
PHYSICS OF FLUIDS VOLUME 11, NUMBER 11 NOVEMBER 1999
The development of transient fingering patterns during the spreading
of surfactant coated films
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The spontaneous spreading of an insoluble surfactant monolayer on a thin liquid film produces a
complex waveform whose time variant shape is strongly influenced by the surface shear stress. This
Marangoni stress produces a shocklike front at the leading edge of the spreading monolayer and
significant film thinning near the source. For sufficiently thin films or large initial shear stress,
digitated structures appear in the wake of the advancing monolayer. These structures funnel the
oncoming flow into small arteries that continuously tip-split to produce spectacular dendritic shapes.
A previous quasisteady modal analysis has predicted stable flow at asymptotically long times@Phys.
Fluids A 9, 3645~1997!#. A more recent transient analysis has revealed large amplification in the
disturbance film thickness at early times@O. K. Matar and S. M. Troian, ‘‘Growth of nonmodal
transient structures during the spreading of surfactant coated films,’’ Phys. Fluids A10, 1234
~1998!#. In this paper, we report results of an extended sensitivity analysis which probes two aspects
of the flow: the time variant character of the base state and the non-normal character of the
disturbance operators. The analysis clearly identifies Marangoni forces as the main source of
digitation for both small and large wave number disturbances. Furthermore, initial conditions which
increase the initial shear stress or which steepen the shape of the advancing front produce a larger
transient response and deeper corrugations in the film. Disturbances applied just ahead of the
deposited monolayer rapidly fall behind the advancing front eventually settling in the upstream
region where their mobility is hampered. Recent findings confirm that additional forces which
promote film thinning can further intensify disturbances@O. K. Matar and S. M. Troian, ‘‘Spreading
of surfactant monolayer on a thin liquid film: Onset and evolution of digitated structures,’’ Chaos
9, 141~1999!. The transient analysis presented here corroborates our previous results for asymptotic
stability but reveals a source for digitation at early times. The energy decomposition lends useful
insight into the actual mechanisms preventing efficacious distribution of surfactant. ©1999
American Institute of Physics.@S1070-6631~99!01111-3#
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I. INTRODUCTION

Surfactant molecules play a vital role in numero
household, industrial, and biological processes. Their ab
to lower surface tension significantly improves the wetti
and spreading capability of commonplace substances
shampoo, detergent, ink, paint, herbicide and medicine. S
factants produced naturally in mammalian systems are e
cially important in maintaining lung compliance by reducin
the surface tension of the liquid film which coats the inter
of pulmonary airways. Deficiencies can produce pulmon
edema or other serious respiratory difficulties.1 Premature
infants, for example, often suffer from an insufficient supp
of lung surfactant which can suddenly lead to respirat
distress syndrome. This fatal condition can easily be relie
by the inhalation of a suspension of animal or synthetic lu
surfactant. This quick and simple technique has achie
good clinical success2 although further improvements de

a!Electronic mail: stroian@princeton.edu.
3231070-6631/99/11(11)/3232/15/$15.00
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pend on a better understanding of the surfactant trans
from the upper to the lower recesses of the lung.

The transport of exogenous lung surfactant along the
veolar lining is a complicated process involving the rap
distribution of a multicomponent surfactant formulation to
liquid layer with nonuniform surface properties. The pri
ciple mechanism for rapid distribution of surfactant, ho
ever, can be modeled as the spontaneous spreading of a
factant monolayer along a liquid layer of higher surfa
tension.3–5 At the junction where the initial monolayer join
the native liquid film, there exists a shear stress whose m
nitude is directly proportional to the difference in surfa
tension across the boundary. This shear stress pulls liq
and surfactant towards regions of higher surface tens
From the point of view of minimizing the free energy ass
ciated with the spreading process, the regions of higher
face tension are rapidly coated with surfactant thereby red
ing the surface energy of the entire liquid layer. In biologic
or industrial applications, the effectiveness of the coat
process is improved if the spreading is rapid and uniform
2 © 1999 American Institute of Physics
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the liquid layer is not ruptured by large surface stresses,
if the liquid flow remains stable and continuous until com
plete coverage is attained.

Simple model experiments during the past several ye
have shown that the spreading of surfactant films on a
liquid layer of higher surface tension is neither a uniform n
stable process6–12 Often the spreading monolayer produc
significant film thinning near the surfactant source. This
gion is then observed to undergo transverse corrugat
which funnel the oncoming flow into small arteries that co
tinuously branch and tip-split. These patterns, which deve
on the backside of the surfactant leading edge, resemble
shape of fingering patterns in viscous fingering.13 Unlike the
viscous fingering problem, however, the surfactant patte
do not derive from the higher viscosity of the displaced flu
Typical patterns which develop during the spreading of s
factant on a thin water film are shown in Fig. 1. These di
tated structures have been observed in many different ex
ments. They include studies with soluble or insolub
surfactant~with ringed or branched molecular structures!; so-
lutions which are both above and below the critical mice
concentration; surfactants with head group charge tha
neutral, zwitterionic or of opposite charge to the wetted s
strate; and surfactants spreading on film thicknesses ran
from fractions of a micron to millimeters. The fingering b
havior has also been documented in both rectilinear and
symmetric geometry, for delivery from a finite or infinit
source, and for geometries in which gravity either enhan
or retards the flow. The fact that the digitated patterns ne
appear when spreading a solution directly onto a dry s
strate indicates that Marangoni stresses are in some wa
sponsible for the unusual spreading behavior. The ques
of whether these patterns are long lived or just trans
structures has not yet been answered experimentally. In m
cases, the ambient atmosphere is not controlled and ev
ration disrupts the spreading process, especially in the t
nest portions of the liquid film. In addition, adjacent finge
can coalesce at long times.

Because of the ubiquity and importance of the proc
whereby surfactant molecules are transported along the
face of a thin liquid layer, theoretical efforts have conce
trated on developing a set of coupled equations which
accurately describe the spreading behavior. By appealin
the lubrication approximation, which assumes that the fi
thickness is much smaller than the extent of spreading,
by adopting a linear equation of state which relates the
face tension to the local concentration of surfactant, a pai
couple non-linear equations have been derived describing
spatiotemporal evolution of the liquid film thickness,h(x,t),
and surface surfactant concentration,G(x,t). Over the years,
these equations have been extended4,5,14–16 to include not
only the Marangoni shear stress, but capillary effects aris
from the surface deformation, bulk and surface diffusion
surfactant, gravitational terms which flatten the shockl
rim at the leading edge, and disjoining forces which eith
promote or retard film thinning. The resulting fourth-ord
equations have been solved numerically subject to real
initial and boundary conditions. These numerical stud
have shown that a thin liquid film contacted by a surfact
Downloaded 15 Sep 2006 to 131.215.240.9. Redistribution subject to AIP
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monolayer is spontaneously pulled in the direction of
creasing surface tension. The resulting stress profile prod
a thickened advancing rim and strong film thinning near
deposition region. Key flow variables like the speed
propagation, the time variant shape of the spreading film,
the spatial distribution of surfactant along the surfa
strongly depend on the magnitude of the initial shear str
and film thickness, as well as the viscosity of the liquid su
port and the surfactant equation of state.

