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The developmental trajectories 
of executive function 
from adolescence to old age
Heather J. Ferguson1,3*, Victoria E. A. Brunsdon1 & Elisabeth E. F. Bradford2

Executive functions demonstrate variable developmental and aging profiles, with protracted 
development into early adulthood and declines in older age. However, relatively few studies have 
specifically included middle-aged adults in investigations of age-related differences in executive 
functions. This study explored the age-related differences in executive function from late childhood 
through to old age, allowing a more informed understanding of executive functions across the 
lifespan. Three hundred and fifty participants aged 10 to 86 years-old completed a battery of tasks 
assessing the specific roles of inhibitory control, working memory, cognitive flexibility, and planning. 
Results highlighted continued improvement in working memory capacity across adolescence and into 
young adulthood, followed by declines in both working memory and inhibitory control, beginning 
from as early as 30–40 years old and continuing into older age. Analyses of planning abilities showed 
continued improvement across adolescence and into young adulthood, followed by a decline in 
abilities across adulthood, with a small (positive) change in older age. Interestingly, a dissociation 
was found for cognitive flexibility; switch costs decreased, yet mixing costs increased across the 
lifespan. The results provide a description of the developmental differences in inhibitory control, 
working memory, cognitive flexibility and planning, above any effects of IQ or SES, and highlight the 
importance of including middle-aged adults in studies seeking to establish a more comprehensive 
picture of age-related differences in executive function.

Executive functions (EF) are high-level cognitive processes that include planning, initiation, shi�ing, monitor-
ing, and inhibition of  behaviours1. EFs play an important role in our everyday life, allowing us to focus attention 
on speci�c tasks, to engage in successful problem solving, and to plan for the future. EFs demonstrate variable 
developmental and aging pro�les (e.g.,2,3), with protracted development into early adulthood and a decline into 
older age that is associated with structural and functional changes in the prefrontal  cortex4–10. �e majority of 
these studies have compared dichotomous young/old adult age groups, and few studies include middle-aged 
adults or adolescents in investigations of age-related changes in EF (c.f.11–13 who included middle-aged adults). 
�erefore, many open questions remain about how development changes across the lifespan, and whether these 
e�ects are consistent across multiple components of EF. We address this by exploring how di�erent components 
of EF develop and change across the lifespan, from late childhood through to old age. Speci�cally, we tested 
whether four key components of EF (inhibition, working memory, cognitive �exibility and planning) show 
parallel or distinct developmental trajectories, and aimed to describe any age-related changes in multiple EFs.

EFs begin to emerge early in infancy, with basic skills needed for EFs emerging before three years of age, and 
more speci�c skills developing into early  childhood14. It has been suggested that each component of EF devel-
ops at its own rate across childhood and adolescence, reaching maturity at di�erent ages  (see1). For instance, 
cognitive �exibility has been shown to emerge between the ages of 3 and 4 years old, becoming more complex 
between the ages of 7 and 9 years old, and reaching adult-like levels by age ~  1215–17; in contrast, Zelazo et al.18 
found that cognitive �exibility abilities continue to improve between the ages of 20 and 29 years old, suggest-
ing prolonged development of these abilities into young adulthood, and highlighting the importance of using 
di�erent approaches and tasks to assess EF abilities, providing further insight into when these abilities reach 
maturity. Working memory, inhibition, and planning have been shown to continue to develop throughout child-
hood and adolescence, and in some circumstances (e.g., task dependent), have also been shown to continue to 
develop into young adulthood (e.g.,19–23). �e protracted development of EFs across childhood and adolescence 
is associated with neurological changes, particularly the development of the prefrontal cortex (e.g.,4,24,25). Given 
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this, adolescence is a critical period to study, allowing further examination of the continued development of EFs 
beyond childhood and into early adulthood to establish when these components of EF reach maturity.

Cognitive performance peaks in young adulthood (e.g.,26), with declines emerging as early as 20 or 30 years 
old, including declines across adulthood in speed of  processing27–30,  reasoning29,30, face  processing31, �uid 
 intelligence26,27, crystallized  intelligence26,27, working  memory26,28,32,33, verbal and visuospatial  memory34, and 
long-term  memory27,28. �ere is a vast amount of heterogeneity in regards to when cognitive abilities peak and 
decline. For example, aspects of short-term memory decline from 18 years of age, working memory declines in 
the 30 s, and vocabulary peaks in the 40 s or even  later26. In contrast, other aspects of cognition, such as auto-
biographical memory and semantic knowledge, remain relatively stable across  adulthood35,36.

