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Abstract 

The large number of deaths caused by malaria each year has increased interest in the development of effective 
malaria diagnoses. At the early-stage of infection, patients show non-specific symptoms or are asymptomatic, which 
makes it difficult for clinical diagnosis, especially in non-endemic areas. Alternative diagnostic methods that are timely 
and effective are required to identify infections, particularly in field settings. This article reviews conventional malaria 
diagnostic methods together with recently developed techniques for both malaria detection and infected erythro-
cyte separation. Although many alternative techniques have recently been proposed and studied, dielectrophoretic 
and magnetophoretic approaches are among the promising new techniques due to their high specificity for malaria 
parasite-infected red blood cells. The two approaches are discussed in detail, including their principles, types, applica-
tions and limitations. In addition, other recently developed techniques, such as cell deformability and morphology, 
are also overviewed in this article.
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Background
Malaria is a mosquito borne disease caused by protozoan 

parasites of the genus Plasmodium, and five species are 

reported for their infections in humans; namely, Plas-

modium falciparum, Plasmodium vivax, Plasmodium 

malariae, Plasmodium ovale and Plasmodium knowlesi 

[1, 2]. Infection with different Plasmodium species, or 

sometimes with multiple species, results in different 

clinical outcomes in patients. �e most virulent and fatal 

species of malaria is P. falciparum, especially when the 

infection occurs in young children with insufficient pro-

tective immunity, and in pregnant women. Although the 

other Plasmodium species might also cause severe illness 

in humans, the mortality rate is relatively low.

�e 2014 World Health Organization report stated 

that there were about 584,000 malaria deaths annually 

worldwide, with 78 % of these deaths occurring in chil-

dren under 5 years old [2], largely (>90 %) in Sub-Saharan 

Africa [2, 3]. In �ailand, the Plasmodium species that 

cause the majority of malaria in humans are P. falciparum 

(44 %) and P. vivax (47 %), and most cases are reported in 

regions bordering between �ailand and Myanmar [2–6]. 

In addition to P. falciparum and P. vivax, another malaria 

parasite species, P. knowlesi, is emerging as a health issue 

in Southeast Asia. �is zoonotic species possesses the 

potential for infection of humans, with a natural reser-

voir in monkeys [7]. In some areas, for instance in Bor-

neo hospitals of Malaysia, the prevalence of malaria 

infections by this parasite was as high as 83 % [8].
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Malaria life‑cycle

Human-infecting Plasmodium relies on two hosts: 

humans and certain species of female Anopheles mosqui-

toes. When an infected mosquito bites a human, sporo-

zoites from the salivary glands of the infected mosquito 

are injected into the bloodstream and enter the liver of 

the human, to initiate the exoerythrocytic stage of infec-

tion. Within the liver hepatocyte cells, the sporozo-

ites transform and multiply via asexual reproduction to 

develop into schizonts, structures that can contain thou-

sands of daughter parasites or “merozoites” [9].

After 6–8 days of development, depending on the Plas-

modium species, fully mature schizonts rupture their 

host hepatocytes to release merozoites into the blood-

stream [10]. �e merozoites then invade red blood cells 

(RBCs) and undergo asexual development within the 

infected RBC (iRBC), referred to as the erythrocytic 

cycle. �e erythrocytic cycle begins with a tiny ring form, 

followed by development to a larger amoeboid form 

termed the trophozoite and finally replication to merozo-

ites within a mature schizont. After rupturing the host’s 

RBCs, the merozoites invade new RBCs, and the result-

ing cycles of amplification can result in severe pathology 

and suffering of the patient due to the burden of iRBC, 

such as anemia and sequestration of iRBC in deep tis-

sues. Some of the merozoites will develop into male 

and female gametocytes following RBC invasion, which 

circulate in the blood and can be ingested by a female 

mosquito during a blood meal on the infected human. 

Fertilization between male and female gametocytes 

occurs in the mosquito midgut to produce zygotes. �e 

zygotes further develop into ookinetes and traverse the 

mosquito midgut wall to transform into oocysts. Within 

the oocysts, sporozoites multiply, and the rupture of the 

mature oocysts release sporozoites that recognize and 

invade the mosquito salivary glands, where they are ready 

to continue the life cycle. �e development of the malaria 

parasites in the Anopheles mosquito vector is termed the 

sporogonic cycle.

