. What resources in the current layout have capabilities

that match with a product requirement on a capability-

concept-name level?

10. Which of these resources match with the product

requirements on the capability-parameter level? (Con-

tinuation from Q9)

11. Which resources in a certain search space have capabil-

ities that contribute to combined capability X?

12. With which resources could resource A be combined in

order to achieve combined capability X?

Determining the essential concepts and their relationships

This step was the key phase in the development of MaRCO.

It was responsible for defining the important concepts and

attributes of MaRCO and analyzing their relationships. The

end result of this activity was the MaRCO conceptual model.

However, the detailed taxonomy, and the properties and rela-

tionships definitions were drawn up in the refinement phase.

Thus, the concepts of the developed conceptual model do not

directly translate into the classes of the coded ontology, but

the detailed ontology capturing was carried out in parallel

with ontology codification.

123



Journal of Intelligent Manufacturing (2019) 30:959–978 965

Device 

Blueprint

Individual 

Device

hasDeviceBlueprint

Device

Combina�on

hasindividualDeviceOrDeviceCombina�on

hasindividualDeviceOr 

DeviceCombina�on

Capability 
hasCapability

Product 
Product 

Workplan

hasWorkplan

Process step
hasProcess

isPrecededBy

requiresFunc�onality

hasUpdatedCapability

hasCalculatedCapability

Assembly Part

hasAssembliesOrParts

isPerformedOnProductElement

Process 

func�onality 

(taxonomy)

providesFunc�onality

Process 

Taxonomy 

Model

Capability 

Model
Product Model 

Resource 

Model

imports imports

imports

(a) (b)

Fig. 1 a Simplified conceptual model of the relations between product requirements, resources, and capabilities; b distributed capability-related

ontologies

The purpose of the ontology is to support automatic match-

making between product requirements and resource capabil-

ities. Thus, the essential concepts and their mutual relations

in the areas of Product, Process, Capability, Resource, and

System were first identified. Figure 1a gives a conceptual

description of how the product, resource, and capability

concepts are linked together in matchmaking. For greater

simplicity and readability, only the most relevant identified

relations are shown here. The term “Device” is used to indi-

cate that the work concentrates only on machine and tool

resources, and not on other resource types, such as human

operators or raw materials.

During the analysis, it was identified that four distributed

ontologies are needed to facilitate the capability matchmak-

ing. Figure 1b illustrates these distributed ontologies. The

shape and color of the elements correspond with the con-

cepts in the conceptual model presented in Fig. 1a. These

ontologies have different users and different usage phases

during the product and production system lifecycles. Instead

of having one large ontology, the distribution reduces the

complexity of the model from the user’s point of view. The

Process Taxonomy Model defines the hierarchical catego-

rization of different manufacturing processes, e.g. “milling”

is classified as “machining” and further as a “material remov-

ing” process. The Product Model is used to model the product

characteristics and manufacturing requirements. The Capa-

bility Model defines the capability names, parameters, and

relations between simple and combined capabilities. The

Resource Model defines the resources and the systems com-

posed of the resources. This paper focuses on the Resource

Model which imports the Capability Model, thus referred

to here as the Manufacturing Resource Capability Ontology

(MaRCO).

The conceptual model of capabilities was initially pre-

sented in (Järvenpää et al. 2011, 2016; Järvenpää 2012).

The main concepts of the capability model are presented in

Fig. 2. The capabilities are described by name and parame-

ters. The capability concept name indicates the natural name

of the capability, such as “Moving”, “Drilling”, “Screw-

ing”, and “Grasping”. Capability parameters describe the

characteristics of a capability, e.g. the “Moving” capability

is characterized by “speed” and “acceleration” parameters,

among others. The capability parameters help to distinguish

between different resources with similar capabilities. In other

words, the concept name of the capability indicates the oper-

ational functionality of the resource, whereas the capability

parameters determine the range and constraints of that func-

tionality.

The Capability Model divides the capabilities into sim-

ple and combined capabilities. Combined capabilities are

upper-level capabilities which can be divided by functional

decomposition into simple, lower-level capabilities (“part-

of” hierarchy). Combined capabilities are combinations of

two or more (simple or combined) capabilities. In the Capa-

bility Model, the simple and combined capabilities are linked

by hasInputCapability relations (Fig. 3). All input capabili-

123



966 Journal of Intelligent Manufacturing (2019) 30:959–978

2..*

Capability

Capability 

concept name

Capability 

parameter

is described by

is described by

Simple 

Capability

Combined 

Capability

is a is a 

is composed of

Fig. 2 Concepts of the capability model

ties must be available before a combined capability can exist

in a system (logical AND). For example, in order to trans-

port an item the system needs to be able to move within some

workspace and to grasp the item or to hold it by gravity. Sev-

eral different capabilities may provide alternative input for

certain combined capability. In the previous case, “Grasping”

and “HoldingByGravity” are alternative inputs for “Trans-

porting” (logical OR). As a result, both robot with an attached

gripper, and conveyor belt alone provide the “Transport-

ing” capability. Similarly the same input capabilities may be

required by multiple different combined capabilities. As an

example “SpinningTool” capability is part of both “Screw-

ing” and “Drilling” combined capabilities, as illustrated in

Fig. 3.

Capability parameters describe the characteristics of a

capability. In the Capability Model, the capability parameters

have been defined based on the most common parameters

given in the tool and machine providers’ catalogues. The

Capability Model aims to model the parameters solely from

the resource perspective, which means that the resource

provider should be able to define those parameters without

having any knowledge of the product for which it may be

used. Figure 4 shows examples of the capability parameters

in the cases of “Moving” and “FingerGrasping” capabilities.

The capabilities form the capability catalogue, which con-

sists of the pool of generic capabilities that may exist in

a production system. These capabilities can be assigned to

resources in the Resource Model, whereupon the capabil-

ity parameters are filled with the resource-specific parameter

values. Figure 5 illustrates the important concepts in the

Resource Model. The Device Blueprint describes the capa-

bilities, interfaces, and properties of one type and model of

device, as given in the vendor’s catalogue. This represents

the nominal capability of the device. The individual devices

are presented as a separate concept which, while referring to

the Device Blueprint, presents the actual capabilities of the

particular, individual resource on the factory floor. The indi-

vidual devices have actual capabilities, which are affected by

the lifecycle of each individual device and updated accord-

ing to the measured or calibrated values on the factory floor.

For example, if the measured accuracy of the machine differs

from the value defined in the nominal capability (e.g. because

of wear), this updated value can be given in the actual capa-

bility definition. The device combinations are combinations

of multiple individual devices. These combinations can then

have combined capabilities.