�ese �ndings raise the question of whether di�erent components of EFs, speci�cally inhibition, working 
memory, cognitive �exibility, and planning, are stable across adulthood and decline in older age, or whether 
age-related declines in EFs begin soon a�er maturity in early adulthood. Studies have largely established that 
working memory reaches a peak at 30 years old and declines  therea�er26,32,33,37. In addition, inhibitory control 
is poorest in younger children, improves in adulthood, and declines in older  age38; however middle-aged adults 
were omitted from this study, so it is not clear when these declines started to emerge. Overall, there is a paucity 
of research speci�cally focussing on multiple components of EF across the lifespan, with studies into aging o�en 
limited in their focus due to comparing dichotomous ‘young’ versus ‘old’ adult groups (i.e. few studies include 
adolescents or middle-age adults in their lifespan sample). �is approach means that important evidence is scarce 
to draw conclusions on the extended developmental trajectory of EF or earlier signs of decline. A notable excep-
tion to this is the Cognitive Battery of assessments developed as part of the National Institutes Health Toolbox 
in the U.S.A (NIHTB-CB;18,39,40). �e NIHTB-CB sought to establish a series of tasks that could be used to assess 
cognitive function abilities across di�erent populations of individuals, suitable for use in individuals aged from 
three to 85 years old, and includes measures of inhibitory control, cognitive �exibility, and working memory. 
Results from the NIHTB-CB support suggestions of an inverted-U-shaped curve in development of a number 
of EF abilities, including inhibition, cognitive �exibility, and working memory, with abilities �rst rising across 
childhood, and falling in later  adulthood18,41,42. Ferriera et al.43 also investigated EF abilities in a speci�c cohort of 
healthy middle-aged adults, with results highlighting very early declines in EF before the age of 50; other studies 
that have included middle-aged adults in a broader adult sample have reported a linear decline across adulthood 
which is steeper among participants aged 65 + (e.g.,13).

Further to these behavioural studies, neuroimaging has revealed changes in both the structure and function 
of brain regions that underlie EFs in middle-age and older  adulthood44,45, which is highly likely to impact EF 
performance in these age ranges. �e studies cited above have provided important insights into the developmental 
trajectories of EF capacities across the lifespan, including highlighting the limited studies that have included 
middle-aged adults in investigations of EFs and, importantly, included analysing age as a continuous measure to 
track development throughout adulthood (c.f.11–13,46). More o�en, even when studies have included middle-age 
adults, they have analysed e�ects of age between groups rather than as a continuous predictor (e.g.,47,48), or rely 
on correlation or regression analyses to model only linear trends (e.g.,46). As illustrated, studies with middle-aged 
adults are essential to gain a comprehensive picture of the development of EFs throughout adulthood, to allow 
pinpointing of when declines in EFs �rst emerge, and whether the patterns of decline in early adulthood, as shown 
in other cognitive abilities, are also evident across the di�erent components of EF across di�erent paradigms, or 
whether they are limited to speci�c components. Conducting studies with a continuous age sample also provides 
vital insights to inform theories of healthy and abnormal aging, as, for example, the �rst pathophysiological 
changes can commence up to 20 years before a diagnosis of  dementia49.

Older age is associated with signi�cant declines in EF, including working memory (e.g.,50), inhibition (e.g.,51), 
planning (e.g.,52), and cognitive �exibility (e.g.,53). Additionally, di�erent aspects of cognitive �exibility show 
distinct age-related e�ects. Mixing costs are greater in older adults (e.g.,54–58); however, there are mixed results 
in regard to switch costs, with some studies reporting an age-related increase (e.g.,59), a U-shaped  trajectory53, 
or no age-related di�erences (e.g.,58, 59), most likely due to di�erences in paradigms. Age-related e�ects in EFs 
are thought to be relatively robust, and have been associated with changes in the frontal lobes, speci�cally age-
related volume reduction in the prefrontal  cortex60. �ere are some con�icting �ndings in the literature regarding 
age-related declines in EF, perhaps because many studies do not account for general slowing in response laten-
cies  (see61, for a discussion). When accounting for this general slowing,  Verhaeghen61 failed to �nd evidence for 
speci�c age-related declines in inhibition and local task-shi�ing costs (termed switch costs herein), but found 
evidence for age-related declines in global task-shi�ing costs (termed mixing costs herein). Verhaeghen suggested 
that mixing costs re�ect a dual-task cost, with dual-tasks a�ecting older adults  more62. �us, it is important for 
studies examining e�ects of cognitive decline in older age to account for age-related changes in response speed, 
to be sure that e�ects re�ect true changes in executive capacities rather than more general slowing in response 
latencies.

