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Abstract In this study, we develop a comprehensive

design process of granular fuzzy rule-based systems. These

constructs arise as a result of a structural compression of

fuzzy rule-based systems in which a subset of originally

existing rules is retained. Because of the reduced subset of

the originally existing rules, the remaining rules are made

more abstract (general) by expressing their conditions in

the form of granular fuzzy sets (such as interval-valued

fuzzy sets, rough fuzzy sets, probabilistic fuzzy sets, etc.),

hence the name of granular fuzzy rule-based systems

emerging during the compression of the rule bases. The

design of these systems dwells upon an important mecha-

nism of allocation of information granularity using which

the granular fuzzy rules are formed. The underlying opti-

mization consists of two phases: structural (being of

combinatorial character in which a subset of rules is

selected) and parametric (when the conditions of the

selected rules are made granular through an optimal allo-

cation of information granularity). We implement the

cooperative particle swarm optimization to solve opti-

mization problem. A number of experimental studies are

reported; those include fuzzy rule-based systems.

Keywords Rule-based systems � Structural compression �
Optimal allocation of information granularity � Particle

swarm optimization � Granular fuzzy sets

1 Introduction

There have been a large number of studies and applications

on fuzzy rule-based systems. The rules are viewed as

descriptors of individual, local pieces of knowledge,

especially when forming a global mapping from the space

of conditions to the space of conclusions. When dealing

with a large number of rules, emerges an interesting and

practically viable question about a reduction of the number

of rules, so that a small subset of the most representative

rules can be formed (Gacto et al. 2011; Antonelli et al.

2016; Zhou and Gan 2008; Baranyi and Yam 2000; Riid

and Rüstern 2011; Cordon 2011; Villar et al. 2012; Juang

and Chen 2013). The practical relevance stems from the

two facts. First, the smaller number of rules enhances their

readability meaning that the transparency of the reduced

model becomes enhanced. Second, computing overhead is

reduced. Starting from the set of rules ‘‘if x is Aj, then y is

Bj’’ j = 1, 2, …, N, the reduction of the model leads to the

subset of rules ‘‘if x is Ai, then y is Bi’’ i = 1, 2, …, I where

I � N. Surprisingly, the reduced rules do not reflect a fact

they are the subset of the original far larger collection of

rules. Intuitively, we might have anticipated that the

reduced rule set reflects the reduction aspect by having a

level of abstraction of the fuzzy sets standing in the con-

dition parts of the rules being elevated. In other words, the

reduced set of rules comprises the conditional statements of

the form ‘‘if x is G(Ai), then y is Bi’’. The increased level of

abstraction (generality) is realized by forming a granular

augmentation of the original fuzzy set Aj by generalizing it

to the granular fuzzy set G(Aj) viz. an interval fuzzy sets,

fuzzy set of type-2, shadowed fuzzy sets, probabilistic

(fuzzy) sets, and other generalizations. In a nutshell, the

term granular fuzzy set stands for the generalization of the

fuzzy set in which the original numeric value of
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membership, say Aj(x) at point ‘‘x’’ is generalized to the

granular value (interval, fuzzy set in [0, 1], probability

density function, etc.). This granular nature of the proposed

construct is directly associated with the reduced number of

rules to compensate for the reduction of the rule base, the

rules have to be made more abstract.

Assuming that the reduced set of rules has been formed

via the collection of rules ‘‘if x is G(Aj), then y is Bj’’ has

been decided upon, the fundamental question arises as to

the formation of the granular fuzzy sets. The underlying

design principle is that of an optimal allocation of infor-

mation granularity. The values of the membership grades

are non-numeric, for example, intervals or membership

functions. Given a certain predetermined level of infor-

mation granularity a, we allocate it among the elements of

the original fuzzy set (by making it granular), so that a

balance of information granularity is met and a certain

optimization criterion is maximized. The optimization

criterion used to guide the process of granularity allocation

expresses an extent to which the results of inference pro-

cess realized with the use of all the rules are ‘‘covered’’ by

the results formed by the reduced rule-based system.

The development of the granular rule-based system

comprises two important and intertwined phases, namely, a

selection of a subset of the rules and a formation of the

granular rule-based system. Given the combinatorial

character of the first phase and a nonlinear nature of the

overall process of granularity allocation, in the study, we

consider a particle swarm optimization environment (PSO)

as well as its generalized cooperative version.