A straightforward modal analysis of the coupled equ
tions governing the response ofh and G to small distur-
bances is complicated by two very important aspects of
flow; ~i! the base state profiles forh andG are time variant
due to the decreasing shear stress~since a finite mass o
surfactant is distributed over an ever larger area! and ~ii !
their spatial dependence produces non-normal disturba

FIG. 1. Surface patterns observed during the spreading of a surfactant
let on a thin water film.~a! 15 ml drop of 6.6 mM aqueous SDS solutio
spreading on water film of thicknessHo'1 m, 3 s after deposition~Ref. 8!.
Black outer ring, of diameter 9.6 cm., demarcates the leading edge o
surfactant front.~b! A microdroplet of C12E10 in ethylene glycol spreading
on a water layer estimated to be 1022 m in thickness~Ref. 12!. Because the
initial water film is ultra thin, the surfactant leading edge is no longer v
ible.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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operators. The first aspect introduces the complication
any conclusion inferred about the ‘‘stability’’ of the syste
to small disturbances is only meaningful with respect to
temporal behavior of the base state. There are many fl
dynamical systems which exhibit this difficulty and Shen
original measure for investigating the ‘‘momentary stab
ity’’ of time variant base states proves a suitable framew
for our system.17,18 The second aspect involving non
normality stems from the fact that even if the base stat
frozen in time, the free surface shape and concentration
tribution are spatially dependent. It is well known that
such cases a modal type analysis will only reveal
asymptotic behavior of the system ast→`.19,20 This prop-
erty implies that even if the largest real part of the eigensp
trum is negative, the system may still harbor large dist
bance amplification at early times. The analysis in the la
sections attempts to separate the time variance from the
normal property by studying the stability of disturbanc
about a frozen base state.

What simplifications can be performed to eliminate t
time variance of a base state? For a finite monolayer wh
spreading is only controlled by Marangoni forces, there e
no steady-state solutions. One can derive self-similar s
tions to the spreading process in a stretched coordi
whose length is coincident with the monolayer leading ed
The addition of other forces, like capillarity, surface diff
sion, gravity, or van der Waals precludes even self-sim
solutions. Numerical studies have shown, however, tha
these additional forces are weaker than the Marangoni fo
then after the impact of initial conditions has died away,
film thickness and concentration profiles approach a s
similar form dominated by the surface shear stress. In
case, both profiles assume a simple linear form. One
therefore freeze the base states at their~long time! self-
similar form and perform a linear stability analysis on the
shapes.

This approach has been implemented in the literatur
two successive steps. The first theoretical attempt at rev
ing the mechanism leading to fingered spreading relied
the remarkable similarity between the surfactant patterns
those produced by miscible or immiscible visco
fingering.13 Within a long wavelength approximation, th
variation in film thickness near the source was neglected
only disturbances in the surfactant concentration allow
The concentration base state was then frozen about its
similar form. This approximation immediately led to a sim
plified time dependent Laplacian equation for the disturba
concentration with positive growth rate for small wave nu
bers. In mapping the gradient in surfactant concentra
onto the gradient in the applied pressure, the mathema
analogy to the viscous fingering problem was complete.

This analysis suggested that the fingering behavior
served in surfactant spreading problems derived from a
placian driven process as occurs in viscous fingering
diffusion-limited aggregation,21 even though its physical ori
gin was different. This argument states that if a velocity fie
is directly proportional to the driving force~be it a gradient
in applied pressure, surfactant concentration or electric
tential! and if the local driving force increases upon advan
Downloaded 15 Sep 2006 to 131.215.240.9. Redistribution subject to AIP
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ing the interface into a region where there exists a cons
gradient in the relevant field variable, then infinitesimal pr
trusions will advance faster than neighboring portions of
front and destabilize the interface. In fluid systems, the sp
of the advancing front is controlled by the local pressu
gradient as well as the local mobility. In viscous fingerin
for example, the displaced fluid is of higher viscosity a
lower mobility than the penetrating fluid. In the surfacta
problem, the initial shear stress strongly thins the area
ahead of the surfactant reservoir producing a region of
creased mobility. Just as the source of instability in the v
cous fingering case has been traced to a region of adv
mobility, so too was the thinned region responsible for t
dendritic patterns in the surfactant spreading problem.
spite the universal appeal of this analogy, a more rigor
stability analysis was required which allowed disturban
variations in both the film thickness and surfactant conc
tration. Results from quasisteady calculations using s
consistent, self-similar solutions for the base state but allo
ing disturbances in both variables22,23 proved that the
spreading dynamics wasstable to disturbances of all wave
numbers. The inclusion of additional but weaker forces l
capillarity and surface diffusion confirmed linearly stab
flow.24,25

These quasisteady calculations highlighted certain
portant features of the spreading process. First, the anal
underscored the importance of allowing variations in bo
the film thickness and surfactant concentration. Allowi
self-consistent disturbances in both field variables produ
a cooperative stabilizing response. Second, the null res
obtained raised the obvious possibility that the fingering p
cess might be an early time response which was obscure
assuming base state solutions of~late time! self-similar form.
The experimental evidence in the literature6,7,9–12 suggests
that the onset for the fingering process is very rapid, app
ing almost immediately behind the spreading front. Althou
the onset time has not been studied systematically, the
scale for the appearance of surface corrugations is on
order of a shear time,t;L0 /U0 , where L0 is the initial
extent of the monolayer andU0 the initial spreading speed
This information, though not definitive, suggests that t
spreading behavior at early times~when the shear stress
largest! may differ in response from the late time dynamic
Investigating the early time dynamics for a base state wh
is time variant, however, requires a more general measur
the growth or decay of disturbances since the underly
reference state is changing in time as well.

Finally, there is another critical issue raised by the mo
analyses performed in the past which requires discuss
Even when neglecting the time variance of the base sta
the self-similar solutions possess spatial inhomogene
namely, the film thickness resembles an increasing lin
ramp from the source to the leading edge while the surfac
concentration resembles a decreasing linear ramp.5,16,23 As
described in more detail in later sections, this spatial dep
dence directly introduces non-normality of the disturban
operators. A straightforward modal analysis, whereby the
genvalues of the disturbance operators are computed
rectly, can only determine the stability of the system as ti
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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t→`. Therefore, the results obtained by the previous qu
steady calculations may just have signaled that the sprea
process is stable to disturbances of all wave numbers at
times. Information about the early time behavior was in
cessible through these computations.

