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The development of body and organ shape
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Abstract

Background: Organisms show an incredibly diverse array of body and organ shapes that are both unique to their

taxon and important for adapting to their environment. Achieving these specific shapes involves coordinating the

many processes that transform single cells into complex organs, and regulating their growth so that they can

function within a fully-formed body.

Main text: Conceptually, body and organ shape can be separated in two categories, although in practice these

categories need not be mutually exclusive. Body shape results from the extent to which organs, or parts of organs,

grow relative to each other. The patterns of relative organ size are characterized using allometry. Organ shape, on

the other hand, is defined as the geometric features of an organ’s component parts excluding its size.

Characterization of organ shape is frequently described by the relative position of homologous features, known as

landmarks, distributed throughout the organ. These descriptions fall into the domain of geometric morphometrics.

Conclusion: In this review, we discuss the methods of characterizing body and organ shape, the developmental

programs thought to underlie each, highlight when and how the mechanisms regulating body and organ shape

might overlap, and provide our perspective on future avenues of research.

Keywords: Body shape, Organ shape, Allometry, Geometric morphometrics, Morphogens, Environmentally-sensitive

growth, Organ patterning

Background

Whether it was intended, when Charles Darwin stated

that “endless forms most beautiful and most wonderful

have been, and are being, evolved” he elegantly captured

how much of the diversity we observe across organisms

arises because they differ in shape [1] (Fig. 1). This

simple observation has inspired over a hundred years of

research into how shape changes between populations,

species, and taxa. More recently, investigators have

begun to probe the genetic mechanisms that give rise to

body and organ shape [2–4]. This is, of course, not a

simple task as the genetic pathways directing how shape

develops are varied and complex, and may not be con-

served across organisms. Even so, by comparing across

organisms we could potentially identify common

properties between the cellular and genetic pathways

that build body shape.

One way to begin identifying common properties in-

volves defining what we mean by body shape. The defi-

nitions of body shape can be sorted, rather broadly, into

two overlapping categories [5]. The first characterizes

body shape by the relative size of their component parts

(Fig. 1). The patterns described by changes in relative

size between organs are known to specialists in this field

as allometry [6, 7]. Allometric patterns characterize not

only the size of organs relative to each other, but how

changes in the size of one organ scales with another [8]

(Fig. 2a). As such, measures of allometry provide a

method for characterizing whole body shape.

Practitioners differ in how they define allometry, and

these differences are divided into two main schools of

thought. The Huxley-Jolicoeur school describes allom-

etry as variation among traits resulting from differences

in their size [6, 9]. In contrast, the Gould-Mosimann
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school conceptually distinguishes shape from size and

measures the difference in shape as the variation of pro-

portions independent of size [5, 7, 10]. This review will

define allometry in terms of how traits differ in their

relative size (Huxley-Jolicoeur definition). However, we

will return to how organ shape varies with organ size

when discussing how and when the mechanisms regulat-

ing each might overlap.

The second way of thinking about body shape is to

consider all geometric properties of a body part, but to

exclude its size [11, 12]. The geometric properties of

organ shape are commonly described using the relative

position of morphological features that can be readily

identified across specimens, known as landmarks, while

accounting for size, orientation, and position (Fig. 1,

[13]). Describing the geometry of organs in this way –

known as geometric morphometrics – provides a sophis-

ticated measure of organ shape (Fig. 2b).

Countless examples describe how organ shape changes

as organs increase in size [14–16], demonstrating that

shape and size are likely to share developmental regula-

tors. Studies over the past twenty years, primarily from

insects, have highlighted key genetic pathways required

for regulating body size and relative organ size [2, 4, 17–

20]. These studies have provided new insight into the

molecular mechanisms that underlie the differences in

growth across organs that are responsible for generating

allometric patterns. In parallel, studies in plants and ani-

mals have begun to determine the molecular mecha-

nisms resulting in organ shape [21–25]. In this review,

we will first outline the different methods used to

characterize body and organ shape, before delving into

Fig. 1 Much of the morphological diversity seen in multicellular organisms results from changes in body and organ shape. Animals, plants, and other

multicellular organisms differ in their body forms. This diversity of body shapes is generated by modifying body shape – or the relative size of organs

compared to the rest of the body, or by changing organ shape – the three-dimensional configuration of an organ’s features independent of its size

Fig. 2 Tools for quantifying organ shape using allometry (a) or geometric morphometrics (b). a shows the scaling relationships between mean trait

size (wing size) and body size. Traits are isometric when α = 1. Hypoallometry describes a relationship where α < 1 and trait y shows little or no change

in size with increasing body size. For hyperallometric relationships (α > 1), trait y increases disproportionately with increasing body size. b shows how

the shape of the wing can be measured using the spatial relationship of discrete landmark points (shown in red). The position of these cartesian

coordinates can be altered to produce new wing shapes independent of wing size
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the recent literature that describes genetic pathways

regulating each. Finally, we will highlight evidence that

shows the extent to which the mechanisms that give rise

to body and organ shape overlap, with views to future

avenues of research. While most of our examples arise

through insights from the widely studied Drosophila

melanogaster, we also provide examples from other ani-

mals, as well as from plants.

Main text

Quantifying variation in body and organ shape

A number of excellent reviews describe and compare the

methodologies used to study body shape, including met-

rics for describing allometric patterns, and organ shape,

the realm of geometric morphometrics [5, 26–28]. It is

not our intention to provide an exhaustive review of

these methods, but rather to highlight the central con-

cepts pertaining to describing patterns of allometry and

of organ geometry, and to identify where these differ.

We will use this comparison later in the review to out-

line the mechanisms known to regulate body shape and

organ shape.