The study is organized as follows. In Sect. 2, we discuss

the underlying concept. In the sequel, we discuss the

designing process of the granular rules. A suite of protocols

of allocation of information granularity is presented. In

Sect. 4, we describe the PSO environment using which the

granular fuzzy rule-based system is constructed. In Sect. 4,

experimental studies are given. Finally, conclusions and

some prospects of further research are presented in Sect. 5.

Regarding the notation, capital letters (A, B, Ai, etc.) are

used to denote fuzzy sets defined in the discrete universes

of discourse. The notation G(A) is reserved to describe the

granular fuzzy set. Furthermore, we assume that the fuzzy

sets Ai standing in the conditions of the rules have infinite

supports.

2 From fuzzy rule-based models to granular fuzzy
rule-based models: the concept

The essence of fuzzy rule-based systems is inherently asso-

ciated with the inference schemes of approximate reasoning

x is A

if x is Ai then y is Bi; i ¼ 1; 2; . . .;N
y is B

ð1Þ

where B is a fuzzy set of conclusion to be determined.

A and Ai are defined in a finite input space X, dim(X) = n,

while Bi and B are expressed in the output space Y with

dimensionality, dim(Y) = m. The set of indexes of the

rules is denoted by N; in this case, it is simply a set of

N natural numbers indexing the rules, N = {1, 2, …, N}.

There is a wealth of realizations of the inference

schemes with a large number of optimization mechanisms,

see (Oliveira et al. 2010; Apolloni et al. 2016; Alcala et al.

2009). In a nutshell, though the inference scheme is real-

ized by determining the activation levels of the individual

rules (their condition parts) implied by some A. This is

typically done by computing a possibility measure of A and

Ai, poss(A, Ai). Denoting the possibility value by ki, the

conclusion B is taken as a union of Bi weighted by the

activation levels (possibility values), namely

BðyÞ ¼ max
i¼1; 2; ...;N

ðkiðxÞ ^ BiðyÞÞ ð2Þ

where ^ stands for the minimum operation. There are

numerous variations of this inference scheme; nevertheless,

the essence of the underlying reasoning process remains

the same. Let us also stress that the result of inference is a

fuzzy set.

Now, let us envision that instead of the entire collection

of rules, we consider a subset of I rules in anticipation that

this smaller collection can be deemed sufficient as being

formed by a collection of the most representative rules out

of N rules. Of course, the term representativeness has to be

clarified and quantified as well as made operational. What

is also quite intuitive is a fact that the rules forming the

subset need to be made more abstract to compensate for the

fact that they need to capture the entire set. Operationally,

by making them more abstract (general) means that we

form the condition parts of the selected rules more general.

This, in effect, implies that instead of Ai occurring in the

selected rule, we consider a certain granular abstraction of

Aj, say G(Aj), where G(.) stands for the granular version of

Aj. All in all, this generalization gives rise to the granular

fuzzy rules

if G Aj

� �
then y is Bj ð3Þ

j = 1, 2, …, I. Now, I is a collection of ‘‘I’’ indexes coming

from N identifying the subset of rules, that is I = {j1,j2,…,

jI}. The ensuing inference scheme comes in the form

x is A

If x is GðAjÞ then y is Bj

y is GðBÞy is GðBÞ
ð4Þ
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It is worth noting that the granular format of the con-

dition of the rule entails a granular format of the conclu-

sion, so we obtain the granular counterpart G(B) instead of

the fuzzy set B.

The granular version of Aj and G(Ai) can be articulated

in different ways (Maciel et al. 2016; Crouzet and Strauss

2011; Zhang et al. 2011; Wilke and Portmann 2016). In a

nutshell, the granularity of Aj results in non-numeric

membership values. A granulation of membership function

G(Ai) is a way of representing the unit interval of mem-

bership values as a finite and small collection of informa-

tion granulation (Maciel et al. 2016). These information

granules come with well-defined semantics, for example,

Low, Medium, High, and Very High membership. A

vocabulary comprising a finite number of information

granules coming as a result of granulation G(Ai) is used as

granulation representation of the original numeric mem-

bership grade. Several main alternatives are outlined in

Table 1.

In the ensuing study, for the clarity of the presentation of

the underlying concept and the overall methodology, our

focus is on interval (set-based) granulation. Thus, we

consider the interval-valued fuzzy sets, G(Aj) (see also

Table 1). In this case in the general inference scheme (1),

the activation of G(Aj) results in an interval of activation

values ½k�j ; k
þ
j �. As a result, the conclusion becomes an

interval fuzzy set ½B�
j ;B

þ
j � with the bounds computed as

½B�
j ðyÞBþ

j ðyÞ� ¼ ½ max
j¼1; 2; ...;I

ðk�j ^ BjðyÞÞ; max
j¼1; 2; ...I

ðkþj ^ BjðyÞ�

ð5Þ

The development of the granular rule-based system

entails two tightly connected design phases:

1. selection of the subset of rules I out of the entire

collection of rules.

