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Tissue-resident memory T cells (TRM) provide superior protection against infection in 

extra-lymphoid tissues. Here we show that CD103
+
CD8

+
 TRM cells developed in the skin 

from killer cell lectin-like receptor G1 (KLRG1)-negative precursors that selectively 

infiltrate the epithelial layer. A combination of epithelial entry in addition to interleukin 

15 (IL-15) and transforming growth factor-β (TGF-β) signaling was required for 

formation of these long-lived memory cells. Importantly, TRM differentiation resulted in 

the progressive acquisition of a unique transcriptional profile that differed from those 

expressed by circulating memory cells and other types of T cells that permanently reside 

in skin epithelium. We provide a comprehensive molecular framework for the local 

differentiation of a distinct peripheral memory population that forms a first-line immune 

defense system in barrier tissues.	
  	
  

	
  

Introduction 

Infection primes a population of effector T cells that migrate to all manner of peripheral 

tissues. The entry of these cells is controlled via a migration-imprinting program 

dependent on the origin of infection and by the induction of local chemokines that recruit 

T cells into sites of active inflammation
1
. As the infection resolves and local 

inflammation subsides, T cell infiltration into non-lymphoid organs gradually declines
2,3

 

partly as a consequence of transient expression of the homing receptors that permit 

trafficking into organs such as gut and skin
4-6

. Nonetheless, long-term T cell immunity 

can be maintained in regional tissues due to the action of a subset of cells that lodge 

during the early phase of peripheral infection and thereafter never return to the 

circulation
7,8

. These are termed tissue-resident memory T cells (TRM), with the best 

characterized being CD8
+
 memory T cells bearing the α-chain (CD103) of the αEβ7 

integrin
9
. Such CD103

+
CD8

+
 TRM cells have been identified in different tissues

9-11
 where 

they can dominate immunity against a variety of localized infections
5,9,12-15

. 

 

Memory T cells in the blood and secondary lymphoid organs have been defined as 

belonging to the lymphoid tissue-recirculating central memory (TCM) and extra-lymphoid 

tissue-infiltrating effector memory (TEM) subsets
16

. While some peripheral T cells are 
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likely to equilibrate with the blood, some do not
17

, and the latter belong to the TRM 

category
4, 9, 13

. At the current time, it remains unclear how the TEM, TCM and TRM subsets 

are related. There exists considerable information about the developmental processes that 

give rise to the distinct TEM and TCM populations
18,19

, although how TRM cells fit into 

these lineages remains unclear. It is known that TRM cells lodge during the effector phase 

of the immune response
4,9

, at a time when memory precursors are present in the 

circulation.  Such precursors can be defined by their differential expression of the 

molecules, killer cell lectin-like receptor family G member 1 (KLRG1) and interleukin-7 

receptor α-chain (CD127). Long-lived circulating memory cells are progressively derived 

from KLRG1
–
CD127

lo
 and KLRG1

–
CD127

hi
 precursors, while KLRG1

+
CD127

–
 cells 

give rise to short-lived effector or effector-like memory populations
18-20

. Since tissue T 

cells are known to have enhanced effector capabilities
21

, one might have predicted that 

TRM would originate from the KLRG1
+
 precursors. However unlike circulating effectors, 

CD103
+
CD8

+
 TRM are particularly long-lived, meaning that their origins are more likely 

to be the KLRG1
–
 precursors that give rise to persisting memory cells, such as the TCM 

found in the circulation.   

 

In order to clearly define TRM development, it is necessary to understand what controls 

precursor entry into non-lymphoid compartments. CD103
+
CD8

+
 TRM cells often reside in 

the epithelium in a range of different tissues including the gut, skin and female 

reproductive tract
9,22,23

. This specific localization of TRM cells may be linked to the 

production of transforming growth factor (TGF)-β in these environments
24,25

 as this 

cytokine is a major driver of CD103 expression
26-28

. As a consequence, one would predict 

that migration into epithelium would be a critical step in CD103
+
CD8

+
 TRM cell 

maturation. Here, we show that this prediction holds true for the skin, with entry into the 

epidermis being a pivotal transition point for successful TRM maturation. We exploit this 

requirement for epidermal entry to characterize the development of TRM cells, and to 

differentiate these memory cells from their TCM and TEM counterparts in lymphoid tissues. 
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Results 

The roles of CD69 and CD103 in TRM development 

To analyze the formation of CD103
+
CD8

+
 TRM cells in skin, we used infection with 

herpes simplex virus (HSV) in combination with adoptive transfer of T cell receptor 

(TCR) transgenic gBT-I cells specific for this pathogen. Tracking gBT-I cells by their 

expression of Vα2, CD45.1 and/or CD45.2 revealed their rapid accumulation in infected 

skin, with numbers peaking around day 7 and then rapidly falling thereafter (Fig. 1a). In 

contrast, CD103
+
 gBT-I numbers increased at a more modest rate to reach a stable 

plateau around 2 weeks after infection. Consistent with their lack of contraction, CD103
+
 

TRM cells up-regulated the pro-survival molecule, Bcl-2 (Fig. 1b). Skin-infiltrating gBT-I 

cells also up-regulated CD69 (Fig. 1c), which preceded the expression of CD103 (Fig. 

1d). Analogous patterns of progressive Bcl-2, CD69 and CD103 up-regulation were also 

found in endogenous non-transgenic T cells (Supplementary Fig. 1a,b).  Separating the 

skin into epidermis and dermis at day 11 after infection showed that virus-specific T cells 

had heterogeneous CD69 expression in the dermis but were nearly all CD69
+
 in the 

epidermis (Fig. 1e). At the same time, a large portion of epidermal gBT-I cells expressed 

CD103 while their counterparts in the dermis were predominantly CD103
–
 (Fig. 1e). It 

should be noted that dermis preparations contain hair follicles with residual epithelial 

cells, including intra-epithelial T cells (Supplementary Fig. 1c). 

 

Both CD69 and CD103 were necessary for optimal formation and/or survival of CD8
+
 

TRM cells in the skin, since deletion of these molecules resulted in reduction in TRM 

numbers after adoptive co-transfers of equal numbers of wild-type and CD69 (Cd69
–/–

) or 

CD103 (Itgae
–/–

) knock-out gBT-I cells prior to infection (Fig. 1f,g). CD69 was also 

necessary for T cell persistence in the sensory ganglia (Supplementary Fig. 1d). Given 

the sequential nature of CD69 and CD103 induction (Fig. 1d), we contended that the 

absence of the individual molecules would affect TRM development in a progressive 

fashion, with loss of CD69 having an early impact while CD103 deletion would have a 

downstream effect on T cell numbers. Indeed, Cd69
–/–

 gBT-I cells were lost at a much 

faster rate than Itgae
–/–

 gBT-I cells (Fig. 1g). In both cases, starting ratios of wild-type-to-

knock out cells in skin and spleen were roughly 1, with the latter remaining close to 1 at 



	
   5	
  

all times examined. Histology showed that CD103 was dispensable for T cell entry into 

the epidermis, since both wild-type and Itgae
–/–

 gBT-I cells could reach this compartment 

(Supplementary Fig. 1e). The combined results suggested that CD69 deficiency had an 

impact shortly after T cells entered the skin, while CD103 deletion affected TRM cell 

persistence long after the cells had reached the epidermis. 