After merozoite invasion, the iRBCs undergo parasite-

mediated structural transformations, such as remod-

eling of the iRBC membrane skeleton via exported 

parasite-encoded proteins. �ese physical changes 

include increased rigidity of the iRBC membrane, 

reduced iRBC deformability and an increased adhe-

siveness of the iRBCs [11, 12]. However, it was recently 

reported that there was an increased deformability of 

P. vivax-iRBCs compared to uninfected RBCs (hRBC), 

which is in contrast to that for P. falciparum-iRBCs [13]. 

Furthermore, other physical changes are due to one par-

asite-specific structure, the haemozoin or malaria pig-

ment. �is structure is produced from the haem groups 

released from the digestion of the haemoglobin within 

the parasite food vacuole, where the haem groups aggre-

gate into an insoluble crystal [14].

Due to the difficulty in either detecting malaria-par-

asite infections, especially in a field setting, or separat-

ing infected erythrocytes for a biological study [15–17], 

many techniques have been developed to meet the spe-

cific requirements for each situation. �is article aims to 

review recently developed techniques of malaria diag-

nosis, both for conventional techniques such as micros-

copy; rapid diagnostic test (RDT); molecular diagnoses, 

dominated by PCR-based techniques; and the alternative 

techniques of dielectrophoretic and magnetophoretic 

principles, which are based on physical properties of the 

iRBCs. In particular, the change in the dielectric and mag-

netic properties of the iRBC due to the released haemo-

zoin has recently been considered as a key bio-marker for 

malaria diagnosis. Since the importance but difficulty of 

a correct diagnosis, techniques exploiting other physical 

and biological properties of iRBCs have also been devel-

oped, and some of these will be mentioned in this article.

Conventional techniques
Microscopic diagnosis using blood smears plays an 

important role in malaria diagnosis because of its ability 

to diagnose and differentiate each species of malaria, and 

so it is used as the gold standard for any new detection 

tool or technique [see, for example, 18–22]. However, this 

method still suffers from drawbacks, such as requiring a 

visual or light microscope with 1000× magnification and 

relying on skillful and well-trained microscopists. Micro-

scopic diagnosis is a morphology based identification so 

that Plasmodium species with closely similar in shape 

or characteristics such as P. knowlesi and P. malariae 

is prone to fault diagnosis, even by an expert. Recently, 

some researchers have introduced an image processing 

technique for microscopy, to avoid human error. How-

ever, the main cause of error that is due to a low parasite 

density was not resolved by this approach [23–25]. �is 

is due to the fact that the average ability of microscopic 

diagnosis to detect Plasmodium in iRBCs has a threshold 

of around 10 parasites/µL for a research setting [26] and 

in the range of 50–100 parasites/µL for outside a research 

setting [27], or less sensitive in a limited resource setting. 

Fluctuations of parasite density over the course of infec-

tion contribute to detection-limit of microscopy-based 

diagnosis and all other direct detection approaches [28]. 

Consequently, direct detection at a single time point has 

likely resulted in under-estimation of malaria parasite 

infection rates, especially cases with a low parasite density 

and asymptomatic malaria at the early and chronic stage 

of infection. For example, Okell et al. reported that sub-

microscopic parasite carriage is commonly seen in adult 

patients in low-endemic settings [29].
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Not only is microscopy laborious and ill-suited for 

high-throughput use, but in remote rural areas, such 

as peripheral medical clinics with no electricity and no 

health-facility resources, microscopy and skillful micros-

copists are often unavailable. Fortunately, this lack of 

microscopy in a rural area might be resolved in this near 

future due to the invention of an origami-based paper 

microscope [30]. �is device was intentionally developed 

for malaria control in a poor country.

Another technique, the rapid diagnostic test (RDT), is 

likely to impact malaria control in the immediate future. 

