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The spontaneous spreading of an insoluble surfactant monolayer on a thin liquid film produces a
complex waveform whose time variant shape is strongly influenced by the surface shear stress. This
Marangoni stress produces a shocklike front at the leading edge of the spreading monolayer and
significant film thinning near the source. For sufficiently thin films or large initial shear stress,
digitated structures appear in the wake of the advancing monolayer. These structures funnel the
oncoming flow into small arteries that continuously tip-split to produce spectacular dendritic shapes.
A previous quasisteady modal analysis has predicted stable flow at asymptotically lonfRhyes

Fluids A9, 3645(1997]. A more recent transient analysis has revealed large amplification in the
disturbance film thickness at early timgd. K. Matar and S. M. Troian, “Growth of nonmodal
transient structures during the spreading of surfactant coated films,” Phys. Fluitly A234
(1998]. In this paper, we report results of an extended sensitivity analysis which probes two aspects
of the flow: the time variant character of the base state and the non-normal character of the
disturbance operators. The analysis clearly identifies Marangoni forces as the main source of
digitation for both small and large wave number disturbances. Furthermore, initial conditions which
increase the initial shear stress or which steepen the shape of the advancing front produce a larger
transient response and deeper corrugations in the film. Disturbances applied just ahead of the
deposited monolayer rapidly fall behind the advancing front eventually settling in the upstream
region where their mobility is hampered. Recent findings confirm that additional forces which
promote film thinning can further intensify disturban¢€s K. Matar and S. M. Troian, “Spreading

of surfactant monolayer on a thin liquid film: Onset and evolution of digitated structures,” Chaos
9, 141(1999. The transient analysis presented here corroborates our previous results for asymptotic
stability but reveals a source for digitation at early times. The energy decomposition lends useful
insight into the actual mechanisms preventing efficacious distribution of surfactani99®
American Institute of Physic§S1070-663(99)01111-3

I. INTRODUCTION pend on a better understanding of the surfactant transport
] . from the upper to the lower recesses of the lung.