 

TRM cells derive from KLRG1
–
 precursor cells 

After skin infection with HSV, there was a gradual shift of gBT-I cells in the spleen from 

CD62L
–
CD127

–
KLRG1

+
 effectors to a predominantly CD62L

+
CD127

+
KLRG1

–
 TCM 

population at late times (1 year) after infection, with heterogeneous populations of TCM 

and TEM cells (CD62L
–
CD127

+/–
KLRG1

+
) at intermediate times (Supplementary Fig. 

2a). Changes were also seen in skin T cells when we examined expression of KLRG1 and 

CD103 (Fig. 2a). Early after infection (week 1), skin T cells were predominantly 

KLRG1
+
CD103

–
 effectors, while at memory times (week 4) the surviving memory cells 

were almost exclusively CD103
+
 TRM cells with little or no KLRG1 expression (Fig. 2a), 

as described for TRM cells in other organs
11,22

. Endogenous CD103
+
 T cells in the skin 

also largely lacked expression of KLRG1 (Supplementary Fig. 2b). While greater than 

50% of splenic gBT-I cells were KLRG1
+
 4 weeks after infection, less than 7% of the 

corresponding skin T cells expressed this marker (Fig. 2a). This difference was consistent 

with previous studies showing disequilibrium between TRM cells in the skin and the 

circulating memory cells and, in particular, cells of a TEM phenotype (which largely 

express KLRG1) that survive through to memory times
5,13

. 

 

These data supported the hypothesis that the skin CD103
+
 TRM population developed 

from KLRG1
–
 precursors. Consistent with this, separation of skin into dermis and 

epidermis at early times after infection showed that the latter consisted almost exclusively 

of KLRG1
–
 gBT-I cells, whereas the former contained a mixture of KLRG1

–
 and 

KLRG1
+
 cells, similar to what was found in the spleen (Fig. 2b,c). To better visualize the 

localization of the different populations, acutely infected skin was examined by 

immunofluorescence microscopy for KLRG1 expression (Fig. 2d). In these sections, the 

KLRG1
+
 gBT-I cells exhibited a weaker but clearly discernable fluorescence signal (Fig. 
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2d, yellow arrows), in contrast to an undefined population with strong fluorescence. 

Confirming the flow cytometric analysis, virtually all gBT-I cells in the epidermis and the 

majority in the upper regions of the dermis lacked expression of KLRG1 (Fig. 2d, red 

arrows). Finally, adoptive transfer of gBT-I effector cells isolated from spleen 6 days 

after infection and sorted into KLRG1
+
 and KLRG1

–
 subsets, showed that only the latter 

could generate CD103
+
 TRM cells in the skin of infected recipients (Fig. 2e). These data 

formally demonstrated that KLRG1
–
 precursor cells could give rise to intra-epithelial TRM 

cells in skin. KLRG1
–
 cells also preferentially generated TRM cells in the sensory ganglia 

(Supplementary Fig. 2c), thus implicating them as broad TRM precursors. 

 

TRM formation requires epithelial infiltration 

Our data implied that epithelial infiltration and TRM formation by virus-specific CD8
+
 T 

cells were functionally linked; however, it fell short of demonstrating that epithelial entry 

was indeed required for TRM maturation. In order to examine the migration of T cells 

from the dermis to the epithelium independent of their initial priming or recruitment from 

the blood, we directly injected in vitro activated gBT-I cells into the dermis to test if 

these cells could develop into epithelial-lodged CD103
+
 TRM cells. The population of 

injected cells gradually increased expression of CD69 and CD103 (Supplementary Fig. 

3a) and concomitant with these phenotypic changes, eventually localized to the epidermis 

and hair follicle epithelium (Supplementary Fig. 3b). To show that epidermal entry was 

necessary for TRM formation, we treated the in vitro activated T cells with pertussis toxin 

(PTx) prior to intradermal injection into flank skin. PTx inactivates G protein-coupled 

receptors, thereby blocking chemokine-driven migration
29

. While untreated cells gave 

rise to a population of CD69
+
CD103

+
 TRM cells after intradermal injection, PTx treatment 

blocked both epithelial infiltration and in vivo CD103 expression (Fig. 3a,b and 

Supplementary Fig. 3c). PTx-treated gBT-I cells were still able to up-regulate CD103 

when exposed to TGF-β in vitro (Supplementary Fig. 3d), arguing that the lack of up-

regulation in vivo resulted from a migration defect rather than an intrinsic block in 

CD103 expression per se. Combined, these data argue that migration to the epithelium is 

necessary for skin CD103
+
CD8

+
 TRM development. 

 



	
   7	
  

Chemokines regulate epidermal entry of TRM precursors 

We next sought to identify chemokines that promote entry into the epidermis and thus 

TRM formation. CXCL9 and CXCL10 have previously been shown to facilitate entry into 

the epithelium during HSV-2 infection of mucosal surfaces
15

 and mRNAs encoding these 

chemokines were synthesized by keratinocytes during HSV skin infection 

(Supplementary Fig. 4a). Importantly, the KLRG1
–
 TRM precursors showed preferential 

migration towards these chemokines in transwell assays ex vivo (Fig. 3c and 

Supplementary Fig. 4b), which was consistent with higher expression of the CXCL9/10 

receptor CXCR3 on this subset as compared to KLRG1
+
 effector cells (Fig. 3d). 

Intradermal injection of in vitro activated CD8
+
 T cells lacking CXCR3 expression 

(Cxcr3
–/–

) resulted in the generation of fewer CD103
+
 TRM cells compared to injection of 

wild-type populations (Fig. 3e, left). This decrease was not a consequence of poor 

survival of the Cxcr3
–/–

 T cells, since they were found in higher frequency in lymphoid 

organs (Fig. 3e, left), suggesting a more efficient return to the circulation. Given the latter, 

we sought to determine what happens when we blocked egress from the skin. It is known 

that CCR7 is required for tissue exit via the lymphatics
30,31

, so we reasoned that CCR7-

deficient cells might give rise to greater numbers of CD103
+
 TRM cells. Indeed, Ccr7

–/–
 

CD8
+
 T cells displayed increased TRM formation as compared to their wild-type 

counterparts, with a concomitant decrease in their return to the lymph nodes (Fig. 3e, 

right). Thus, it appears that facilitating entry of T cells into the epidermis or inhibiting 

their egress from the skin promotes CD103
+
 TRM formation.  