A test-kit is able to immunologically detect a number of 

different malaria antigens such as lactate dehydrogenase 

(LDH), aldolase and histidine-rich protein-2 (HRP-2) in 

a small amount of blood (typically 5–15 μL) by a princi-

ple similar to that for strip pregnancy test. �e detection 

is performed by an immunochromatographic assay with 

monoclonal antibodies directed against the target para-

site antigen(s) that are impregnated on a test strip. �e 

RDT strip has been extensively tested for its impacts on 

malaria diagnosis outside research settings for the past 

few years [5, 20–22, 31–35], where the implementa-

tion of RDTs increased the proportion of patients with a 

parasite-based diagnosis of malaria compared to micros-

copy alone, leading to a higher accuracy and timely clini-

cal case management, as well as better cost effectiveness 

[33–35]. Over 200 RDTs have been currently tested and 

deployed in the field settings, the most popular ones are, 

for example, Binax NOW®, Optimal-IT®, Paracheck-Pf® 

and Paramax-3 [36]. Some RDTs can detect only single 

species (either P. falciparum or P. vivax) while others 

detect multiple species (P. falciparum, P. vivax, P. malar-

iae and P. ovale). Additionally, some RDTs further dif-

ferentiate between P. falciparum and non-P. falciparum 

infection, or between specific species. No RDT specifi-

cally detects P. knowlesi, although Foster et  al. reported 

that BinaxNOW® correctly detected non-P. falciparum 

malaria in P. knowlesi samples but was the least sensitive, 

detecting only 29 % (8/28; 95 % CI 12–46 %) of fresh sam-

ples [37]. Although this technique is timely and easy to 

use, it is relatively expensive and prone to false-positive 

responses due to the persistence of malaria antigens in 

the blood for up to 2  weeks after the parasite has been 

cleared from the patient’s circulation. In addition, limits 

of detection (LOD) of these RDTs rely on an amount of 

antigen equivalent to 200 iRBCs/µL or 2000–5000 para-

sites/µL of blood [36].

�e most efficient technique is PCR-based diagnosis 

which has produced a higher specificity and sensitiv-

ity in the identification and differentiation of malaria at 

the species level. PCR methods can be subdivided into 

nested PCR, semi-nested PCR, single step multiplex 

PCR, and real-time or quantitative PCR assays [38, 39]. 

Among them, the simplest and least technically demand-

ing is a loop-mediated isothermal amplification (LAMP) 

assay [40]. Generally, PCR is able to detect parasites at a 

low density, typically below 5 parasites/μL of blood for 

all five human infecting Plasmodium parasites [40, 41]. 

Recently, it has been reported that saliva, urine and fecal 

samples of P. falciparum- and P. vivax-infected patients 

contain malarial DNA that is amplifiable by PCR [42, 43]. 

Although PCR-based diagnosis has a high sensitivity and 

good specificity, it relies on the complimentary nucleo-

tide sequences between the primer (known sequence) 

and its counterpart target DNA (unknown sequence), 

and so parasites with genetically diverse sequences at 

primer’s target region are prone to detection failure or to 

a lower amplification efficiency that will reduce the sensi-

tivity of the PCR test. In addition, the sensitivity of detec-

tion by PCR-based techniques is affected greatly by copy 

number of target gene or nucleic acid sequence available 

in the Plasmodium genome. �e most widely used target 

is small subunit 18S ribosomal RNA gene (18S rDNA). 

�is gene is highly conserved across Plasmodium species 

and has a moderate copy number-presenting in four to 

eight copies per parasite. Mitochondrial DNA is another 

promising target due to it its greater abundance than 

nuclear DNA (between 30 and 100 copies per parasite). 

Over the past decade, research efforts have increasingly 

utilized a well conserved cytochrome b gene in mito-

chondria genome not only in human Plasmodium [44], 

but recently also proven successful in microscopically 

negative samples in a newly rediscovered Plasmodium 

species in ungulates [45]. More PCR-based approaches 

including wide variety of target DNA or RNA tran-

scripts and their limitations can be seen in recent reviews 

including Refs [10, 29, 46].

Table  1 shows a comparison of the performance for 

each diagnostic technique. Currently, PCR has the low-

est detection range of the parasite (around 1–5 parasites/

µL), but the diagnostic cost is still high, and accessibility 

is restrictive.

Dielectrophoretic principle
Dielectrophoresis (DEP) was first introduced in 1951 by 

Pohl [59]. It is a phenomenon in which polarized neu-

tral particles exposed to a non-uniform electric field are 

pushed towards or against high electric field intensity 

regions. �e principle of DEP is illustrated in Fig. 1a–c. 

A neutral particle exposed to an electric field experi-

ences polarization that causes positive and negative 

charge accumulation at the opposite sides of the parti-

cle. In a uniform electric field, the electrostatic forces 

are equal on each side of the particle so there is no net 

force (Fig.  1a). In contrast, the electrostatic forces are 

unequal when the particle is exposed to a non-uniform 
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electric field due to the heterogeneous electric field 

strength experienced across the particle (Fig.  1b, c). 