2. generalization of the condition parts of the rules [fuzzy

sets Aj are made granular G(Aj)].

These two steps are intertwined and have to be dis-

cussed together. The first one is evidently of structural

(combinatorial) character. The second one is about

making the original fuzzy sets of condition granular.

Figure 1 illustrates granular fuzzy rules in general. In

the figure, we can visualize the process of the rule

reduction by selecting subset of rules and the process of

rule generalization by the constructing of the granular

rules.

3 Designing granular rule-based system

The important issue in designing the granular rule-based

system is how to construct the interval-valued membership

function (Dubois and Prade 2016; Mendel 2015). The

available information granularity (the level of granularity)

is the most important asset and has to be carefully dis-

tributed among all the point in the membership function, so

that the granular rules can covers (include) the unselected

rules. In what follows, we propose several protocols of

allocation of information granularity and discuss the indi-

ces, whose optimization is realized through this allocation.

The granular rules are formed by generalizing, via

forming granular fuzzy sets in the condition parts of the

rules. The process of forming G(Ai) out of Ai is realized

through the allocation of information granularity. It is

realized in several different ways. We discuss the perfor-

mance of each of the protocol in the context of rules if x is

Ai, then y is Bi. Recall that the dimensionality of the input

space is ‘‘n’’, while the output space has ‘‘m’’ elements.

Several protocols of allocation of information granularity

are outlined:

Table 1 Selected formal models of granular versions of fuzzy set A—membership grade A(x) for fixed element of the universe of discourse

Interval granulation G(A(x)) = [a1(x), a2(x)]

Fuzzy set-based granulation G(A(x)) = FA(x)(u), u 2 ½0; 1� where F is a fuzzy set defined in the unit interval

Probability-based

granulation

G(A(x)) = pA(x)(u), u 2 ½0; 1� where p is a probability density function defined in the unit interval,
R 1

0
pAðxÞðuÞdu ¼ 1

if Ak then Bk   if G(Ai) then Bi   

Generalization   Reduction   

Fig. 1 Reduction of rule base by selection and a granular extension

(generalization) of the representative subset of rules. The granular

constructs are shown as shadowed disks
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Protocol 1 (P1): a uniform allocation of information

granularity for all membership degrees for the selected

rules. The membership grades are replaced by an interval

of the length a. More specifically, if a is the value of the

membership grade, a 2 ½0; 1�, then the corresponding

interval of membership values is expressed as [a - a/2,

a ? a/2]. We require that an overall balance of informa-

tion granularity regarded as a modeling asset is satisfied,

meaning that the sum of granularities is na. No optimiza-

tion procedure is required.

Protocol 2 (P2): a uniform allocation of information

granularity with asymmetric position of interval. It is

similar to P1, however, it exhibits more flexibility, as we

allow an asymmetric allocation of information granules

(intervals) meaning that the membership values are now

transformed to the interval [a - ca, a ? (1 - c)a], where

c 2 ½0; 1�. The optimization concerns an adjustment of the

value of asymmetricity (c). If c = 1/2, the first protocol is a

special case of this one.

Protocol 3 (P3): it comes as an augmentation of P2. We

admit asymmetric allocation of information granularity to

individual membership grades. The membership grades ai,

i = 1, 2, …, n are generalized and assuming the form of

the interval [ai - cia, ai ? (1 - ci)a], where ci 2 ½0; 1�. In

total, we have a vector of coefficients [c1, c2, …, cn].

Protocol 4 (P4): a non-uniform allocation of information

granularity with symmetrically distributed intervals of

information granules.

Here, the protocol involves individual intervals dis-

tributed symmetrically around ai. They are formed as

follows:

ai�ai=2; ai þ ai=2½ �: ð6Þ

The balance of information granularity is retained

meaning that
Xn

i¼1
ai ¼ n � a ð7Þ

Protocol 5 (P5): a non-uniform allocation of information

granularity with asymmetrically distributed intervals of

information granules. Here, the protocol generalizes P3 in

the sense that the constructed intervals are distributed

asymmetrically. Thus, ai is replaced by the interval

½ai�a�i ; ai þ aþi � ð8Þ

with the balance of information granularity expressed as

Xn

i¼1

a�i þ
Xn

i¼1

aþi ¼ n � a: ð9Þ

In summary, the search space explored by each of the

protocols can be described as follows.