 

TGF-β  and IL-15 are required for TRM development in skin 

TGF-β, which is expressed in the skin epithelium
24

, is a known driver of CD103 up-

regulation and has been shown to be important in promoting TRM maturation in other 

tissues
28

. However, its contribution to TRM formation in the skin is unknown. Thus, we 

wanted to examine what effect TGF-β receptor (TGF-R) signaling had on skin TRM 

formation. Initial experiments involved direct intradermal injection of wild-type and 

TGF-R type II-deficient (Tgfbr2f/f.dLck-Cre) OT-I cells that were activated by 

splenocytes coated with the cognate ovalbumin peptide prior to transfer. After 

intradermal injection, only the wild-type OT-I cells up-regulated CD103 (Fig 4a, top). In 



	
   8	
  

addition to the lack of CD103 expression, the TGF-R-deficient cells were also selectively 

lost from the skin but not the spleen (Supplementary Fig. 5a). We verified that TGF-R 

was also required for CD103 up-regulation after infection. Here, a mixture of wild-type 

and Tgfbr2f/f.dLck-Cre OT-I cells were transferred into C57BL/6 mice and then infected 

with recombinant HSV expressing ovalbumin. CD103 up-regulation was only seen on 

skin-infiltrating wild-type cells, whereas Tgfbr2f/f.dLck-Cre cells lacked expression of 

this integrin subunit and gradually disappeared from the skin (Fig. 4a, bottom, and 4b). 

 

CD103
+
 TRM cell formation and/or survival was also IL-15-dependent, since its absence 

resulted in decreased TRM numbers compared to wild-type controls (Fig. 4c). In these 

experiments, effector gBT-I cells were primed in wild-type donors and re-transferred into 

infected wild-type or IL-15-deficient (Il15
–/–

) recipients in order to minimize a potential 

impact of initial T cell priming in the absence of IL-15. Reduced TRM formation in Il15
–/–

 

mice was evident by 2 weeks after infection, with very low numbers of TRM cells present 

in skin of Il15
–/–

 mice by week 4, and similarly also in the dorsal root ganglia 

(Supplementary Fig. 5b). This reduction correlated with a muted induction of Bcl-2 in 

CD103
+
 skin T cells in the absence of IL-15 (Supplementary Fig. 5c). IL-15-

dependence was also seen with splenic memory cells, although to a lesser extent than 

with the skin TRM cells (Fig. 4c). TRM generation was completely restored in bone 

marrow chimeric mice in which IL-15 production was restricted to radio-resistant cells 

(Fig. 4d). Thus, IL-15 from radio-resistant cells such as skin keratinocytes and 

Langerhans cells is sufficient to support optimal TRM development and survival. 

 

A unique transcriptional profile of TRM cells 

While transcriptional analysis of TEM and TCM cells have been published
32

, there exists no 

comparison between these transcriptomes and that for the TRM subset. Given this, we 

carried out microarray expression analysis of CD103
+
CD8

+
 TRM cells from skin, gut and 

lung using respective infections with HSV, lymphocytic choriomeningitis virus (LCMV) 

and influenza virus comparing them to TCM and TEM cells isolated from HSV-infected 

animals. To facilitate memory subset identification and isolation, we used TCR-

transgenic T cells of desired specificity, transferring them to C57BL/6 mice prior to 
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infection. For HSV and LCMV infections we used mice adoptively transferred with T 

cells specific for natural virus determinants (from gBT-I and P14 mice, respectively), 

while for influenza virus infection we used a recombinant virus (flu.gB) expressing the 

HSV glycoprotein B (gB) in combination with gBT-I cells. Since our study had focused 

on skin TRM cells, we also included two other skin-resident intra-epithelial T cell subsets 

in these comparisons: γδ-TCR-expressing dendritic epidermal T cells (DETCs) and a 

population of αβ-TCR-bearing cells that populate the epidermal niche in mice that lack 

γδ-DETCs (Tcrd
–/–

 mice).  

 

The transcriptional data was subjected to principle-component analysis (PCA) (Fig. 5a) 

to delineate variations in the data and the similarities/distances between T cell subsets 

were calculated using a mutual information (MI) approach (Fig. 5b). The PC1 and PC2 

axes of variation in the PCA clearly differentiated the circulating T cell subsets from 

those that are resident or DETC-like (Fig. 5a). This pattern was consistent with the 

pairwise relationships defined by the MI analysis (Fig. 5b), which showed that TRM cells 

from different tissues were transcriptionally related. The PCA showed that the 

transcriptomes of the TEM and TCM subsets were most similar to that of naïve T cells 

rather than TRM cells, which were themselves distinct from the γδ- and αβ-DETCs. Thus, 

both the PCA- and MI-based metrics demonstrated that the various TRM populations 

formed a transcriptomically distinct subset that as a group were less similar to the TEM 

and TCM subsets than the TEM and TCM subsets were to each other or to circulating naïve 

T cells. 

 

A detailed comparison of genes differentially regulated in the TRM versus circulating 

memory subsets is shown in Figure 5c,d. For this comparison, we used combined 

thresholds of 1.5 log-fold change in gene expression and P-values of <0.05 to identify 

genes that were differentially expressed between the circulating and resident memory 

populations. Each TRM subset had unique elements, with between 25 to 127 transcripts 

specific for each of the individual TRM populations from the different tissues (Fig. 5c) 

such as those for CCR9 (expressed only in gut TRM cells) and CCR8 (expressed only in 

skin TRM cells). Common transcript expression was also found in TRM populations, 
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between 51 and 73 transcripts shared between any given pair. These included transcripts, 

such as that for the aryl hydrocarbon receptor (Ahr), which were selectively up-regulated 

in gut and skin TRM cells but not the corresponding population in the lung. Importantly, 

the comparison identified 37 transcripts commonly up- or down-regulated between all 

three TRM subsets (Fig. 5c,d and Table 1). 60% of the differentially expressed transcripts 

were up-regulated on TRM cells compared to circulating memory T cells, although some 

key molecules were down-regulated, including the sphingosine 1-phosphate receptor 1 

(S1PR1). Overall, these 37 transcripts and their products differentiated TRM cells from 

their counterparts in the circulation and thus, represented the core transcriptional 

signature for this population. 

 

Progressive engagement of the TRM transcriptome 

Finally we tracked the changes in the expression of selective genes as T cells progressed 

along the TRM maturation pathway in the skin. From the results above, we predicted that 

TRM cells mature from the time they enter the dermis at the peak of the effector response, 

through to their recruitment into the epidermis and finally, their acquisition of surface 

expression of CD103 (schematic in Supplementary Fig. 6). We focused on KLRG1
–
 T 

cells in this analysis since neither skin TRM cells, nor their precursors, expressed KLRG1. 

T cells were isolated from the dermis and/or epidermis at either the height of the effector 

response (day 8) after HSV infection, or at the start of memory conversion (day 14). 

Quantitative PCR analysis of genes commonly regulated in all (Cdh1, S1pr1, Tlr1, Itga1, 

Itgae, Cd244) or selected (Ccr8 and Ahr) TRM subsets showed appropriate up- or down-

regulation as the cells progressed along this putative maturation pathway in skin (Fig. 5e). 

Overall, this analysis tracked the transcriptional development of TRM cells from early 

KLRG1
–
 effector-type precursors to fully mature CD103

+
 TRM cells lodged in the 

epidermis. 