The majority of this paper, therefore, deals with distu
bances in the film thickness and surfactant concentration
plied at very early times. For comparison, we include so
results of the effect of applying disturbances at intermed
times only after the base state solutions have begun set
down to a similar form. Both the early and intermediate tim
calculations clearly show that this system harbors the po
tial for large transient growth. The amplification of distu
bances eventually decays away at late times when the dri
force for spreading has weakened considerably.

In summary, the linearized transient description stron
suggests that a surfactant monolayer spreading on a thin
cous film initially exhibits extreme sensitivity to infinitesima
transverse disturbances in the film thickness or surfac
concentration. These disturbances are amplified on t
scales comparable to a Marangoni shear time. In accord
with Shen’s framework for investigating the ‘‘momenta
stability’’ of time variant base states,17,18we propose a quan
titative measure for the amplitude and rate of disturba
growth. This information is then used to identify the physic
mechanisms responsible for the onset of liquid channe
and fingering. The long time limit of our transient calcul
tions corroborate our earlier findings of asymptotic stabi
using the quasisteady approach. The calculations prese
here, however, establish a timeline for understanding
spatial and temporal response of the film thickness and
factant concentration to initial disturbances and their evo
tion toward asymptotically stable states. Although beyo
the scope of this paper, we have also carried out calculat
to determine how important might be nonlinear effects as
source of the digitation. The interested reader is referre
Ref. 24 for a discussion of this issue.

II. PROBLEM FORMULATION

A. Governing equations

Consider a quiescent Newtonian liquid layer of initi
uniform thicknessH0* , viscositym* , and densityr* , resting
on a flat solid substrate, as shown in Fig. 2. The liquid film
contacted by a monolayer of insoluble surfactant of init
extentL0* wheree5H0* /L0* !1 in accordance with the lu
brication approximation. Because of the mismatch in surf
tension at the junction between clean and contaminated
face, there spontaneously develops a large shear stress w
drives the liquid film toward regions of higher surface te
sion. The spontaneous spreading reflects the balance bet
the surface shear stress of orderP* /L0* and the viscous drag
of order m* U* /H0* . The parameterP* 5s0* 2sm* denotes
the maximal spreading pressure wheres0* is the surface ten-
sion of the clean liquid layer andsm* the initial surface ten-
sion of the coated liquid layer. The characteristic spread
velocity, U* , is determined from a force balance to beU*
5«P* /m* . This velocity is sometimes termed the M
rangoni spreading velocity because of its physical orig
Downloaded 15 Sep 2006 to 131.215.240.9. Redistribution subject to AIP
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The equations of motion are nondimensionalized by the h
zontal scale,L0* , the vertical scale,H0* , the horizontal ve-
locity, U* , and the vertical velocity,«U* . The characteristic
shear time for the spreading process ism* L0* /«P* while the
characteristic pressure in the film is given byP* /H0* . The
dimensionless spreading pressure is defined to bes*
2sm* )/P* , which defines the ratio of the local driving forc
to the maximum driving force for spreading. In this paper w
consider spreading dominated by Marangoni stress in
presence of additional weaker forces like capillarity and s
face diffusion. Other forces like gravity, disjoining pressu
or diffusion from the bulk to the interface can be easily i
corporated.

We define a rectilinear spreading geometry such thatx*
denotes the horizontal direction,y* the vertical direction,
and z* the transverse direction. The spreading process
curs in thex* –z* plane andy* 50 locates the vertical po
sition of the solid support. With the choice of scalings d
scribed, the dimensionless equations for incompressib
and momentum conservation become

ux1vy1wz50, ~1!

052px1uyy1O~«2!, ~2!

052py1O~«2!, ~3!

052pz1wyy1O~«2!, ~4!

wherein the horizontal, vertical, and transverse veloc
fields are represented byu, v, andw, respectively. The sub
scripts denote partial differentiation with respect tox, y, or z.
The boundary conditions used to solve Eqs.~1!–~4! include
impenetrability and no slip at the solid wall and balanc
shear and normal stresses at the free interface. The no
condition aty50 is

u5v5w50. ~5!

The tangential and normal stress conditions aty
5H(x,z,t), are given by

FIG. 2. Schematic diagram of a surfactant monolayer about to spread a
the surface of a thin liquid film.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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uy5sx ,

wy5sz , ~6!

Dp52C¹2H, ~7!

whereC[«2sm* /P* , in which sm* /P* is typically of order
one or less~unless the driving forceP* is so small that
spreading is no longer dominated by Marangoni stress!.
This dimensionless number is related to the capillary num
Ca5m* U* /sm* through the relationC5«3/Ca. The capillary
number reflects the balance between Marangoni forces w
favor more interface and capillary forces which minimize t
amount of interface. In determining the overall scaling
the capillary pressure,p, the dimensionless value of the su
face tension is approximated bysm /P, wherein contribu-
tions to the absolute surface tension arising fromDs are
ignored. Despite the fact thatC is of order«2, derivatives of
the free surface curvature can achieve magnitudes ofO(«22)
at the surfactant leading edge; therefore, capillary contri
tions cannot be uniformly neglected.26 The capillary terms
also help smooth any cusplike features in the spreading
files eliminating numerical difficulties.

The kinematic boundary condition at the liquid surfac
vs5dH/dt, wherevs represents the vertical surface veloc
at y5H, can be expressed in terms of the fluid flux as

Ht1~Huavg!x1~Hwavg!z50, ~8!

whereuavg andwavg represent the streamwise and transve
height averaged velocities. The subscriptt denotes partial
differentiation with respect to time. This equation determin
the spatiotemporal profile of the spreading liquid layer in
presence of surfactant. Similarly, mass conservation of
insoluble surfactant is expressed by

G t1~Gus!x1~Gws!z5
1

Pes
~Gxx1Gzz!, ~9!

whereG* has been scaled byGm* ~the surface concentratio
corresponding to a surface tension ofsm* ) and us and ws

represent the horizontal and transverse velocities of the
uid layer aty5H(x,z,t). The modified surface Peclet num
ber which appears in Eq.~9! is defined by Pes
[(U* L0* )/Ds* 5(P0* H0* )/m* Ds* , whereDs* is the surface
diffusion coefficient of the surfactant along the air–liqu
interface. This dimensionless quantity represents the rati
surfactant transport by Marangoni convection to that by s
face diffusion. Although this ratio is typically very large, i
inclusion locates more accurately the position of the surf
tant front and improves the smoothness of the numerical
files. In what follows, we focus on the large scale dynam
which reflect the balance of viscous and Marangoni forc
Capillary forces and surface diffusion merely act as corr
tions which smooth the shape of the spreading film in
thinned region near the source and the shocklike region
the leading edge.