Based on the defined relations between capabilities in the

Capability Model, the resource combinations contributing

to a certain combined capability on a concept name level

can be identified. In order to calculate the parameter values

for the combined capabilities of aggregated devices, com-

bined capability rules are needed. Such rules are used, for

instance, to automatically calculate the “payload” param-

eter of the “Transporting” capability. “Transporting” is a

combined capability belonging to resources or resource

combinations which can transport items from one place to

another. For instance, a conveyor alone or a robot combined

with a gripper have this capability. In order to automatically

define the “payload” parameter of the “Transporting” capa-

bility of a robot and finger gripper combination, the following

rule can be applied (Järvenpää et al. 2017): Transporting

payload = “payload” property of “Moving” capability minus

Finger

FingerGrasping

FingerGripper

HoldingByGravity Moving Releasing

Transpor�ng Placing

VacuumGrasping

VacuumCup VacuumCrea�on

Picking

OR OR

Combined capability Simple Capabilityo bined a abilit Sim le Ca

Drilling

DrillBitFunc�on ToolHolding

Screwing

ScrewingHeadFunc�on SpinningToolMovingTool

OR

has Input Capability

Fig. 3 Example capabilities and relations between simple and combined capabilities

123



Journal of Intelligent Manufacturing (2019) 30:959–978 967

Moving

speed (x, y, z)

accelera�on (x, y, z)

accuracy

repeatability

payload

degrees of freedom

workspace type

workspace dimensions

Capability name Capability parameters

Finger

Grasping

payload

grasping force (min,max)

finger opening (min, max)

gripper type

grasping type

finger closing/opening �me

accuracy

repeatability

Capability name Capability parameters

Fig. 4 Examples of capability parameters

Fig. 5 Conceptual relations between capabilities and resources

“mass” of the gripper, OR “payload” property of “Finger-

Grasping” capability. The smaller value is dominating.

Refinement: representation of the ontology

In the refinement phase, the ontology is formalized and rep-

resented. Ontology representation language plays a key role

in the establishment of an ontology. The following require-

ments were identified for language representing MaRCO: (1)

be able to describe the manufacturing capability of a resource

in a uniform way; (2) provide a powerful representation and

reasoning ability for automatic capability discovery, intelli-

gent search, and resource-matching capabilities; (3) have a

powerful support of interior logic system; (4) be compatible

with the existing and established semantic web standards; and

(5) be extensible. The Web Ontology Language (OWL) was

selected as it is the most commonly used ontology language

and satisfies the previously mentioned requirements. OWL

is a semantic mark-up language for publishing and sharing

ontologies on the World Wide Web and is developed as a

vocabulary extension of RDF (Resource Description Frame-

work) (W3C 2004). Protégé ontology editor (Protégé 2015)

was used to construct the ontology.

Figure 6 and Table 1 introduce the main classes of the

developed Capability Model ontology and their most impor-

tant properties. Due to space limitations and for greater

readability of the figures, some classes and relations are omit-

ted from the presentation. For instance, Fig. 6 only illustrates

two capability classes, namely Moving and Transporting, as

examples. Those classes, which have more siblings than illus-

trated by the figure, are marked by boxes with dashed lines.

The same applies to Fig. 8.

The Resource Model ontology imports the Capability

Model. Together, they form the Manufacturing Resource

Capability Ontology (MaRCO). The formalization of the

Resource Model quite closely follows the semi-formal

123



968 Journal of Intelligent Manufacturing (2019) 30:959–978

isa

ProcessTaxonomyModel

Capability

SimpleCapability CombinedCapability

isa isa

hasInputCapability
2…*

Moving

isa

Transpor�ng

isa

hasInput

Capability

Workspace

hasWorkspaceType

AndDimensions

hasWorkspaceType

AndDimensions

CapabilityParameter

Addi�onal

ItemSize

ShapeAndSizeDefini�on

CylinderShape

BoxShape

isa

isa

BasicResourceInforma�on

MovementRange

LinearMovementRange

Rota�onalMovementRange

WorkspaceCartesianWorkspaceCylinder

isa

isa

isa

isa

isa

isa

isaisa

hasItemSize

_max

hasItemSize

_min

hasLinear

MovementRange

hasRota�onal

MovementRange

pt:ProcessTaxonomyElement

pt:Logis�cs

pt:Transpor�ng

isa

isa

Fig. 6 Main classes and relations of capability model ontology

ontology definition presented in “Determining the essen-

tial concepts and their relationships” section. Table 2 gives

a brief description of the most relevant classes in the

Resource Model. In addition, Fig. 8 presents the main classes

and their main relations. The focus is especially on the

class descriptions for DeviceBlueprint, IndividualDevice and

DeviceCombination. These classes are at the very core of

the developed model as they link the capabilities to the

devices, both the catalogue devices and the actual devices

on the factory floor. Moreover, they allow the modeling of

the device combinations from which the combined capabili-

ties can emerge.

Evaluation

Before being used, the ontology should be evaluated and

tested. The class hierarchy, i.e. the taxonomic structure of

MaRCO, was validated by utilizing “is-a” and “is-kind-of”

tests, as suggested by Noy and McGuinness (2001). Currently

MaRCO is not intended to be used for automatic classifica-

tion of instances. Thus, a more systematic analysis of the

ontology structure, e.g. by OntoClean (Guarino and Welty

2009) or a similar approach, was not deemed necessary.

If classification is required in the future, it will be crucial

to utilize more systematic evaluation methods to eliminate

incorrect classification results. Several example resources

were modeled with MaRCO to test its expressiveness and

ability to answer the defined competency questions. In the

following sub-sections, a small case example will be out-

lined and the observations made during the testing will be

analyzed.

Test cases

Figure 9 represents the demonstration setup in an industrial

laboratory environment, which was used to perform the ini-

tial tests with the MaRCO model. It consists of a 2-axis

manipulator, a finger gripper, a feeder unit with exchangeable

123



Journal of Intelligent Manufacturing (2019) 30:959–978 969

Table 1 Main classes of the Capability Model

Class Description

Capability This is a parent class for the specific capability classes, which define the functionalities of resources. It has

two sub-classes, namely SimpleCapability and CombinedCapability, which are further divided into

sub-classes formalizing the description of specific capabilities. These sub-classes include all simple and

combined capabilities currently modeled into the Capability Catalogue. The capabilities are related to each

other through the hasInputCapability object property. Capability parameters are implemented as datatype

and object properties and are linked to the capabilities by property restrictions. Property restrictions are

used to restrict the properties of instances belonging to a certain class. An example of capability definition

can be seen in Fig. 7, which represents the class description of the “Transporting” capability. Most of the

capability parameters are implemented as datatype properties, which can be used to save literal data values.