 

Discussion 

This study provides one of the first detailed descriptions of CD103
+
CD8

+
 TRM 

development and extended phenotype. It defines a maturation pathway for skin TRM cells 

from KLRG1
–
 precursors that enter the tissues during the early effector response, with an 
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important checkpoint being their migration into the epidermis in a chemokine-dependent 

manner. IL-15 and TGF-β are involved in skin TRM formation and/or survival, with the 

latter likely driving CD103 up-regulation, consistent with what has been found in a 

variety of other tissues
27,28,33

. The TRM precursors are not end-stage differentiated 

effectors or mature TEM cells. Both these latter populations express KLRG1
19,20

, whereas 

the CD8
+
 TRM precursors reaching the epithelium and the mature skin-resident memory 

cells do not. Once formed, the TRM cells do not appear to undergo any contraction, but 

instead remain numerically stable over a considerable time
5,14,21

. With respect to this 

longevity, CD103
+
CD8

+
 TRM cells appear more closely related to the circulating TCM 

cells, rather than the shorter-lived TEM cells that are ultimately lost from the 

circulation
34,35

. This matches their derivation from KLRG1
–
 precursors, which are also 

the origin of the long-lived TCM population
20,36,37

. In addition, TRM cells appear capable of 

proliferating in situ on re-stimulation
38,39

 and, although not universal
11

, in some cases 

after in vivo transfer
22

; attributes typically associated with the TCM subset
35

.  

 

Entry into the epidermis involved the action of CXCR3 ligands, although additional 

molecules are likely to also participate in this event since the absence of CXCR3 did not 

completely abrogate TRM formation. Nonetheless, the proposal for CXCR3-mediated 

epithelial recruitment is consistent with the recent finding that exogenous application of 

CXCR3 ligands can promote TRM formation in the epithelium of the lower female 

reproductive tract
15

. TRM formation was enhanced in the absence of CCR7 expression on 

T cells introduced directly into skin, probably as a consequence of reduced precursor 

return to the circulation since CCR7 promotes T cell egress from the skin and other 

tissues
30,40

. Such a scenario suggests that the precursors are not fully committed to the 

TRM fate when they first enter the skin.  

 

While transcriptional analysis of brain TRM cells has been described previously
41

, the 

broader comparison used here uniquely identified just under 40 transcripts that define a 

core differential gene-set for this population. One of the differential transcripts is the 

S1PR1 gene product, which controls T cell entry into lymphatics
42

 and requires down-

regulation in order to retain TRM cells in peripheral tissues43. Complementing this, CD69 
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is rapidly up-regulated once the T cells reach the skin, which provides additional impetus 

for tissue retention since this molecule is known to functionally inhibit S1PR1
44

. We 

showed that CD69 independently affects TRM numbers, similar to what has been shown 

for CD103
+
CD8

+
 T cells in the lung

27
. However, while previously it was thought that loss 

of CD69 inhibited ongoing T cell recruitment
27

, the data here suggest that it affects early 

TRM precursor retention. The microarray analysis also showed that a second member of 

the S1P receptor family, S1PR5, was down-regulated. In contrast to S1PR1, S1PR5 is not 

inhibited by CD69
45

. Additional gene products associated with tissue retention are RGS-1 

and RGS-2, both known G protein-coupled inhibitors
46

. Separately, TRM up-regulate the 

molecules CD49a, E-cadherin and αEβ7, all associated with cell tethering or adhesion
47

. 

Overall, the results show that down-regulation of tissue egress appears to be a critical 

feature of CD103
+
CD8

+
 TRM maturation. 

 

While tissue retention is a central feature of the TRM phenotype, the array data argues that 

these are not simply circulating memory cells trapped within the extra-lymphoid environs. 

Instead TRM cells are a phenotypically distinct population. For example, genes associated 

with the modulation of T cell signaling are also present in the core transcriptional gene-

set and absent from the circulating memory subsets. The immune modifiers CTLA-4, 

ICOS, KLRE1 and various members of the SLAM family of molecules along with 

transcription factors such as Nr4a members and Litaf, are all differentially regulated in 

TRM cells. Combined, this points to a distinct phenotype for the resident subset. This was 

reinforced by the PCA and pair-wise MI analyses, which showed that the TRM 

transcriptomes differed from those of the circulating memory subsets. Interestingly, the 

bioinformatics analysis also showed that the skin TRM cells differed from the main intra-

epithelial T cells naturally found in mouse skin, notably the γδ-DETCs and the αβ-TCR-

expressing cells that fill the void in the absence of the former. To some extent, this makes 

sense since both sets of DETCs are involved in innate processes such as skin homeostasis 

and wound-healing
48,49

 rather than contributing to adaptive immunity and immune 

memory as do the CD103
+
CD8

+
 TRM cells

8
.  
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Overall, the gene expression and maturational tracking studies show that TRM cells are 

derived from the same precursors that give rise to the long-lived memory cells found in 

the circulation. The memory precursors undergo an in situ developmental program that 

results in their differentiation to specialized memory cells adapted to the extra-lymphoid 

compartment. TRM development is not a default program, but instead is location 

dependent, requiring the action of tissue-specific cytokines and, in some cases, local 

antigen recognition
11,14

. As a consequence, TRM cells are focused on regional immunity, 

consistent with the emerging view that they provide superior peripheral infection 

control
9,13,14

. By identifying the TRM precursors and describing mechanisms associated 

with their retention and maturation, we provide the foundation for studies designed to 

manipulate TRM generation and lodgment for the purpose of enhanced immune protection. 
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Figure Legends 

Figure 1. CD103 and CD69 regulate TRM lodgement and persistence. (a–e) Mice that 

received naïve gBT-I cells were subjected to HSV infection. gBT-I cells were tracked 

throughout the response based on their expression of Vα2, CD45.2 and CD45.1. (a) 

Enumeration of total and CD103
+
 gBT-I cells in skin at different times p.i; data pooled 

from 3 experiments (n = 8–12 mice/group). (b) CD103 and Bcl-2 expression by gBT-I 

cells at the indicated times p.i.; data representative of 3 experiments. Plots are gated on 

gBT-I cells; numbers depict percentage of events in respective gates (as in c,e). (c,d) 

Analysis of CD103 and CD69 expression by gBT-I cells in skin at the indicated times 

p.i.; data representative of n = 4–12 mice/time point. (e) CD103 and CD69 expression by 

gBT-I cells in the epidermis (Epi) and dermis (Derm) 11 d p.i. Histograms representative 

of n = 4 mice. (f) Wild-type (WT) and Cd69
–/–

 or Itgae
–/–

 gBT-I cells expressing distinct 

patterns of CD45.1 and CD45.2 were co-transferred or transferred into separate mice 

prior to HSV infection. Representative plots show gBT-I cells in spleen (gated on CD8
+
 

cells) and skin (gated on Vα2
+
 cells) >30 d p.i. (g) Ratios of WT to Cd69

–/–
 or Itgae

–/–
 

cells at the indicated times p.i.; data pooled from 3 experiments (n = 9–12 mice/group).  

 

Figure 2. TRM cells develop from KLRG1
–
 precursors that selectively infiltrate the 

epidermis during acute infection. (a–d) Mice received naïve gBT-I.CD45.1 or gBT-

I.GFP cells prior to HSV infection. (a) CD103 and KLRG1 expression by gBT-I cells in 

skin and spleen during acute infection (1 wk), after infection resolution (2 wks) and 

during early memory (4 wks). Plots are gated on Vα2
+
CD45.2

+
CD45.1

+
 events and are 

representative of 3 experiments (n = 12 mice/time point). Numbers depict percentage of 

events in respective gates (as in b). (b,c) KLRG1 expression by gBT-I cells isolated from 

the epidermis (Epi), the dermis (Derm) and the spleen at various times p.i. (6.5 d p.i. in b). 