Protocol Parameters Dimensionality of the search

space

P1 a No optimization

P2 c, a Optimization of c, c 2 [0, 1], (1)

P3 a, ci i = 1, 2 ,…, n Optimization of c1, c2, …, cn, (n)

P4 ai i = 1, 2 , …, n Optimization of a1, a 2,… an, (n)

P5 a�i ; a
þ
i i ¼ 1; 2; . . .; n Optimization of a�1 ; a

�
2 ; . . .; a

�
n

and aþ1 ; a
þ
2 ; . . .; a

þ
n ; (2n)

Figure 2 shows the different between the original fuzzy

rule-based system and the granular fuzzy rules-based sys-

tem. The membership function for the original fuzzy rule-

based system is depicted in Fig. 2a. Then, the granular

fuzzy rules are achieved by shifting the points on the

Gaussian function to the left and to the right based on the

level of granularity, as shown in Fig. 2b.

When dealing with two-input (or multivariable) rule-

based systems, the same protocols of allocation of infor-

mation granularity apply, however, the condition on the

retention of information granularity involves the sum

(n1 ?n2)a, where n1 and n2 are the dimensionality of the

corresponding input spaces say ‘‘if x is Ai and Z is Ci, then

y is Bi’’. Here, Ai is defined over a discrete space dimen-

sionality n1, and Ci is expressed over a space of dimen-

sionality n2.

To complete optimization required by the protocols, we

use the particle swarm optimization (PSO) techniques to

search for the best subset of fuzzy rules and simultaneously

realize the optimal allocation of information granulation,

Fig. 2 a Example of an original fuzzy rule-based, Ai(x), and

b granular fuzzy rules [Gi (x)-, Gi(x)?]
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so that the maximum the performance index (coverage) is

satisfied.

4 Particle swarm optimization as a design
environment

The optimization of granular fuzzy rules is completed in the

setting of a certain information allocation protocol (Sakinah

et al. 2013). For protocol P1 and protocol P2, we need to solve

a single optimization task, namely, we have to select a subset

of rules, I = {j1, j2,…, jI}. Whereas, for protocols P3, P4, and

P5, we involve an additional optimization by completing an

optimal allocation of information granularity. These two

optimization tasks can be handled by the corresponding

nested optimization process. In other words, for a selected

subset of the rules generated by the optimization process

involved at the upper level, we next carry out the optimal

allocation of information granularity. In this study, we

implement the generic particle swarm optimization for

granularity allocation for protocol P1 and P2. For the proto-

cols P3, P4, and P5, we engage cooperative particle swarm

optimization in which cases both phases of the optimization

task are realized simultaneously.

4.1 Particle swarm optimization and its variants

Particle swarm optimization (PSO) (Kennedy and Eberhart

1995) was inspired by a collective behavior of birds or fish.

PSO is a population-based method, where each individual,

referred to as a particle, represent a candidate solution for

an optimization problem. Each particle proceeds through

the search space at a given velocity v that is dynamically

modified according to the own experience of the particle

and results in its local best (lb) performance. The particle is

also affected by others particles experience, called global

best (gb) (Eberhart and Shi 2001; Hu et al. 2004). The

underlying expression for the update of the velocity in

successive generations reads as follows:

vi;jðt þ 1Þ ¼ wvi; jðtÞ þ c1r1;iðtÞ½lbi;jðtÞ � xi;jðtÞ�
þ c2r2;iðtÞ½gbjðtÞ � xi; jðtÞ� ð10Þ

xi t þ 1ð Þ ¼ xi tð Þ þ vi t þ 1ð Þ ð11Þ

where i = 1, 2, …, s (s the number of particles) and j = 1,

2, …, N ? n (the search space is equal to the sum of the

dimensions of the overall number of fuzzy rules and the

dimensionality of the input space). The inertia weight

(w) is confined to the range [0, 1]; its values can decrease

over time. The cognitive factor c1 and social factor c2

determine the relative impact coming from the particle’s

own experience and the local best and global best. r1 and r2

are random numbers drawn from a uniform distribution

defined over the unit interval that bring some component of

randomness to the search process.