Integration of Eqs.~2! and ~4! subject to the boundary
conditions in Eqs.~5!–~7! yields the dimensionless stream
wise and transverse velocity field,
Downloaded 15 Sep 2006 to 131.215.240.9. Redistribution subject to AIP
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The velocity profiles contain a simple shear term due to
Marangoni surface stress and a Poiseuille-type term du
capillary driven flow. Substitution of the height-averag
and surface velocities of the spreading film into the Eqs.~8!
and ~9! yields the two evolution equations forH(x,z,t) and
G(x,z,t), namely,

Ht1
1

2
¹•~H2¹s!1

C
3

¹•~H3¹3H !50, ~11!

G t1¹•~GH¹s!2
1

Pes
¹2G1

C
2

¹•~GH2¹3H !50. ~12!

Since the surfactant molecules are free to spread acros
unbounded surface, the likely surface configuration desc
ing the expanding surfactant film is a gaseous monola
The dimensionless constitutive equation required to cl
this pair of equations is chosen to bes(G)512G, the equa-
tion of state describing an ideal gas of surfacta
molecules.27

B. Transient growth analysis

1. Base state

We first consider the one-dimensional spreading dyna
ics in the absence of disturbances. The monolayer spre
spontaneously to produce a shear stress in thex direction
which deforms the thin viscous film. Equations~11! and~12!
reduce to the form

Hot5
1

2
~Ho

2Gox!x2
C
3

~Ho
3Hoxxx!x , ~13!

Got5~GoHoGox!x1
1

Pes
Goxx2

C
2

~GoHo
2Hoxxx!x . ~14!

The subscript ‘‘o’’ will henceforth designate the one
dimensional solutions to these base state equations. S
Marangoni driven spreading is rather rapid, it is compu
tionally more efficient to introduce a stretched horizontal c
ordinate,j, whose overall length is determined by the lea
ing edge of the surfactant monolayer. For a finite amoun
insoluble surfactant spreading in a one-dimensional ge
etry, a simple scaling analysis5,28 shows that the leading edg
advances in time asL(t)5t1/3. The following transforma-
tions therefore describe the spreading process in stretc
coordinates:

j5x/L~t!, Ho~x,t !5ho~j,t!,

Go~x,t !5
go~j,t!

L~t!
, wheret5t. ~15!

The scaling forGo is determined from mass conservation
surfactant in a coordinate system whose horizontal exten
stretching with time. Insertion of the above transformatio
into Eqs.~13! and ~14! yields

thot5
1

3
jhoj1

1

2
~ho

2goj!j2
C

3t1/3
~ho

3hojjj!j , ~16!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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tgot5
1

3
~jgo!j1~gohogoj!j1

t1/3

Pes
gojj

2
C

2t1/3
~goho

2hojjj!j . ~17!

Equations~16! and ~17! are solved subject to the followin
boundary conditions:

hoj~0,t!50, hojjj~0,t!50, and goj~0,t!50, ~18!

ho~`,t!51, hoj~`,t!50, and go~`,t!50. ~19!

Equation~18! represents symmetry and a no-flux conditi
about the origin while Eq.~19! describes the recovery o
undisturbed conditions far downstream of the spread
monolayer.

2. Disturbance equations

The linearized version of Eqs.~11! and~12! can be used
to determine the sensitivity of the system to small dist
bances in the film thickness and surfactant concentration

H̃t5
1

2
~Ho

2G̃x12HoGoxH̃ !x1
1

2
Ho

2G̃zz2
C
3

@~Ho
3H̃xxx

13Ho
2HoxxxH̃ !x1~Ho

3!xH̃xzz12Ho
3H̃xxzz1Ho

3H̃zzzz#,

~20!

G̃ t5~GoGoxH̃1HoGoxG̃1GoHoG̃x!x1
1

Pes
~ G̃xx1G̃zz!

1GoHoG̃zz2
C
2

@~GoHo
2H̃xxx12GoHoHoxxxH̃

1Ho
2HoxxxG̃ !x#2

C
2

@~GoHo
2!xH̃xzz12GoHo

2H̃xxzz

1GoHo
2H̃zzzz#. ~21!

The quantities decorated with ‘‘tilde’’ represent small dev
tions from the unperturbed solutions,Ho andGo . Since the
base states are strictly one-dimensional and depend onl
thex coordinate, the coefficients precedingH̃ andG̃ ~or their
derivatives! in Eqs.~20! and ~21! are independent ofz. The
disturbance functions can therefore be Fourier decompo
into the form

~H̃,G̃ !~x,z,t !5~C,F!~x,t !eiKz. ~22!

This product describes a spatially inhomogeneous, time v
ant disturbance waveform in the streamwise direction of
riodicity 2p/K in the transverse direction. Substitution
this form into Eqs.~20! and ~21! produces a coupled set o
linear equations describing the evolution of two-dimensio
disturbances,

C t5
1

2
~Ho

2Fx12HoGoxC!x2
K2

2
Ho

2F2
C
3

@~Ho
3Cxxx

13Ho
2HoxxxC!x2K2~~Ho

3!xCx12Ho
3Cxx!

1K4Ho
3C#, ~23!
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F t5~GoGoxC1HoGoxF1GoHoFx!x2K2GoHoF

1
1

Pes
~Fxx2K2F!2

C
2

~GoHo
2H̃xxx

12GoHoHoxxxH̃1Ho
2HoxxxG̃!x

2
C
2

~2K2~~GoHo
2!xCx12GoHo

2Cxx!1K4GoHo
2C!.

~24!

As before, it proves computationally efficient to stretch t
horizontal coordinate to lie coincident with the leading ed
of the surfactant monolayer. This transformation also r
cales the disturbances

C~x,t !5c~j,t! and F~x,t !5
f~j,t!

t1/3
. ~25!

Substitution of the transformations given by Eqs.~15! and
~25! into Eqs.~23! and~24! yields the final stretched form o
the equations to be solved,

tct5L1@c,f#5
1

3
jcj1

1

2
~ho

2fj12hogojc!j

2
~Kt1/3!2

2
ho

2f2
C

3t1/3

3@~ho
3cjjj13ho

2hojjjc!j#

2
C

3t1/3
@2~Kt1/3!2~~ho

3!jcj12ho
3cjj!

1~Kt1/3!4ho
3c#, ~26!

tft5L2@c,f#5
1

3
~jf!j1~gogojc1hogojf1hogofj!j

2~Kt1/3!2hogof1
t1/3

Pes
~fjj2~Kt1/3!2f!

2
C

2t1/3
@~goho

2cjjj12gohohojjjc

1ho
2hojjjf!j#2

C
2t1/3

3@2~Kt1/3!2~~goho
2!jcj12goho

2cjj!

1~Kt1/3!4goho
2c#. ~27!