Data pooled from 2 experiments (n = 8–9 mice/time point). (d) Microscopy analysis of 

KLRG1 expression in acutely infected skin (d 6 p.i.) after staining with fluorescently 

labeled anti-KLRG1 antibodies. gBT-I cells are identified by GFP expression and 

depicted in the bottom panel; yellow and red arrows indicate examples of KLRG1
+
 and 

KLRG1
–
 gBT-I cells, respectively. Dashed lines indicate the epidermal-dermal junction. 

Photos are representative of 2 experiments. Scale bars, 100 µm. (e) Effector gBT-I cells 
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were sorted into KLRG1
+
 and KLRG1

–
 subsets from spleens of infected mice (6 d p.i.) 

and transferred into infected recipients (4 d p.i.). Enumeration of CD103
+
 gBT-I cells in 

skin 3 wks p.i.; data pooled from 3 experiments (n = 12 mice/group); *, P < 0.05 by two-

tailed Mann-Whitney test. 

  

Figure 3. Opposing chemokines regulate epidermal entry and TRM differentiation 

versus tissue egress. (a,b) In vitro activated gBT-I cells were left untreated (Ctrl) or 

PTx-treated, and transferred intradermally into separate mice. (a) CD103 and CD45.1 

expression by CD45.2
+
 cells isolated from the epidermis (Epi) and dermis (Derm) 8 d 

post-transfer. gBT-I cells were identified as Vα2
+
CD45.1

+
 events (in upper quadrants). 

Numbers depict percentage of events in respective gates (as in d). (b) Enumeration of 

CD103
+
 gBT-I cells from total skin preparations at the indicated times after transfer. Data 

pooled from 2 experiments (n = 6 mice/group). **, P < 0.01 by two-tailed Mann-Whitney 

test. (c) Ex vivo migration towards CXCL10 gradients by KLRG1
+
 and KLRG1

–
 effector 

gBT-I cells enriched from spleen 7 d p.i.; data pooled from 5 experiments with 5 donor 

mice/experiment. (d) CXCR3 expression by KLRG1
+
 and KLRG1

–
 effector gBT-I cells 

isolated from spleen (6.5 d p.i.). Histogram is representative of 2 experiments. (e) 

Analysis of CD8
+
 T cells in draining lymph nodes (dLN) and skin (CD103

+
 TRM) at 

different times after in vitro activation and intradermal transfer. Depicted are the ratios of 

CD8
+
 effector T cells generated from Cxcr3

–/–
 or Ccr7

–/–
 mice relative to that of co-

transferred effector cells from WT mice. Data pooled from 2–3 experiments (n = 7–12 

mice/group). **, P < 0.01; ***, P < 0.001; ****, P < 0.0001 by two-tailed paired t-test. 

 

Figure 4. TGF-β  receptor and IL-15 signaling is required for CD103
+
 TRM cell 

development. (a) CD103 expression by WT and Tgfbr2f/f.dLck-Cre OT-I cells in skin 

after in vitro activation and intradermal transfer (top) or naïve cell transfer and 

HSV.OVA infection (bottom), at the indicated times. Plots are gated on OT-I cells; 

numbers depict percentage of events in respective gate. (b) Ratios of WT to 

Tgfbr2f/f.dLck-Cre OT-I cells in skin and spleen at the indicated times p.i.; data pooled 

from 2 experiments (n = 10–11 mice per group). (c,d) Effector gBT-I cells were enriched 

from spleens of WT mice 6 d p.i. and transferred into infected (4 d p.i.) WT, Il15
–/–

 or 
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various combinations of bone marrow chimeric mice, as indicated. (c) Enumeration of 

CD103
+
 gBT-I cells in WT and Il15

–/–
 mice at different times p.i. Data pooled from 3–4 

experiments (n = 11–12 mice/group). **, P < 0.01; ***, P < 0.001; ****, P < 0.0001 by 

two-tailed Mann-Whitney test. (d) Enumeration of CD103
+
 gBT-I cells in the skin of 

various bone marrow chimeric mice. Data pooled from 2 experiments analyzed 3 and 6 

wks p.i. (n = 8–10 mice/group). *, P < 0.05; **, P < 0.01; ***, P < 0.001 by Kruskal-

Wallis test followed by Dunns multiple comparison post test. 

 

Figure 5. Definition of a core transcriptional profile of TRM cells that is progressively 

engaged during differentiation. (a) PCA of gene expression data from various subtypes 

of lymphoid and peripheral CD8
+
 T cells (as labeled in plot and key). Circles group the T 

cell types into 3 distinct clusters. (b) Mutual information analysis of the genome-wide 

gene expression distributions for a pair of cell types. (c) Gene expression of TRM cells 

from skin, lung and gut was compared in a pair-wise fashion to that of TCM and TEM cells. 

Differentially expressed transcripts (≥ 1.5 log fold change and a Benjamini Hochberg-

adjusted P < 0.05) shared by each TRM type are indicated in the overlapping regions of 

the Venn diagram. (d) Heat map of gene expression for differentially expressed 

transcripts in the lymphoid (Circulation) compared to the group TRM group (Periphery). 

(e) Mice received naïve gBT-I cells prior to HSV infection. gBT-I cells from the skin 8 d 

and 14 d p.i. were sorted into KLRG1
–
 subsets as indicated (Sk, total skin; Der, dermis; 

Epi, epidermis). qPCR analysis of selected genes during TRM differentiation. Median 

values were calculated relative to Hprt and normalized to TRM values. Data pooled from 

2–5 experiments. 

 

Table 1. List of gene transcripts defining the TRM core signature. List of 37 

transcripts commonly regulated in TRM cells from the skin, gut and lung, and 

differentially expressed compared to both TCM and TEM cells from the spleen. These 

transcripts represent the overlapping region of the Venn diagram in Figure 5c and the 

heat map in Figure 5d. 
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Methods	
  

Mice 

C57BL/6, B6.SJL-PtprcaPep3b/BoyJ (B6.CD45.1
+
), gBT-I×B6.CD45.1 (gBT-

I.CD45.1
+
CD45.2

+
), gBT-I.GFP, OT-I×B6.CD45.1 (OT-I.CD45.1

+
CD45.2

+
), 

P14×B6.CD45.1 (P14.CD45.1
+
CD45.2

+
), Il15

–/–
mice, gBT-I.Itgae

–/–
, gBT-I.Cd69

–/–
 and 

Tcrd
–/– 

mice were bred in the Department of Microbiology and Immunology in The 

University of Melbourne (Melbourne, Australia). Female mice between the age of 6-12 

weeks were used for experiments.  The gBT-I and OT-I mice are CD8
+
 TCR transgenic 

mice that recognize the H-2K
b
-restricted HSV-1 gB epitope of amino acids 498-505 

(gB498-505) and the ovalbumin-derived epitope of amino acids 257-264 (OVA257-264), 

respectively. gBT-I.Cd69
–/–

 were generated by back-crossing gBT-I mice with Cd69
–/–

 

animals obtained from P. Lauzurica (Instituto de Salud Carlos III, Spain). Cxcr3
–/– 

mice 

were obtained from N. Hunt (University of Sydney, Australia), Ccr7
–/– 

mice were 

obtained from W. Weninger (University of Sydney, Australia) and OT-I.Tgfbr2f/f.dLck-

Cre mice were obtained from M. Bevan (University of Washington, USA). Bone marrow 

chimeras were generated by irradiation of recipient mice with 2 doses of 550 rad, 3 h 

apart and reconstitution with 5 × 10
6
 donor bone marrow cells. All animal experiments 

were approved by The University of Melbourne Animal Ethics Committee. 