�erefore, the particle experiences a net dielectropho-

retic force, which causes particle motion. �e direction 

of the force can be explained in terms of charge accu-

mulation at the interfaces of the particle. In Fig. 1b, in 

which a particle is more polarizable than the suspension 

medium, the dielectrophoretic force drives the particle 

towards the high electric field intensity region, known 

as a positive dielectrophoresis (pDEP). When the par-

ticle is less polarizable than the medium, the dielec-

trophoretic force pushes the particle towards the low 

electric field intensity region (Fig. 1c), known as a nega-

tive dielectrophoresis (nDEP).

At present, DEP has been performed with alternating 

current (AC), direct current (DC), combined AC/DC 

and travelling wave, but AC-DEP is the classic DEP that 

has been used in diverse applications [60–68]. �e elec-

trodes used to generate the non-uniform electric field are 

located inside a microchannel in which the samples are 

fed (Fig.  2a). �e merit of AC-DEP over the other DEP 

techniques is its flexibility to manipulate various types 

of particles due to their frequency-dependent dielectric 

properties. �e direction of the force (pDEP or nDEP), as 

well as the magnitude, can be controlled by adjusting the 

signal frequency and electric potential. However, there 

are a few drawbacks, such as electrode fouling and bub-

ble occurrence inside the channel due to the electrolysis 

of suspension medium during its operation.

Also known as insulator-based DEP (iDEP), DC-DEP 

utilizes DC applied to electrodes to generate a non-

uniform electric field [69–71]. Typically, the electrodes 

would be located outside a flow channel, while non-

conductive insulators are fabricated as a channel wall 

to create electric-field non-uniformity in a flow passage 

(Fig.  2b). �is technique helps eliminate the fouling of 

electrodes as well as the bubbles inside the channel, since 

there is no contact between the sample medium and elec-

trodes. �e main drawback of the DC-DEP approach is 

the required use of a relatively higher electric potential 

that might cause a Joule heating problem. �e combina-

tion of AC/DC-DEP would eliminate the drawbacks of 

the DC-DEP technique by reducing the electric potential 

required as well as the Joule heating problem [72–74].

Travelling wave DEP utilizes only AC to manipulate 

and transport particles [75, 76]. Although the mechanism 

of particle manipulation is similar to that for AC-DEP, 

there are phase shifts amid the generated electric fields 

that help serially carrying the particles between each 

electrode pair.

Although the AC-DEP technique has a few drawbacks, 

it is still the most practical method for this application. 

Accordingly, this section will describe the fundamentals 

of AC-DEP to illustrate the key concepts. �e simplified 

model to derive the time-average AC-DEP expression for 

a spherical particle is based on the dipole approximation 

that is given by Eq. (1) [77];

Fig. 1 Comparison of the net force between different situations:  

a uniform electric field, b positive dielectrophoresis and c negative 

dielectrophoresis

Fig. 2 Two methodologies to create a non-uniform electric field:  

a asymmetric electrode pair and b asymmetric microchannel
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where R is the particle radius, ɛm is the dielectric permit-

tivity of the medium, Re[fCM] is the real value of the Clau-

sius–Mossotti factor and Erms is the root mean square of 

the electric field intensity. �e complex Clausius–Mos-

sotti factor is defined by Eq. (2);

where ɛp and σp are the dielectric permittivity and elec-

trical conductivity of the particle, ɛm and σm are the 

dielectric permittivity and electrical conductivity of the 

medium, and ω is the signal frequency. �e AC-DEP 

equation analogous to Eq. (1) for a multi-pole model has 

been derived elsewhere. �e direction of the force exert-

ing on a particle relies on the real value of the complex 

Clausius–Mossotti factor (Re[fCM]), which is related to 

the effective polarizability. �e factor depends upon the 

electrical conductivity and the dielectric permittivity of 

the particles and the suspension medium, as well as the 

applied signal frequency. It should be noted that Eq.  (2) 

can be employed not only for the single-shell model but 

also for the multi-shell model. However, further modi-

fications for the multi-shell approximation are needed, 

such as described in Ref. [77].

In general, it should be understood that each type of 

biological cell, as well as particle, has its own frequency-

dependent characteristic leading to a different magnitude 

and direction of exerted DEP force in a non-uniform 

electric field. �erefore, AC-DEP-based micro-devices 

have been applied for biomedical applications to sepa-

rate, sort, trap and focus biological cells, such as cancer 

cells, stem cells and infected cells [60–62], in addition to 

bacteria, viruses, DNA and proteins [63–68].