To deal with the large search spaces present in protocols

P3, P4, and P5, we employed another version of PSO, coop-

erative particle swarm optimization (CPSO). The motivation

behind the use of CPSO, as advocated in (van den Bergh and

Engelbrecht 2004), is to deal effectively with the high

dimensionality of the search space, which becomes a serious

concern when a large number of rules with its large dimen-

sionality are involved. This curse of dimensionality is a

significant impediment negatively impacting the effective-

ness of the standard PSO. The essence of the cooperative

version of PSO is essentially a parallel search for optimal

subset of rules and its optimal allocation of information

granulation values. The cooperative strategy is achieved by

dividing the candidate solution vector into components,

called sub-swarm, where each sub-swarm represents a small

portion of the overall optimization processes. By doing this,

we implement the concept of divide and conquer to solve the

optimization problem, so that the process will become more

efficient and fast.

The cooperative search realized between sub-swarms is

achieved by sharing the information of the global best

position (PGB) across all sub-swarm. Here, the algorithm

has the advantage of taking two steps forward, because the

candidate solution comes from the best position for all sub-

swarm except only for the current sub-swarm being eval-

uated. Therefore, the algorithm will not spend too much

time optimizing the rules or allocating granularity that have

little effect on the overall solution. The rate at which each

swarm converges to the solution is significantly faster than

the rate of convergence reported for the generic version of

the PSO.

4.2 Fitness function

Let us assume that the set of rules I have been already

formed (we discuss this development in the successive

sections). The quality of these rules can be evaluated as

follows. We consider the remaining N–I rules not present in

the collection of rules being retained. We treat successive

Ajs present there as the inputs to the inference process (4).

The result becomes an information granule, G(Bj). Intu-

itively, the quality of the granular rule-based system

depends how well the information granule G(Bj) ‘‘covers’’

the original Bj considering that the granular rules form only

a subset of the original rule base. The fundamental with

this regard is the notion of coverage of the information

granule and its quantification. We introduce the following

coverage index (measure)

j ¼
P

y

P
j incl½BjðyÞ;GðBjðyÞÞ�

ðN � IÞm ð12Þ
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where incl [Bj(y), G(Bj(y))] is a measure of inclusion of

Bj(y) in the granular counterpart produced by the inference

scheme (4). The first summation standing in this formula is

done over all elements of the finite output space over which

Bj and G(Bj) are defined, whereas the second sum is carried

out for all rules left out from the process of the generation

of granular rules (whose number is N–I) and m is the

dimension of the output space. The inclusion measure can

be fully specified depending upon the assumed formalism

used in the construction of granular rules. In the simplest

case, where dealing with interval-valued membership

functions, the double sum in the nominator of (12) is a

count specifying how many times the membership grade

Bj(y) is contained in the interval.

Ideally, the coverage value is equal to 1, which becomes

indicative of a complete inclusion of the conclusion (fuzzy

set) of the original rule in the granular result of reasoning

completed for the reduced rule base. In more realistic

scenario, the ratio attains values lower than 1.

In addition, we introduce another objective function of a

global character, called the area under the curve, AUC. As

discussed above, the value of r depends upon the prede-

termined level of granularity a, underlined here by the

notation r(a). The monotonicity property is apparent: r(a)

becomes a non-decreasing function of the level of granu-

larity. To quantify an overall quality of the granular fuzzy

rules, we integrate the corresponding values of r(a), which

results in a single index independent from the assumed

level of granularity:

AUC ¼
Z 1

0

jðaÞda ð13Þ

4.3 Particles representation

The first optimization phase is to select the optimal subset of

rules. The problem is combinatorial in its nature. PSO is used

here to form a subset of integers, which are the indexes of the

rules to be used in the generation of the granular rules. As

noted, I is represented as a set of indexes {j1, j2,…, jI}. The

particle is then formed as a string of ‘‘N’’ real numbers

positioned in [0, 1]. The search space is the hypercube [0,

1]N. The particle is decoded as follows. The entries of the

string are ranked. The result becomes a list of integers

viewed as the indexes of the rules. The first I entries out of the

N-position string are selected to form the subset of rules.

Figure 3 illustrates the representation of the particle.