 

Virus infections 

Viruses used were the KOS strain of HSV-1 (HSV), HSV.OVA (KOS with a fusion 

protein of eGFP and SIINFEKL, TSYKFESV and SSIEFARL epitopes, separated by a 

lysine and an alanine as an attempt to ensure favorable proteasomal cleavage), 

WSN/NA/gB (flu.gB) and LCMV Armstrong. Epicutaneous infection by scarification 

was carried out using 1 × 10
6
 PFU HSV as described

9
. For flu.gB infections, 50 PFU 

were administered intranasally and for LCMV infections, mice were infected with 2 × 10
5
 

PFU by i.p. injection. For HSV memory experiments, only mice with visible skin lesions 

during acute infection were included. 

 

Adoptive transfer of transgenic CD8
+
 T cells 
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Adoptive transfers of naïve gBT-I, OT-I or P14 cells were carried out intravenously with 

lymph node suspensions. Naïve gBT-I or OT-I cells were transferred at a total number of 

5 × 10
4
 cells or 2.5 × 10

4
 cells/population in co-transfer experiments, where cell types 

were transferred at a ratio of 1:1. P14 cells were transferred at 5 × 10
5
 cells. In vitro-

generated gBT-I or OT-I effector splenocytes were activated by peptide-pulsed 

splenocytes as described
9
. For polyclonal activation of CD8

+
 T cells, CD8-enriched 

splenocytes were activated by anti-CD3ε (145-2C11) and anti-CD28 (37.51) (5 µg/ml, 

eBioscience). 0.5-1 × 10
6
 activated cells were transferred into recipients by intradermal 

injection (5 × 20 µl injections over a 1 × 1.5 cm
2
 area of skin) using a 30G needle. 0.5–1 

× 10
6
 activated cells were transferred into recipients by intradermal injection. CD8

+
 T 

cells were enriched using magnetic beads as described
50

. For experiments using Pertussis 

toxin (PTx), cells were treated in vitro with 100 ng/ml PTx for 90 min. 

 

Flow cytometry and antibodies 

T cells were recovered from skin as described
14

. Briefly, skin tissue was incubated for 90 

min at 37 °C in dispase (2.5 mg/ml) followed by the separation of epidermis and dermis. 

Epidermal sheets were subsequently incubated for 30 min in trypsin/EDTA 

(0.25 %/0.1 %) whereas the remaining skin tissue was chopped into small fragments and 

incubated for 30 min at 37 °C in collagenase type 3 (3 mg/ml) and DNase (5 µg/ml). Cell 

suspensions were stained with antibodies for flow cytometry. The following antibodies 

were purchased from BD Pharmingen: APC-conjugated anti-CD45.1 (A20), PE-Cy7-

conjugated anti-Va2 (B20.1), PE-conjugated anti-CD8α (53-6.7), APC eFluor780-

conjugated anti-CD45.2 (104), FITC-conjugated anti-CD45.1 (A20), PE-conjugated anti-

CD69 (H1.2F3), FITC-conjugated anti-CD62L (MEL-14), PE-conjugated anti-Bcl-2 

(3F11), PE-conjugated anti-TNP [Bcl-2 Isotype] (A19-3), APC-Cy7-conjugated anti-

TCR-beta (H57-597). The following antibodies were purchased from eBioscience: FITC-

conjugated anti-CD103 (2E7), AlexaFluor700-conjugated anti-CD8α (53-6.7), Pe-Cy7-

conjugated anti-CD45.1 (A20), APC-conjugated anti-CD45.2 (104), APC-conjugated 

anti-KLRG1 (2F1), PE-conjugated anti-CD127 (A7R34). APC-conjugated anti-CD103 

(2E7) was purchased from Biolegend; APC-conjugated anti-CXCR3 (220803) and APC-

conjugated Rat IgG2A Isotype control (54447) were purchased from R&D Systems. For 
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intracellular Bcl-2 staining, cells were fixed using a Cytofix/Cytoperm kit (BD 

Pharmingen) before staining with intracellular antibodies. Sphero calibration particles 

(BD Pharmingen) were added to samples to allow calculation of cell numbers. A 

FACSCanto II and Flowjo software (TreeStar) were used for analysis. 

 

Migration assays 

Ex vivo migration assays (2.5 h incubation) were done with effector gBT-I cells enriched 

from spleens 7 d p.i. HSV, using 24-well plates with transwell inserts (5 µm pores, 

Costar). The migration index was calculated as the ratio of migrated cells relative to 

control conditions without chemokines. 

 

Histology 

Mice were perfused with PLP buffer (P-buffer, L-lysine, 0.1 M sodium periodate with 

2% paraformaldehyde) and flank skin was harvested and incubated in PLP buffer for 30 

min on ice. Skin was then washed twice with PBS and incubated in 20% sucrose for 30 

min at 4 °C. Tissue sections were prepared as described
5
 and stained with purified rabbit 

anti-keratin 14 antibody (clone AF64; Covance), donkey anti-rabbit AlexaFluor647 

(A31573; Invitrogen), Alexafluor conjugated-CD8 (clone 53-6.7; BD Pharmingen) or 

APC-conjugated KLRG1 (2F1). Images were acquired with a Zeiss LSM710 microscope 

and processed using Imaris 7.1 software (Bitplane).  

 

Microarray and quantitative RT-PCR 

For microarray analysis, T cells were sorted by flow cytometry from various tissues 

(skin: HSV 30 d p.i., gut: LCMV 60 d p.i., lung: flu.gB 30 d p.i.) using FACSAria III 

(BD Biosciences) and RNA extracted with Rneasy Micro Kit (Qiagen). RNA quality and 

quantity was determined using Bioanalyzer 2100 (Agilent) and RNA 6000 Pico Kit 

(Agilent). RNA was subsequently amplified and converted to cDNA using a linear 

amplification method; WT-Ovation Pico System (Nugen), labeled using Encore Biotin 

module (Nugen) and hybridized to GeneChip MouseGene 1.0 ST (Affymetrix) chips 

(performed at Molecular Genomics Core Facility, Peter MacCallum Cancer Centre, 

Australia). For qRT-PCR analysis of Cxcl9/10 expression, RNA was extracted using 
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Rneasy Micro Kit (Qiagen) and cDNA synthesized with SuperScript III Reverse 

Transcriptase (Invitrogen) using oligo-dT primers (Promega). qRT-PCR was performed 

with Fast Sybergren Master mix (Life Technologies). Primer sequences were (5′-­‐

TGAAGTCCGCTGTTCTTTTCC-­‐3′; 5′-­‐AGTGGATCGTGCCTCGGCTG-­‐3′) for Cxcl9 

and (5′-­‐GTCCTAATTGCCCTTGGT-­‐3′; 5′-­‐TCTTGCTTCGGCAGTTAC-­‐3′) for Cxcl10. 