The boundary conditions for the disturbance equations
given by

cj~0,t!50, cjjj~0,t!50, and fj~0,t!50, ~28!

c~`,t!50, cj~`,t!50, and f~`,t!50. ~29!

Equation ~28! dictates symmetry and a no flux conditio
about the origin while Eq.~29! requires the decay of solu
tions far downstream of the advancing front.
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3. Definitions describing transient amplification and
growth

The temporal evolution of the base state is strongly
fluenced by the initial shear stress and the amount of sur
tant available for spreading. These variables depend
course, on the choice of initial and boundary conditio
Since the finite mass of surfactant spreads to cover an
larger area, the dominant driving force for spreading, wh
is the surface shear stress, commences with a large valu
eventually decays to zero when the surfactant has comple
covered all the available surface area. At early times,
base states change rapidly in response to the large s
stress. As time increases, they decelerate toward a q
steady form. The strong temporal response at early tim
precludes a straightforward analysis via separation of v
ables. How is the criterion for stability determined in su
cases, since the growth or decay of disturbances is o
meaningful in reference to the growth or decay of the evo
ing base state? As Shen17 first observed in his study of time
dependent parallel shear flow, if a disturbance decrease
time but the base state decreases at a faster rate, the
disturbance will appear amplified in time. Conversely, if
disturbance increases in time but the base state incre
faster still, then the disturbance will appear to decay in tim
In order to probe the sensitivity to disturbances of time va
ant base states, Shen introduced the concept of ‘‘momen
stability’’ and defined appropriate measures to quantify
stability of such systems. We define below similar measu
extended to our two variable system and use these nor
ized quantifiers of amplification and rate of growth to exa
ine the stability characteristics of a spreading monolayer

As mentioned in the Introduction, the disturbance eq
tions contain an additional complication. The product,LiL i

† ,
wherei 51,2 andL1 andL2 are expressed by Eqs.~26! and
~27!, is not self-adjoint, i.e.,LiL i

†ÞL i
†Li . This is easily

seen from the fact that the base states,ho andgo , depend on
the spatial coordinatej; therefore, derivative operations ap
plied to products of a base state and a disturbance func
are noncommutative. This property implies that even if
base states were time invariant~which they are not! and even
if the largest real part of the eigenvalues ofL1 andL2 was
negative, the system might still experience large trans
amplification of disturbances.19,29 The transient analysis w
have carried out is specifically geared toward determin
whether the early time behavior displays any such ‘‘mom
tary instability’’ in the shape of fingering patterns. We al
briefly discuss results of calculations wherein the base st
were frozen at their self-similar form and only then distu
bances applied. Even under these quasisteady conditions
system experienced large transient growth indicating the
portance of non-normality in this system.

We next introduce several measures to quantify the t
dependent amplification of disturbances. The ‘‘mechan
energy’’ contained in either the base or disturbance state
given by

Eq[
1

2E0

`

q2~j,t!dj, whereq5c,f,ho ,go . ~30!
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Of physical importance is the relative energy contained in
applied disturbance to that contained in the reference b
state at timet, namely,

Mi~t![
Ei~t!

Ej~t!
, where~ i , j !5~c,ho! or ~f,go!. ~31!

In our present study, we wish to determine the sensitivity
the spreading dynamics to small disturbances applied at
to .30 We therefore define an ‘‘amplification ratio’’ which
describes the relative energy contained in the disturbed fl
at timet normalized by the relative energy contained in t
initial disturbance at timeto according to

Gi~t![
Mi~t!

Mi~t0!
, where~ i , j !5~c,ho! or ~f,go!. ~32!

Equation ~32! can be decomposed more conveniently in
the ratio of normalized amplification factors for the ind
vidual base flow and disturbance contributions,

Gi5F Ei~t!

Ei~t0!G /F Ej~t!

Ej~t0!G5Ĝi~t!/Ĝj~t!,

where~ i , j !5~c,ho! or ~f,go!.

~33!

With these definitions, the criterion for ‘‘momentary stab
ity’’ of an unsteady base state, according to Shen,17,18 is
determined by

V i[
1

Gi

dGi

dt
5

1

Ĝi

dĜi

dt
2

1

Ĝj

dĜj

dt

5v i2v j ,

where~ i , j !5~c,ho! or ~f,go!. ~34!

The quantitiesv i andv j are the normalized rates of energ
production/removal associated with the perturbations and
unsteady base state, respectively.V i,0 defines momentary
stability while V i.0 defines momentary instability. Equa
tion ~34! provides a measure of the degree of dominance
perturbations over the unsteady base state. Theasymptotic
stability of an unsteady base state is determined from

V i[
1

Gi

dGi

dt
<0 as t→`,

5v i2v j<0 where~ i , j !5~c,ho! or ~f,go!. ~35!

For systems in which the rate of change of the base stat
t→` becomes negligible in comparison to that
disturbances19,20 ~i.e., v j!v i), the disturbance function as
sumes exponential form,ebt, and the quantity vc/2
5(*0

`cctdj)/(*0
`c2dj)5b, consistent with the definition

of the quasistatic growth rate.

C. Numerical procedure

Our computations were performed using the method
lines31 which relies on second-order centered differences
the spatial derivatives and a fully implicit Gear’s method f
the time integration.32 The input values for the dimensionles
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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quantities,C, Pes , and K, are specified at the start of th
numerical integration. The number of grid points used in
computations varied between 201 and 801 depending on
film shape obtained for different choices ofC and Pes .
Sharper fronts required more mesh points to resolve the
tire shape of the spreading film from the source to the le
ing edge. Convergence of the solutions was checked via
finement of the spatial grid.

The sensitivity of the spreading process to infinitesim
disturbances in the film thickness or surfactant concentra
is determined via thesimultaneoussolution of Eqs.~16!,
~17!, ~26!, and ~27!. For most of the runs, integration wa
commenced att051 from a set of fixed initial conditions
The results depend to some degree on the choice of in
conditions. Two of the most important choices involve t
shape of the initial surfactant distribution~which determines
the initial shear stress! and the location at which the distu
bances are applied. We have investigated several param
sets in an effort to determine the spectrum of spreading
havior and the source of digitation.24,25,33 The choice dis-
cussed below reflects the common response of the sy
and demonstrates the most important features of the spr
ing process. We concentrate on the following set of init
conditions in analyzing the stability of the time depende
base states:

h0~j,1!51,
~36!

go~j,1!5go
max@12tanh~A~j2jo!!#

and

c~j,1!5f~j,1!5e2B(j2js)
2
. ~37!