Some parameters are implemented as object properties, which are used to model relationships between

instances. These instances belong to the CapabilityParameterAdditional class, discussed below.

CapabilityParameterAdditional This is a parent class for storing capability parameter groups, which cannot feasibly be stored as individual

datatype properties, but rather as instances linked through object properties. This approach is used in two

cases. Firstly, it is used for capability parameters which form a natural group of conceptually linked

parameters and such group (parameter set) can be re-used to describe multiple different capabilities

(example class: ItemSize). Secondly, it is used with capability parameters, which relate directly to certain

capability, but whose properties depend on the nature of the capability (example class: Workspace).

Examples of the sub-classes and their purposes are given below.

Workspace The workspace type of the movement capability determines the parameters of the workspace and thus

cannot directly be modeled as datatype properties of the “Moving” capability. This class is used to save the

details of the workspace of the “Moving” capability through the hasWorkspace object property. The

sub-classes: WorkspaceArticulated, WorkspaceCartesian, WorkspacePolar define the dimensional datatype

properties of the specific workspace type.

MovementRange This class is used to store the dimensional information of movement ranges. Linear and rotational movement

ranges are saved in separate sub-classes. Instances of “Moving” capability are related to the instances of this

class by the hasLinearMovementRange and hasRotationalMovementRange object properties.

ItemSize This class is used to store the dimensional and mass information of items. It can be used to define the

maximum and minimum item size that can be handled with a certain capability on a coarse level. Each

capability, of which the item size is critical, is related to instance(s) of this class by hasItemSize_max and

hasItemSize_min object properties.

ShapeAndSizeDefinition This class includes the different shape and size definitions that can be used to describe e.g. the shape of a

mold or adapter on a coarse level, or the shape and size of an item that can be handled. The sub-classes:

ConeShape, BoxShape, CylinderShape, PyramidShape, and SphereShape define the dimensional properties

of different shapes. This can be used to describe capabilities for which the shape is traditionally important,

e.g. the tray of a tray feeder, or the tube in a tube feeder, and is related through the

hasAllowedShapeAndSize_min, hasAllowedShapeAndSize_max and hasAllowedShapeAndSize_exact object

properties.

BasicResourceInformation This class is used for storing a collection of basic information about a resource, such as its physical

dimensions and mass. This information is not logically related to any specific capability, but is needed for

combined capability calculation and capability matchmaking. Each resource modeled by the Resource

Model is related to one instance of this class by the hasBasicResourceInformation object property (see

Figure 8).

ProcessTaxonomy (imported) The process taxonomy defines the hierarchical classification of different process functionalities. It is a pure

taxonomy, without any properties. The taxonomy can be used to link the capabilities to the upper levels in

the process hierarchy, e.g. “Drilling” capability would be classified as a “Material removing” process in the

process taxonomy. The Capability Model imports the Process Taxonomy, and the capability classes are

defined as the sub-classes of the relevant classes in the process taxonomy hierarchy. The reasoning ability of

OWL allows direct inferences to be made that each instance saved to a certain capability class is also an

instance of the process taxonomy class, which was defined as the parent class of the specific capability.

magazine, a conveyor belt, and exchangeable positioning

units at both ends of the conveyor belt. Figure 10 presents

the capabilities of the resource combination formed by the

manipulator and the finger gripper. The simple capabilities,

shown in the middle of the figure, are manually asserted to

the Resource Model instances ontology. The right side of the

figure shows the expected combined capabilities that should

be automatically calculated and added to the model, on the

basis of the relations between the capabilities and the com-

bined capability rules.

Figure 11 shows an extraction of the information modeled

about the demonstration setting with MaRCO. It is a graph

123



970 Journal of Intelligent Manufacturing (2019) 30:959–978

Fig. 7 Property restrictions defined for the “Transporting” capability.

A screenshot from Protégé

generated by OntoViz (Sintec 2007) directly from the Protégé

ontology editor, and it visualizes the modeled instances and

their relations. Due to the readability, only the robot and grip-

per combination from the demonstration station is included

into the visualization. The figure shows the devices associ-

ated to that combination and their capability definition. All

the other resources and their capability instances were mod-

eled in a similar fashion.

Pure OWL (W3C 2004) does not provide solutions for

making the required inference about the combined capability

parameters, and assertions of new instances and their prop-

erty values. Therefore, the OWL-based ontology needed to be

enriched with semantic rules. SPARQL (SPARQL Protocol

and RDF Query Language) (W3C 2008) queries were written

and run to test the ontology against the competency ques-

tions. As an example, Fig. 12 shows a SPARQL query which

searches for potential device combinations forming “Trans-

porting” capability with “FingerGrasping” and “Moving”

capabilities and calculates the “payload” parameter value for

the combined capability. The query contains the combined

capability rule for calculating the value of the “payload”. The

results it finds are shown at the bottom. Each row represents

a possible resource combination with the involved resources

and the calculated value for the “payload” parameter.

For the competency question: “What are the parameters of

combined capability X when the required simple capabilities

are combined?”, it is possible to use a sequence of SPARQL

queries to calculate each parameter value separately, as exem-

plified in Fig. 12. Another option is to use semantic rule

isa

isa

hasResource

isa

isa

isa

isa

isa

isa

isaisa

isa

hasDeviceBlueprint
hasDeviceOr

DeviceCombina�on

hasDeviceOr

DeviceCombina�on

hasDeviceOr

DeviceCombina�on

hasDeviceOrDeviceCombina�on

hasDeviceOr

DeviceCombina�on

hasDeviceOrDeviceCombina�on

hasLine hasCellOrSta�on

hasSta�on

isa

hasArea

hasCellOrSta�on

hasDeviceOrDeviceCombina�on

hasDeviceOrDeviceCombina�on

hasBasicResourceInforma�on

hasCapability

hasCapabilityUpdated

hasCalculatedCapability

CapabilityModel

Resource

FactoryUnit

Site

Area Cell

Line

Sta�on

Device

DeviceCombina�on

RealDeviceCombina�on

TestDeviceCombina�on

IndividualDevice

DeviceBlueprint

cm:BasicResourceInforma�on cm:Capability

Fig. 8 Main classes and relations of the resource model ontology

123



Journal of Intelligent Manufacturing (2019) 30:959–978 971

Table 2 Main classes of the Resource Model

Class Description

Resource This is a parent class for all resource-related classes. Direct sub-classes are Device, FactoryUnit, Human, Raw

Material and Software. In this article, only the Device and FactoryUnit classes are discussed.