Surfactant molecules play a vital role in numerous  The transport of exogenous lung surfactant along the al-
household, mdustrlal,'and plo[qglcal processes. Their ap'“tl(/eolar lining is a complicated process involving the rapid
to lower surface tension significantly improves the wettingjstribution of a multicomponent surfactant formulation to a
and spreading capability of commonplace substances likgqyyid layer with nonuniform surface properties. The prin-
shampoo, detergent, ink, paint, herbicide and medicine. Sugjple mechanism for rapid distribution of surfactant, how-
factants produced naturally in mammalian systems are espgyer, can be modeled as the spontaneous spreading of a sur-
cially important in maintaining lung compliance by reducing 5ctant monolayer along a liquid layer of higher surface
the surface tension of the liquid film which coats the interioransion3-5 At the junction where the initial monolayer joins
of pulmonary airways. Deficiencies can proguce pulmonaryhe native liquid film, there exists a shear stress whose mag-
edema or other serious respiratory difficultteBremature iy qe is directly proportional to the difference in surface
infants, for example, often suffer from an insufficient supply ension across the boundary. This shear stress pulls liquid
of lung surfactant which can suddenly lead to respiratory,nq gyrfactant towards regions of higher surface tension.
distress syndrome. This fatal condition can easily be relieveg ., the point of view of minimizing the free energy asso-
by the inhalation of a suspension of animal or synthetic lungjateq with the spreading process, the regions of higher sur-
surfactant. This qmgk and simple technique has achievegh ¢ tension are rapidly coated with surfactant thereby reduc-
good clinical successalthough further improvements de- jng the surface energy of the entire liquid layer. In biological
or industrial applications, the effectiveness of the coating
dElectronic mail: stroian@princeton.edu. process is improved if the spreading is rapid and uniform, if
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the liquid layer is not ruptured by large surface stresses, an(
if the liquid flow remains stable and continuous until com-
plete coverage is attained.
Simple model experiments during the past several years
have shown that the spreading of surfactant films on a thi
liquid layer of higher surface tension is neither a uniform nor
stable proce$§s!? Often the spreading monolayer produces
significant film thinning near the surfactant source. This re-
gion is then observed to undergo transverse corrugation
which funnel the oncoming flow into small arteries that con-
tinuously branch and tip-split. These patterns, which develop
on the backside of the surfactant leading edge, resemble th
shape of fingering patterns in viscous fingertiginlike the
viscous fingering problem, however, the surfactant patternd
do not derive from the higher viscosity of the displaced fluid. ,
Typical patterns which develop during the spreading of sur- (a)
factant on a thin water film are shown in Fig. 1. These digi-
tated structures have been observed in many different experi
ments. They include studies with soluble or insoluble
surfactan{with ringed or branched molecular structureso-
lutions which are both above and below the critical micelle
concentration; surfactants with head group charge that is
neutral, zwitterionic or of opposite charge to the wetted sub-
strate; and surfactants spreading on film thicknesses rangin
from fractions of a micron to millimeters. The fingering be-
havior has also been documented in both rectilinear and axi
symmetric geometry, for delivery from a finite or infinite :
source, and for geometries in which gravity either enhance =
or retards the flow. The fact that the digitated patterns nevegs
appear when spreading a solution directly onto a dry sub
strate indicates that Marangoni stresses are in some way rq
sponsible for the unusual spreading behavior. The questio
of whether these patterns are long lived or just transient ,
structures has not yet been answered experimentally. In mos (b)
cases, the ambient atmosphere is not controlled and evapol— L surt cerved during ih dint of . curf .
ation disups the spreading process, especially in the thiflC, 1 Suees petere esenes s e sieson o ¢ secan op
nest portions of the liquid film. In addition, adjacent fingers spreading on water film of thicknes,~1 41, 3 s after depositiofRef. 9.
can coalesce at long times. Black outer ring, of diameter 9.6 cm., demarcates the leading edge of the
Because of the ubiquity and importance of the processurfactant front(b) A microdroplet of G.E;, in ethylene glycol spreading
whereby surfactant molecules are transported along the suff 2 water Ia.yer'estimateo.l to be EQu in thicknesg(Ref. 13.. Because the.
T . initial water film is ultra thin, the surfactant leading edge is no longer vis-
face of a thin liquid layer, theoretical efforts have concen-
trated on developing a set of coupled equations which can
accurately describe the spreading behavior. By appealing to
the lubrication approximation, which assumes that the filmmonolayer is spontaneously pulled in the direction of in-
thickness is much smaller than the extent of spreading, ancreasing surface tension. The resulting stress profile produces
by adopting a linear equation of state which relates the sura thickened advancing rim and strong film thinning near the
face tension to the local concentration of surfactant, a pair ofleposition region. Key flow variables like the speed of
couple non-linear equations have been derived describing th@opagation, the time variant shape of the spreading film, and
spatiotemporal evolution of the liquid film thickne$gx,t), the spatial distribution of surfactant along the surface,
and surface surfactant concentratibifix,t). Over the years, strongly depend on the magnitude of the initial shear stress
these equations have been extedddd®to include not and film thickness, as well as the viscosity of the liquid sup-
only the Marangoni shear stress, but capillary effects arisingort and the surfactant equation of state.
from the surface deformation, bulk and surface diffusion of A straightforward modal analysis of the coupled equa-
surfactant, gravitational terms which flatten the shockliketions governing the response bfand I' to small distur-
rim at the leading edge, and disjoining forces which eitheances is complicated by two very important aspects of the
promote or retard film thinning. The resulting fourth-order flow; (i) the base state profiles forandI” are time variant
equations have been solved numerically subject to realistidue to the decreasing shear strésmce a finite mass of
initial and boundary conditions. These numerical studiesurfactant is distributed over an ever larger aread (ii)
have shown that a thin liquid film contacted by a surfactantheir spatial dependence produces non-normal disturbance
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operators. The first aspect introduces the complication thahg the interface into a region where there exists a constant
any conclusion inferred about the “stability” of the system gradient in the relevant field variable, then infinitesimal pro-
to small disturbances is only meaningful with respect to thdrusions will advance faster than neighboring portions of the
temporal behavior of the base state. There are many fluiffont and destabilize the interface. In fluid systems, the speed
dynamical systems which exhibit this difficulty and Shen’sof the advancing front is controlled by the local pressure
original measure for investigating the “momentary stabil- gradient as well as the local mobility. In viscous fingering,
ity” of time variant base states proves a suitable frameworkior example, the displaced fluid is of higher viscosity and
for our systemt’!® The second aspect involving non- lower mobility than the penetrating fluid. In the surfactant
normality stems from the fact that even if the base state iproblem, the initial shear stress strongly thins the area just
frozen in time, the free surface shape and concentration dighead of the surfactant reservoir producing a region of de-
tribution are spatially dependent. It is well known that in creased mobility. Just as the source of instability in the vis-
such cases a modal type analysis will only reveal thecous fingering case has been traced to a region of adverse
asymptotic behavior of the system &s .12 This prop-  mobility, so too was the thinned region responsible for the
erty implies that even if the largest real part of the eigenspecdendritic patterns in the surfactant spreading problem. De-
trum is negative, the system may still harbor large disturspite the universal appeal of this analogy, a more rigorous
bance amplification at early times. The analysis in the latestability analysis was required which allowed disturbance
sections attempts to separate the time variance from the norariations in both the film thickness and surfactant concen-
normal property by studying the stability of disturbancestration. Results from quasisteady calculations using self-
about a frozen base state. consistent, self-similar solutions for the base state but allow-
What simplifications can be performed to eliminate theing disturbances in both variabf@$® proved that the
time variance of a base state? For a finite monolayer whosgpreading dynamics wastableto disturbances of all wave
spreading is only controlled by Marangoni forces, there exishumbers. The inclusion of additional but weaker forces like
no steady-state solutions. One can derive self-similar solueapillarity and surface diffusion confirmed linearly stable
tions to the spreading process in a stretched coordinatiéow.?*%°
whose length is coincident with the monolayer leading edge. These quasisteady calculations highlighted certain im-
The addition of other forces, like capillarity, surface diffu- portant features of the spreading process. First, the analyses
sion, gravity, or van der Waals precludes even self-similaunderscored the importance of allowing variations in both
solutions. Numerical studies have shown, however, that ithe film thickness and surfactant concentration. Allowing
these additional forces are weaker than the Marangoni forceself-consistent disturbances in both field variables produced
then after the impact of initial conditions has died away, thea cooperative stabilizing response. Second, the null results
film thickness and concentration profiles approach a selfebtained raised the obvious possibility that the fingering pro-
similar form dominated by the surface shear stress. In thisess might be an early time response which was obscured by
case, both profiles assume a simple linear form. One caassuming base state solutionglate time self-similar form.
therefore freeze the base states at tiging time self- The experimental evidence in the literatufé =12 suggests
similar form and perform a linear stability analysis on thesethat the onset for the fingering process is very rapid, appear-
shapes. ing almost immediately behind the spreading front. Although
This approach has been implemented in the literature ithe onset time has not been studied systematically, the time
two successive steps. The first theoretical attempt at reveascale for the appearance of surface corrugations is on the
ing the mechanism leading to fingered spreading relied owrder of a shear timer~Ly/Ug, wherel, is the initial
the remarkable similarity between the surfactant patterns anextent of the monolayer and, the initial spreading speed.
those produced by miscible or immiscible viscousThis information, though not definitive, suggests that the
fingering®® Within a long wavelength approximation, the spreading behavior at early timéshen the shear stress is
variation in film thickness near the source was neglected anldrgesj may differ in response from the late time dynamics.
only disturbances in the surfactant concentration allowedlnvestigating the early time dynamics for a base state which
The concentration base state was then frozen about its sei time variant, however, requires a more general measure of
similar form. This approximation immediately led to a sim- the growth or decay of disturbances since the underlying
plified time dependent Laplacian equation for the disturbanceeference state is changing in time as well.
concentration with positive growth rate for small wave num-  Finally, there is another critical issue raised by the modal
bers. In mapping the gradient in surfactant concentratiomnalyses performed in the past which requires discussion.
onto the gradient in the applied pressure, the mathematic&lven when neglecting the time variance of the base states,
analogy to the viscous fingering problem was complete. the self-similar solutions possess spatial inhomogeneity;
This analysis suggested that the fingering behavior obramely, the film thickness resembles an increasing linear
served in surfactant spreading problems derived from a Laramp from the source to the leading edge while the surfactant
placian driven process as occurs in viscous fingering oconcentration resembles a decreasing linear rathp® As
diffusion-limited aggregatiot even though its physical ori- described in more detail in later sections, this spatial depen-
gin was different. This argument states that if a velocity fielddence directly introduces non-normality of the disturbance
is directly proportional to the driving forcébe it a gradient operators. A straightforward modal analysis, whereby the ei-
in applied pressure, surfactant concentration or electric pogenvalues of the disturbance operators are computed di-
tentia) and if the local driving force increases upon advanc-rectly, can only determine the stability of the system as time
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t—oo. Therefore, the results obtained by the previous quasi- r=r A 1"
steady calculations may just have signaled that the spreadin oo

process is stable to disturbances of all wave numbers at lat
times. Information about the early time behavior was inac-
cessible through these computations.

The majority of this paper, therefore, deals with distur-
bances in the film thickness and surfactant concentration ap
plied at very early times. For comparison, we include some
results of the effect of applying disturbances at intermediate
times only after the base state solutions have begun settlin
down to a similar form. Both the early and intermediate time
calculations clearly show that this system harbors the poten
tial for large transient growth. The amplification of distur-
bances eventually decays away at late times when the driving
force for spreading has weakened considerably.