Body shape – patterns of allometry

In studies of allometry, shape is characterized by meas-

uring how the dimensions of two body parts scale with

one another [8]. Typically, these relationships are mea-

sured using size variables such as width, length, area, or

volume. This allows one to compare how organ size

scales with body size, or how the size of specific regions

within an organ correlates with the size of the whole

organ. Allometry can be used to characterize the vari-

ation in scaling either across developmental time (onto-

genetic allometry), across individuals of the same species

at the same developmental stage (static allometry), or

across species of the same developmental stage (evolu-

tionary allometry) [7, 29, 30].

Allometry is modelled mathematically using Huxley’s

allometric equation, which describes the relationship be-

tween two traits, for example between trait “y” (e.g. brain

size) and trait “x” (e.g. head perimeter), as y = βxα. Log-

transforming the allometric equation linearizes this rela-

tionship such that the log of trait y is a function of the

log (β) plus the log of trait x times the constant α [8]. β

will therefore be the value when log(x) = zero, or when

x = 1, and corresponds to the elevation of the allometric

relationship [31].

log yð Þ ¼ log βð Þ þ log xð Þ

The allometric elevation, indicated as β, provides in-

formation about mean trait size. The constant α is

known as the allometric coefficient (or scaling expo-

nent), describes the slope of the line or the rate of

change in one trait (y) relative to change in another (x)

(Fig. 2a) [3, 6].

Depending on the value of the allometric coefficient α,

scaling relationships are categorized into three types.

Isometry, where α = 1, occurs when both traits scale pro-

portionally (Fig. 2a). This type of relationship occurs be-

tween the maxillary palps and thorax area of Drosophila

melanogaster [32]. Increasing the slope away from isom-

etry would result in a hyperallometric relationship (α >

1), where trait y becomes disproportionately larger in

response to an increase in trait x (Fig. 2a). A classic ex-

ample, the scaling relationship between major claw size

and body size in male fiddler crabs is hyperallometric [6,

33]. Hypoallometry (α < 1) occurs when the size of trait

y increases slowly with increasing size for trait x (Fig.

2a). This hypoallometric relationship is typical of the

genital structures in male insects, which vary little in size

as male body size increases [4, 32, 34, 35].

Patterns of allometry can also be used to compare how

scaling relationships change with genotype, environmen-

tal conditions, and sex, as well as across developmental

trajectories. When measured across environmental con-

ditions, the allometric coefficient reflects a trait’s sensi-

tivity to those conditions – otherwise known as

plasticity [36]. For example, when D. melanogaster larvae

are reared across a range of nutritional conditions, body

size in the emerging adults increases with increasing diet

quality. Wing size in the adults scales isometrically with

body size, whereas the size of the genital arch shows a

hypoallometric relationship with body size [32]. Thus,

the wing shows higher nutritional plasticity than the

genital structures. In cases where traits vary discretely in

size across environmental conditions, such as in poly-

phenisms, the allometric elevation can be used to de-

scribe trait plasticity. For example, the mean size of the

eyespots on the wings of Bicyclus anynana butterflies is

significantly larger when animals are reared at wet sea-

son temperatures (27 °C), than when they are reared at

the lower dry season temperature of 19 °C [37]. These

differences in how organs respond to environmental

change have recently been mined to uncover develop-

mental genetic mechanisms underpinning the develop-

ment of allometric relationships [2, 4, 38].

Within a species, because allometric relationships are

typically measured on populations of genetically diverse

individuals, genetic differences in scaling relationships can

easily be missed. Determining how scaling relationships

vary between individuals is difficult since each individual

can only present one size phenotype [4, 39, 40]. Neverthe-

less, theoretical models highlight how the distribution of

individual scaling relationships in a population can greatly

affect how allometry evolves [40]. Using clonal species or

isogenic lines, where all individuals in a line are essentially

genetically identical, provides a tool to explore the

Cobham and Mirth BMC Zoology            (2020) 5:14 Page 3 of 15



effects of genetic variation on scaling relationships [4,

40]. These studies promise to generate important

insight into the sources of genetic variation that cause

scaling relationships to vary within a population.

Perhaps more importantly, they open up new oppor-

tunities to develop an understanding of how allomet-

ric relationships evolve [4, 40].

Organ shape – describing organ geometry

Allometric patterns can also be used to describe organ

shape by comparing the relative size of one organ com-

partment against another. At a tissue or even cellular

level, the relationship between measures that differ in di-

mensions can provide useful shape information. For

example, when cells or organs grow isomorphically, i.e.

do not alter their shape during growth, the allometric

coefficient between log mass and log length is equal to

3. Allometric coefficients < 3 indicate that the cell or

organ is flattening as it increases in size, whereas coeffi-

cients > 3 show that the cell or organ is increasing in

thickness with size [41]. Such relationships provide a

reasonable estimate of changes in organ shape.

Geometric morphometrics offers a more precise map

of organ shape that can be analysed both independently

from organ size and in the context of other non-shape

variables [42]. In this sense, shape is described as all geo-

metric features of an organ excluding size, position, and

orientation [5, 27]. This approach considers the magni-

tude and location of morphological variation [43], pro-

viding a more complete picture of the specific features

of an organ that give rise to changes in organ shape.

Geometric morphometrics has been widely applied

across organisms and fields, and is divided into either

landmark-based morphometrics or outline-based mor-

phometrics. In landmark-based morphometrics, shape is

summarized in terms of the spatial relationship of

discrete landmark points of correspondence (anatomical

loci), which are either described as 2- or 3-dimensional

Cartesian coordinates [13, 42, 44] (Fig. 2b). Outline-

based morphometrics involves summarizing the shape of

open or closed perimeters with the use of semi-

landmarks [42, 45]. Semi-landmarks describe contours

or boundary outlines and do not depend on the presence

of true anatomical landmarks [45]. Both types of meth-

odology provide precise descriptions of organ shape in-

dependent from organ size.