0.71 0.05 0.84 0.65 … … 0.25 : N=25 

        

        

        

3 17 2 24 … … 6 :N’=4 

 Selected rules {3, 17, 2, and 24}

Ranking (ascending order)  

Fig. 3 From particle in the [0, 1]N search space to a subset of rules

Table 2 Collection of eight rules‘‘if x is Ak, then y is Bk’’

Rule Ak Bk

R1 [0.1 0.9 0.5 0.2 0.1 0.0] [0.0 0.3 0.5 0.8 1.0]

R2 [0.7 1.0 0.6 0.3 0.2 0.0] [1.0 0.7 0.3 0.2 0.0]

R3 [0.9 0.9 1.0 0.2 0.0 0.0] [0.1 0.9 0.9 0.4 0.2]

R4 [0.0 0.3 0.5 0.9 1.0 0.0] [0.0 0.4 0.9 1.0 0.5]

R5 [1.0 0.9 0.5 0.2 0.1 0.0] [0.0 0.3 0.5 0.8 1.0]

R6 [0.6 0.3 0.2 1.0 0.5 0.7] [0.5 0.9 1.0 0.5 0.2]

R7 [0.2 0.3 1.0 0.2 0.5 0.7] [0.0 0.3 0.5 0.8 1.0]

R8 [0.0 1.0 0.5 0.3 0.0 0.0] [0.3 1.0 0.2 0.0 0.0]

(a)  

(b)  
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Fig. 4 Coverage produced by the five protocols, a two arbitrarily

selected rules, and b optimized two rules
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The second phase is to determine the optimal values of

levels of information granulation. The optimization

depends upon the protocol being used. In protocol P3, PSO

is used to find for best asymmetricity value, ci where i = 1,

2, …, n and ci 2 ½0; 1�. The particle is represented by a

vector of numbers in [0, 1]. Its length is equal to the

dimensionality of the finite universe of discourse over

which the condition fuzzy sets are defined, namely, ‘‘n’’.

The PSO used in the implementation of protocol P4 similar

to that used in the case of protocol P3. The difference is the

representation of each element is the allocation of the

information granulation, ai, where i = 1, 2, …, n. Each

element in the particle is represented by a real number that

follows the constraint given by (8). Finally, in protocol P5,

the representation is almost the same as in protocol P4.

However, the length is two times higher as used in the

previous protocol.
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5 Experimental studies

In this section, we present a series of numeric experiments to

illustrate the proposed method by showing its development,

and quantifying the resulting performance. The experimental

studies are concerned with the fuzzy rule-based systems

applications. In all the experiment, we use the tenfold cross-

validation method. We start the experiment by constructing

the granular membership function by running the protocols

of information granularity allocation, as presented in Sect. 3.

The setup of the PSO is as follows: the number of generations

is 200, and the size of particle is 100. The inertia weight, ‘‘w’’

changes linearly from 1 to 0 over the course of optimization.

The values of the cognitive factor c1 and social factor c2 were

set to 2.8 and 1.3, respectively (Eberhart and Shi 2001).

The performance of the granular rule-based system at

the global level is based on the area under curve (AUC) for

the coverage plot. The AUC is used to calculate the area of

a region in the xy plane bounded by the graph of an

objective function called the coverage, the x-axis is the e,
and the vertical lines e = 0 and e = 1. As mentioned in the

coverage value is in the interval [0, 1], therefore, the areas

being all above the x-axis. The performance of the granular

rule-based system is quantified by the values of AUC.

Thus, we can investigate the performance of four methods

at the global instead of local.

5.1 Synthetic fuzzy rule-based system

We consider the collection of eight rules (Table 2) ‘‘if x is

Ak, then y is Bk’’ with fuzzy sets in the condition and

conclusion part defined in the finite universes of discourse.

To illustrate the performance of the method, we start

with a reduced set of two rules, I = {7, 8}. These two rules

were selected in an arbitrary fashion. The results are

reported in Fig. 4a. There is a significant improvement

when using protocol P5 when compared the obtained

results to the results produced by the remaining protocols.

This is not surprising, as this protocol offers a significant

level of flexibility when allocating information granularity.

The improvement is particularly visible for low values of a.

Figure 4b shows the result using the optimal subset of

two rules. Again, there is a visible improvement in com-

parison with the results presented in Fig. 4a.