In summary, the linearized transient description strongly
suggests that a surfactant monolayer spreading on a thin VistG. 2. Schematic diagram of a surfactant monolayer about to spread along
cous film initially exhibits extreme sensitivity to infinitesimal the surface of a thin liquid film.
transverse disturbances in the film thickness or surfactant
concentration. These disturbances are amplified on time
scales comparable to a Marangoni shear time. In accordan

with Shen’s framework for investigating the “momentary zontal scaleL? , the vertical scaleH? , the horizontal ve-

. - . . ,18 _
s:tab_lhty of time variant base s_taté%, WE propose a guan locity, U*, and the vertical velocitys U* . The characteristic
titative measure for the amplitude and rate of disturbance

. S . . ~Shear time for the spreading procesgisL/eI1* while the
growth. This information is then used to identify the phys'calcharacteristic press?Jre in t?uffilm is&givOenSHWH* The
mechanisms responsible for the onset of liquid Channe“n%imensionless spreading pressure is defined Oté bt (
and fingering. The long time limit of our transient calcula- — o*)/T1*, which defines the ratio of the local driving force
tions corroborate our earlier findings of asymptotic stabilityto m '

. . : the maximum driving force for spreading. In this paper we
using the quasisteady approach. The calculations presem%gnsider spreading dominated by Marangoni stress in the

here, however, establish a timeline for understanding the . : I
; ) : resence of additional weaker forces like capillarity and sur-
spatial and temporal response of the film thickness and sut- e . . S
. T . ace diffusion. Other forces like gravity, disjoining pressure
factant concentration to initial disturbances and their evolu-

tion toward asymptotically stable states. Although beyon Cgﬁgf;{fg from the bulk to the interface can be easily in-

the scope of this paper, we have also carried out calculations We define a rectilinear spreading geometry such x#at

to determine how important might be nonlinear effects as the, . ST ) o
Co . ; denotes the horizontal directioy;” the vertical direction,
source of the digitation. The interested reader is referred tQ % o .
! . o and z* the transverse direction. The spreading process oc-
Ref. 24 for a discussion of this issue. . % . .
curs in thex* —z* plane andy* =0 locates the vertical po-
sition of the solid support. With the choice of scalings de-

scribed, the dimensionless equations for incompressibility

Q.o

*

z

She equations of motion are nondimensionalized by the hori-

IIl. PROBLEM FORMULATION

A. Governing equations and momentum conservation become

Consider a quiescent Newtonian liquid layer of initial Uy+ vy +w,=0, (1)
uniform thicknesd3 , viscosityu*, and densityp*, resting 5
on a flat solid substrate, as shown in Fig. 2. The liquid filmis 0= —PxTUyy+0(&?), 2

contacted by a monolayer of insoluble surfactant of initial
extentLy wheree=Hg/Ls<1 in accordance with the lu-
brication approximation. Because of the mismatch in surface = _ p,+W,,+0(s?), (4)
tension at the junction between clean and contaminated sur-

face, there spontaneously develops a large shear stress whi¢herein the horizontal, vertical, and transverse velocity
drives the liquid film toward regions of higher surface ten-fields are represented hy v, andw, respectively. The sub-
sion. The spontaneous spreading reflects the balance betweggfipts denote partial differentiation with respeckty, or z

the surface shear stress of ordlEt/L} and the viscous drag The boundary conditions used to solve E@9—(4) include

of order u* U*/H% . The parametefl* = ¢ — o denotes impenetrability and no slip at the solid wall and balanced
the maximal Spreading pressure Wheﬁ% is the surface ten- Shea_r _and norma_l stresses at the free interface. The no S|Ip
sion of the clean liquid layer and, the initial surface ten- condition aty=0 is

sion of the coated liquid layer. The characteristic spreading U=v=w=0. (5)
velocity, U*, is determined from a force balance to Ué&

=ell*/u*. This velocity is sometimes termed the Ma- The tangential and normal stress conditions wnt
rangoni spreading velocity because of its physical origin.=H(x,z,t), are given by

0=—p,+0(e?), (3)
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Uy=0x, —-2H
oo [u,w](x,y,z,t)zyVa—Cy(yT)WH. (10)
Wy =0, (6) _ _ . .
The velocity profiles contain a simple shear term due to the
Ap=—CV?H, (7) Marangoni surface stress and a Poiseuille-type term due to

capillary driven flow. Substitution of the height-averaged

whereC=g207, /T1*, in which o, /T1* is typically of order  and surface velocities of the spreading film into the Eg5.
one or less(unless the driving forcdl* is so small that and(9) yields the two evolution equations fét(x,z,t) and
spreading is no longer dominated by Marangoni strgssesI'(x,z,t), namely,
This dimensionless number is related to the capillary number
Ca=u*U* /g% through the relatio€=e3/Ca. The capillary H+ = V- (HVo)+ gV -(H3V3H)=0, (1)
number reflects the balance between Marangoni forces which 2 3
favor more interface and capillary forces which minimize the 1 c
amount of interface. In determining the overall scaling for I'+V-(I'HVo)— P—V2F+ §V~(FH2V3H)=0. (12
the capillary pressureg, the dimensionless value of the sur- &
face tension is approximated hy,,/II, wherein contribu- Since the surfactant molecules are free to spread across an
tions to the absolute surface tension arising frdmr are  unbounded surface, the likely surface configuration describ-
ignored. Despite the fact thétis of orders?, derivatives of  ing the expanding surfactant film is a gaseous monolayer.
the free surface curvature can achieve magnitud€ef 2) The dimensionless constitutive equation required to close
at the surfactant leading edge; therefore, capillary contributhis pair of equations is chosen to bél')=1—T", the equa-
tions cannot be uniformly neglecté8iThe capillary terms tion of state describing an ideal gas of surfactant
also help smooth any cusplike features in the spreading pronolecules’’
files eliminating numerical difficulties.