In addition to age, several factors have been linked to cognitive decline, including genetics, health status, 
physical activity, socio-economic status (SES), IQ, and physical �tness (e.g.,63–68). Childhood SES has been con-
sistently associated with  EF56,69–71, with lower SES predicting poorer performance on tasks of EF in  childhood72. 
Less is known about the link between adult SES and  EF73. IQ is another factor that has been associated with EF, 
particularly with working  memory74. IQ and EFs are dissociable yet related in  childhood75, with evidence that 
inhibitory control and cognitive �exibility are related to IQ during  childhood76. In adolescence, working memory 
is highly correlated with IQ, but inhibition and cognitive �exibility are  not54. In older adults, IQ has been shown 
to be related to working memory, verbal �uency, inhibition, and cognitive  �exibility77. Given that IQ and SES 
are related to EF abilities, the current study controlled for these factors in analysis, allowing us to assess the role 
of age in predicting di�erences in EFs, beyond e�ects of IQ and SES.
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EFs play a critical role in everyday life, allowing individuals to plan ahead, focus their attention, and switch 
between di�erent tasks. �ey play a key role in allowing individuals to maintain e�ective levels of independent 
functioning, and better EF abilities have been associated with improved self-reported quality of life in older 
 age1,78. Further, de�cits in EF abilities have been associated with issues with  obesity79, social  problems80,81, and 
lower levels of  productivity82. It is therefore important to further our understanding of how these EF abilities 
continue to change and di�er across the lifespan—contributing to our understanding of age-related cognitive 
changes—which ultimately may be able to provide insight into the optimum age at which cognitive training 
interventions could be utilized to help maintain real-world functioning across individuals.

�e current study investigated how multiple components of EF di�er across the lifespan, in a large, commu-
nity-based sample of 350 10- to 86-year-olds, allowing di�erences across adolescence, early adulthood, middle 
adulthood, and older adulthood to be examined within one study. �e study focussed on four components of EF: 
planning, inhibition (also termed inhibitory control and response inhibition), working memory, and cognitive 
�exibility (also called set shi�ing or mental �exibility). It is largely accepted that inhibitory control, working 
memory, and cognitive �exibility form the core components of EF abilities, re�ecting largely (but not entirely) 
separable  processes83. In the current study we also included a more complex aspect of EF, planning abilities. �e 
ability to plan is a complex executive  skill94,102 that plays an important role in daily living, such as the ability to 
identify a goal and subsequently planning and executing the steps needed to attain that  goal72,83. It is noted that 
planning abilities themselves, whilst considered an aspect of EF, may require activation of other EFs, including 
inhibitory control and working memory in order to produce successful  outcomes72,83. Given this, the inclusion 
of a measure of planning abilities in the current study allowed further insight into how planning capacities may 
change across the lifespan, and whether we are able to establish a relationship between ‘core’ EF abilities and 
planning capacities within this lifespan sample.

�e aim of this study was to explore the developmental trajectories of these four components of EF, to identify 
when age-related di�erences emerge. A cross-sectional design was utilized, to provide insight into di�erences 
that can be established across di�erent age cohorts in task performance; importantly, to address our research 
question, we selected tasks that were appropriate for all participants from 10 to 86 years of age, allowing direct 
comparisons in task performance to be made across di�erent ages. We used curvilinear regression modelling to 
establish the shape and trajectory of change across ages for each EF. Due to research suggesting that some com-
ponents of EF may be related to IQ and SES, we also controlled for the e�ects of IQ and socio-economic status.

We predicted, �rstly, that these components of EF would continue to develop throughout adolescence, indi-
cated by an improvement in performance across tasks up to ~ 30 years of age. Second, we predicted that there 
would be age-related declines in EF from ~ 50 years of age  onwards43. �ird, we explored whether this decline in 
EFs would start earlier in adulthood (i.e. between 30 and 50 years of age). We did not stipulate speci�c predic-
tions in this middle age range due to the dearth of research in adulthood. Instead, we modelled and tested the �t 
of linear, quadratic and cubic age relationships for each component of EF. Note that each statistical model can 
represent multiple patterns/directions of e�ects, however we de�ne our predictions for the linear, quadratic and 
cubic �t models used here based on existing research on cognitive development and decline with age. We posited 
that a predicted linear age relationship would indicate either an improvement or decline in EF from adolescence 
to older age. We predicted that a quadratic age relationship would indicate a developmental improvement in EF 
in adolescence through to young adulthood, and a decline in EF throughout adulthood. A predicted cubic age 
relationship would indicate a developmental improvement in EF in adolescence through to young adulthood, 
a decline in EF across adulthood, and a further steeper decline in EF in older age. Finally, in line with previous 
research (e.g.,84) we predicted that the di�erent aspects of cognitive �exibility would should show distinct e�ects: 
we predicted that switching costs (i.e., changing task sets) would not show any age-related changes, but mixing 
costs (i.e., maintaining multiple task sets) would show an increase across adulthood (e.g.,84, 85).