With respect to the application for malaria parasite 

detection, Gascoyne et  al. studied the changes in the 

dielectric properties of iRBCs compared to hRBCs using 

electrorotation (ROT) and dielectrophoretic crossover 

approaches [78]. �ey found that the dielectrophoretic 

crossover method was better able to predict the dielec-

tric properties of iRBCs than the ROT approach. A sum-

mary of their experimental results [62] for a spherical 

shell model is shown in Table 2. From these results, they 

explained that the membrane conductivity of iRBCs was 

higher than that of hRBCs because of RBC membrane 

barrier deterioration during malaria parasite infection. 

However, iRBCs retain their internal ions, as shown by 

their relatively high internal conductivity.

Subsequently, iRBCs were isolated away from hRBCs 

using two types of electrode configuration (interdigitated 

and spiral electrodes) [62]. �e system was designed in 

(1)
⇀

FDEP = 2πR3
εmRe[fCM]∇|Erms|

2
,

(2)[fCM] =

{

(

εp + σp

/

jω
)

−
(

εm + σm

/

jω
)

(

εp + σp

/

jω
)

+ 2
(

εm + σm

/

jω
)

}

,

a manner that the iRBCs experienced a relatively weak 

nDEP while hRBCs were manipulated under a relatively 

strong pDEP. �e interdigitated electrode was energized 

by a single-phase sinusoidal signal up to 5  Vp-p at a fre-

quency range from 1 to 5  MHz, resulting in the hRBCs 

being attracted to the electrode edges, while the iRBCs 

were pushed to the electrode gaps. As a result, iRBCs 

were swept away by the hydrodynamic force of the sus-

pension medium resulting in a 200-fold concentration of 

the iRBCs. �e other electrode design employed a spiral 

array of four parallel electrodes. �e electrode was acti-

vated by a quadrature-phase sinusoidal signal up to 5 Vp-p 

in the frequency range from 1 to 15 MHz, while the sec-

ond electrode created both traditional AC-DEP and trav-

elling wave. After applying the electric signal, hRBCs were 

trapped at the electrode edges while iRBCs were levitated 

and carried towards the center of the electrode, resulting 

in an approximate 1000-fold enrichment of iRBCs.

In 2004, Gascoyne et al. [79] proposed a new approach 

to diagnose malaria, relying on an automated micro-

total analysis system (μTAS). �e so-called DEP-field-

flow-fractionation (DEP-FFF) approach was employed 

to isolate iRBCs from hRBCs. Simplistically, DEP-FFF is 

another version of DEP that uses the dielectrophoretic 

force to position particles in a fluid stream. Different 

types of particles experience a distinct velocity in accord-

ance with their respective positions due to the parabolic 

velocity profile of the flow stream (Fig. 3a). �e discrep-

ancy in their velocity causes the particles to emerge at 

the end of the channel at different times. In the study 

of Gascoyne et  al. [79], electrode arrays on the chan-

nel wall were applied by sinusoidal signals up to 5 Vp-p 

in the frequency range from 40 to 250 kHz and the suc-

cessful separation of iRBCs from hRBCs by the DEP-FFF 

approach was obtained. However, the test of integrated 

flow-through PCR for malaria diagnosis was not included 

in that report.

Recently, AC-DEP was used not only to discriminate 

early stage iRBCs from hRBCs but also used to predict 

cellular mechanical properties [50]. In this study, both 

iRBCs and hRBCs were trapped at the electrode edges 

when the electrodes were activated. �e iRBCs were able 

to retain their original shape at the edges due to their 

greater stiffness and weaker DEP force. In contrast, the 

hRBCs were significantly deformed due to their stronger 

pDEP effect. �e noticeable deformation of hRBCs over 

iRBCs offered the possibility of a visible and mechani-

cal discrimination (Fig. 3b). In addition, the cell deform-

ability could be measured by estimating the DEP force 

exerted on the hRBCs from Eq. (1) and the stretch ratio.

�e AC-DEP method exploits dissimilar dielectric 

properties between iRBCs and hRBCs for cell discrimina-

tion and might be the most appropriate of the different 
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DEP techniques for malaria parasite detection. However, 

due to the low difference in, and the heterogeneity of, the 

electrical properties and diameter of iRBCs and hRBCs, 

the employment of the dielectrophoretic approach is 

quite limited in malaria parasite research.