R1: If x is A1 then y is B1

R2: If x is A2 then y is B2
R3: If x is A3 then y is B3
R4: If x is A4 then y is B4
R5: If x is A5 then y is B5
R6: If x is A6 then y is B6

R7: If x is A7 then y is B7

R8: If x is A8 then y is B8

If x is A1 then y is B1

If x is G(A2) then y is B2
If x is A3 then y is B3

If x is G(A4) then y is B4
If x is G(A5) then y is B5
If x is G(A6) then y is B6
If x is A7 then y is B7

If x is G(A8)  then y is B8

I=5 

Fig. 10 Selected subsets of rules (in boldface) obtained for different

numbers of selected rules (for protocol P3)

Table 3 Rules for mortgage loan assessment

If (Asset is Low) and (Income is Low), then (Application is Low)

If (Asset is Low) and (Income is Medium), then (Application is

Low)

If (Asset is Low) and (Income is High), then (Application is

Medium)

If (Asset is Low) and (Income is Very High), then (Application is

High)

If (Asset is Medium) and (Income is Low), then (Application is

Low)

If (Asset is Medium) and (Income is Medium), then (Application

is Medium)

If (Asset is Medium) and (Income is High), then (Application is

High)

If (Asset is Medium) and (Income is Very High), then

(Application is High)

If (Asset is High) and (Income is Low), then (Application is

Medium)

If (Asset is High) and (Income is Medium), then (Application is

Medium)

If (Asset is High) and (Income is High), then (Application is High)

If (Asset is High) and (Income is Very High), then (Application is

High)
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Figure 5 illustrates the coverage values when using the

PSO-optimized subsets of rules with I = 1 and 7. The quality

of results (ranging from the weakest coverage to the highest

one) brings a ranking of the protocols ordered as P1, P2, P3,

P4, and P5 with P1 producing the lowest coverage.

In the sequel, Fig. 6 shows a distribution of the allocation of

granularity realized with the use of the protocol P5; apparently,

the distribution becomes non-uniform over the input space.

Figure 7 illustrates the values of coverage when using

different numbers of rules. The coverage values are higher

when increasing the number of selected rules. As illustrated

in Fig. 8, protocols of higher flexibility produce better

coverage results.

The overall performance expressed in terms of the AUC

values is visualized in Fig. 9. Again, the superiority of the

most flexible protocols is visible. The reduced list of rules

is presented in Fig. 10.

5.2 Mortgage applications assessment rule-based

system

Assessment of a mortgage application normally based on

evaluating the market value and location of the house, the

applicant’s asset and income, and repayment plan. A col-

lection of rules is shown in Table 3.

The results expressed in terms of the coverage treated as

a function of the number of retained rules are summarized

in Figs. 11 and 12. The main trends are apparent. Fur-

thermore, the quantification of the improvements resulting

from the increase of the number of rules involved is visible;

a substantial jump is present when using more than four

rules.

Table 4 Rules for the aircraft landing control problem

1 If (Height is L) and (Velocity is DL), then (Control force is Z)

2 If (Height is L) and (Velocity is DS), then (Control force is DS)

3 If (Height is L) and (Velocity is Z), then (Control force is DL)

4 If (Height is L) and (Velocity is US), then (Control force is DL)

5 If (Height is L) and (Velocity is UL), then (Control force is DL)

6 If (Height is M) and (Velocity is DL), then (Control force is US)

7 If (Height is M) and (Velocity is DS), then (Control force is Z)

8 If (Height is M) and (Velocity is Z), then (Control force is DS)

9 If (Height is M) and (Velocity is US), then (Control force is DL)

10 If (Height is M) and (Velocity is UL), then (Control force is DL)

11 If (Height is S) and (Velocity is DL), then (Control force is UL)

12 If (Height is S) and (Velocity is DS), then (Control force is US)

13 If (Height is S) and (Velocity is Z), then (Control force is Z)

14 If (Height is S) and (Velocity is US), then (Control force is DS)

15 If (Height is S) and (Velocity is UL), then (Control force is DL)

16 If (Height is NZ) and (Velocity is DL), then (Control force is

UL)

17 If (Height is NZ) and (Velocity is DS), then (Control force is

UL)

18 If (Height is NZ) and (Velocity is Z), then (Control force is Z)

19 If (Height is NZ) and (Velocity is US), then (Control force is DS)

20 If (Height is NZ) and (Velocity is UL), then (Control force is

DS)
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5.3 Aircraft landing control problem

The aircraft landing control problem is dealing with the

two important parameters called the velocity and the

height. The main objective is to control the landing

approach of an aircraft by desired downward velocity that

is proportional to the square of the height. For example, at

higher altitudes, a large downward velocity is desired, and

as the altitude (height) diminishes, the desired downward

velocity gets smaller and smaller. Finally, as the height

becomes vanishingly small, the downward velocity also

goes to zero. Therefore, the aircraft will descend form

Table 5 Rules for the service center

1 If (Mean_Delay is VS) and (# of server is S) and

(Utilization_Factor is L), then (# of spare is VS)