The kinematic boundary condition at the liquid surface,B. Transient growth analysis
vs=dH/dt, wherev represents the vertical surface velocity ; gase state

aty=H, can be expressed in terms of the fluid flux as i ) , , ,
We first consider the one-dimensional spreading dynam-

Hi+ (Hugygx+ (HWayg), =0, (8) ics in the absence of disturbances. The monolayer spreads
spontaneously to produce a shear stress inxtlérection
whereu,,q andw,,, represent the streamwise and transversevhich deforms the thin viscous film. Equatiofisl) and(12)
height averaged velocities. The subscriptienotes partial reduce to the form
differentiation with respect to time. This equation determines
the spatiotemporal profile of the spreading liquid layer in the  H :E(H2p )— g(HBH ) (13
.. A ot2 OOXX3 o' Toxxx/x 1

presence of surfactant. Similarly, mass conservation of the
insoluble surfactant is expressed by

1 C
Ioi=(FoHol'0)x+ oxXxX E(FngHoxxx)x- (149

Pesr
The subscript “0” will henceforth designate the one-
dimensional solutions to these base state equations. Since
whereI'™ has been scaled Hyy, (the surface concentration \arangoni driven spreading is rather rapid, it is computa-
corresponding to a surface tension @f) andus andws tonally more efficient to introduce a stretched horizontal co-
represent the horizontal and transverse velocities of the “%rdinate,g, whose overall length is determined by the lead-
uid layer aty=H(x,zt). The modified surface Peclet num- jng edge of the surfactant monolayer. For a finite amount of
ber which appears in Eq.(9) is defined by Pe jnsoluble surfactant spreading in a one-dimensional geom-
=(U*Lg)/Dg =(IIgHG)/ uw* DF , whereDy is the surface etry, a simple scaling analy&i€ shows that the leading edge
difoSiOI’l CoeffiCient Of the Surfactant along the ail’—liquid advances in t|me ah(t):tl/:‘}_ The fo”owing transforma_
interface. This dimensionless quantity represents the ratio qfons therefore describe the spreading process in stretched
surfactant transport by Marangoni convection to that by surggordinates:
face diffusion. Although this ratio is typically very large, its
inclusion locates more accurately the position of the surfac- E=xIL(7), Ho(X,t)=ho(§,7),
tant front and improves the smoothness of the numerical pro- Uo(£,7)
files. In what follows, we focus on the large scale dynamics  I'o(X,t)= L)
which reflect the balance of viscous and Marangoni forces.
Capillary forces and surface diffusion merely act as correcThe scaling forl’, is determined from mass conservation of
tions which smooth the shape of the spreading film in thesurfactant in a coordinate system whose horizontal extent is
thinned region near the source and the shocklike region neatretching with time. Insertion of the above transformations
the leading edge. into Egs.(13) and(14) yields

Integration of Eqs(2) and (4) subject to the boundary
conditions in Eqs(5)—(7) yields the dimensionless stream-
wise and transverse velocity field,

1
i+ (Tug)x+ (T'wg) = P_es(rxx+rzz)a 9

wherer=t. (15

1 1, C 3
7h07255h05+ E(hogo§)§_ ;m(hohofﬁ)f' (16)
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713 D= (T o)W +HoLoy®+T Ho®@, )y — KT H @

1
Tgng(fgo)g"' (9ohoGos) e+ p_eS90§§

1 L C
+%S(q)xx_K q))_E(FoHonxx

C
— ——5(Gehehogee) ¢ - 17) -, ~
27 + 2T 6HoHoxoH + HoH ox00)x
Equations(16) and (17) are solved subject to the following c
boundary conditions: —5(= K2((FoH2) W+ 2T H3W ) + KT HIW).

h0§(0,7)=0, h0555(0,7)=0, and gog(O,T)ZO, (18)

ho(®,7) =1, hogl>e,7)=0, andgo(7)=0. (19 xq petore. it proves computationally efficient to stretch the
Equation(18) represents symmetry and a no-flux conditionhorizontal coordinate to lie coincident with the leading edge
about the origin while Eq(19) describes the recovery of of the surfactant monolayer. This transformation also res-
undisturbed conditions far downstream of the spreadingales the disturbances
monolayer.

(29)

¢(£,7)

YxO)=y(&n and d(xt)=—7

. . . (25
2. Disturbance equations

The linearized version of Eqél1) and(12) can be used  gypstitution of the transformations given by E¢5) and
to determme the senS|t|V|ty of the system to small d}stur—(25) into Eqgs.(23) and(24) yields the final stretched form of
bances in the film thickness and surfactant concentration, pe equations to be solved,

H =E(H21~“ +2H o, H) ey —9[(H3F| 1 15
oo on XX gron 2z g ol e T =Ly, )= gglﬂg"‘ E(ho¢§+2hogo§¢)g

+ 3H§HOXXXH)X+ (Hg)XHXZZ+ ZHngxzz+ HgHZZZ;l

(KT1/3)2 C
_ h2¢_
(20 2 o g3
- - 5 - 1 - .
T= (ol ouH +Hol ol +ToH )+ %S(rxﬁ T,,) X[ (N3 heeet 3h2hogeeth) ¢]
- C - - _ —(KA32((h3 +92h3
Tl 22~ 5[ (ToHE ot 2T HoH ool 3k (KT (o) et 2hotre)
+(K73)*h3y], (26)

~ C ~ ~
+HgHoxxxF)x]_ E[(Fng)xszz+ 2I‘IngHxxzz 1
T, =Lyl p]= §(§¢)§+ (gogoglr/f+ hogof¢+ hogod’g)g

+oHGH 224, (21
The quantities decorated with “tilde” represent small devia- 132 3 13,2
tions from the unperturbed solutiortd, andT',. Since the ~(K77) hoGodp + P_es(¢§§_(KT )")

base states are strictly one-dimensional and depend only on
thex coordinate, the coefficients precedidgandT" (or their
derivatives in Egs.(20) and(21) are independent af. The
disturbance functions can therefore be Fourier decomposed
into the form

C
N 27_1/3[(goh§¢§§§+ 29ohohoees

s , +hohogeed) el — —
27
(H,T)(x,z,t)=(¥,d)(x,t)e'kz (22

This product describes a spatially inhomogeneous, time vari- X[ = (KTY9)2((gohd) e+ 290h5th¢e)

ant disturbance waveform in the streamwise direction of pe- 134 2

riodicity 27/K in the transverse direction. Substitution of (KT gohov ] @
this form into Egs.(20) and (21) produces a coupled set of The boundary conditions for the disturbance equations are
linear equations describing the evolution of two-dimensionaliven by

disturbances,

1 K2 c P0,7)=0, ge(0,7)=0, and ,(0,7)=0, (28)
V=5 (HE®,+ 2Hol 0¥ )= 5 HE® = Z[(HW ax

2 (e, 7)=0, ¢, 7)=0, and ¢(»,7)=0. (29
+3H2H 0¥ ) — K2(H2), W, + 2H3W ) Equation (28) dictates symmetry and a no flux condition

a3 about the origin while Eq(29) requires the decay of solu-
+KIHP], (23)  tions far downstream of the advancing front.
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3. Definitions describing transient amplification and Of physical importance is the relative energy contained in an
growth applied disturbance to that contained in the reference base

The temporal evolution of the base state is strongly in—State at timer, namely,

fluenced by the initial shear stress and the amount of surfac- Ei(7) .