Magnetophoretic principle
With respect to the life cycle of the malaria parasite, after 

each sporozoite invades a liver cell and undergoes asexual 

development followed by hepatocyte lysis, the result-

ing merozoites are swept into the bloodstream to infect 

RBCs. �e parasite digests haemoglobin leaving haem 

groups that aggregate into an insoluble brown pigment 

haemozoin. �e number and size of haemozoin pigments 

depends on the developmental stage of the parasite [80, 

81]. Accordingly, the level of haemozoin in RBCs has 

become a key physical property that is used to detect or 

separate malaria parasite infected RBCs. Studies using 

spectroscopic and crystallographic techniques revealed 

that haemozoin has a magnetic structure that is a syn-

thetic biomineral, specifically, beta-haematin [82]. �e 

molecular structure and composition of beta-haematin is 

generally a single domain crystal of magnetite (Fe3O4) or 

greigie (Fe3S4) [83, 84]. Additionally, its magnetic proper-

ties have been determined using electron paramagnetic 

resonance and Moessbauer spectroscopy, and the results 

revealed that haemozoin has a Fe3+ component [85]. �e 

magnetic properties of iRBCs were quantified, where the 

magnetophoretic mobility and net volume magnetic sus-

ceptibility of iRBCs were found to be 2.94 × 10−6 mm3 s/

kg and 1.80 × 10−6 (relative to water), respectively, at a 

haemoglobin to haemozoin fraction of 0.5 [80, 86].

When a magnetophoretic force acts on a particle that 

lies in a non-uniform magnetic field, the magnitude of 

the magnetophoretic force is given by Eq. (3);

where μmedium is the magnetic permeability of the suspen-

sion medium (N/A2), μparticle is the magnetic permeabil-

ity of the particles (N/A2), a is the radius of the particles 

and H is the magnetic field strength (A/m). Considering 

Eq.  (3), the magnitude of magnetophoretic force is pro-

portional to the cubic size of the particles and also the 

gradient of magnetic field. �us, Eq. (3) can be simplified 

to that of Eq. (4); 

(3)Fm = 2πµmediuma
3

(

µparticle − µmedium

µparticle + 2µmedium

)

∇

∣

∣

∣

�H
∣

∣

∣

2

,

(4)Fm =
2

3
πµ0�χa3∇

∣

∣

∣

�H

∣

∣

∣

2

,

Table 2 Dielectric properties of iRBC and hRBC [62]

Remark: σm is the electrical conductivity of the suspension medium

Cell type Position Electrical conductivity (S/m) Relative dielectric permittivity

Host Parasite Host Parasite

iRBC Membrane 7 ± 2 × 10−5 <10−6 9.03 ± 0.82 8 ± 4

Interior (0.95 ± 0.05)σm 1.0 ± 0.4 58 ± 10 70 ± 5

hRBC Membrane <10−6 4.44 ± 0.45

Interior 0.31 ± 0.03 59 ± 6

Fig. 3 Two applications of the dielectrophoretic force: a cell separation and b cell characterization
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where µ0 is the permeability of free space (4π × 10−7 N/

A2) and �χ is the relative magnetic susceptibility of 

particles to suspension medium (χtarget  −  χbuffer). From 

Eq.  (4), the magnitude of the magnetophoretic force is 

proportional to the relative magnetic susceptibility. �e 

magnetophoretic principle for malaria parasite detection 

then takes advantage of the significantly different mag-

netic properties between hRBCs and iRBCs, as shown in 

Table 3.

Paul et  al. were probably the first research group to 

apply a magnetophoretic force for separating iRBCs 

in practice [52, 87], in which they used a fluid chan-

nel containing two chambers of dimensions of 

25 × 10 × 52 mm3 (first chamber) and 13 × 13 × 9 mm3 

(second chamber). Both chambers were filled with 25-µm 

diameter stainless wire at 4.6 and 7.6  % density for the 

first and second chamber, respectively. �e channel was 

placed between a 0.7 T permanent magnet, as shown in 

Fig.  4a. �ey reported that about 75  % of iRBCs in the 

trophozoite and schizont stages were immobilized in the 

chamber under an operating flow velocity of 0.19 mm/s. 

A similar idea was later applied by employing a 0.7  T 

yoke-shaped neodymium magnet of 50 × 30 × 12 mm3 

with a microchannel between the dipole magnets [54]. 

�e channel contained stainless steel wool with a size 

range from 30 to 50 µm diameter and was flushed with 

isotonic sucrose solution containing 0.75 % (w/v) gelatin 

for the concentration stage and 0.2  % (v/v) RPMI 1640 

and 1  % (w/v) BSA for the subsequent depletion stage. 

�e device could increase the concentration of iRBCs 

up to 96 %, where most of the trapped iRBCs were in the 

schizont stage due to their high magnetic susceptibility. 