For remaining qRT-PCR analysis, cell lysis and cDNA synthesis was performed using 

the Taqman Gene Expression cells-to-Ct kit with commercially available primers (Life 

Technologies). cDNA went through gene-specific amplification using Taqman Preamp 

master mix and inventorized Taqman assays (Life Technologies). qRT-PCR were 

performed with Taqman Fast Advanced Mastermix (Life Technologies) on a 

StepOnePlus Real-Time PCR system (Life Technologies). The threshold cycle (CT) of 

gene targets for each cell population were determined by RT-PCR and normalized to the 

CT of Gapdh or Hprt housekeeping genes (ΔCT). Relative Cxcl9 and Cxcl10 expression 

for each sample were determined using the 2^(-ΔCT) method. For other gene targets, 

normalized gene targets for each cell type were then compared to those of the TRM 

population according to the 2^(-ΔΔCT) method. 

 

Microarray analysis 

All following analyses were performed in the R statistical programming environment. 

The raw CEL intensity files from the Affymetrix GeneChip Mouse Gene 1.0 ST arrays 

underwent normalization including background correction using RMA, quantile 

normalization, probe-specific background correction using MAS, and summarization 

using the median polish algorithm (doi:10.1093/nar/gng015). Minimal variability in 

probe intensity distributions across arrays was observed after normalization and minimal 

bias was seen in plots of the log intensity ratio vs. the average log intensity (MA plots). 

Using the log2-normalized gene expression data, principal components analysis (PCA) 

and pairwise entropy-based measures were used to assess the global transcriptomic 

differences between T cell subsets. PCA uses an orthogonal transformation to decompose 

the gene expression data into a set of linearly uncorrelated axes, the principal components, 

where PC1, PC2, etc are the axes which explain the most variation in the data, the second 

most, and so forth. The PC1 and PC2 axes explain 15.7% and 8.7% of variation, 
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respectively. PCA was visualized with XLSTAT-3Dplot (Addinsoft SARL, New York). 

While PCA is a useful tool for exploratory analysis of high dimensional data, the 

similarities/distances between T cell subsets were calculated using the mutual 

information (MI) across all log2-normalized gene expression probes. In this setting, MI 

quantifies the dependence between the transcriptomes of two T cell subsets by relating 

the joint distribution of gene expression probes of subsets A and B to that under the 

assumption that subsets A and B are independent. If subsets A and B share no 

information, that is they are independent, then MI = 0; if subsets A and B are identical, 

then their MI will be the entropy of A (or similarly, the entropy of B). Subsequent 

analyses used the LIMMA package to identify differentially expressed probes 

(DOI:10.2202/1544-6115.1027). Each T cell subset was compared against all others in a 

pair-wise fashion using an empirical Bayes procedure to moderate standard error and a t-

test was used to test for difference in expression levels. Corresponding P values were 

corrected for multiple testing using the Benjamini-Hochberg approach. To identify the 

transcript signatures of TRM cells, the transcriptomes of TRM cells from different tissues 

were individually compared to those of the spleen TCM cells and TEM cells. Transcripts 

with a change in expression of 1.5 log fold change or more that satisfied the Benjamini 

and Hochberg adjusted P value of less than 0.05, from each pair-wise comparison were 

identified. The list of identified transcripts from all the pair-wise comparisons were then 

matched against one another to identify the transcript signature of individual TRM 

populations, and the common transcript signature shared by various TRM populations. 

Thus, a transcript must be significantly and differentially expressed in the same 

directionality in all resident memory when compared to all circulating memory T cell 

populations to be qualified as a transcript signature.	
   

 

 

Statistical analysis 

Appropriate statistical methods were chosen according to experimental setup and data 

distribution and are specified in the respective figure legends. Sample sizes were chosen 

based on previous experiences with the relevant experimental models. No specific 

randomization or blinding was used for the allocation to or analysis of experimental 

cohorts. 
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Table 1: Differentially expressed transcripts shared by Trms relative to Tcm, and to Tem

Gene symbol Gene name Entrez ID Probe ID
Differential expression 

relative to Tcm, and to Tem

Cd244  CD244 natural killer cell receptor 2B4 18106 10351644 Up

Cdh1  cadherin 1 12550 10575052 Up

Chn2  chimerin (chimaerin) 2 69993 10538356 Up

Ctla4  cytotoxic T-lymphocyte-associated protein 4 12477 10346790 Up

Hpgds  hematopoietic prostaglandin D synthase 54486 10545101 Up

Hspa1a  heat shock protein 1A 193740 10450369 Up

Hspa1a  heat shock protein 1A 193740 10444589 Up

Hspa1a  heat shock protein 1A 193740 10450367 Up

Icos  inducible T-cell co-stimulator 54167 10346799 Up

Inpp4b inositol polyphosphate-4-phosphatase, type II 234515 10573082 Up

Itga1  integrin alpha 1 109700 10412298 Up

Itgae integrin alpha E, epithelial-associated 16407 10378286 Up

Litaf  LPS-induced TN factor 56722 10437687 Up

LOC100503878  zinc finger protein 683-like 100503878 10508909 Up

LOC641050  hypothetical protein LOC641050 641050 10504761 Up

LOC641050  hypothetical protein LOC641050 641050 10538892 Up

Nr4a1 nuclear receptor subfamily 4, group A, member 1 15370 10427035 Up

Nr4a2 nuclear receptor subfamily 4, group A, member 2 18227 10482772 Up

Qpct  glutaminyl-peptide cyclotransferase (glutaminyl cyclase) 70536 10447056 Up

Rgs1  regulator of G-protein signaling 1 50778 10358408 Up

Rgs2  regulator of G-protein signaling 2 19735 10358389 Up

Sik1  salt inducible kinase 1 17691 10449741 Up

Skil  SKI-like 20482 10491300 Up

Tmem123  transmembrane protein 123 71929 10583145 Up

Vps37b  vacuolar protein sorting 37B (yeast) 330192 10533729 Up

Xcl1  chemokine (C motif) ligand 1 16963 10359697 Up

Cmah  cytidine monophospho-N-acetylneuraminic acid hydroxylase 12763 10404132 Down

Elovl7 ELOVL family member 7, elongation of long chain fatty acids (yeast) 74559 10407072 Down

Eomes  eomesodermin homolog (Xenopus laevis) 13813 10589994 Down

Fam65b family with sequence similarity 65, member B 193385 10404152 Down

Fgf13  fibroblast growth factor 13 14168 10604751 Down

Klre1  killer cell lectin-like receptor family E member 1 243655 10542205 Down

Ly6c2 lymphocyte antigen 6 complex, locus C2 100041546 10429573 Down

Rasgrp2 RAS, guanyl releasing protein 2 19395 10460968 Down

S1pr1  sphingosine-1-phosphate receptor 1 13609 10501586 Down

S1pr5  sphingosine-1-phosphate receptor 5 94226 10591494 Down

Sidt1 SID1 transmembrane family, member 1 320007 10439583 Down

Slamf6  SLAM family member 6 30925 10351691 Down

Tlr1  toll-like receptor 1 21897 10530145 Down

Usp33  ubiquitin specific peptidase 33 170822 10496919 Down
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Supplementary Figure 1. Phenotype and anatomical localization of TRM cells. (a,b) 

Analysis of CD103, Bcl-2 and CD69 expression by endogenous Vα2
+
 T cells in skin at the 

indicated times p.i. Plots are gated on Vα2
+
 CD45.2

+
 cells; numbers indicate the percentage of 

events in the respective gates. Data representative of 2–3 experiments. (c) Mice received 

naïve gBT-I.GFP cells prior to HSV infection. Arrows indicate examples of gBT-I.GFP cells in 

the epidermis and hair follicle epithelium 14 d p.i. Photo representative of >5 experiments. (d) 

Wild-type (WT) and Cd69
–/–

 gBT-I cells were transferred into WT mice prior to HSV infection. 