tant available for spreading. These variables depend, of Mi(T)Em’ where(i,j) = (#,ho) or(¢.g,).  (31)

course, on the choice of initial and boundary conditions. ' ) ) o

Since the finite mass of surfactant spreads to cover an evé& our present study, we wish to determine the sensitivity of

larger area, the dominant driving force for spreading, Whichthe;preadlng dynamics to small disturbances applied at time

is the surface shear stress, commences with a large value.T¢-~ We therefore define an “amplification ratio” which

eventually decays to zero when the surfactant has completeffeScribes the relative energy contained in the disturbed flow

covered all the available surface area. At early times, thé! time 7 normalized by the relative energy contained in the

base states change rapidly in response to the large shefftial disturbance at time, according to

stress. As time increases, they decelerate toward a quasi- M, (7) o

steady form. The strong temporal response at early times Gi(7)= M. (7o)’ where(i,j) = (#,h,) or(#,90). (32

precludes a straightforward analysis via separation of vari- nro

ables. How is the criterion for stability determined in suchEquation(32) can be decomposed more conveniently into

cases, since the growth or decay of disturbances is onlthe ratio of normalized amplification factors for the indi-

meaningful in reference to the growth or decay of the evolv-vidual base flow and disturbance contributions,

ing base state? As Shefrfirst observed in his study of time E(n ] [E(n

. . . i j

dependent parallel shear flow, if a disturbance decreases ®;,= EallE

time but the base state decreases at a faster rate, then the i(70) (7o)

d?sturbance yviII appear ampliﬁed in time. Conversgly, if a where(i,j)=(i,h,) or(¢,9,).

disturbance increases in time but the base state increases

faster still, then the disturbance will appear to decay in time. (33)

In order to probe the sensitivity to disturbances of time vari-With these definitions, the criterion for “momentary stabil-

ant base states, Shen introduced the concept of “momentaity” of an unsteady base state, according to Shelf,is

stability” and defined appropriate measures to quantify thedetermined by

stability of such systems. We define below similar measures

extended to our two variable system and use these normal- =~ - = it |

ized quantifiers of amplification and rate of growth to exam- ' Gidr G dr G, dr

ine the stability characteristics of a spreading monolayer.
As mentioned in the Introduction, the disturbance equa-

tions contain an additional complication. The produﬁs,](;iT , where(i,j)=(,h,) or (#,9,). (34)

wherei=1,2 and£,; and £, are expressed by Eq&6) and . .
(27), is not self-adjoint, i.e.ycicr#ﬁi'rﬁi. This is easily The quantitiesn; and w; are the normalized rates of energy

seen from the fact that the base statgsandg, , depend on production/removal associated with the perturbations and the
0 . .
the spatial coordinaté; therefore, derivative operations ap- unsteady base state, respectivély<0 defines momentary

plied to products of a base state and a disturbance functio?.\t":lbility while ;>0 defines momentary instability. Equa-

are noncommutative. This property implies that even if the'on (34) provides a measure of the degree of dominance of

base states were time invaridathich they are ngtand even pter;glrfan]?ns ove: th; lénstea(:yt bgs% sttate._ éﬁé&Pptotm
if the largest real part of the eigenvalues®f and £, was stability ot an unsteady base state IS determined from

=Gi(n)/Gj(7),

=wi—wj,

negative, the system might still experience large transient 1 dG;

amplification of disturbance$:?® The transient analysis we ~ i=g 5, =0 as 7=,

have carried out is specifically geared toward determining '

whether the early time behavior displays any such “momen- =wj— ;<0 where(i,j)=(#,ho) or(#,9,). (35

tary instability” in the shape of fingering patterns. We also gy systems in which the rate of change of the base state as
briefly discuss results of calculations wherein the base statg§s ., .~ pecomes negligible in comparison to that of

were frozen at their self-similar form and only then distur- 4istrbance:2° (ie., w<w;), the disturbance function as-
bances applied. Even under these quasisteady conditions, thgmes exponential fjorm;aﬁf and the quantity /2
system experienced large transient growth indicating the ‘mé(fgwwrdé)/(fa"wzdf)%, consistent with the definition

portance of non-normality in this system. of the quasistatic growth rate.
We next introduce several measures to quantify the time

dependent amplification of disturbances. The “mechanical
energy” contained in either the base or disturbance states is. Numerical procedure

given by : .
Our computations were performed using the method of

1 lines® which relies on second-order centered differences for
E = _f 2(¢.1ydg, whereq= i, é.h, g, . 30 the spatial derivatives and a fully implicit Gear’'s method for
=2, 9 (&,nd¢ &= 1.4:No. 9o (30 the time integratiori? The input values for the dimensionless
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quantities,C, Pe, andK, are specified at the start of the were first generated by numerical integration of E(<)
numerical integration. The number of grid points used in theand (17) subject to the initial conditions in Eq$36) with
computations varied between 201 and 801 depending on tH@ = 0.5,A=10, andé,=0.5. The solutions were advanced
film shape obtained for different choices 6f and Pe. to 7=5 and then fixed, whereupon disturbances described by
Sharper fronts required more mesh points to resolve the er=gs. (37) with B=200 and¢,=1.6 were applied starting
tire shape of the spreading film from the source to the leadfrom 7,=5. These disturbances coincided with the location
ing edge. Convergence of the solutions was checked via ré@f the maximum height in the shocklike structure which de-
finement of the spatial grid. velops in the unperturbed film. Although a comprehensive
The sensitivity of the spreading process to infinitesimalstudy using this quasisteady approach requires a more com-
disturbances in the film thickness or surfactant concentratioflete study, the results shown here seem to confirm the be-
is determined via thesimultaneoussolution of Egs.(16), havior observed in the fully transient calculations.
(17), (26), and (27). For most of the runs, integration was
commenced aty=1 from a set of fixed initial conditions. Ill. RESULTS AND DISCUSSION
The results depend to some degree on the choice of initial
conditions. Two of the most important choices involve the”
shape of the initial surfactant distributiéwhich determines 1. Base state profiles
the initial shear gtre$sand the Ipcatiop at which the distur- Shown in Fig. 3 are the results of the base state solutions
bances are applied. We have investigated several parameter

sets in an effort to determine the spectrum of spreading be n intermediate times=5, for the range 10°<C<10""
: S ) ) 3 10°<Pg=<5-10*. We h i f he in-
havior and the source of digitatidf?>33 The choice dis- and 5 10°<Pe<5.10". We have determined from the in

cussed below reflects the common. reshonse of the svstelQMation provided in the literatufe'?34that this range fo€
. P y d Peg should bracket the experimental data. As seen in
and demonstrates the most important features of the spreag-

ing process. We concentrate on the following set of initialdlgs' 3@ and 30), the initially flat liquid layer withho=1is

diti . lvzina the stability of the fi q dent eformed into a traveling waveform with a shocklike front
gggelé?:tseslh analyzing the stability ot the time dependent, .,y sypstantial thinning in the upstream region. Comparison

of these profiles with Figs.(B) and 3d) indicates that the

. Numerical results

ho(é,1)=1, surfactant concentration vanishes at the location where the

" (36)  steepened rim meets the undisturbed liquid layer. As ex-

Uo(€,) =001 —taniA(£—&,))] pected from the physical mechanism responsible for the
and rapid spreading, an increase in;Re a decrease g pro-
duces a sharper front; however, change€§ or Pg by sev-