Materials and method
Participants. �e sample consisted of 354 participants who were recruited from the community, via news-
paper/radio adverts, social media, and an institutional research participation database, as part of the CogSo-
CoAGE project. Two participants were excluded due to low IQ (< 70), one participant was excluded due to 
being a non-native English speaker, and one participant’s data was lost due to computer failure. �e �nal sample 
consisted of 350 participants (10–86  years-old; 232 females, 118 males). Table  1 provides a summary of the 
sample and Table 2 details the demographic characteristics of the CogSoCoAGE sample, each divided into �ve 
age groups for illustrative purposes. All participants were native English-speakers, had normal or corrected-to-
normal vision, had no known neurological disorders, and had no mental health or autism spectrum disorder 
diagnoses. �e Ethical Committee of the School of Psychology, University of Kent, approved the study, and all 
methods were carried out in accordance with EU guidelines and regulations. Informed consent was obtained 
from all participants; for participants under 18 years of age, consent was additionally sought from a parent or 
legal guardian.

Measures. Socio-economic status. Participants (if aged over 18) and parents of participants (if aged under 
18) reported on their level of education, the household income, and their occupation (job title and industry). Oc-
cupational class was coded using the derivation tables provided by the O�ce for National  Statistics116 using the 
simpli�ed National Statistics Socio-Economic Classi�cation (NS-SEC) based on Standard Occupational Clas-
si�cation 2010 (SOC2010). To calculate an SES index, education level was coded on a scale 1–6, and household 
income and occupational class were coded on a scale 1–7. �ese three scores were summed to derive an SES 
index between 3 and  2086, with lower scores indicating lower SES. In our sample, scores ranged from 5 to 20.
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Table 1.  Summary of the CogSoCoAGE sample.

All (10–86 years old)
Adolescents (10–
17 years old)

Young adults 
(18–29 years old) Adults (30–49 years old)

Middle-aged adults 
(50–64 years old)

Older adults 
(65–86 years old)

N 350 62 60 76 74 78

Age (years)

Mean (SD) 43.22 (22.14) 13.34 (2.39) 22.63 (3.59) 40.00 (5.62) 57.19 (4.28) 72.71 (5.64)

Gender

F:M ratio 232:118 29:33 39:21 62:14 53:21 49:29

IQ

Verbal IQ 109.65 (12.38) 105.74 (10.07) 108.13 (11.06) 103.05 (9.82) 109.86 (11.50) 120.14 (11.52)

Performance IQ 108.48 (12.92) 107.27 (13.47) 104.70 (12.18) 105.45 (11.57) 110.18 (13.12) 120.66 (11.30)

Full scale IQ 110.35 (12.19) 107.35 (11.07) 107.45 (10.75) 104.70 (9.81) 110.18 (11.83) 120.65 (10.43)

SES index

Mean (SD) 13.74 (3.70) 14.79 (3.41) 11.18 (3.82) 14.56 (3.78) 13.91 (3.35) 13.91 (3.22)

Table 2.  Demographic characteristics of the CogSoCoAGE sample.

Characteristic (N (%)) All Adolescents Young adults Adults Middle-aged adults Older adults

Ethnicity

White 316 (90.3) 52 (83.9) 46 (76.6) 71 (93.4) 70 (94.6) 77 (98.7)

Mixed/multiple ethnic groups 13 (3.7) 7 (11.3) 3 (5.0) 1 (1.3) 2 (2.7) 0

Asian/British Asian 8 (2.3) 0 5 (8.3) 3 (4.0) 0 0

Black/African/Caribbean/Black British 3 (0.9) 0 2 (3.3) 1 (1.3) 0 0

Other ethnic group 3 (0.9) 0 1 (1.7) 0 1 (1.4) 1 (1.3)

Not stated 7 (2.0) 3 (4.8) 3 (5.0) 0 1 (1.4) 0

Education

GCSEs 35 (10.0) 7 (11.3) 1 (1.7) 9 (11.8) 10 (13.5) 8 (10.3)

A-Levels 60 (17.1) 10 (16.1) 32 (53.3) 6 (7.9) 8 (10.8) 4 (5.1)

Undergraduate degree 91 (26.0) 14 (22.6) 19 (31.7) 18 (23.7) 18 (24.3) 22 (28.2)

Postgraduate degree 90 (25.7) 16 (25.8) 5 (8.3) 25 (32.9) 21 (28.4) 23 (29.5)

Other 64 (18.3) 12 (19.4) 1 (1.7) 17 (22.4) 15 (20.3) 19 (24.4)

No quali�cations 2 (0.6) 0 0 1 (1.3) 0 1 (1.3)

Not stated 8 (2.3) 3 (4.8) 2 (3.3) 0 0 1 (1.3)

Household income

< £9999 28 (8.0) 3 (4.84) 10 (16.67) 3 (3.95) 5 (6.76) 7 (8.97)