While both landmark and outline-based approaches

describe organ shape, they differ in terms of what can be

inferred from the data. In landmark-based approaches,

each landmark point is a formal hypothesis that assumes

that corresponding landmarks across individuals are

homologous [46]. This allows the explicit testing of how

the distribution of these homologous structures varies

across development or within a population, or how it

evolves between species [46, 47]. For example, landmark

techniques have been applied in identifying hybrids be-

tween species and subspecies of the western honey bee

[48, 49], and in understanding how human facial features

differ in terms of their perceived masculinity [50].

Landmark-based methods can nevertheless be problem-

atic when novel structures arise, as there will be no cor-

responding homologues in species that do not share the

novelty. In contrast, outline-based morphometrics do

not assume homology between the parts of organs [51].

Although this frees shape analysis from the confines of

landmarks, when comparing across development, indi-

viduals in a population, or species, one cannot ascribe

changes to specific physical structures using outline-

based approaches [45].

To be able to separate organ size from organ shape,

researchers using landmark-based approaches scale land-

marks to the same centroid size using Generalized Pro-

crustes Analysis [27, 52, 53]. Centroid size is the square

root of the summed squared distances between all land-

marks and the centroid (the average x and y coordinates,

and in 3D, z coordinates across all landmarks) [5]. Gen-

eralized Procrustes Analysis translates all landmarks be-

tween two objects to the same position and orientation,

and then transposes and translates them to a common

centroid size [5, 46]. This Procrustes superimposition

describes shape differences as the variance between the

landmark configurations that cannot be removed by

scaling, translating, or rotating landmark points [5].

Transforming data in this way allows organ shapes to be

compared across individuals, populations, or species, but

also allows the relationship between organ size and

organ shape to be assessed.

Regardless of the approach, geometric morphometrics

allows researchers to address questions about how vari-

ation in the shape of biological structures can be coordi-

nated at developmental, functional, and/or evolutionary

levels. When features that contribute to shape co-vary,

this is known as morphological integration [47, 54]. Inte-

gration generally implies that the features contributing

to shape share a developmental regulator, a similar func-

tion, or a common genetic or evolutionary origin [54,

55]. In contrast, when shapes of organs show distinct

spatial or temporal patterns of variation, this is known

as modularity [47, 56]. Modularity can imply that the de-

velopmental mechanisms that underpin the generation

of each module is distinct [56, 57]. Organs can show

both morphological integration and modularity. For ex-

ample, in insect wings the landmarks obtained from the

wing veins show greater co-variation within either the

anterior or posterior compartment than between com-

partments [54, 58–60]. Similarly, facial patterns and out-

lines show greater co-variation within a sex than

between sexes in humans [50, 61, 62]. Across
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development, there is a high degree of co-variation in

the relative timing of development of the components of

the oro-nasal region relative to the cranium in mammals

and lizards [56, 57]. In this way, the spatial and temporal

patterns of variation in organ shape can indicate whether

developmental regulators should be expected to be the

same or to differ across component parts.

Regulating body and organ shape

The processes that give rise to body shape and those

that generate organ shape could, in principle, be con-

trolled by different developmental mechanisms. The

scaling relationships that give rise to body shape result

from organ growth, which is regulated by both organ-

specific (or organ autonomous) growth signals and sys-

temic signals [63]. Organ shape, on the other hand, re-

sults from the mechanisms that establish cell identities

and dictate cell behaviours, otherwise known as pattern-

ing. These patterning mechanisms delineate similarities

and differences between cell types, map the positions of

specific structures, and also control organ-autonomous

growth.

However, when we consider the numerous studies

showing how organ shape varies across organ sizes it

seems that the mechanisms defining organ shape and

size are likely to overlap [5, 32, 54]. For example, during

development as the body grows the increasing need for

blood flow necessitates an increase in the size and an ac-

companying change in shape of the human heart [33,

64]. Below we discuss the developmental mechanisms

that regulate body and organ shape, highlight where

these mechanisms might intersect.

Developmental mechanisms of allometry

The final size of all organisms is determined by both the

rate of growth and the duration of the growth period

[2]. Developmental mechanisms that control the rates of

growth and duration of growth have been studied most

extensively in insects, and are regulated by two broadly

classified mechanisms: organ-autonomous growth, and

environmentally-sensitive, or plastic growth [65]. Where

organ-autonomous growth involves internal develop-

mental programs that ensure that an organ grows suffi-

ciently to function properly, plastic growth matches the

organism’s size to its environment. These two develop-

mental programs work together by integrating the sig-

nals received from either organ-autonomous regulators

or systemic mechanisms [65, 66].

Organ-autonomous control of growth Organs are

known to have characteristic, autonomous sizes that

arise due to the developmental mechanisms that specify,

pattern, and regulate organ growth. Evidence for this au-

tonomous property of organ size was first provided by

studies of D. melanogaster. In this species, wings and

other adult structures develop as pouches of cells –

known as imaginal discs – within the growing larvae

[67]. When wing imaginal discs are transplanted from

early stage larvae into the abdomen of an adult, these

discs grow to be the same size as a normal late-stage

wing disc and then stop growing [68]. This is not a

phenomenon unique to insects. In humans when a lobe

of liver is transplanted into a recipient both the donor

and original liver grow to near-normal sizes [69]. These

studies demonstrate that organs have autonomous prop-

erties that ensure that they grow to the correct size.