W(ED) = (£ )= BEE? (37)  eral orders of magnitude still produce base state profiles

s . . which are remarkably similar. Also evident from FiggbB
The initial film thickness and surfactant concentration pro and 3d) is the fact that the surfactant concentration,

files described by Eq.36) correspond to an initially flat lig- . L .
uid layer supporting a steplike concentration profile thatg"(g’T)' Is far less sensitive to changes in the valueg’ of

smoothly vanishes to zero negy. This distribution function e}nd Pg. These re_sults agree with previous numerical solu

o ; RS : . tions for a spreading monolayer by Jensen and Grotberg.
mimics the experimental situation in which a uniform patch X )

; . Lo The profiles shown here represent the film shapes and
of surfactant is deposited on a thin liquid layer. The tanh : ! S
L e oncentration profiles after four shear timgince 7,=1).

contribution smooths the edge of the distribution to preven o S .

) ST ! L . hese shapes are characteristic of Marangoni driven flow in
discontinuities in the profile. The initial disturbances de-

. . I . _thin liquid films. For the parameter values used, these shapes
scribed by_Eq.(37) are _Gaus&_an o!lstrlbuted funct|on_s cen maintain the same form for>5. These profiles will be dis-
tered até=¢g, a position which lies ahead of the initial

surfactant monolayer. Although not reported here, we havé:ussed again in a later section when we describe the stability

also studied disturbances located behfgd These produced of quasisteady base states. For the cg!culatlons de;cnbed
. . .. next, however, which treat the stability of the time-
much smaller effects on the spreading dynamics but a similar, .
. . ; dependent state, the base states and disturbances are evolved
response. Since Eq&26) and (27) are both linear injs and simultaneously from the instant the monolayer is deposited
¢, the overall amplitude ofi(£,1) andp(£,1) can be set to y Y b

. ) : ; . (7=1). In this way, we monitor the evolution of distur-
unity with no loss in generality. In this work, we chose the bances applied at the moment the soreading commences. The
parameter set for initial conditions to lgg'®=0.5, A=10, bp P g '

. L . early time base statg®ot shown, which resemble a com-
0=0.5,B=12, andés=0.7. Other choices of initial condi- presysed form of thosde shown ir? Fig. 3, are properly used to
tions have confirmed the qualitative behavior described be* . e . ' .
low. normalize lthe amphﬂc_atlon ratio and rate of disturbance

In addition to the studies in which we have evolved thegrOWth defined earlier in Sec. 1B 3.
base states and disturbances simultaneously frgml in
order to investigate the possibility of large energy productio
at early times, we also provide an illustrative example in  Figure 4a) reports the amplification raticdG(7), for
which the base state was evolved through5 before a various wave number disturbances wifk=10"° and Peg
disturbance was applied. By this time, the base state has5000. This ratio increases by over two orders in magnitude
evolved into a self-similar for> The base flow profiles within one shear time. Such large amplification of small dis-

r@- Stability of time-dependent base state
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turbances has also been observed in viscous shear flows ke spreading film as it responds to an applied disturbance of
tween parallel plate®¥ Figure 4a) indicates that distur- K=5 during a time interval 1.487<11.0. This three di-
bances with large wave number dominate the response aiensional representation highlights the spatial and temporal
early times but quickly decay. Disturbances of smaller wavesvolution of the periodic surface corrugation. The distur-
number grow more slowly at first and with smaller amplitudepance is most strongly amplified in the vicinity of the shock-
but persist for longer periods of time. The disturbance corretike front but as time evolves it falls behind the leading edge
sponding taK =0, which has no periodicity in the transverse sjowing considerably in the thinned portion of the film where
direction, survives for very long times although it too even-jis mopility is decreased. This 3D representation strongly
tually decays to zero. We suspect this mode represents thesempes the fluid channeling or finger formation which ac-

same neu_trally stab_l_e mode W_hiCh was identifie_d by the qu"j“(':ompanies the spreading of surfactant on thin liquid films as
sisteady linear stability analysis as the mode with the Iarge%bserved in many experiments

2-25 . . w e .
growth rate’ As shown in Fig. 4b), the amplification More studies of this system of equations using other pa-

ratio experienced by disturbances in the surfactant concenz 0. a1, 242533 confirms that the transient growth ob-
tration, G , is insignificant. Concentration variations do not

directly influence the stability of the flow on a transient time served in Fig. 4 can achieve even larger amplification ratios.

scale. These small variations, however, strongly influenc For example, as shown in Fig(d, placing the disturbance

the film shape, which undergoes significant deformation aTurther'ahead of the initial surfactant monqlgﬂby incregs-
Ing & in Eq. (37)] produces a larger amplification ratio. In

early times.
)I/n Fig. 5 is shown the evolved shape of the disturbancéhis case,. the sprea_ding film has advanced to develop an even
functions,  and ¢, plotted below the base state solution, s?eeper rim Whl_ch is apparently more vulnerable to lateral
h, for times7=3 and 5 and folk =5, C=10"° and Pe disturbances. Figures(l), 7(c) z?md 1d) represent .other
=5000. The disturbances, which originate just ahead of th&rends we have observed. An increase in the initial shear
initial surfactant monolayer, are convected up and over thétress, obtained by increasingy or a sharpening of the
shocklike front, eventually lagging behind the moving front. Shock-like rim, obtained by increasing fer decreasing,
(Although the disturbances seem to move backward in timell produce a larger transient response reflecte@.n. In
this is simply an artifact of the transformed coordinates sincéddition, we have found that tH€=0 mode maintains the
in the stretched variable the disturbances lag behind thi&rgest amplification ratio at long times, eventually decaying
faster moving froni. It is evident that the amplitude of the to zero asr—o. These results support our earlier predictions
disturbance film thickness far exceeds that of the surfactarif asymptotic stability using a strictly modal analy$i$?
concentration. Figure 6 indicates more clearly the shape dfor the reasons explained above, however, this analysis
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FIG. 5. Base state solutioh,(¢,7), with evolved disturbances; and ¢,
FIG. 4. Time evolution of the amplification ratio for disturbances in the film for K=5, Pe=5000 andC=10""° at two different times. The dashed lines
thickness and surfactant concentration as a function of wave nukiber representr=3 while the solid lines represent=5.
Relevant parameter values are;P6000 andC=10"5. (a) Gy(7) and(b)