£10,000–£19,999 44 (12.3) 2 (3.23) 7 (11.67) 9 (11.84) 8 (10.81) 17 (21.79)

£20,000–£29,000 49 (14.0) 6 (9.68) 7 (11.67) 6 (7.89) 15 (20.27) 15 (19.23)

£30,000–£39,000 52 (14.8) 2 (3.23) 7 (11.67) 12 (15.79) 15 (20.27) 16 (20.51)

£40,000–£49,000 56 (16.0) 15 (24.19) 7 (11.67) 11 (14.47) 10 (13.51) 13 (16.67)

£50,000–£69,999 56 (16.0) 16 (25.81) 7 (11.67) 18 (23.68) 11 (14.86) 4 (5.13)

£70,000+ 49 (14.0) 13 (20.97) 9 (15.00) 16 (21.05) 7 (9.46) 4 (5.13)

Not stated 17 (4.9) 5 (8.06) 6 (10.00) 1 (1.32) 3 (4.05) 2 (2.56)

Occupational class

Higher managerial, administrative and 
professional

55 (15.7) 9 (14.52) 1 (1.67) 11 (14.47) 13 (17.57) 21 (26.92)

Lower managerial, administrative and 
professional

124 (35.4) 21 (33.87) 8 (13.33) 31 (40.79) 30 (40.54) 34 (43.59)

Intermediate occupations 76 (21.7) 21 (33.87) 5 (8.33) 19 (25.00) 16 (21.62) 15 (19.23)

Small employers and own account 
workers

9 (2.6) 0 2 (3.33) 2 (2.63) 2 (2.70) 3 (3.85)

Lower supervisory and technical 
occupations

4 (1.2) 1 (1.61) 1 (1.67) 1 (1.32) 1 (1.35) 0

Semi-routine occupations 38 (10.9) 7 (11.29) 7 (11.67) 10 (13.16) 9 (12.16) 5 (6.41)

Routine occupations 12 (3.4) 0 11 (18.33) 1 (1.32) 0 0

Never worked and long-term unem-
ployed

0 0 0 0 0 0

Full-time student 21 (6.0) 0 19 (31.67) 1 (1.32) 1 (1.35) 0

Not stated 11 (3.1) 3 (4.84) 6 (10.00) 0 2 (2.70) 0
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IQ. Intellectual ability was assessed using the Wechsler Abbreviated Scale of Intelligence-Second Edition 
(WASI;87). �e WASI-II comprises of four subtests as a measure of intelligence for individuals aged 6–90 years 
old. �e Vocabulary and Similarities subtests estimated a verbal IQ score. �e Block Design and Matrix Reason-
ing subtests estimated a performance IQ score. Full-scale IQ comprised of both verbal and performance IQ.

Stroop colour-word task. A modi�ed version of a standard Stroop Colour-Word  task88 was used as a measure 
of inhibition. �e words were printed in red, green, blue, or yellow for all trials and were printed on a grey 
background. �e words used in both congruent and incongruent trials were “RED”, “GREEN”, “BLUE”, and 
“YELLOW”. For congruent trials, the colour word matched the printed colour (i.e., “RED” printed in red). For 
incongruent trials, the colour word did not match the printed colour (i.e., “RED” printed in green). For �ller 
trials, the non-colour words were matched for length and frequency to the colour words. �e �ller words used 
were “TAX”, “CHIEF”, “MEET”, and “PLENTY”. �e word stimuli were presented in the middle of the screen in 
font type Courier New and font size 28. See Fig. 1 for example stimuli.

Participants �rst completed 20 practice trials, which consisted of ten �ller and ten congruent trials in a 
pseudo-randomised order. Participants were told that they would see a word and they were instructed to iden-
tify the colour of the word as fast as possible using a button-box (i.e., RED printed in green; participants press 
‘green’ button). �e experimental trials consisted of 50 congruent trials, 50 incongruent trials, and 50 �ller trials 
presented in a pseudo-randomised order, in which the same colour word, the same printed colour, or the same 
colour word/printed colour could not appear on two consecutive trials to avoid priming e�ects. A blank screen 
appeared for 1000 ms at the start of the experimental trials. A�er the participant made a response, the next trial 
was started immediately.

Response times for �ller, congruent and incongruent trials were calculated for accurate responses that were 
made 200 ms a�er stimuli onset and were within 2.5 SDs of each participant’s overall trial mean. �e dependent 
variable was the Stroop congruency e�ect (incongruent trial mean RT minus congruent trial mean RT). In addi-
tion, we accounted for age-related slowing and declines in information processing speed, which led to positive 
skew and high kurtosis in reaction times, by log-transforming reaction times for each trial before calculating the 
Stroop congruency e�ect. �e log-transformation of the Stroop congruency e�ect reduced skew and kurtosis 
(untransformed skew = 1.84, kurtosis = 8.84; log-transformed skew = 0.69, kurtosis = 3.44). �e log-transformed 
Stroop congruency e�ects were reverse scored so that a higher score indicated better performance to aid inter-
pretation of results alongside other measures. Internal consistency was excellent (Cronbach’s alpha = 0.99) and 
the average inter-item correlation was ideal (r = 0.53).