Device This is a parent class for different device-related classes. It includes any machines, equipment, and tools used to

manufacture or assemble a product. Devices can be either catalogue devices (blueprints), actual individual devices,

or device combinations.

DeviceBlueprint This class contains the catalogue information about the devices. This class has several subclasses for different

categories of devices. The instances of DeviceBlueprint relate to specific capability instances by the hasCapability

object property. These capability instances are filled with resource-specific capability parameter values, making

the capability description unique for each instance of the DeviceBlueprint class.

IndividualDevice The instances of this class represent the actual individual devices present on the factory floor or in the warehouse.

This class stores the life cycle information of the devices, and refines and updates the capability properties. The

individual devices relate to the DeviceBlueprint through the hasDeviceBlueprint object property. Through this

association, the nominal parameter information for this individual device gets defined. The updated capabilities

are modeled through the hasCapabilityUpdated object property.

DeviceCombination This class includes instances which represent combinations of multiple devices. It has two sub-classes: TestDevice-

Combination and RealDeviceCombination. The former may consist of or include catalogue devices, which are

not physically present (i.e. DeviceBlueprints). This class is used during capability matchmaking, when searching for

alternative resource combinations in the catalogues, i.e. when generating temporal device combinations for tryouts

and further investigations. RealDeviceCombination includes only real physical devices (i.e. IndividualDevices).

Relations between the DeviceCombination instances and the instances of IndividualDevice or DeviceBlueprint

classes are modeled through the hasDevices Or DeviceCombinations object property. The DeviceCombination

instance may also relate to other DeviceCombination instance through the same object property. Furthermore, for

the DeviceCombination instance, combined capability information can be saved through the hasCalculatedCapa-

bility object property.

FactoryUnit The FactoryUnit class refers to the physical place in which the operations take place. It is a parent class for

other factory-area-related classes, such as Site, Line, Cell, and Station. FactoryUnit relates to resources through

the hasResource object property. Station relates to the instances of IndividualDevice or RealDeviceCombination

classes through the hasDevice Or DeviceCombination object property. Furthermore, the relations between the

different stations on the factory floor, and thus the coarse layout, can be described by the adjacentTo, connectedTo

and precededBy object properties.

languages, which allow rules to be attached directly to the

ontology, thereby increasing the reasoning abilities of pure

OWL ontologies.

First, Semantic Web Rule Language (SWRL) (Horrocks

et al. 2004) was tested for rule implementation. SWRL allows

a reasoner, such as Pellet (Sirin et al. 2007), to infer the

results automatically within the ontology. However, based

on the tests and evaluations, SWRL has several limitations

for this application. It cannot create and save new instances,

and its performance in terms of speed and memory consump-

tion was poor in the tests. Thus, the current implementation

utilizes SPIN (SPARQL Inferencing Notation) for the rules.

It is W3C Member Submission that has become the de-facto

industry standard to represent SPARQL rules and constraints

on Semantic Web models (SPIN working group 2017). It

allows rules written with SPARQL to be attached to the

classes of the ontology. A suitable reasoner tool, such as

SPIN API (Knublauch 2016), can then infer the extra infor-

mation created by the rules and use it during SPARQL query

execution. The main advantage of SPIN is its meta-modeling

capabilities that allow users to define their own reusable

SPARQL query templates and functions (SPIN working

group 2017). Based on the performed tests, SPIN performs

better for this purpose and does not have the shortcomings

of SWRL.

In addition to the query interface provided by Protégé, an

external Java application and library, called Capability Query

Library (CQL), was developed for querying the ontology

and showing the query results in a command line based user

interface. This API library can be used by other software tools

to send queries to the MaRCO knowledge base. This library

also handles the execution of the SPIN rules for calculating

the combined capability parameters and for asserting this

new inferred information to a new ontology file.

Apart from the initial test case described above, the

MaRCO model has been used to model a wide variety of

different resource instances. These resources have been col-

lected mainly from two assembly scenarios from automotive

and aeronautics industry. The modelled resources include:

feeding devices, conveyors, fixtures, grippers, robots, manip-

ulators, screw drivers and wrenches, presses, milling

machines, as well as associated tooling. Over 30 differ-

ent resource descriptions have been created. These resource

instances have been used to test and validate that feasible

123



972 Journal of Intelligent Manufacturing (2019) 30:959–978

Feeder 

base 

Feeder 

Magazine 

(tube)

Belt conveyor

2-axis 

manipulator

2-finger 

gripper

Fig. 9 Laboratory demonstration environment

resource combinations for a certain capability requirement

can be generated and combined capabilities can be calcu-

lated. Also several production lines and stations have been

modelled by assigning devices and device combinations to

the stations and stations to the lines. Furthermore, several

SPIN rules have been implement to infer the combined

capability parameters. Their implementation is discussed in

Järvenpää et al. (2018a). MaRCO has also been tested in

the capability matchmaking context, i.e. matching the capa-

bility requirements of a product with the capabilities of the

resources. This matchmaking relies also on the SPIN rules,

which are used to compare the product information against

the resource descriptions to find feasible resource combina-

tions. This matchmaking process and some example rules, in

the context of screwing process, are discussed in Järvenpää

et al. (2018b).

Based on the performed tests, all the competency ques-

tions can be answered. Some of them require multiple

SPARQL queries to be run in sequence, and this is pro-

grammatically handled by the developed CQL API. Table 3

illustrates how the information needed to answer the compe-

tency questions can be retrieved from the model.

Analysis

MaRCO was developed following tightly the requirements

defined in the Kickoff phase and listed in “Definition of the

detailed requirements” section. It satisfies all the informa-

tion requirements set for it. From the general requirements’

perspective, more final end user tests are needed before evalu-

ating the ease of creating the resource capability descriptions.

However, throughout the development, specific emphasis

was put to the unambiguity, human-readability and clarity

of the class and property names. All the capability classes

and properties were systematically described by the annota-

Combined capabilities should be inferred automatically by the 

capability associations and combined capability rules

Fig. 10 Defined capabilities for the 2-axis manipulator and the finger gripper, and inferred combined capabilities

123



Journal of Intelligent Manufacturing (2019) 30:959–978 973

Fig. 11 Extracted instance data of MaRCO, representing manipulator and finger gripper resources on the demonstration environment

Fig. 12 SPARQL query and its results. A screenshot from Protégé

tion property rdfs:comment. This is expected to support the

usability of the model.