For many organs and in many different developmental

contexts, gradients of morphogens determine organ-

autonomous size. The term morphogen, as originally de-

fined by Turing [70], is a chemical substance (generally a

protein) that is unevenly distributed across a field of

cells such that it forms a gradient by diffusion. This gra-

dient is interpreted by the receiving cells and used to

generate distinct cell identities and behaviours. Morpho-

gens in several contexts are scale invariant; they produce

the same patterning outcomes regardless of the size of

the field of cells on which they act. For example, removal

of 30% of the cells in a blastula-stage zebrafish embryo

leads to smaller yet perfectly proportioned embryos [71].

In these embryos proportional scaling occurs because of

changes in the concentration of two interacting morpho-

gens: Nodal and Lefty. When cells are removed, the con-

centration of the highly diffusible morphogen Lefty

increases, and acts to inhibit Nodal expression thereby

rescaling the whole embryo to the correct dimensions

[71]. Similarly, in the wing imaginal disc of D. melanoga-

ster morphogens like Decapentalegic (Dpp) and Wing-

less (Wg) regulate the size of the wing in a scale-

invariant manner [72–74]. Manipulating the size of the

posterior compartment of the wing disc causes rescaling

of the Dpp morphogen gradient to the appropriate pro-

portions [74]. In addition to their roles in regulating

organ-autonomous growth, the gradients of Dpp and

Wg establish the anterior/posterior and dorsal/ventral

axis of the wing disc [75]. Thus, morphogens and their

gradients play a key role in determining the overall

shape of organs, as well as the scaling relationships

within an organ and between the organ and the whole

body.

Differences in morphogen activity among organs can

play an important role in relative organ size. At the end

of development, the wing discs in D. melanogaster are

approximately 3.5–4-fold bigger than the disc that gives

rise to the balancing organ, the haltere [76]. These dif-

ferences are regulated by interactions between morpho-

gens and the Hox gene Ultrabithorax (Ubx), responsible

for providing segment-specific identities to the organs of

the third thoracic segment and abdominal segments.
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Ubx acts to reduce the concentration of Dpp, as well as

limiting its spread and activity in the haltere relative to

the wing [76–78]. In this way, modulating morphogens

in an organ-specific manner is a key factor in regulating

the elevation (the β term) of the allometric equation be-

tween the size of the haltere relative to the size of the

wing. Taken together, morphogens appear to regulate

the organ-autonomous properties of growth while pat-

terning genes that confer segment-specific identity tune

the properties of these morphogens so that the organ is

of the appropriate scale. With new technologies that

allow levels of endogenous protein expression in live

cells [79, 80], we can now begin to explore how proper-

ties of morphogen gradients differ across organs to re-

sult in organ-specific sizes.

Mechanical properties of tissues are also thought to

affect relative size. The ventral nerve cord of developing

D. melanogaster embryos is 60% the length of the em-

bryo regardless of embryo size. The ventral nerve cord

depends on interactions between the ventral nerve cord

cells and the extracellular matrix to achieve this scaling

[81, 82], potentially due to tension created between the

two. In the wing disc, cells at the edges of the disc cease

dividing towards the end of development [83]. The

mechanical strain that this imposes on the more central

dividing cells is thought to shut down their cell division,

thereby controlling the final size of the wing disc [73].

Pathways like the Hippo and JNK pathways both regu-

late organ growth and are sensitive to mechanical stress

[84, 85], thus these pathways are proposed to be central

for regulating organ-autonomous size.

Finally, while morphogen gradients and mechanical

stress regulate the way that many organs grow, organs

whose size is dictated by cell migration, such as organs

that grow via branched tubular networks, require differ-

ent types of cues to know when to stop growing. For ex-

ample, the size and shape of the hermaphroditic gonad

in Caenorhabditis elegans depends on the migration of

the distal tip cells [86]. These distal tip cells migrate

along the ventral surface before turning dorsally and mi-

grating along the dorsal surface to form a U-shaped

structure [86]. In mutants for the transcription factor

Pax6 (vab-3), the distal tip cells continue migrating

forming large, mishapened gonads [87]. Pax6 regulates

gonad size by controlling the expression of two α inte-

gins, Pat-2 and Ina-1. Integrins are transmembrane re-

ceptors that facilitate interactions with the extracellular

matrix, and are thus important for pathfinding during

cell migration in many contexts [88]. In the gonad, Pat-2

is turned on by Pax6, and seems to be necessary for cor-

rect pathfinding in the distal tip cells, as reducing its ex-

pression causes ventralised distal tip cell migration or

extra turns in the gonad [87]. In contrast, Ina-1 is down-

regulated by Pax6. Failure to turn off Ina-1 results in

perpetually growing gonads [87]. Integrins also play cen-

tral roles in tubular growth directed by tip cells in many

other animals, such as the renal tubes of D. melanogaster

[89], vertebrate angiogenesis [90, 91], and the develop-

ment of the branched respiratory systems in mammals

and insects [92, 93]. How this mechanism of growth

regulation scales across organ and body sizes is poorly

understood.

Environmentally-sensitive organ growth While organs

have their own autonomous sizes, body and organ

growth is also sensitive to a wide range of environmental

conditions. The signalling pathways that respond to

most environmental conditions have yet to be resolved,

however we have a solid understanding of how animals

respond to nutrition during development to regulate

their growth. In D. melanogaster, nutrition is sensed by

an endocrine organ known as the fat body [94–97]. The

fat body detects the availability of dietary nutrients and

communicates nutritional status to the brain via a num-

ber of secreted peptide hormones [98–104]. These

peptides regulate the production and secretion of

insulin-like peptides by specialized insulin producing

cells in the brain, which in turn modulate growth and

maintain nutritional homeostasis.