Operation span. �is task was adapted from Unsworth et al.’s89 automated operation span task (OSpan) as a 
measure of working memory, which was based on the original OSpan task by Turner and  Engle90. Participants 
were required to solve maths equations while remembering a sequence of letters. �e letters used were F, H, J, K, 
L, N, P, Q, R, S, T, and Y. See Fig. 1 for example stimuli.

�ere were three practice blocks. �e �rst practice block was a simple letter span. A single letter appeared in 
the middle of the screen for 800 ms. A two-letter span was used for two trials, and a three-letter span was used 
for a further two trials. At recall, participants were required to recall the letter sequence in the correct order by 
clicking a box next to the appropriate letter presented in a 4 × 3 matrix. A�er clicking a box, a number appeared 
that represented the position of the letter in the sequence. A ‘blank’ box was also presented and participants were 
told to click this box if they could not remember the letter in the sequence. Participants could also click a ‘clear’ 
box to clear responses. �e letters clicked also appeared at the bottom of the screen. To �nish the letter recall 
stage, participants clicked a box labelled ‘enter’. �is recall phase was untimed. A�er the recall phase, participants 
were given feedback about how many letters they recalled correctly.

�e second practice block introduced the maths equations. A maths equation was presented on screen (e.g., 
(2 × 1) + 1 = 3) along with a ‘correct’ box and an ‘incorrect’ box. Participants were required to identify whether 
the maths equation was correct or incorrect by clicking the appropriate box. Accuracy feedback was given. �ere 
were three trials in this second practice block.

In the last practice block, participants completed both the maths section and letter recall section together. 
�e maths equation was presented �rst, and once participants had responded to the problem, a letter to be 
recalled appeared in the middle of the screen for 800 ms. �is equation-letter sequence was repeated twice to 
create a two-letter span in this �nal practice block. �e letter recall screen with the 4 × 3 letter matrix was then 
presented. Participants completed three full practice trials, and were given feedback on how many letters they 
recalled correctly and how many errors they made on the maths problems.

�e experimental trials consisted of three trials for each of 2 to 7 letter spans (randomised). �is made a total 
of 18 trials with 81 maths problems and 81 letters. Participants were encouraged to keep their maths accuracy 
at or above 85% at all times. During recall, a percentage in red was presented in the upper right-hand corner of 
the screen, indicating the percentage accuracy for the maths problems.

An absolute OSpan score was calculated as the sum of all perfectly recalled sets. A partial OSpan score was 
also calculated as the total number of letters recalled in the correct position. �e absolute and partial OSpan 
scores were highly correlated (r = 0.92, p < 0.001) and due to the recommendations of Unsworth et al.89, the partial 
OSpan score was used as the dependent variable. Internal consistency was good (Cronbach’s alpha = 0.85) and 
the average inter-item correlation was ideal (r = 0.25).

Task switching. �e task was  adapted91,92 as a measure of cognitive �exibility. Participants were presented with a 
2 × 2 matrix on a computer screen. Stimuli were presented one-by-one in the four quadrants of the screen, begin-
ning in the upper-le� quadrant and rotating in a clockwise manner. �e stimuli were coloured-shapes (circle/



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1382  | https://doi.org/10.1038/s41598-020-80866-1

www.nature.com/scientificreports/

triangle, in blue/yellow) that appeared in the quadrant. See Fig. 1 for example stimuli. �e same shape/colour 
combination did not appear on consecutive trials (i.e., a blue triangle could not appear in consecutive trials). 
Participants’ task was to decide whether the shape was a circle or a triangle, and whether the colour was blue 

Figure 1.  Illustrations of the stimuli and procedure employed in each of the four EF tasks: (A) Stroop colour-
word task; (B) operation span; (C) task switching; (D) Tower of Hanoi.
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or yellow, dependent on trial-type (see descriptions below). Participants used a button box to respond, pressing 
the le�-hand button for circle/blue and the right-hand button for triangle/yellow. Participants were instructed 
to respond as fast and as accurately as possible. �e next stimulus was presented 150 ms a�er a key press or a�er 
a timeout of 5000 ms. Participants received feedback about their accuracy a�er practice trials and repeated the 
practice block if their accuracy was less than 80%.

In the single-task, there were 16 practice trials and 32 experimental trials per block. Participants had to 
identify whether the shape was a circle or a triangle in one block, and whether the colour was blue or yellow in 
a second block (single-task trials).