It should be noted here that some types of stainless steel 

wool could help inducing a local magnetic field gradi-

ent as well as magnetophoretic force, depending on their 

composition.

Subsequently, Zimmerman et  al. [53] used two ferrite 

permanent magnets separated by 1.27 mm to trap iRBCs 

inside a microchannel. �e magnetic field strength at 

the midline between the surfaces of the two permanent 

magnets was 1.1 × 106 A/m. At this position, where the 

strongest magnetic field gradient was induced, iRBCs 

would be forced to move towards the gap between the 

two magnets perpendicularly to the mainstream of blood 

flow in the channel (Fig. 4b). At a velocity of 1.2 mm/s, 

the concentration of iRBCs was increased 40-, 250-, 250- 

and 375-fold for P. falciparum, P. vivax, P. malariae and P. 

ovale, respectively.

Another approach for malaria diagnosis is to utilize 

the changes in both the magnetic and optical properties 

of the iRBCs, since they exhibit a high magnetic anisot-

ropy and have optical dichroism properties. Based on this 

principle, an iRBCs detection technique was developed 

using the magneto-optic principle, which allowed a high-

sensitivity detection of the malaria pigment [88, 89].

An additional approach for the magnetophoretic prin-

ciple is the employment of magnetic nanoparticles as 

label markers [55]. �e addition of magnetic nanopar-

ticles to attach a magnetic crystal of β-haematin, which 

can amplify the Raman spectroscopy signal, allowed the 

detection of iRBCs at an early stage. �e other approach 

is to separate the iRBCs under a continuous flow in a 

microfluidics channel. For this system, an applied uni-

form 0.6 T magnetic field across a 100-µm diameter 

nickel wire along the channel (Fig. 4c) was reported [56]. 

�e ferromagnetic wire increased the magnetic field gra-

dient resulting in a more easily controlled lateral move-

ment of the iRBCs away from the mainstream of blood 

flow. Overall, a separation efficiency of almost 100 % was 

obtained at a flow rate of <0.14 μL/min.

Recently, the magnetophoretic force has been com-

bined with other physical properties, such as cell rigidity, 

to detect or separate iRBCs [57, 58]. A schematic illus-

tration of one such device is shown in Fig. 4d. After the 

blood sample flows through a narrow channel of 50 μm 

width and 25  mm length, the eluted blood was centri-

fuged with an accumulation of iRBCs relatively close 

to the wall of the microchannel. �e channel was then 

put in a micromagnetic resonance relaxometry (MRR) 

receiver coil with a 0.5  T permanent magnet, where the 

presence of iRBCs in the blood sample was detected and 

the signal transmitted through the MRR spectrometer.

�ese studies using the magnetophoretic princi-

ple employed an external magnetic field, where it was 

found that the detection or separation performance 

could be enhanced, but to a limited extent. �is was 

due to the fact that the system could not provide a suf-

ficiently high magnetic-force locally to effectively and 

precisely manipulate iRBCs. To resolve this issue, a sys-

tem providing a high magnetic field gradient would be 

a key component in generating a high magnetophoretic 

force [90]. One promising technique is the addition of a 

ferromagnetic substance into the system. �e substance 

can modify the magnetic field strength profile in the area 

around it. However, the gradient of magnetic field result-

ing from this ferromagnetism happens only in a tiny area 

Table 3 Relative magnetic susceptibilities of  each type 

of RBC to water [57]

Type of RBC Relative magnetic susceptibilities (�χ) 10−6

hRBC 0.01

Early ring form-iRBC 0.82

Late trophozoite-iRBC 0.91

Schizont-iRBC 1.80
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around the ferromagnetic substance. Considering this 

factor, the employment of a microfluidics system would 

be an appropriate choice for malaria parasite detec-

tion. Furthermore, a high magnetic field gradient can be 

generated by various other factors, such as the type of 

ferromagnetic material, the orientation of the component 

and the direction of the uniform external magnetic field.

Recent trends
From the literature, many studies take advantage of the 

existence of iRBC-specific haemozoin, which is a promi-

nent biomarker for malaria diagnosis without sophis-

ticated sample preparation. However, the detection or 

separation-based on haemozoin alone might have several 

pitfalls causing low efficiency of diagnosis. For example, 

electrical properties (see in Table  2) of uninfected and 

infected red blood cells are not significantly different; 

therefore, a separation of iRBCs with dielectrophoretic 

force alone may be impractical. Moreover, iRBCs at the 

ring stage contain low concentration or non-existent 

haem crystal [91]. �ese factors might have been respon-

sible for the low efficiency haemozoin-based detection 

and separation of early stage infections in several past 

studies.