The D. melanogaster genome encodes a family of

seven insulin-like peptides (dILPs 1–7) and a relaxin-like

peptide (dILP8) [105, 106]. While dILPS 1–7 are se-

creted by distinct cells in the different tissues of the

body [107–109], dILP8 is secreted by damaged imaginal

discs [110, 111]. dILPs alter body size in response to nu-

trition [66]. During feeding, increased nutrients induce

the synthesis and secretion of dILPs 2, 3 and 5 from a

group of neurosecretory cells in the brain called the

insulin-producing cells (IPCs) [106, 112]. While the spe-

cific peptides might not be conserved, animals as dis-

tantly related as insects, nematodes, and vertebrates use

insulins and /or insulin-like growth factors to tune their

growth to environmental conditions [66, 113, 114].

These circulating insulins bind to and activate insulin re-

ceptors (InR in D. melanogaster) on target peripheral or-

gans, activating a conserved phosphorylation cascade

that induces growth via the protein kinase Akt [115–

118]. In this way, insulin signalling acts systemically to

link nutrition to body and organ growth.

A second pathway regulates growth in response to nu-

trition in a cell-autonomous manner - the highly con-

served target of rapamycin (TOR) pathway. TOR was

first discovered in yeast as the target of the growth in-

hibitory drug Rapamycin [119], but has since been found

in all eukaryotes [120]. In yeast and animal cells, TOR

kinase occurs in two distinct multi-protein complexes,

TORC1 and TORC2, with different cellular functions

which both contribute to growth and viability. TORC1 is
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sensitive to Rapamycin and under high amino acid con-

centrations is activated via Ras Homolog Enhanced in

Brain (Rheb) [121]. This pathway controls growth in ani-

mal cells through the S6 Kinase 1 (S6K1) and the initi-

ation factor 4E-binding protein 1 (4E-BP1) S6K [122].

TORC2 is rapamycin insensitive but controls the full ac-

tivation of the protein kinase Akt to mediate growth

[123, 124]. TOR signaling initiates translation and ribo-

some biogenesis, stimulates rRNA synthesis, and pro-

motes cell autonomous growth [123]. Loss of TOR

signaling causes developmental and growth arrest and

reduces nuclear size of cells, a phenotype typical of ani-

mals under amino acid starvation [20]. Because the insu-

lin and TOR pathways share several downstream

regulators, including Akt, they are often referred to as

the insulin/TOR pathway [125].

All organs respond to insulin/TOR signaling to regu-

late their growth, however the sensitivity of organs to

this signaling differs [126]. While the wings of many in-

sects show isometric scaling with body size, the genital

disc scales hypoallometrically [32]. In D. melanogaster

and the dung beetle Onthophagus nigriventris, differ-

ences in scaling between these organs are underpinned

by differences in sensitivity to insulin/TOR. In D. mela-

nogaster the wing disc shows high sensitivity to insulin/

TOR, whereas the genital disc shows low sensitivity

[126]. In genital discs, low sensitivity to nutrition is

achieved by modifying the expression of a negative regu-

lator of the insulin signaling pathway, Forkhead BoxO

(FoxO). In D. melanogaster, the genital discs become in-

sensitive to insulin/TOR signaling by expressing very

low concentrations of FoxO protein [127], while O.

nigriventris genital discs achieve the same effect by ex-

pressing high levels of FoxO protein [128]. In both cases,

these changes in FoxO concentration ensure that insulin

signaling in genital disc cells remains more or less con-

stant across a range of nutritional conditions [126].

Hyperallometric traits, such as the horns on male

rhinoceros beetles, typically are show increased sensitiv-

ity to insulin/TOR signaling [129]. At least in this beetle,

this is due to differences in the levels of InR in these tis-

sues [129]. Thus, allometric coefficients differ between

organs at least in part due to differences in sensitivity in

insulin/TOR signaling [3].

In addition to the rates of growth, the relative timing

of the growth period controls body size by modifying the

duration of the growth period in insects and other ani-

mals [38, 130–133]. Growth duration is regulated by the

production and secretion of hormones important for set-

ting the pace of development, and is also controlled by

the insulin/TOR signaling. In particular, in insects insu-

lin/TOR signalling regulates the synthesis of the steroid

hormone ecdysone, the hormone responsible for regulat-

ing the time of moulting across all larval stages and

finally metamorphosis in all holometabolous insects

[134, 135].

Ecdysone is synthesized from cholesterol in the pro-

thoracic gland (PG) of insects and released into the cir-

culating hemolymph [136]. In the fat body, it is then

modified to its active hydroxylated form, 20-

hydroxyecdysone (20E), by a P450 monooxygenase

[135]. 20E binds to a nuclear receptor formed from a

heterodimerization of Ecdysone Receptor (EcR) and

Ultraspiracle (Usp) [137, 138], this receptor binding acti-

vates stage-specific cascades of gene expression that de-

termine the timing of developmental processes [139].

In the final larval instar, a series of three smaller

pulses of ecdysone prepares the animal for metamor-

phosis before the final pulse induces the onset of pupal

development [140]. The first of these smaller pulses is

sensitive to nutritional conditions, and induces a devel-

opmental transition known as critical weight [66, 132,

140, 141]. Critical weight defines a developmental transi-

tion in the way larvae respond when starved. Larvae

starved before critical weight delay initiating metamor-

phosis for up to ten days, after critical weight larvae no

longer delay the onset of metamorphosis when starved

[133, 141–143].