The initial film thickness and surfactant concentration p
files described by Eq.~36! correspond to an initially flat liq-
uid layer supporting a steplike concentration profile th
smoothly vanishes to zero nearjo . This distribution function
mimics the experimental situation in which a uniform pat
of surfactant is deposited on a thin liquid layer. The ta
contribution smooths the edge of the distribution to prev
discontinuities in the profile. The initial disturbances d
scribed by Eq.~37! are Gaussian distributed functions ce
tered atj5js , a position which lies ahead of the initia
surfactant monolayer. Although not reported here, we h
also studied disturbances located behindjo . These produced
much smaller effects on the spreading dynamics but a sim
response. Since Eqs.~26! and ~27! are both linear inc and
f, the overall amplitude ofc(j,1) andf(j,1) can be set to
unity with no loss in generality. In this work, we chose t
parameter set for initial conditions to bego

max50.5, A510,
jo50.5, B512, andjs50.7. Other choices of initial condi
tions have confirmed the qualitative behavior described
low.

In addition to the studies in which we have evolved t
base states and disturbances simultaneously fromto51 in
order to investigate the possibility of large energy product
at early times, we also provide an illustrative example
which the base state was evolved throught55 before a
disturbance was applied. By this time, the base state
evolved into a self-similar form.25 The base flow profiles
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were first generated by numerical integration of Eqs.~16!
and ~17! subject to the initial conditions in Eqs.~36! with
go

max50.5,A510, andjo50.5. The solutions were advance
to t55 and then fixed, whereupon disturbances described
Eqs. ~37! with B5200 andjs51.6 were applied starting
from to55. These disturbances coincided with the locati
of the maximum height in the shocklike structure which d
velops in the unperturbed film. Although a comprehens
study using this quasisteady approach requires a more c
plete study, the results shown here seem to confirm the
havior observed in the fully transient calculations.

III. RESULTS AND DISCUSSION

A. Numerical results

1. Base state profiles

Shown in Fig. 3 are the results of the base state soluti
at an intermediate time,t55, for the range 1026<C<1024

and 5•102<Pes<5•104. We have determined from the in
formation provided in the literature7–12,34that this range forC
and Pes should bracket the experimental data. As seen
Figs. 3~a! and 3~c!, the initially flat liquid layer withho51 is
deformed into a traveling waveform with a shocklike fro
and substantial thinning in the upstream region. Compari
of these profiles with Figs. 3~b! and 3~d! indicates that the
surfactant concentration vanishes at the location where
steepened rim meets the undisturbed liquid layer. As
pected from the physical mechanism responsible for
rapid spreading, an increase in Pes or a decrease inC pro-
duces a sharper front; however, changes inC or Pes by sev-
eral orders of magnitude still produce base state profi
which are remarkably similar. Also evident from Figs. 3~b!
and 3~d! is the fact that the surfactant concentratio
go(j,t), is far less sensitive to changes in the values oC
and Pes . These results agree with previous numerical so
tions for a spreading monolayer by Jensen and Grotberg5

The profiles shown here represent the film shapes
concentration profiles after four shear times~since to51!.
These shapes are characteristic of Marangoni driven flow
thin liquid films. For the parameter values used, these sha
maintain the same form fort.5. These profiles will be dis-
cussed again in a later section when we describe the stab
of quasisteady base states. For the calculations descr
next, however, which treat the stability of the tim
dependent state, the base states and disturbances are ev
simultaneously from the instant the monolayer is depos
(to51). In this way, we monitor the evolution of distur
bances applied at the moment the spreading commences
early time base states~not shown!, which resemble a com
pressed form of those shown in Fig. 3, are properly used
normalize the amplification ratio and rate of disturban
growth defined earlier in Sec. II B 3.

2. Stability of time-dependent base state

Figure 4~a! reports the amplification ratio,GC(t), for
various wave number disturbances withC51025 and Pes
55000. This ratio increases by over two orders in magnitu
within one shear time. Such large amplification of small d
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 3. Profiles showing the depen
dence of the unperturbed film thick
ness,ho(j,t), and surfactant concen
tration, go(j,t), on Pes and C at t
55. For ~a! and ~b!, C51025. For ~c!
and ~d!, Pes55000.
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turbances has also been observed in viscous shear flow
tween parallel plates.35 Figure 4~a! indicates that distur-
bances with large wave number dominate the respons
early times but quickly decay. Disturbances of smaller wa
number grow more slowly at first and with smaller amplitu
but persist for longer periods of time. The disturbance co
sponding toK50, which has no periodicity in the transvers
direction, survives for very long times although it too eve
tually decays to zero. We suspect this mode represents
same neutrally stable mode which was identified by the q
sisteady linear stability analysis as the mode with the larg
growth rate.22–25 As shown in Fig. 4~b!, the amplification
ratio experienced by disturbances in the surfactant con
tration,GF , is insignificant. Concentration variations do n
directly influence the stability of the flow on a transient tim
scale. These small variations, however, strongly influe
the film shape, which undergoes significant deformation
early times.

In Fig. 5 is shown the evolved shape of the disturban
functions,c and f, plotted below the base state solutio
ho , for times t53 and 5 and forK55, C51025 and Pes
55000. The disturbances, which originate just ahead of
initial surfactant monolayer, are convected up and over
shocklike front, eventually lagging behind the moving fro
~Although the disturbances seem to move backward in ti
this is simply an artifact of the transformed coordinates si
in the stretched variable the disturbances lag behind
faster moving front.! It is evident that the amplitude of th
disturbance film thickness far exceeds that of the surfac
concentration. Figure 6 indicates more clearly the shape
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the spreading film as it responds to an applied disturbanc
K55 during a time interval 1.40<t<11.0. This three di-
mensional representation highlights the spatial and temp
evolution of the periodic surface corrugation. The distu
bance is most strongly amplified in the vicinity of the shoc
like front but as time evolves it falls behind the leading ed
slowing considerably in the thinned portion of the film whe
its mobility is decreased. This 3D representation stron
resembles the fluid channeling or finger formation which
companies the spreading of surfactant on thin liquid films
observed in many experiments.

More studies of this system of equations using other
rameter values24,25,33confirms that the transient growth ob
served in Fig. 4 can achieve even larger amplification rat
For example, as shown in Fig. 7~a!, placing the disturbance
further ahead of the initial surfactant monolayer@by increas-
ing js in Eq. ~37!# produces a larger amplification ratio. I
this case, the spreading film has advanced to develop an
steeper rim which is apparently more vulnerable to late
disturbances. Figures 7~b!, 7~c! and 7~d! represent other
trends we have observed. An increase in the initial sh
stress, obtained by increasingA, or a sharpening of the
shock-like rim, obtained by increasing Pes or decreasingC,
all produce a larger transient response reflected inGC . In
addition, we have found that theK50 mode maintains the
largest amplification ratio at long times, eventually decay
to zero ast→`. These results support our earlier predictio
of asymptotic stability using a strictly modal analysis.22,23

For the reasons explained above, however, this anal
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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could not uncover the interesting transient behavior obser
here.