Based on the tests performed with the demonstration data,

MaRCO can provide answers to the competency questions

defined in “Definition of the detailed requirements” section.

Thus, in that scope, it satisfies the set requirements. However,

in order to answer the question of whether two resources can

actually be physically combined, a comprehensive interface

123



974 Journal of Intelligent Manufacturing (2019) 30:959–978

Table 3 How to retrieve the information required by the competency questions?

Competency question How the information is retrieved? Single/multiple

SPARQL

CQL

needed

SPIN

used

Q1. What capabilities does a specific

resource have?

Query directly from the resource through

hasCapability property

Single No No

Q2. What simple capabilities are needed

to form combined capability X?

Query the super classes of the combined

capability X that define restrictions on the

hasInputCapability property. For each

restriction one of the capabilities defined

through someValuesFrom property is

required for the combined capability X

Single No No

Q3. What capabilities does a combination

of specific resources have?

Query the required capabilities for each

combined capability (Q2), query the

capabilities of the combination’s devices

(Q1) and determine the combination’s

capabilities programmatically based on the

retrieved information

Multiple Yes No

Q4. What are the parameter values of

combined capability X when the

required simple capabilities are

combined?

Parameters are calculated with SPIN rules

attached to the Capability class X, and

values retrieved with a SPARQL query

Multiple Yes Yes

Q5. What resources are involved in the

current system configuration?

Query resources, which link to

FactoryElement through hasResource and

hasIndividualResourcesOrDeviceCombina-

tions object

properties

Single No No

Q6. What resources form functional

combinations in the current system

configuration?

Query resources, which link to

DeviceCombination through hasIndividual-

ResourcesOrDeviceCombinations object

property

Single No No

Q7. What capabilities exist in the current

layout?

Use process for Q3 for each device

combination in the layout, starting from the

lower level ones

Multiple Yes No

Q8. What capabilities satisfy a certain

upper-level process requirement at

the concept-name level, e.g. what

capabilities can be used to perform a

“material removing” process?

Query the sub-classes of the given

ProcessTaxonomyElement class (e.g.

MaterialRemoving) that are also sub-classes

of the Capability class, and retrieve the

instances of these Capability classes

Single No No

Q9. What resources in the current layout

have capabilities that match with a

product requirement on a

capability-concept-name level?

Use a SPIN rule to connect capability

instances that match to the requirement on

the name level (Q8), and query the

resources, which connect to this capability

through hasCapability object property

Single Yes Yes

Q10. Which of these resources match with

the product requirements on the

capability-parameter level?

(Continuation from Q9)

Use process for Q4 to calculate the parameter

values. Then use ProcessTaxonomyElement

specific SPIN rules to connect those

capabilities that match on parameter level.

Query the results with SPARQL

Multiple Yes Yes

Q11. Which resources in a certain search

space have capabilities that

contribute to combined capability

X?

Query capabilities required for combined

capability X (Q2), query their instances,

query resources associated with these

instances

Single No No

Q12. With which resources could resource

A be combined in order to achieve

combined capability X?

Same as for Q11, except there is no need for

search the capabilities already offered by

resource A. (This is purely

capability-centric view, not considering

interfaces)

Single No No

123



Journal of Intelligent Manufacturing (2019) 30:959–978 975

description incorporating aspects of mechanics, control, and

energy has to be integrated into the Resource Model. Until

now, it has been beyond the scope of MaRCO’s development.

However, it will be an important part of future work so as to

allow the generation of feasible resource combinations with

compatible interfaces. Previously, the authors have proposed

a comprehensive XML-based Resource Description Concept

(Siltala et al. 2016), which includes a detailed formalism to

describe the resource information including the interfaces.

This work is currently being reused and the relevant parts of

the XML-based interface definition model are codified into

OWL-format and integrated into MaRCO (Siltala et al. 2018).

Currently, the tradeoff between generality and resource

specificity in the capability classes is under consideration.

One of the initial aims was to minimize the amount of

different capability classes in the Capability Model. Thus,

developers targeted general atomic capabilities which can

be assigned to different kinds of resources (e.g. describing

the moving capability of a milling machine and robot with

the same generic capability). However, such generality in

the capability definitions leads to a massive amount of prac-

tically impossible device combinations when searching for

possible combinations with certain combined capabilities.

Therefore, these need to be filtered out of the search results

somehow, e.g. based on their interface definitions. Another

extreme would be to define the specific capabilities for each

different technological solution. This would, on the other

hand, vastly increase the size of the capability catalogue

and make it rather difficult for resource vendors to know

the proper capabilities that they should assign to a certain

resource. Thus, a more general approach would be prefer-

able, even though it requires a detailed interface description.

However, MaRCO supports both approaches, which means

that when new capabilities (which are not connected through

hasInputCapability property to pre-existing capabilities) are

included in the catalogue, the level of generality can be eval-

uated and decided independently.

Application and evolution

As exemplified in the previous section, the researchers have

successfully applied the MaRCO model to describe var-

ious manufacturing resources using the Protégé ontology

editor and the Capability Query Library. The information

has been collected from the resource providers or owners

in spreadsheet templates and then codified into OWL by

the researchers. In order to support a wider application of

the model in real industrial scenarios, an “easy-to-use” user

interface must be provided for resource vendors to create

resource descriptions of their offerings. Such a user interface

is currently in the development phase. It is expected that user

feedback will result in extensions to the current model.

The MaRCO model is openly published and maintained

in TUT server,1 under the Creative Commons Attribution-

ShareAlike 4.0 International License (CC BY-SA 4.0), to

allow free usage and further development for anyone inter-

ested (here also permanent link to the present version2).

However, when considering the intended usage of the model,

i.e. the automatic matchmaking of product requirements

against the resource capabilities in multi-vendor resource cat-

alogue platforms, the centralized maintenance of the model

becomes an essential aspect. In order to remain usable and

compatible in a multi-vendor environment, there needs to be

one central player taking care of the model evolution. In the

initial phase, it will be the original developers, but at some

point this activity should be taken over by some standardiza-

tion organization.