Insulin/TOR signaling regulates when larvae reach

critical weight [38, 130–133]. It does this by acting on

the PG to regulate the timing of first pulse of ecdysone

synthesis [144], at least in part by regulating the ploidy

of PG nuclei [145]. By regulating when larvae initiate

metamorphosis, the ecdysone pulse at critical weight de-

termines for how long organs can grow.

These small pulses of ecdysone also act to modulate

organ growth rate [66, 146]. The wing imaginal discs

[66, 147], ovary [148, 149], and the medulla neuroblasts

in the central brain [150] all depend on ecdysone for

growth. This dependency is important for whole organ

size, but also for coordinating growth across compart-

ments within an organ. Ecdysone signals regulate the

growth of both anterior and posterior compartments of

the Drosophila wing to produce appropriately propor-

tioned wings [147, 151]. This highlights the role of ec-

dysone in regulating organ shape.

While the amount of time an organ has to grow clearly

impacts its final size, the relative timing of when organs

initiate growth, a phenomenon known as heterochrony,

also influences body and organ shape [152]. Changes in

the onset, duration, and rate of growth underlie major

divergences in skull morphology in mammals and their

close relatives [153]. In particular, accelerated ossifica-

tion of the bones of the cranial vault in mammals as

compared to non-mammalian amniotes can describe

their relative brain sizes [154]. While it is unclear what

leads to differences in relative timing of bone ossification

among taxa, variation in the timing of ossification
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correlates with the developmental origin of the bone –

where the timing of ossification occurs earlier in dermal

bones, and much later in endochondral bones [154].

This suggests that the timing of ossification is independ-

ently regulated between bone types, and further high-

lights an important manner in which developmental

programs can impart modularity to body and organ

shapes.

Finally, a number of recent studies have demonstrated

that in addition to their role in organ autonomous size

regulation, morphogens can be secreted into the circula-

tory system to regulate body and organ growth. In Cae-

norhabditis elegans, morphogens like DBL-1 (orthologous

to Dpp) are secreted from several classes of neurons and

act systemically to regulate body size and male tail shape

[155–157]. DBL-1 plays important roles in metabolism

and lipid storage, and acts upstream of insulin signalling

to exert these effects [158] . Similarly, in D. melanogaster

morphogens like Hedgehog and Activin-β are secreted by

cells of the midgut and act remotely to regulate peptide

signals from the fat body, ILP secretion, and ecdysone syn-

thesis [159–161]. While enteroendocrine cells in the mid-

gut increase Activin-β secretion when larvae are fed high

sucrose [161], the enterocytes of the midgut increase

Hedgehog secretion when larvae are starved [160]. Inter-

estingly, secreted systemic Hedgehog does not modify the

Hedgehog morphogen gradient in the wing imaginal disc

[160]. Thus, in addition to their roles controlling local

organ growth patterns, morphogens can act systemically

to cue changes in hormone production and secretion to

regulate whole body growth.

Mechanisms regulating organ shape

The role of Morphogens in defining cell identity and

behaviour In addition to regulating organ growth, mor-

phogens designate spatially structured patterns across a

field of cells. Graded morphogen signals determine the

position, arrangement, and fate of cells depending on

the concentration each cell receives. Bicoid is the first

identified and most broadly studied morphogen [162–

164]. bicoid mRNA is loaded into the anterior pole of

the D. melanogaster egg during egg development [165].

Its translation during embryogenesis results in an anter-

ior to posterior gradient of protein. This gradient speci-

fies the antero-posterior axis of the embryo and in

setting off the cascade of signalling interactions that es-

tablish segments along the anterior/posterior axis of the

embryo [162]. Similarly, the Dpp gradient in the D. mel-

anogaster wing regulates growth and establishes bound-

aries of gene expression that are essential for the correct

specification and positioning of the veins along the wing

[166]. In this way, morphogens not only regulate the

relative size of organs, they also regulate organ shape by

controlling the identity, position, and behaviour of cell

types within an organ.

Morphogens do not function only in animals, but play

important roles in establishing cell identity in plants as

well. Plant plasma membranes are bound by rigid cell

walls that separate one cell from another [167, 168].

However, vascular networks connect cells and tissues,

allowing communication between them [169, 170]. Plant

morphogens called auxins are produced in immature

shoots and travel to the roots and apical parts of the

plant through these vascular networks [171]. Within the

plasma membrane of individual plant cells, localized ef-

flux proteins (auxin transporting cells) convey auxin in

and out of the cell. Studies into the auxin families show

that the membrane localized PIN FORMED (PIN) pro-

teins are involved in instructing auxins on the direction

and rate of their travel [172]. PIN1, a subclass of the

PIN proteins, is involved in patterning the venous net-

work such that new veins are connected to older ones as

well as guiding the formation of veins into target tissues

and consequently determining the site for a new organ

initiation [173, 174].

Via their role in patterning, morphogens tell cells how

they should behave. These cell behaviours define organ

shape by: (i) changing cell shape as a result of cell iden-

tity, (ii) inducing cells to proliferate and/or enlarge in

size, (iii) causing cells to migrate or reorganize within a

tissue, or (iv) triggering cell death which can be seen as

a cessation of growth and/or loss of cells [175] (Fig. 3).

How cell behaviour shapes organs In the simplest sce-

nario, organ shape is a direct function of the shapes of

its constituent cells [181–183]. For example, epithelial

cells are cuboidal, while neurons have more radiating

shapes with obvious projections [184] (Fig. 3). Differ-

ences in cell shapes arise through mechanical

reorganization of their cytoskeleton [185]. For example,

in neurons the microtubule cytoskeleton organizes itself

to form highly ordered bipolar spindles [186]. In this

way, the shapes of specialised cell types dictate the range

of potential shapes of an organ.