2 If (Mean_Delay is S) and (# of server is S) and

(Utilization_Factor is L), then (# of spare is VS)

3 If (Mean_Delay is M) and (# of server is S) and

(Utilization_Factor is L), then (# of spare is VS)

4 If (Mean_Delay is VS) and (# of server is M) and

(Utilization_Factor is L) then (# of spare is VS)

5 If (Mean_Delay is S) and (# of server is M) and

(Utilization_Factor is L), then (# of spare is VS)

6 If (Mean_Delay is M) and (# of server is M) and

(Utilization_Factor is L), then (# of spare is VS)

7 If (Mean_Delay is VS) and (# of server is L) and

(Utilization_Factor is L), then (# of spare is S)

8 If (Mean_Delay is S) and (# of server is L) and

(Utilization_Factor is L), then (# of spare is S)

9 If (Mean_Delay is M) and (# of server is L) and

(Utilization_Factor is L), then (# of spare is VS)

10 If (Mean_Delay is VS) and (# of server is S) and

(Utilization_Factor is M), then (# of spare is S)

11 If (Mean_Delay is S) and (# of server is S) and

(Utilization_Factor is M), then (# of spare is S)

12 If (Mean_Delay is M) and (# of server is S) and

(Utilization_Factor is M), then (# of spare is VS)

13 If (Mean_Delay is VS) and (# of server is M) and

(Utilization_Factor is M), then (# of spare is RS)

14 If (Mean_Delay is S) and (# of server is M) and

(Utilization_Factor is M), then (# of spare is S)

15 If (Mean_Delay is M) and (# of server is M) and

(Utilization_Factor is M), then (# of spare is VS)

16 If (Mean_Delay is VS) and (# of server is L) and

(Utilization_Factor is M), then (# of spare is M)

17 If (Mean_Delay is S) and (# of server is L) and

(Utilization_Factor is M), then (# of spare is RS)

18 If (Mean_Delay is M) and (# of server is L) and

(Utilization_Factor is M), then (# of spare is S)

19 If (Mean_Delay is VS) and (# of server is S) and

(Utilization_Factor is H), then (# of spare is VL)

20 If (Mean_Delay is S) and (# of server is S) and

(Utilization_Factor is H), then (# of spare is L)

21 If (Mean_Delay is M) and (# of server is S) and

(Utilization_Factor is H), then (# of spare is M)

22 If (Mean_Delay is VS) and (# of server is M) and

(Utilization_Factor is H), then (# of spare is M)

23 If (Mean_Delay is S) and (# of server is M) and

(Utilization_Factor is H), then (# of spare is M)

24 If (Mean_Delay is M) and (# of server is M) and

(Utilization_Factor is H), then (# of spare is S)

25 If (Mean_Delay is VS) and (# of server is L) and

(Utilization_Factor is H), then (# of spare is RL)

26 If (Mean_Delay is S) and (# of server is L) and

(Utilization_Factor is H), then (# of spare is M)

27 If (Mean_Delay is M) and (# of server is L) and

(Utilization_Factor is H), then (# of spare is RS)
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altitude promptly, so that the touch down process is very

gently to avoid damage. The pertinent rules are shown in

Table 4.

The main results are summarized in Figs. 13 and 14.

5.4 Service center operation data

The rules having three inputs and a single output describing

the functioning of the center are presented in Table 5. The

overall number of the rules is 27.

The summary of the results is presented in Figs. 15 and

16.

A concise summary of the results obtained for the series of

experiments is presented in Fig. 17. Here, we visualize the

coverage as a function of a fraction of rules retained (ratio).

While the monotonicity character of this relationship is

visible, these plots show how the changes are distributed.

6 Conclusions

The general issue of structural compression of rule-based

systems was presented as inherently associated with the

emergence of granular constructs. Information granularity

is reflective of the increased level of abstraction of the

reduced set of rules. Information granularity is sought as an

essential asset, whose prudent allocation is behind the

design of optimally reduced rule-based systems. The

experimental part of the study shows essential linkages

among the quality of the granular fuzzy rules and the

number of retained rules and the admitted level of infor-

mation granularity.

It has to be noted that the granular fuzzy sets form a

general concept; however, in this study, we focused on

their interval realization. The entire development was

presented in this way for clarity purposes (given our intent
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to concentrate on the concept). Nevertheless, considera-

tions of other realizations of the granular constructs follow

the same general scheme and require some slight

modifications.
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