The resource vendors may suggest new capabilities for

the ontology, but the standardization organization should

be in a position to decide how the capability is integrated

into the overall model, how it affects to other capabilities,

and what needs to be modified. This is regarded as neces-

sary for keeping the model consistent and preventing similar

concepts from appearing multiple times in the ontology. Fur-

thermore, as the intended usage of the ontology relies heavily

on rule-based reasoning, the usability of the general rules

will be violated if there is no ontology manager to inte-

grate new capabilities and modifications into the ontology

and to develop and update the related rules. However, a cer-

tain actor, e.g. a single company or company network, may

adopt the capability model for its own internal use, and extend

and modify it as desired. This will lead to incompatibility

with the global model and thus cause issues when compar-

ing resources described with different models. Furthermore,

the pre-defined capability matching and combined capabil-

ity rules may no longer be usable after internal modifications

to the model. Thus, if the resource providers want to make

their offerings available through global resource catalogues,

for the sake of interoperability and compatibility, they should

use the global MaRCO model, which is extended in a con-

trolled and coherent manner.

Discussion

This article presented the development process of a com-

mon knowledge representation for manufacturing resource

capability information. The developed information model,

MaRCO, provides resource vendors with a common, vendor-

independent way to describe the capabilities of their resource

offerings. Since MaRCO is a formal OWL-based specifica-

1 http://resourcedescription.tut.fi/ontology/resourceModel.owl.

2 http://urn.fi/urn:nbn:fi:csc-kata20180322182123116691.

123

http://resourcedescription.tut.fi/ontology/resourceModel.owl
http://urn.fi/urn:nbn:fi:csc-kata20180322182123116691


976 Journal of Intelligent Manufacturing (2019) 30:959–978

tion, it also enables information interoperability across a wide

variety of different design and planning tools.

MaRCO can ease and speed up the design and deci-

sion making related to different phases of production system

design, reconfiguration, and even self-organization. In par-

ticular, together with the combined capability rules, imple-

mented with SPIN, as well as the capability matchmaking

rules and the associated SW tool currently under develop-

ment (Järvenpää et al. 2017), it can support at least the

following activities related to production system design and

reconfiguration: Finding resource combinations that fulfill

a given product requirement; Checking whether the current

system is able to fulfill the given requirement; Making sure

that all the required system components are present in the sys-

tem; Indicating any missing capabilities in the current system

and suggesting alternative resources with the needed capabil-

ity; Showing the parameter range of the available capabilities

to facilitate decision-making about parametric adaptation;

Showing the available capabilities on the factory floor and

their coarse location to provide the necessary information for

the logical adaptation (e.g. re-routing); and Automatic gen-

eration of configuration scenarios based on the given product

requirements.

Often in real production environments the properties of the

combined capabilities emerge as a behavior of the machine or

station as a whole in a certain context and environment, and

they cannot be decomposed into the properties of the various

components (i.e. simple capabilities). Furthermore, some of

the capabilities depend on the exact physical relation between

the combined resources. This information is not handled with

the current model, and can not thus be taken into consider-

ation. Even though the combined capability rules can some-

times produce only crude estimations of the combined capa-

bilities, it is expected that this approach can reduce the work-

load of a system designer and reconfiguration planner. In par-

ticular, the developed knowledge representation and associ-

ated software tools facilitate the automatic search of suitable

candidate solutions from vast amounts of input information,

i.e. from multiple resource catalogues. With this approach, it

is possible to explore a large solution space and rapidly filter

out unsuitable resources, leaving only the possible resources

and resource combinations for the given requirement. There-

fore, it could ease up adaptation planning and provide

remarkable savings in the time used for system design,

reconfiguration, production planning, and order dispatching.

Moreover, it can provide human designers with new, previ-

ously unthinkable solutions to manufacturing problems.

The developed MaRCO model contributes to the existing

resource and capability modeling research by providing an

approach for modeling the combined capabilities of mul-

tiple co-operating resources. This eliminates the need to

describe the resource combinations manually. Instead, they

can be dynamically created for certain requirements based

on resource descriptions of single resources. In addition, the

existing resource combinations can be decomposed into sin-

gle resources for allowing automatic reasoning methods to

provide suggestions for reconfiguration actions. Such sug-

gestions may relate, for example, to changing the magazine

of a tube feeder to allow differently sized parts to be fed by the

feeder, or to changing the gripper of a robot in order to manip-

ulate parts of different weights. Furthermore, the presented

approach also describes the parameters relating to the capa-

bilities and allows rules to be created to infer the parameters

of combined capabilities from the parameters of the simple

capabilities and to insert them to the model. It is a unique

approach and implementation which has not been presented

by other researchers. Similar conceptual ideas for capability

matching have been presented, e.g. in Ameri et al. (2012). The

main difference, however, is in the ability to automatically

manage combined capabilities, which first of all, allows the

resources to be described on a lower level of granularity, and

secondly, eliminates the need to describe the combined capa-

bilities manually for each possible resource combination.

Conclusions

The goal of this article was to develop a formal ontology

for representing capabilities of manufacturing resources in

a vendor-neutral format, in order to support rapid semi-

automatic system design and reconfiguration of production

systems. Second goal was to present the systematic develop-

ment process of the model, following ontology engineering

methodology. Web Ontology Language (OWL) was used to

model the capability and resource related concepts, proper-

ties and relations between these concepts. As OWL is not able

to infer and assert new instances to the ontology, nor to per-

form complex arithmetic operations, SPARQL Inferencing

Notation (SPIN) was used to extend the reasoning abilities

of pure OWL-ontology and to perform the needed combined

capability calculations as well as instance and property asser-

tions.

The contribution of the paper is twofold. From scientific

perspective, it presented a novel information model, Man-

ufacturing Resource Capability Ontology (MaRCO), which

overcomes many of the limitations identified in other exist-

ing resource description approaches. Compared to other

approaches, the main contribution of MaRCO lies in its

ability to model and infer information about combined capa-

bilities of aggregated resources on a parametric level. From

practical perspective, the article gave an illustrative exam-

ple of exploiting the ontology engineering methodology in

the development of a domain ontology. The included descrip-

tion of the development process reveals the reasoning behind

the design decisions, which is rarely seen in other research

123



Journal of Intelligent Manufacturing (2019) 30:959–978 977

papers on practical ontology development in the manufac-

turing domain.

The presented model is currently being tested with indus-

trial companies in near-real industrial scenarios in automo-

tive and aerospace assembly. The model will be gradually

evolved and extended in response to the results and feed-

back got from the tests. Furthermore, the resource interface

description is presently being integrated into the Resource

Model. In addition, the rules and associated software for

performing the capability matchmaking between product

requirements and resource capabilities are in implementa-

tion. In the future, new industrial projects will be established

to test the model and associated capability matchmaking

in wider industrial settings covering larger amount of dif-

ferent process capabilities. Consequently, new capability

classes and their associated properties will be implemented

to increase the capability catalogue when needed.