Even amongst cells of the same type, cell shape plays

an important role in organ shape. When the sepals of

Arabadopsis thaliana flowers develop, the cells in the

meristem show variable growth rates among cells.

Growth rates among cells differ due to spatial and tem-

poral variation in cell stiffness [187]. This spatial and

temporal variation is regulated, in a process called spa-

tiotemporal averaging. Disruption of spatiotemporal

averaging, such as found in plants mutant for FtsH4,

makes growth rates more uniform [187]. This creates

greater variability in cell size and shape – resulting in

misshaped sepals [187]. Thus, organ shape relies on the
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ability of organs to dynamically modulate cell behaviours

contributing to the shape of their constituent cells.

Cell division can also play an important role in regu-

lating final cell shape. The morphogens that instruct dif-

ferences in cell identity also regulate the direction and

rates of cell division across fields of cells [188]. In the

wing of Drosophila, the orientation of cell divisions de-

termines the shape of the tissue fields between wing

veins [181]. Narrow intervein regions arise due to cell di-

visions that are oriented perpendicular to the long axis,

whereas broader intervein regions show more random

orientations of their cell divisions [181]. Conversely, the

wing shapes differ between the moth Manduca sexta

and the butterfly Junonia coenia due to different pat-

terns of localised cell proliferation [176] (Fig. 3). Wings

in Junonia coenia are triangular and show more even

distributions of proliferating cells within the distal re-

gions of the wings. Manduca sexta more elongate wing

arises because patterns of proliferation are shifted to-

wards the posterior portion of the wing [176]. Thus, the

way cells proliferate, by dividing along oriented planes

or via localized patterns of cell division acts to shape or-

gans [189].

Organ shape is also affected when cells rearrange.

Shape formation from cell polarity during tissue re-

arrangement can result from narrowing and lengthening

(convergence and extension respectively) of rows of cells

during development, where cells intercalate between

other cells to achieve this process. Convergence results

in a narrowing of tissues in a mediolateral direction

while extension elongates tissue from head to toe [177,

190]. In amphibians, convergence and extension shape

the notochordal and somatic tissues, while in other ver-

tebrates these processes shape the notochord, dorsal

axial, and paraxial mesodermal tissues [178]. Both acting

to regulate cell activities and enhance tissue shape

formation.

Invagination and cleft formation provide additional

cases of how cell rearrangement is important for re-

organizing simple cells into complex, branched, and

multilayered structures. In the salivary and mammary

glands, digits, lungs (Fig. 3), and kidneys, epithelial cells

form branched, tree-like structures [177, 191]. This

branching is produced by invagination and cleft or bud

formation in cells. During invagination, the apical region

of cells becomes constricted and causes the cells in this

Fig. 3 Organ shape is generated by four types of cell behaviours: cell shape, cell proliferation, cell movement, and cell death. Cell shape: The

elongate shape of neurons allows the central nervous system to convey information throughout the whole body. Cell proliferation: differing

patterns of cell proliferation (cells in red) in the developing wings of the moth Manduca sexta and the butterfly Junonia coenia generate elongate

versus triangular wings in the adults [176]. Cell movement: Invaginations are caused by apical constrictions in the lung epithelium (cells in red),

and are responsible for producing the branching patterns of the lung tissue [177, 178]. Cell death: Programmed cell death in cells between the

lateral and longitudinal veins in the leaves (cells in red) give the lace plant its lattice-like leaf shape [179, 180]
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region to become wedged shaped, inducing the cells to

bud off and protrude [184, 192]. The cleft formation

then generates new tips from the pre-existing branch,

splitting it into two or three tips. This is also observed in

plants where the shoot and floral meristem branches off

to form differing numbers of petals, stamens, carpels,

and sepals and more visibly in the branching patterns of

leaf venation [169, 193]. This process in both plant and

animals regulates cell behaviour and contributes to pro-

duce diversity in organ shapes based on the location of

cells and their subsequent functions.

Finally, cell death plays vital roles in the shape of many

organs. Perhaps most famously, cell death defines the

shape of the vertebrate forelimb. Cells in the interdigital

regions die during embryogenesis in many vertebrates,

giving rise to the separated digits of the hands and feet

[194–197]. The extent to which cells die in this region

determines whether the limb will have separated digits,

like in the chicken [194], or webbed wings, as in bats

[198]. In both cases, cell death is initiated in response to

signals from Bone Morphogenetic Proteins (BMP), spe-

cifically BMP2, BMP4, and BMP7 [199]. Similarly, pro-

grammed cell death in plants generates a range of leaf

shapes, including lobed or lattice-like leaf shapes [200–

204]. The leaves of the lace plant acquire their character-

istic, intricately fenestrated leaf shape via punctuated

patterns of cell death in the cells found between longitu-

dinal and transverse leaf veins [179] (Fig. 3). These pat-

terns are induced in response to the phytohormone

ethylene, which is produced by the leaf cells and stimu-

lates death in the intervein cells [180, 205]. In both

cases, to achieve correct organ shape cell death is in-

duced in response to signals from morphogens or

hormones.

As cells adopt their instructed behaviour, mechan-

ical forces generated during different events like cell

division, growth, movement, and cell death contribute

to determining the final shape of the organ. These

forces can act at the level of an individual cell or

across a whole tissue [206]. They are generated by

the molecular components that provide cell structure

and can arise from either intrinsic or extrinsic factors.

Intrinsic forces control the movement of the cytoskel-

eton during cell division and cell differentiation [207].