On the contrary, one of outstanding capabilities of 

dielectrophoresis and magnetophoresis (see in Table  1) 

is its ability to enrich the concentration of infected 

erythrocytes. �e enrichment and separation without 

destroying of the parasite, which could not be obtained 

from microscopy, RDTs and PCR techniques, might be 

invaluable in malaria parasite research. Additionally, 

because of the portability, minimal expertise and ease in 

use, methods based upon dielectrophoretic and magne-

tophoretic principles could be considered as an alterna-

tive for malaria diagnosis.

In the last few years several research groups have tried 

to employ other new techniques to enhance the detec-

tion or separation of iRBCs. One of these approaches is 

the use of non-woven fabric (NWF) size-based filtration, 

which is simple and cheap [92]. �e prototype single-use 

NWF filter demonstrated the successful removal of 99 % 

leukocytes from 5  mL of malaria-infected blood, which 

helped reducing the white blood cells contamination of 

iRBCs during a biological study. Another study found 

that the morphological changes on the surface of the 

malaria-iRBCs could be a biomarker for malaria diagno-

sis [93].

In addition to the physical change in RBCs following 

malaria infection, the reduced deformability of iRBCs 

is a property that could be employed for malaria detec-

tion and separation, at least for P. falciparum-iRBCs. 

Moreover, it has been reported that the iRBC deform-

ability could be used to sort P. falciparum-iRBCs at dif-

ferent developmental stages and to enrich the ring-stage 

Fig. 4 Applications of magnetophoresis: a locally strengthening the force using metal wool, b switching the magnetic field direction using oppos-

ing poles, c creating the non-homogenous field using a ferromagnetic wire and d manipulating cells to a location under high magnetic force using 

a centrifugal force
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by 2500-fold [94]. Several other works have studied the 

relationship between the iRBC deformability and devel-

opmental stage of the infecting Plasmodium [95, 96] and 

the possibilities of a deformability-based technique to 

sort iRBCs [97–100].

More recent research reported that the high optical 

absorbance and nanosize of haemozoin could gener-

ate a transient vapor nanobubble around haemozoin 

when exposed to a short NIR picosecond laser pulse. �e 

acoustic signals of these induced nanobubbles provided a 

transdermal, non-invasive and rapid detection of malaria 

infection in animals without using any reagents or draw-

ing blood [101].

Several studies have employed a new platform to an 

existing conventional principle. For example, flow cytom-

etry using standard nucleic acid-based staining methods 

was employed for a rapid and highly sensitive detection 

of iRBCs [102, 103], while a paper-based 2D platform 

that enabled multistep assays was also developed to 

detect malaria antigens in a low-resource setting [104]. A 

droplet microfluidics platform was employed for highly 

sensitive and quantitative detection of iRBCs based on an 

enzyme activity measurement [105]. In addition, a com-

bination of dielectrophoretic and magnetophoretic forces 

has also been employed for the separation of iRBCs [106].

Conclusions
Globally, around 3.2 billion people are estimated to be 

at risk of being infected and developing malaria, and 1.2 

billion people are at a high risk. According to the lat-

est estimation, over 200 million cases of malaria occur 

around the world annually, and the disease leads to over 

500,000 deaths each year. Early detection could save lives 

and prevent disease outbreaks, as well as allow parasite 

enrichment for biology studies, which are important top-

ics in malaria research. �e conventional microscopic 

examination of blood smears, antigen-based rapid test 

and molecular biology-based diagnosis all have some 

limitations for effective employment in low-resource 

setting areas. �erefore, researchers around the world 

are looking for new options. Among various techniques, 

dielectrophoretic and magnetophoretic principles have 

recently became attractive possibilities for malaria diag-

nosis due to the unique changes in the electrical and 

magnetic properties of iRBCs compared to hRBCs. 

Moreover, alternative techniques, such as cell morphol-

ogy and deformability, have been proposed to be suitable 

bio-markers for the future. Not only is a knowledge of 

parasite biological properties critical, but the develop-

ment of an engineering system is also an important fac-

tor, and should be studied in parallel. One example is a 

magnetic-field generating system that could create a 

high magnetic field gradient over a large area. Another 

solution might be a combination of two or three detec-

tion techniques, which might be able to increase the 

specificity to iRBCs and so enhance the ability for malaria 

detection or infected erythrocyte separation.
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