Gy(7).
shown in Fig. 3 for Pg=5000 and’=10"°. Figure 9 depicts
. . . . §1e amplification ratios(s, andG,, for various wave num-
f}zlrjéd not uncover the interesting transient behavior observe er disturbances. Despite the absence of any time depen-
If is also worthwhile to examine the arowth rate of dis- dence in the base states, there still exists significant transient
turban t onset. Fiqure 8 shows th 9 normalized arowt mplification in the film thickness. Since the base state is no
rgteainctehsea:‘ilr% tShE;c.knegsus efor \far(i)ouss wzveonu;bjr d?sfc)ur onger time variant in these calculations, the growth can only
. o . .77~ be attributed to the non-normality of the linearized operators
bances. As seen more clearly in the magnified version in Fi

8(a), shortly following the application of a disturbance, the overning the evolution of disturbances. As with the previ-
' y 9 PP ' ous calculations, all the modes eventually decay. The re-

flow counteracts its effect with a large stabilizing response, onse illustrated in Fig. 9 is qualitatively similar to that

Ig:sfgsﬁfzrgﬁ llj:(tfj}lblﬁetclrgr?gi]et?tn trrg\?vtrr? Zr;ggsa?/v:‘nd\'/f/eradpf@ﬁown in Fig. 4; the large wave number disturbances grow
. . or . Y. V most rapidly at early times but the smallest wave number

scribe this response from a physical point of view in Sec. . :

—_ . ones persist for longer times.

[IIB. The system returns to equilibrium at longer times as

shown by Fig. &). The growth rate in the disturbance sur- . ) o L

factant concentrationot shown, Q4 , exhibits almost iden- 4. Re/a_t/on o other fingering instabilities in

spreading films

tical behavior although the magnitude of the growth rate is
far less. A transient growth calculaticfihas also been performed

for another free surface flow involving the spreading of a

. ) thin viscous film down an inclined plane. In this example,

8. Stability of quasisteady base state there is only one variable to track, namely, the film thick-
As an additional consideration, we compare the abovaess. In addition, there exists a traveling wave solution mov-
results in which the disturbances were applied@t 1 (the ing at constant speed down the plane which eliminates the
origin of time), with results obtained by freezing the base problem of a time variant base state. The front of the falling
state once it has achieved self-similar formrgt5 and only ~ film has been observed in many experiments to undergo a

then applying a disturbance. These base state solutions argulet instability as first studied by HuppettA straightfor-
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FIG. 6. 3-D representation of the
shape of a spreading surfactant film in
the presence of an applied disturbance
with K=5. Relevant parameter values
are Pg=5000 andC=10"5 (a) ~
=1.4, (b) 7=1.6, (c) 7=5.0 and(d)
7=11.0.

ward modal analysis has predicted the most dangerous mo@symptotic instability rather quickly, which is probably why
observed experimentalff:** Since the base state is spatially the modal analysis has successfully explained many experi-
inhomogeneous, however, there once again occurs the prolrental observations. This rapid approach to asymptotic be-
lem with nonnormality. The transient behavior was recentlyhavior has also been found in an analogous problem with
investigated in an effort to understand its evolution towardthermally driven films'

asymptotic instability’® These calculations for the falling These two free surface flows, however, are quite differ-
film show a short period of transient growth which quickly ent. As a point of reference, the peak in the capillary rim
asymptotes to the exponential modes predicted by the lineavhich forms at the leading edge of the falling film is orders
stability analysis. When the falling film develops a signifi- of magnitude larger than the thickness of the pre-existing
cant capillary rim at the leading edge, the system reacheguid layer on the substrate. This produces a huge mobility
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401.0 E
10010 2010 ]
(b) FIG. 7. Trends observed during the
10 10 , transient growth of disturbances in the
L 1 L6 18 film thickness withK=30 as a func-
tion of various input parametersa)
6010 , , _ Pe=5000,C=10°, and A=10, (b)
10010 Pe=5000,C=10"5, and £,=0.7, (c)
’ C=1075 A=10, and¢,=0.7, and(d)
Pe=5000,A=10, and{,=0.7.
8010
4010
601.0
G‘V G‘V
200 4010
2010

Downloaded 15 Sep 2006 to 131.215.240.9. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



The development of transient fingering patterns . . . 3243

Phys. Fluids, Vol. 11, No. 11, November 1999

2500.0 80.0 T
(@ — K=0
1500.0 1 SN K=35
600 . T K=10
~y N -——— K=20
500.0 4 o \\ \\ —  K=30
- [ N
i N \
QV (1) G !f R
A4 40.0 - | " N B T
-500.0 1 VA . e
i ; \ N
[ N
! \ N
i \ \\
-1500.0 B 200 I/ \ . |
|t N\ ~
i h N
. | > N Teel
-2500.0 L . . i) ~_ el
1.000 1.005 1.010 1.015 1.020 ' S~
T 0.0 L — === —
1.0 2.0 3.0 4.0 5.0
20.0 T
10.0
0.0
Q,
-10.0
-20.0
-30.0 L I L L L I
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
T

FIG. 8. Time evolution of the normalized rate of growth for disturbances in
the film thicknessf},. Relevant parameter values are;£6000 andC

=1075. (a) Early time responsgb) Intermediate time response.
FIG. 9. Time evolution of the amplification ratio for disturbanceganthe
film thickness G ,(7), and(b) the surfactant concentratioB,(), for vari-

contrast at the leading edge and subsequent large transiets wave numbers(. Base state is frozen ak=>5. Relevant parameter
growth. When the difference in film heights approaches th&/aues aré Re=5000 andc=10"".

much smaller values obtained with the surfactant proliem
which the shocklike rim is at most a factor of 2 thicker than . ) . .
Laplacian growth as described in the Introduction. Although

the initial liquid layer, see Fig.)3the falling film exhibits no ) X
transient growth and asymptotic stabilisee Fig. 11 in Ref. both thege systems possess non—nqrmal Ilnegrlzed opergtors,
tthe physical mechanisms for spreading and finger formation

(36). By contrast, the surfactant film produces dendritic pa ¢ )
terns even when the amplitude difference is less than 2. 1A"€ very different in character.

addition, the source of finger formation in these two flows is

not the same, as indicated by the different shapes producefl. proposed mechanism

The surfactant system always exhibits dendritic spreading . )

patterns produced from a tip-splitting process. The falling _ The momentary stability of a system is governed by the
film instability creates rivulet type fingers with no tip- difference in the rate of energy growth betw.een the distur-
splitting. Although the fingering mechanism for the surfac-Pances and the unsteady base state as defined b{B&q.