Acknowledgements This research has received funding from the Euro-

pean Union’s Horizon 2020 research and innovation program under

Grant Agreement No 680759 and project title ReCaM (Rapid Recon-

figuration of Flexible Production Systems through Capability-based

Adaptation, Autoconfiguration and Integrated Tools for Production

Planning).

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

References

Ameri, F., & Dutta, D. (2006). An upper ontology for manufacturing

service description. In ASME conference proceedings (pp. 651–

661).

Ameri, F., & Patil, L. (2012). Digital manufacturing market: A semantic

web-based framework for agile supply chain deployment. Journal

of Intelligent Manufacturing, 23(5), 1817–1832.

Ameri, F., Urbanovsky, C., & McArthur, C. (2012). A systematic

approach to developing ontologies for manufacturing service mod-

eling. In Proceedings of the workshop on ontology and semantic

web for manufacturing, 2012.

Backhaus, J., & Reinhart, G. (2017). Digital description of prod-

ucts, processes and resources for task-oriented programming of

assembly systems. Journal of Intelligent Manufacturing, 28(8),

1787–1800.

Baheti, R., & Gill, H. (2011). Cyber-physical systems. In The impact

of control technology (pp. 161–166).

Barata, J., Camarinhamatos, L., & Candido, G. (2008). A multiagent-

based control system applied to an educational shop floor. Robotics

and Computer-Integrated Manufacturing, 24(5), 597–605.

Bengel, M. (2007). Modelling objects for skill-based reconfigurable

machines. In Innovative production machines and systems, 3rd

I*PROMS virtual international conference 2007 (p. 13).

Borgo, S., & Leitão, P. (2007). Foundations for a core ontology of

manufacturing. In Integrated series in information systems (Vol.

14).

Chapurlat, V., Diep, D., Kalogeras, A., & Gialelis, J. (2007). Building

and validating a manufacturing ontology to achieve interoperabil-

ity. In R. J. Gonçalves, J. P. Müller, K. Mertins, & M. Zelm (Eds.),

Enterprise interoperability II. London: Springer. https://doi.org/

10.1007/978-1-84628-858-6_28.

ElMaraghy, H. A. (2006). Flexible and reconfigurable manufacturing

systems paradigms. International Journal of Flexible Manufactur-

ing Systems, 17(4), 261–276.

Frei, R., Di Marzo Serugendo, G., Pereira, N., Belo, J., & Barata, J.

(2010). Implementing self-organisation and self-management in

evolvable assembly systems. In IEEE international symposium on

industrial electronics (pp. 3527–3532).

Gruber, T. A. (1993). Translation approach to portable ontology speci-

fication. Knowledge Acquisition, 5(2), 199–220.

Gruninger, M., & Menzel, C. (2003). The process specification language

(PSL) theory and applications. AI Magazine, 24(3), 63–74.

Guarino, N., & Welty, C. A. (2009). An overview of OntoClean. In S.

Staab & R. Studer (Eds.), Handbook on ontologies (2nd ed., pp.

201–220). New York: Springer. ISBN 978-3-540-70999-2.

Horrocks, I., et al. (2004) SWRL: A semantic web rule language—

Combining OWL and RuleML. W3C member submission. http://

www.w3.org/Submission/SWRL/. Accessed March 10, 2016.

Hu, Y., Tao, F., Zhao, D., & Zhou, S. (2009). Manufacturing grid

resource and resource service digital description. The International

Journal of Advanced Manufacturing Technology, 44(9–10), 1024–

1035.

Jardim-Goncalves, R., Sarraipa, J., Agostinho, C., & Panetto, H. (2011).

Knowledge framework for intelligent manufacturing systems.

Journal of Intelligent Manufacturing, 22(5), 725–735.

Järvenpää, E., Luostarinen, P., Lanz, M., & Tuokko, R. (2011). Present-

ing capabilities of resources and resource combinations to support

production system adaptation. IEEE International Symposium on

Assembly and Manufacturing (ISAM), 2011, 6.

Järvenpää, E. (2012) Capability-based adaptation of production systems

in a changing environment. Ph.D. thesis, Tampere University of

Technology.

Järvenpää, E., Siltala, N., & Lanz, M. (2016). Formal resource and

capability descriptions supporting rapid reconfiguration of assem-

bly systems. In Proceedings of the 12th conference on automation

science and engineering, and international symposium on assem-

bly and manufacturing (pp. 120–125). IEEE.

Järvenpää, E., Siltala, N., Hylli, O., & Lanz, M. (2017). Capability

matchmaking procedure to support rapid configuration and re-

configuration of production systems. Procedia Manufacturing, 19,

87–94. https://doi.org/10.1016/j.promfg.2018.01.013.

Järvenpää, E., Hylli, O., Siltala, N., & Lanz, M. (2018a). Utilizing

SPIN rules to infer the parameters for combined capabilities of

aggregated manufacturing resources. In 16th IFAC symposium on

information control problems in manufacturing, 11–13 June 2018,

Bergamo, Italy.

Järvenpää, E. Siltala, N., Hylli, O., & Lanz, M. (2018b). Product model

ontology and its use in capability-based matchmaking. In 51st

CIRP conference on manufacturing systems, 16–18 May 2018,

Stockholm, Sweden.

Kitamura, Y., Koji, Y., & Mizoguchi, R. (2006). An ontological model

of device function: Industrial deployment and lessons learned.

Applied Ontology, 1(3–3), 237–262.

Knublauch, H. (2016). The TopBraid SPIN API. http://topbraid.org/

spin/api/. Accessed April 1, 2017.

Koren, Y., & Shpitalni, M. (2010). Design of reconfigurable manufactur-

ing systems. Journal of Manufacturing Systems, 29(4), 130–141.

Leitão, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automa-

tion based on cyber-physical systems technologies: Prototype

implementations and challenges. Computers in Industry, 81, 11–

25.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-1-84628-858-6_28
https://doi.org/10.1007/978-1-84628-858-6_28
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
https://doi.org/10.1016/j.promfg.2018.01.013
http://topbraid.org/spin/api/
http://topbraid.org/spin/api/


978 Journal of Intelligent Manufacturing (2019) 30:959–978

Lemaignan, S., Siadat, A., Dantan, J.-Y., & Semenenko, A. (2006).

MASON: A proposal for an ontology of manufacturing domain.

Prague: Institute of Electrical and Electronics Engineers Computer

Society.