Extrinsic forces regulate cell-to-cell interactions, and

cell-extracellular matrix interactions during cell pro-

cessing and repackaging – known as tensile force

[208, 209]. In many cases, like in the human lung,

final organ shape is a result of both intrinsic and ex-

trinsic forces. Here, the shape of the lungs arises from

the apical constriction of lung cells and from cell-cell

adhesion to neighbouring cells and the extracellular

matrix [210]. In this way, the cell identities acquired

through morphogen activity along with the

mechanical properties of the tissue itself are import-

ant in defining the shape of the organ.

Finding the common ground – body shape and organ

shape

As biologists have long been interested in variation in

body size, body shape, and organ shape, they have un-

covered a multitude of examples where size and shape

co-vary [14–16, 32, 33, 64, 211]. While throughout this

review we have separated our discussion into either the

developmental mechanisms that regulate body shape or

those that regulate organ shape, it is clear that in many

cases these mechanisms must overlap. New genetics

tools, which allow researchers to measure quantitative

variation in signalling pathways in real time, have the

potential to shed important insights into how and when

the developmental mechanisms regulating body and

organ shape are shared.

Drosophila wings provide a clear example of overlap-

ping mechanisms regulating relative size and shape.

Wings decrease in size with increasing temperatures in

D. melanogaster and its close relative D. simulans [32,

60]. In D. simulans, wing shape also changes with

temperature. Approximately 20% of the shape changes

in the wing correlate with wing size, suggesting that

some of the variation in wing shape might share com-

mon regulatory mechanisms with those that create vari-

ation in wing size [60].

Wing shape is commonly characterised using the rela-

tive positions of the veins [60, 212, 213]. The morpho-

gen pathways, like Dpp, Epidermal Growth Factor, and

Hedgehog, that regulate wing growth also set up the

position of the longitudinal wing veins in the third instar

larvae [166, 214]. Hedgehog and Dpp in particular estab-

lish the positioning of the longitudinal veins in the grow-

ing disc [214]. These longitudinal veins are responsible

for most of the shape changes in temperature that cor-

relate with wing size [60]. Variation in morphogen sig-

nalling in response to temperature during larval stages

potentially affects both the relative size of the wing and

the position of veins, thereby contributing to both body

and organ shape.

Of course, we would not expect the mechanisms regu-

lating organ shape to always be shared with those that

regulate body shape. Instead, they would overlap only

when organs are both growing and patterning. For ex-

ample, later in pupal development the Drosophila wing

undergoes only minimal growth. During this stage, mor-

phogens like Dpp act to refine the position and differen-

tiation of the longitudinal veins. Variation in Dpp

signalling in response to temperature in the pupal stages

would be likely to generate variation in wing shape that

is uncorrelated with wing size. Explicit experiments ma-

nipulating the activity of these morphogens at defined
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intervals of development would help to explain when

body shape and organ shape share the same genetic un-

derpinnings. More importantly, this example illustrates

that knowing when growth and patterning occur in de-

velopmental time will help to inform whether the extent

to which body and organ shape should co-vary.

While we know a considerable amount about the regu-

lation of body and organ shape in D. melanogaster and

other insects, uncovering the genetic underpinnings of

co-variation in body and organ shape need not be lim-

ited to model organisms. Careful examination of changes

in organ size and shape over developmental time would

provide a simple manner to understand how each

process is regulated, and can also offer insights into the

types of mechanisms at play. These studies could iden-

tify relevant pathways for study. Further with the advent

of CRISPR, mutations can be introduced into most

genes for many organisms. This allows researchers not

only to explore the effects of loss-of-function for candi-

date genes that regulate organ size and shape, but also

permits the introduction of fluorescently-labelled pro-

teins into their endogenous location – facilitating quan-

titative studies of protein concentration.

Detailed quantifications of each of the relevant path-

ways that regulate growth and patterning over develop-

mental time is likely to provide the deepest insights into

how body and organ shape are co-regulated. Having said

this, multiplexed quantification of signalling pathways is

challenging even in well-studied model organisms. One

way of simplifying this task is to formulate theoretical

models that will predict how morphogens and systemic

signals intersect both temporally and spatially to gener-

ate the appropriate body and organ shape. At their best,

these mathematical models would generate precise hy-

potheses with regards to how body and organ shape are

regulated, which can be subsequently tested with experi-

mental methods. These types cross-disciplinary ap-

proaches, between those interested in variation in

morphology, developmental biology, and systems biol-

ogy, will enhance our ability to uncover the genetic

mechanisms regulating body and organ growth for a

broader range of organisms.

Finally, while the evolution of body and organ shape

among taxa generates an impressive array of morpho-

logical diversity, how the genetic mechanisms that

regulate body size and shape change remains an open

question. It is clear that the extent to which organs

change their shape depends on their function. Myriad

examples of exaggerated sexually dimorphic traits il-

lustrate how organ form can vary greatly when under

sexual selection. In contrast, for organs that perform

multiple functions, changes in size and shape might

be strongly canalised to avoid trade-offs. Future stud-

ies comparing the how size and shape mechanisms

evolve will help to elucidate how the diversity of body

and organ shapes have arisen.

Conclusions

With recent insights into the developmental mechanisms

that control growth, our understanding and some of the

basic principles that govern growth processes has signifi-

cantly expanded. However, there is still much left un-

known. In this review, we identified the different

approaches used to study body shape, using the relative

size of organs, and those that describe organ shape. We

hypothesize that in some cases the mechanisms that

regulate organ shape could overlap with those that regu-

late organ size. It is our hope that these ideas will fuel

further research into exploring the mechanisms regulat-

ing the vast diversity of body and organ shapes.
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