tant problem is not completely understood, the following de_Slnce_the amphflcat!on ratio of the dlsturba_nces is quite large
scription serves to distinguish these flows. The falling filmand since the amplitudes of the decelerating base states de-

instability results from a combination of increased mobility €& In time, the criterion for “stability” is mostly deter-
and capillary breakup of the advancing rim. The rivulets™ined by the behavior ok, and w,,. This can be seen by

form at the leading edge and race ahead of the majority of°mpParing the quantities ,/2 andwy, /2 shown in Fig. 10a)

the spreading film. By contrast, the surfactant fingers firsin Which » /2 exceedsoy, /2 by several orders of magnitude.
appear behind the advancing monolayer front where the filnThe normalized rate of growth of disturbances greatly ex-
has thinned and where there exists a region with a constageeds that of the base state even at the earliest times. It is
concentration gradient. Although it has yet to be proven, theherefore meaningful to decompose the flow into a base state
presence of dendritic patterns in the surfactant spreadingnd a disturbance in order to analyze the momentary stability

problem strongly suggest a fingering mechanism driven byf the spreading process.
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FIG. 10. Temporal evolution of the normalized rate of growth of the un-

O. K. Matar and S. M. Troian

in Fig. 10 for two different values of the wave numbeé¢ (
=20 and 5). These two cases illustrate the difference in
energy breakdown and the various competing physical
mechanisms at large and small wave number. In both cases,
the most dominant contributior(svhether stabilizing or de-
stabilizing stem from terms 2, 3, and 4. Terms 2 and 4
represent Marangoni convection of the fluid layer in the
streamwise and transverse directions, respectively, while
term 3 represents capillary flow driven by the film curvature
of the base state and disturbance functions in the streamwise
direction. Terms 5 and 6, which describe additional capillary
driven flow arising from the surface curvature in the trans-
verse direction and the coupling of curvature in the stream-
wise and transverse directions, contribute very little to the
overall dynamics. By comparing the curves(b) and(c) of
Fig. 10, it is evident that disturbances of smaller wave num-
ber produce larger destabilizing contributions to Marangoni
convection in the streamwise direction, which are counter-
acted by larger stabilizing contributions to capillary flow in
the streamwise direction. This arises because the surface
shear stress establishes a thickened advancing front whose
curvature is smoothed by the capillary terms. For large wave
number disturbances, however, it is Marangoni convection in
the transverse direction which is highly effective in destabi-
lizing the flow, with little counterbalance provided by any
other term. The main destabilizer at large wave numbers is
therefore transverse Marangoni convection; the main desta-
bilizer at small wave numbers is streamwise Marangoni flow.
From this analysis, what can we infer about the dynam-
ics leading to finger formation as the wave number is varied?
Let us first consider disturbances of small wavelerititge
K) and assume that the disturbance functigrend ¢ are in
phase, as described by Eg2). The crests of the disturbance
in the film thickness, initially placed ahead of the surfactant
monolayer, are therefore laden with surfactant, while the
troughs suffer an initial depletion. As the spreading begins,
transverse Marangoni convectidierm 4, and to a smaller
degree streamwise Marangoni convectigerm 2, quickly
try to reestablish equilibrium and diminish the sinusoidal
corrugation in film thickness and surfactant concentration.
The crests undergo strong and rapid thinning in both the
transverse and streamwise directions with subsequent thick-
ening of the film in neighboring regions of higher surface
tension. The redistribution of liquid and surfactant associated
with this response is facilitated by contact with the oncoming
shocklike rim which increases the mobility of the distur-
bance overall. The transverse redistribution of liquid from
crests to troughs is thereby greatly enhanced and actually

steady base state and its corresponding disturbance function for two diffe@vershoots its ability to fill in the troughs. This overshoot

ent wave numbers. A physical description of each term can be found irprodu(:es thick |iquid arteries in the regions former|y occu-
Table I.(a) whulz, (b) w,/2 for K=20, and(c) w,/2 for K=5.

pied by troughs. In the frame of the shocklike rim, the initial
sinusoidal disturbance is observed to propagate over and be-
hind the shocklike rim with a subsequent sideways redistri-

To identify the largest destabilizing influences, we sepabution of fluid. This flow behavior produces long striations

rate the rate of energy growth,,/2, into six terms to moni-

in the streamwise direction throughout the entire film. The

tor which forces produce or remove energy from the systendisturbance travels more slowly than the advancing front and
as time increases. In Table | is listed each component oéventually nestles closer to the thinned region of the spread-
w,/2 along with a brief descriptor of its physical origin. ing film, where its mobility is further decreased. This may

These six quantities, including their summation, are plottecexplain why the fingering patterns observed experimentally
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TABLE |. Individual contributions comprising the rate of energy growy,

Terms Expression Physical mechanism
1 L1 ) Streamwise flow due to coordinate
Io 67E, [£(49) ]dé transformationt=x/L(7)
L1 ; .
2 Iz E [t/f(h§¢§+2hogo§1/f)g]d§ Streamwise Marangoni flow
3 . _C St i illary fl
[o- 37475”(“3‘”&* 3h2hoeecth) JdE reamwise capillary flow
v 13)2
. (KT -
4 Jz- 7E, [h§</f</>]d§ Transverse Marangoni flow
5 c Capillary flow from coupling of curvature
fgw(KTm)z[l/f((hg)g%Jr 2h3) 1dé in streamwise and transverse directions
v
- ¢ i
6 Ji- WE_,/ (K74 (h,)3y?]dé Transverse capillary flow

are mostly visible in the thinned portions of a spreading surbilizing at early times while smaller wave number modes
factant film. The capillary pressure arising from surface curpersist with large transient growth to later times, in agree-
vature in the streamwise and transverse directioeisns 5 ment with our previous modal analy$s.2° An energy de-
and § always stabilizes the flow but its contribution is small composition reveals that there is a switch in the destabilizing
by comparison. agent between large and smdll disturbances. While the
For long wavelength disturbancésmall K), the same transverse Marangoni flux produces thickened arteries that
forces described above come into play to redistribute fluidgrow into liquid channels for larg&, the streamwise Ma-
except that the transverse concentration gradients are mucangoni flux produces similar channeling of the fluid for
smaller. Longer wavelength disturbances produce raised posmall K. In both cases, the destabilizing flow is resisted by
tions of the liquid film which contain more fluid. Marangoni streamwise capillary flow which is stabilizing at all times.
stresses are therefore more effective in redistributing thi©ur 3D reconstructions provide strong evidence of fluid
fluid in the streamwise direction since the velocity for channeling and finger formation at early times following the
spreading increases with the local film thickness. For thigdeposition of a surfactant monolayer on a thin viscous film.
reason, regions formerly occupied by the troughs begin tdn addition, recent resuft8indicate that the inclusion of van
thicken in response to a transverse influx of fluid. The strongler Waal's forces which promote film thinning enhance
streamwise pull causes the spreading film to assume these disturbances to produce even more prominent film cor-
steeper shocklike structure which is then counteracted byugation near the source. These and other similarities we
capillary forces which flatten the advancing rim. Nonethe-have discussed between the experimental observations and
less, disturbances with large wave number survive intact fonumerical computations are encouraging.
a longer period and dominate the flow at late times. In both
cases, as time increases the disturbance decays away SINGEKNOWLEDGMENTS
the finite amount of surfactant added to the spreading film
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