It is also worthwhile to examine the growth rate of di
turbances at onset. Figure 8 shows the normalized gro
rate in the film thickness for various wave number dist
bances. As seen more clearly in the magnified version in
8~a!, shortly following the application of a disturbance, th
flow counteracts its effect with a large stabilizing respon
The system is unable to maintain this response and is rap
‘‘destabilized’’ until the transient growth dies away. We d
scribe this response from a physical point of view in S
III B. The system returns to equilibrium at longer times
shown by Fig. 8~b!. The growth rate in the disturbance su
factant concentration~not shown!, VF , exhibits almost iden-
tical behavior although the magnitude of the growth rate
far less.

3. Stability of quasisteady base state

As an additional consideration, we compare the ab
results in which the disturbances were applied att051 ~the
origin of time!, with results obtained by freezing the ba
state once it has achieved self-similar form att055 and only
then applying a disturbance. These base state solutions

FIG. 4. Time evolution of the amplification ratio for disturbances in the fi
thickness and surfactant concentration as a function of wave numbeK.
Relevant parameter values are Pes55000 andC51025. ~a! Gc(t) and ~b!
Gf(t).
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shown in Fig. 3 for Pes55000 andC51025. Figure 9 depicts
the amplification ratios,Gc andGf , for various wave num-
ber disturbances. Despite the absence of any time de
dence in the base states, there still exists significant trans
amplification in the film thickness. Since the base state is
longer time variant in these calculations, the growth can o
be attributed to the non-normality of the linearized operat
governing the evolution of disturbances. As with the pre
ous calculations, all the modes eventually decay. The
sponse illustrated in Fig. 9 is qualitatively similar to th
shown in Fig. 4; the large wave number disturbances gr
most rapidly at early times but the smallest wave num
ones persist for longer times.

4. Relation to other fingering instabilities in
spreading films

A transient growth calculation36 has also been performe
for another free surface flow involving the spreading of
thin viscous film down an inclined plane. In this examp
there is only one variable to track, namely, the film thic
ness. In addition, there exists a traveling wave solution m
ing at constant speed down the plane which eliminates
problem of a time variant base state. The front of the falli
film has been observed in many experiments to underg
rivulet instability as first studied by Huppert.37 A straightfor-

FIG. 5. Base state solution,ho(j,t), with evolved disturbances,c andf,
for K55, Pes55000 andC51025 at two different times. The dashed line
representt53 while the solid lines representt55.
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FIG. 6. 3-D representation of the
shape of a spreading surfactant film i
the presence of an applied disturban
with K55. Relevant parameter value
are Pes55000 and C51025. ~a! t
51.4, ~b! t51.6, ~c! t55.0 and~d!
t511.0.
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ward modal analysis has predicted the most dangerous m
observed experimentally.38,39Since the base state is spatia
inhomogeneous, however, there once again occurs the p
lem with nonnormality. The transient behavior was recen
investigated in an effort to understand its evolution towa
asymptotic instability.36 These calculations for the falling
film show a short period of transient growth which quick
asymptotes to the exponential modes predicted by the lin
stability analysis. When the falling film develops a signi
cant capillary rim at the leading edge, the system reac
Downloaded 15 Sep 2006 to 131.215.240.9. Redistribution subject to AIP
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asymptotic instability rather quickly, which is probably wh
the modal analysis has successfully explained many exp
mental observations. This rapid approach to asymptotic
havior has also been found in an analogous problem w
thermally driven films.40

These two free surface flows, however, are quite diff
ent. As a point of reference, the peak in the capillary r
which forms at the leading edge of the falling film is orde
of magnitude larger than the thickness of the pre-exist
liquid layer on the substrate. This produces a huge mob
e
e

FIG. 7. Trends observed during th
transient growth of disturbances in th
film thickness withK530 as a func-
tion of various input parameters.~a!
Pes55000, C51025, and A510, ~b!
Pes55000,C51025, andjs50.7, ~c!
C51025, A510, andjs50.7, and~d!
Pes55000,A510, andjs50.7.
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contrast at the leading edge and subsequent large tran
growth. When the difference in film heights approaches
much smaller values obtained with the surfactant problem~in
which the shocklike rim is at most a factor of 2 thicker th
the initial liquid layer, see Fig. 3!, the falling film exhibits no
transient growth and asymptotic stability~see Fig. 11 in Ref.
~36!. By contrast, the surfactant film produces dendritic p
terns even when the amplitude difference is less than 2
addition, the source of finger formation in these two flows
not the same, as indicated by the different shapes produ
The surfactant system always exhibits dendritic spread
patterns produced from a tip-splitting process. The fall
film instability creates rivulet type fingers with no tip
splitting. Although the fingering mechanism for the surfa
tant problem is not completely understood, the following d
scription serves to distinguish these flows. The falling fi
instability results from a combination of increased mobil
and capillary breakup of the advancing rim. The rivule
form at the leading edge and race ahead of the majority
the spreading film. By contrast, the surfactant fingers fi
appear behind the advancing monolayer front where the
has thinned and where there exists a region with a cons
concentration gradient. Although it has yet to be proven,
presence of dendritic patterns in the surfactant sprea
problem strongly suggest a fingering mechanism driven

FIG. 8. Time evolution of the normalized rate of growth for disturbances
the film thickness,Vc . Relevant parameter values are Pes55000 andC
51025. ~a! Early time response.~b! Intermediate time response.
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Laplacian growth as described in the Introduction. Althou
both these systems possess non-normal linearized opera
the physical mechanisms for spreading and finger forma
are very different in character.

B. Proposed mechanism

The momentary stability of a system is governed by
difference in the rate of energy growth between the dist
bances and the unsteady base state as defined by Eq.~34!.
Since the amplification ratio of the disturbances is quite la
and since the amplitudes of the decelerating base states
cay in time, the criterion for ‘‘stability’’ is mostly deter-
mined by the behavior ofvc andvf . This can be seen by
comparing the quantitiesvc/2 andvho

/2 shown in Fig. 10~a!

in which vc/2 exceedsvho
/2 by several orders of magnitude

The normalized rate of growth of disturbances greatly
ceeds that of the base state even at the earliest times.
therefore meaningful to decompose the flow into a base s
and a disturbance in order to analyze the momentary stab
of the spreading process.