Lohse, N. (2006). Towards an ontology framework for the integrated

design of modular assembly systems. Ph.D. thesis, University of

Nottingham (p. 245).

Malec, J., Nilsson, A., Nilsson, K., & Nowaczyk, S. (2007). Knowledge-

based reconfiguration of automation systems. In 3rd annual IEEE

conference on automation science and engineering, 2007 (pp.

170–175).

Matsokis, A., & Kiritsis, D. (2010). An ontology-based approach for

Product Lifecycle Management. Computers in Industry, 61(8),

787–797.

Mehrabi, M. G., Ulsoy, A. G., & Koren, Y. (2000). Reconfigurable

manufacturing systems: Key to future manufacturing. Journal of

Intelligent Manufacturing, 11(4), 403–419.

Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A

guide to creating your first ontology. Technical report SMI-2001-

0880, Stanford Medical Informatics.

Obitko, M., Vrba, P., Marik, V., Radakovic, M., & Kadera, P. (2010).

Applications of semantics in agent-based manufacturing systems.

Informatica, 34, 315–330.

Pfrommer, J., Stogl, D., Aleksandrov, K., Schubert, V., & Hein, B.

(2014). Modelling and orchestration of service-based manufac-

turing systems via skills. In Proceedings of the IEEE emerging

technology and factory automation, 2014.

Protégé. (2015). Protégé Ontology Editor web page. http://protege.

stanford.edu/. Accessed November 1, 2015.

Rauschecker, U., & Stöhr, M. (2012). Using manufacturing service

descriptions for flexible integration of production facilities to

manufacturing clouds. In Proceedings of the 18th international

conference on engineering technology and innovation, 2012.

Ray, S., & Jones, A. T. (2006). Manufacturing interoperability. Journal

of Intelligent Manufacturing, 17, 681–688.

Salonen, J., Nykanen O, Ranta P. A., et al. (2011). An implementation

of a semantic, web-based virtual machine laboratory prototyping

environment. In Aroyo, L., et al. (Eds.), The semantic web ISWC

2011 10th international semantic web conference, proceedings,

Part II. LNCS (Vol. 7032, pp. 221–236).

Shin, J., Kulvatunyou, B., Lee, Y., et al. (2013). Concept analysis to

enrich manufacturing service capability models. Procedia Com-

puter Science, 16, 648–657.

Siltala, N., Järvenpää, E., & Lanz, M. (2016). Formal information model

for representing production resources. In I. Nääs, et al. (Eds.),

Advances in production management systems. Initiatives for a sus-

tainable world. APMS 2016. IFIP advances in information and

communication technology (Vol. 488). Cham: Springer.

Siltala, N., Järvenpää, E., & Lanz, M. (2018). Creating resource combi-

nations based on formally described hardware interfaces. In Eight

international precision assembly seminar, IPAS (unpublished).

Sintec, M. (2007). OntoViz homepage. https://protegewiki.stanford.

edu/wiki/OntoViz. Accessed August 9, 2017.

Sirin, E., Parsia, P. Cuenca, Grau, B., Kalyanpur, A., & Katz, Y. (2007).

Pellet: A practical OWL-DL reasoner. Journal of Web Semantics,

5(2), 51–53.

SPIN Working Group. (2017). SPIN—SPARQL inferencing notation.

http://spinrdf.org/. Accessed October 15, 2017.

Staab, S., Studer, R., Schnurr, H.-P., & Sure, Y. (2001). Knowledge

processes and ontologies. IEEE Intelligent Systems, 16(1), 26–34.

Strzelczak, S. (2015). Towards ontology-aided manufacturing and

supply chain management: A literature review. In Advances in pro-

duction management systems: Innovative production management

towards sustainable growth (pp. 467–475).

Studer, R., Benjamin, V., & Fensel, D. (1998). Knowledge engineering:

Principles and methods. Data and Knowledge Engineering, 25,

161–197.

Sugumaran, V., & Storey, V. C. (2002). Ontologies for conceptual mod-

eling: Their creation, use and management. Data and Knowledge

Engineering, 42, 251–271.

Sure, Y., Staab, S., & Studer, R. (2009). Ontology engineering method-

ology. In S. Staab & R. Studer (Eds.), Handbook on ontologies (2nd

ed., pp. 135–152). New York: Springer. ISBN 978-3-540-70999-2.

Terkaj, W., & Urgo, M. (2012). Virtual factory data model to support

performance evaluation of production systems. In CEUR workshop

proceedings (Vol. 886, pp. 44–58).

Thoben, K.-D., Wiesner, S., & Wuest, T. (2017). ”Industrie 4.0” and

smart manufacturing: A review of research issues and application

examples. International Journal of Automation Technology, 11(1),

4–16. https://doi.org/10.20965/ijat.2017.p0004.

Timm, I. J., Scholz, T., & Herzog, O. (2006). Capability-based emerging

organization of autonomous agents for flexible production control.

Advanced Engineering Informatics, 20(3), 247–259.

Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, methods

and applications. Knowledge Engineering Review, 11(2), 1–63.

Westkämper, E. (2006). Factory transformability: Adapting the struc-

tures of manufacturing. In A. Daschenko (Ed.), Reconfigurable

manufacturing systems and transformable factories (pp. 371–

381). Berlin: Springer.

W3C. (2004). OWL web ontology language—Reference. http://www.

w3.org/TR/owl-ref/. Accessed November 1, 2015.

W3C. (2008). SPARQL query language for RDF. http://www.w3.org/

TR/rdf-sparql-query/. Accessed March 10, 2016.

Yao, X., Zhou, J., Lin, Y., Li, Y., Yu, H., & Liu, Y. (2017). Smart man-

ufacturing based on cyber-physical systems and beyond. Journal

of Intelligent Manufacturing.

123

http://protege.stanford.edu/
http://protege.stanford.edu/
https://protegewiki.stanford.edu/wiki/OntoViz
https://protegewiki.stanford.edu/wiki/OntoViz
http://spinrdf.org/
https://doi.org/10.20965/ijat.2017.p0004
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

	The development of an ontology for describing the capabilities  of manufacturing resources
	Abstract
	Introduction
	Related work
	Ontology engineering methodology
	Manufacturing resource capability ontology development process
	Feasibility study
	Kickoff
	Definition of the detailed requirements
	Determining the essential concepts and their relationships

	Refinement: representation of the ontology
	Evaluation
	Test cases
	Analysis

	Application and evolution

	Discussion
	Conclusions
	Acknowledgements
	References