Enumeration of gBT-I cells in dorsal root ganglia (DRG) 30 d p.i. Data from one experiment (n 

= 5 mice/group). (e) WT (GFP-expressing, green) and Itgae
–/–

 (DsRed-expressing, red) gBT-I 

cells were co-transferred into WT mice prior to HSV infection. Microscopy of skin 8 d p.i. 

Staining with anti-keratin antibody to delineate the epidermis and hair follicle epithelium. 

Arrows in insert indicate gBT-I cells in the epidermis. Photo representative of n = 3 mice 

analyzed. 
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Supplementary Figure 2. Development of virus-specific CD8
+
 memory T cells after 

HSV-1 skin infection. (a) Mice received naïve gBT-I cells prior to infection. Analysis of 

CD62L, CD127 and KLRG1 expression by gBT-I cells in the spleen at different time points 

after infection. Plots are gated on Vα2
+
CD45.2

+
CD45.1

+
 cells and are representative of n = 4–

8 mice/time point. Numbers indicate the percentage of events in the respective gates (as in 

b). (b) Analysis of CD103 and KLRG1 expression by endogenous Vα2
+
 T cells in skin at the 

indicated times p.i. Plots are gated on Vα2
+
CD45.2

+
 cells and are representative of 3 

experiments (n = 12 mice/time point). (c) Effector gBT-I cells were sorted into KLRG1
+
 and 

KLRG1
–
 subsets from spleens of infected mice (6 d p.i.) and transferred into infected 

recipients (4 d p.i.). Enumeration of CD103
+
 gBT-I cells in dorsal root ganglia (DRG) 3 weeks 

p.i. Data from 3 experiments (n = 12 mice/group); *, P < 0.05 by two-tailed Mann-Whitney 

test.	
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Supplementary Figure 3. Epidermal localization of CD8
+
 T cells after intradermal 

transfer. (a) CD103 and CD69 expression by gBT-I cells in skin at the indicated times after in 

vitro activation by gB peptide-coated splenocytes and intradermal transfer. Plots are gated on 

Vα2
+
CD45.2

+
CD45.1

+
 cells and are representative of 2–3 experiments (n = 6–12 mice/time 

point). Numbers indicate the percentage of events in the respective gates. (b) In vitro 

activated gBT-I.GFP cells were transferred into the skin by intradermal injection. Microscopy 

of skin 30 d after transfer. Staining with anti-keratin antibody to denote epithelium in the 

epidermis and hair follicles. Arrows indicate examples of gBT-I.GFP cells (green). Photos (2 

examples shown) are representative of 2 experiments. (c) In vitro activated gBT-I cells were 

left untreated (Ctrl, DsRed-expressing, red) or treated with PTx (+PTx, GFP-expressing, 

green) and co-transferred into mice by intradermal injection. Microscopy of skin 4 weeks after 

transfer; anti-keratin staining denotes the epidermal layer and hair follicle epithelium. Red 

arrows indicate control cells in the epithelium, green arrows indicate PTx-treated cells in the 

dermis. Photos representative of 2 experiments. (d) In vitro activated gBT-I cells were 

untreated (Ctrl) or treated with PTx (+PTx). Analysis of CD103 expression following 

subsequent in vitro incubation of the cells in the presence (solid or dashed black lines, as 

indicated) or absence (orange area) of TGF-β (5 ng/ml; 24 hours). Plots are gated on 

Vα2
+
CD45.2

+
CD45.1

+
 cells and are representative of 2 experiments. 
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Supplementary Figure 4. Chemokine expression in skin and ex vivo migration of 

KLRG1
+
 and KLRG1

–
 effector cells. (a) mRNA expression for genes encoding CXCL9 and 

CXCL10 in CD45.2
–
EpCAM

+
 keratinocytes sorted from naïve (Ctrl) or HSV-infected skin (d 6 

p.i.). Data pooled from 3 independent experiments (represented by individual symbols). *, P < 

0.05 by two-tailed paired t-test. (b) Ex vivo migration towards CXCL9 gradients by KLRG1
+
 

(closed symbols) and KLRG1
–
 (open symbols) gBT-I cells enriched from spleens 7 d after 

HSV skin infection (cells pooled from n = 5 donor mice). 
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Supplementary Figure 5. Requirement of TGF-β  receptor and IL-15 signaling in the 

development of CD103
+
 TRM cells. (a) Wild-type (WT) and TGF-R-deficient (Tgfbr2f/f.dLck-

Cre) OT-I cells were activated by culture with ovalbumin peptide-coated splenocytes and 

transferred into the skin by intradermal injection. Depicted are the ratios of WT relative to 

Tgfbr2f/f.dLck-Cre cells in the skin and spleen at the indicated times after transfer. Data 

representative of 2 experiments (n = 3–4 mice/group). (b,c) Effector gBT-I cells were enriched 

from spleens of WT mice (6 d p.i.) and transferred into infected (4 d p.i.) WT or Il15
–/–

 

recipient mice. (b) Enumeration of CD103
+
 gBT-I cells in dorsal root ganglia (DRG) 4 wks p.i. 

Data from one experiment with n = 5 mice/group. (c) CD103 and Bcl-2 expression by gBT-I 

cells in WT and Il15
–/–

 mice (11 d p.i.). Plots are gated on Va2
+
CD45.2

+
CD45.1

+
 cells; 

numbers depict percentages of events in the respective gates. Data are representative of 2 

experiments (n = 8 mice/group).	
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Supplementary Figure 6. The developmental pathway for the formation of TRM cells. KLRG1
–
 TRM precursors enter the dermis where they may (i) die in 

situ, (ii) exit the skin and return to the blood in a CCR7-dependent manner or (iii) migrate to the epidermis, partly under the influence of CXCR3 ligands. Both 

tissue exit and epidermal entry are sensitive to treatment with pertussis toxin (PTx) indicating the involvement of G protein-coupled molecules such as 

chemokine receptors. Following epidermal entry, TRM precursors undergo maturation into long-lived CD103
+
 TRM cells in a TGF-β- and IL-15-dependent 

manner. Epithelial TRM cells and their counterparts in the circulation are depicted with different symbols to highlight their distinct transcriptional profiles.	
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