FIG. 9. Time evolution of the amplification ratio for disturbances in~a! the
film thickness,Gc(t), and~b! the surfactant concentration,Gf(t), for vari-
ous wave numbers,K. Base state is frozen att055. Relevant paramete
values are Pes55000 andC51025.
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To identify the largest destabilizing influences, we se
rate the rate of energy growth,vc/2, into six terms to moni-
tor which forces produce or remove energy from the sys
as time increases. In Table I is listed each componen
vc/2 along with a brief descriptor of its physical origin
These six quantities, including their summation, are plot

FIG. 10. Temporal evolution of the normalized rate of growth of the u
steady base state and its corresponding disturbance function for two d
ent wave numbers. A physical description of each term can be foun
Table I. ~a! vho

/2, ~b! vc/2 for K520, and~c! vc/2 for K55.
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in Fig. 10 for two different values of the wave number (K
520 and 5). These two cases illustrate the difference
energy breakdown and the various competing phys
mechanisms at large and small wave number. In both ca
the most dominant contributions~whether stabilizing or de-
stabilizing! stem from terms 2, 3, and 4. Terms 2 and
represent Marangoni convection of the fluid layer in t
streamwise and transverse directions, respectively, w
term 3 represents capillary flow driven by the film curvatu
of the base state and disturbance functions in the stream
direction. Terms 5 and 6, which describe additional capilla
driven flow arising from the surface curvature in the tran
verse direction and the coupling of curvature in the strea
wise and transverse directions, contribute very little to
overall dynamics. By comparing the curves in~b! and~c! of
Fig. 10, it is evident that disturbances of smaller wave nu
ber produce larger destabilizing contributions to Marang
convection in the streamwise direction, which are count
acted by larger stabilizing contributions to capillary flow
the streamwise direction. This arises because the sur
shear stress establishes a thickened advancing front w
curvature is smoothed by the capillary terms. For large w
number disturbances, however, it is Marangoni convection
the transverse direction which is highly effective in desta
lizing the flow, with little counterbalance provided by an
other term. The main destabilizer at large wave number
therefore transverse Marangoni convection; the main de
bilizer at small wave numbers is streamwise Marangoni flo

From this analysis, what can we infer about the dyna
ics leading to finger formation as the wave number is varie
Let us first consider disturbances of small wavelength~large
K) and assume that the disturbance functionsc andf are in
phase, as described by Eq.~22!. The crests of the disturbanc
in the film thickness, initially placed ahead of the surfacta
monolayer, are therefore laden with surfactant, while
troughs suffer an initial depletion. As the spreading begi
transverse Marangoni convection~term 4!, and to a smaller
degree streamwise Marangoni convection~term 2!, quickly
try to reestablish equilibrium and diminish the sinusoid
corrugation in film thickness and surfactant concentrati
The crests undergo strong and rapid thinning in both
transverse and streamwise directions with subsequent th
ening of the film in neighboring regions of higher surfa
tension. The redistribution of liquid and surfactant associa
with this response is facilitated by contact with the oncom
shocklike rim which increases the mobility of the distu
bance overall. The transverse redistribution of liquid fro
crests to troughs is thereby greatly enhanced and actu
overshoots its ability to fill in the troughs. This oversho
produces thick liquid arteries in the regions formerly occ
pied by troughs. In the frame of the shocklike rim, the init
sinusoidal disturbance is observed to propagate over and
hind the shocklike rim with a subsequent sideways redis
bution of fluid. This flow behavior produces long striation
in the streamwise direction throughout the entire film. T
disturbance travels more slowly than the advancing front
eventually nestles closer to the thinned region of the spre
ing film, where its mobility is further decreased. This m
explain why the fingering patterns observed experiment

-
r-

in
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Downloaded 15 Se
TABLE I. Individual contributions comprising the rate of energy growth,vc.

Terms Expression Physical mechanism

1 *0
` 1

6tEc
@j(c2)j#dj

Streamwise flow due to coordinate
transformationj5x/L(t)

2 *0
` 1

2tEc
@c(ho

2fj12hogojc)j#dj Streamwise Marangoni flow

3 *0
`2

C
3t4/3Ec

@c(ho
3cjjj13ho

2hojjjc)j#dj Streamwise capillary flow

4 *0
`2

(Kt1/3)2

2tEc
@ho

2cf#dj Transverse Marangoni flow

5 *0
` C

3t4/3Ec

(Kt1/3)2@c((ho
3)jcj12ho

3cjj)#dj
Capillary flow from coupling of curvature

in streamwise and transverse directions

6 *0
`2

C
3t4/3Ec

(Kt1/3)4@(ho)3c2#dj Transverse capillary flow
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are mostly visible in the thinned portions of a spreading s
factant film. The capillary pressure arising from surface c
vature in the streamwise and transverse directions~terms 5
and 6! always stabilizes the flow but its contribution is sm
by comparison.

For long wavelength disturbances~small K), the same
forces described above come into play to redistribute flu
except that the transverse concentration gradients are m
smaller. Longer wavelength disturbances produce raised
tions of the liquid film which contain more fluid. Marangon
stresses are therefore more effective in redistributing
fluid in the streamwise direction since the velocity f
spreading increases with the local film thickness. For t
reason, regions formerly occupied by the troughs begin
thicken in response to a transverse influx of fluid. The stro
streamwise pull causes the spreading film to assum
steeper shocklike structure which is then counteracted
capillary forces which flatten the advancing rim. Noneth
less, disturbances with large wave number survive intact
a longer period and dominate the flow at late times. In b
cases, as time increases the disturbance decays away
the finite amount of surfactant added to the spreading
must distribute itself over an increasingly larger spread
area thereby diminishing its influence, as is true for the b
state also.

IV. CONCLUSION

This transient growth study reveals the sensitivity
spreading surfactant coated film to small disturbances in
film height or surfactant distribution. The analysis suppo
the evolution of periodic structures in the direction tran
verse to the spreading process. The equations describin
spreading dynamics include Marangoni forces, capillar
and surface diffusion. Our findings indicate that the rapi
spreading film is extremely sensitive to disturbances in
film thickness. Measures of the disturbance amplification
tio and growth rate at onset, indicate significant grow
within a characteristic shear time. This large transient gro
could very well excite a nonlinear response leading to fin
formation.

Detailed study of the temporal evolution of disturbanc
reveals that large wave number disturbances are more d
p 2006 to 131.215.240.9. Redistribution subject to AIP
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bilizing at early times while smaller wave number mod
persist with large transient growth to later times, in agre
ment with our previous modal analysis.22–25 An energy de-
composition reveals that there is a switch in the destabiliz
agent between large and smallK disturbances. While the
transverse Marangoni flux produces thickened arteries
grow into liquid channels for largeK, the streamwise Ma-
rangoni flux produces similar channeling of the fluid f
small K. In both cases, the destabilizing flow is resisted
streamwise capillary flow which is stabilizing at all time
Our 3D reconstructions provide strong evidence of flu
channeling and finger formation at early times following t
deposition of a surfactant monolayer on a thin viscous fi
In addition, recent results24 indicate that the inclusion of van
der Waal’s forces which promote film thinning enhan
these disturbances to produce even more prominent film
rugation near the source. These and other similarities
have discussed between the experimental observations
numerical computations are encouraging.
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