In the mixed-task, there were 16 practice trials, and four blocks of 32 experimental trials. Participants had to 
indicate whether the shape was a circle or a triangle when the coloured-shape appeared in the top two quadrants, 
and whether the colour was blue or yellow if the coloured-shape appeared in the bottom two quadrants. Catego-
rising the coloured-shape in the upper le� to upper right quadrant, or in the lower right to lower le� quadrant 
did not require switching to a new category (i.e., non-switch trials). However, categorising the coloured-shape 
in the upper right to lower right quadrant, or in the lower le� to upper le� quadrant required switching to a 
new category (from shape to colours, and vice versa, i.e., switch trials). Switch and non-switch trials alternated 
predictably within these blocks.

Response times were calculated for accurate responses that were made 200 ms a�er stimuli onset, and were 
within 2.5 SDs of each participant’s overall trial mean. A switch cost of task-set switching was calculated by 
subtracting the mean response time for non-switch trials from the mean response time for switch trials in the 
mixed-task. A mixing cost (indicating maintenance of two task-sets) was calculated by subtracting the mean 
single-task trial response time from the mean non-switch response time in the mixed-task. To account for age-
related slowing and declines in information processing speed, trial level response times were log-transformed 
before calculating a switch cost and mixing cost. �e log-transformation reduced skew and kurtosis for switch 
cost (untransformed skew = 0.47, kurtosis = 3.25; log-transformed skew = 0.17, kurtosis = 2.54) and mixing cost 
(untransformed skew = 0.91, kurtosis = 3.39; log-transformed skew = 0.41, kurtosis = 2.83). �e log-transformed 
switch and mixing costs were reverse scored so that a higher score indicated better performance. Internal con-
sistency was excellent for both the single and mixed-task (both Cronbach’s alpha = 0.98). �e average inter-item 
correlation for the single-task (r = 0.49) and for the mixed-task (r = 0.34) was ideal.

Tower of Hanoi. �e Tower of Hanoi was used as a measure of planning (based on script obtained from: https:// 
step. talkb ank. org/ scrip ts- plus/ TOHx. zip). �e Tower of Hanoi required the mouse-controlled movement of 
di�erent-sized disks across three pegs from an initial state to a target state in a pre-de�ned number of steps. 
Participants were presented with three pegs (le�, centre, right) and four disks; pink, yellow, blue and green, in 
increasing size. �e target state was shown on the top-centre of the screen and was smaller than the initial state 
con�guration. �e initial state was presented on the bottom-centre of the screen. �e number of steps remaining 
was shown in the centre of the screen. Participants were told that they needed to move the disks from their cur-
rent positions on the bottom of the screen to match the target state in the given number of steps without placing 
larger disks on top of smaller disks. See Fig. 1 for example stimuli.

Participants �rst completed three practice trials: one one-step and two two-step problems. Participants con-
tinued to 16 experimental trials, which took three- to ten-steps to complete, with two trials at each step. Before 
the start of each trial, participants were told how many steps were required to complete each trial. During the 
trials, participants clicked on the disk that they wanted to move and this disk then turned red. �e participant 
then clicked on the rod that they wanted to move the disk to. If the incorrect rod was selected, then an error 
message was shown and the participant restarted that trial. If the participant made �ve incorrect movements in 
a row then the task automatically ended. If the correct disk and rod were selected, then the selected disk moved 
to the selected rod and the participant moved on to the next step.

�e dependent variable was an overall Tower of Hanoi score that used the traditional absolute scoring method, 
and was the sum of all perfectly completed trials (i.e., score of 5 for a trial with 5 steps completed perfectly with 
no errors). Internal consistency was acceptable (Cronbach’s alpha = 0.80) and the average inter-item correlation 
was ideal (r = 0.20).

Procedure. Participants attended one or two visits to the university to complete the 5  h testing session, 
which included questionnaires on behaviour and demographic information, computer-based testing to assess 
cognitive and social skills, and an IQ assessment. �e order of tasks was counterbalanced over 12 di�erent lists 
to ensure that order e�ects were minimised. All tasks reported here were programmed using E-Prime so�ware.

Results
Analyses were conducted in R version 3.6.0. �e datasets and code are available on the Open Science Frame-
work (https:// osf. io/ qzrwu). Descriptive data on the EF measures are summarised in Table 3, alongside the total 
number of participants retained per task. For the Stroop task, two participants did not complete the task due to 
equipment failure and one participant was colour-blind. For the Operation Span, one participant did not com-
plete the task due to equipment failure, 3 participants did not return for their second testing session to complete 
the task, and 12 participants declined to complete the task or withdrew. For Task Switching, two participants did 
not complete the task due to equipment failure, 3 participants did not return for their second testing session to 
complete the task, 10 participants declined to complete the task or withdrew, and two participants’ data was lost 
due to computer error. For the Tower of Hanoi, two participants did not return for their second testing session 
to complete the task.

https://step.talkbank.org/scripts-plus/TOHx.zip
https://step.talkbank.org/scripts-plus/TOHx.zip
https://osf.io/qzrwu
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Age-related effects on executive function. A series of regression models were conducted to investigate 
the relationship between the measures of EF and age, over and above any potential e�ects of IQ and SES. �e 
models speci�ed the outcome variable as the dependent measure for the speci�c EF measure, the �rst predictor 
variable was age using linear, quadratic or cubic orthogonal polynomial coe�cients, and IQ and SES index were 
included as the second and third predictor variables. Note that quadratic models included both linear and quad-
ratic age coe�cients, and cubic models included linear, quadratic and cubic age coe�cients.

�e best �tting model for each EF measure was deduced by comparing several goodness-of-�t indices shown 
in Table 4. Established goodness-of-�t measures were used to evaluate model �t. �e ANOVA test and likelihood 
test contrasted the simpler model against the more complex model (e.g., the model with linear vs. quadratic age 
coe�cients). If the p value was greater than 0.05, then the simpler model was selected as the best �tting model. 
If the p value was less than 0.05, then the more complex model was selected as the best �tting model. Model 
comparison also used Akaike’s Information Criterion (AIC) and Bayesian Information Criteria (BIC), with 
increasingly negative values corresponding to increasingly better �tting models. Model selection evaluated these 
goodness-of-�t indices and the model (linear, quadratic, or cubic model) with the greatest number of goodness-
of-�t indices was selected as the overall best �tting model (see Table 4). �e model predictions for the overall best 
�tting models for each EF are plotted in Fig. 2 with the observed data. Analyses for the untransformed variables 
are reported in Supplementary Materials (S1, S2).

�e best �tting model for the log-transformed congruency e�ect in the Stroop task included linear and 
quadratic age coe�cients. �e results of the model indicated that there was a signi�cant association between 
the Stroop congruency e�ect and age, IQ, and SES  (R2 = 0.14, F(4, 335) = 13.46, p < 0.001). Age was signi�cantly 
associated with the Stroop congruency e�ect (linear β = − 0.27, p < 0.001; quadratic β = − 0.28, p < 0.001). To 
interpret the curvilinear relationship between the Stroop congruency e�ect and age, we consider the model 
predictions displayed in Fig. 2A. Figure 2A indicates that there is some increase in the Stroop congruency e�ect 
between 10 and 35 years of age (i.e., an improvement in inhibitory control) and a decrease in the Stroop congru-
ency e�ect from 36 to 86 years of age (i.e., a decline in inhibitory control). IQ was also signi�cantly associated 
with the Stroop congruency e�ect (β = 0.20, p < 0.001), but SES was not (β = 0.09, p = 0.106). �e model remained 
signi�cant when IQ and SES covariates were removed (quadratic  R2 = 0.09, F(2, 344) = 17.27, p < 0.001), showing 
that age was signi�cantly associated with the Stroop congruency e�ect in our sample (linear β = − 0.19, p < 0.001; 
quadratic β = − 0.27, p < 0.001).

�e best �tting model for the OSpan partial score included linear and quadratic age coe�cients. �e results 
of the model indicated that there was a signi�cant association between the OSpan partial score and age, IQ, and 
SES  (R2 = 0.28, F(4, 322) = 32.59, p < 0.001). Age was signi�cantly associated with the OSpan partial score (linear 
β = − 0.48, p < 0.001; quadratic β = − 0.30, p < 0.001). To interpret the curvilinear relationship between the OSpan 
partial score and age, we consider the model predictions displayed in Fig. 2B. Figure 2B indicates that there is 
some increase in the OSpan scores from 10 to 30 years of age (i.e., an improvement in working memory capacity), 
and a decrease from 30 onwards (i.e., a decline in working memory capacity). IQ was also signi�cantly associated 
with the OSpan partial score (β = 0.44, p < 0.001), but SES was not (β = 0.004, p = 0.930). �e model remained 
signi�cant when IQ and SES covariates were removed (quadratic  R2 = 0.11, F(2, 331) = 20.78, p < 0.001), show-
ing that age was signi�cantly associated with the OSpan partial score in our sample (linear β = − 0.27, p < 0.001; 
quadratic β = − 0.22, p < 0.001).

Table 3.  Descriptive statistics for the executive function measures, showing means and standard deviations in 
parentheses, divided into �ve age groups for illustrative purposes. a Log transformed response times.

Executive function 
measure N All Adolescents Young adults Adults Middle-aged adults Older adults

Stroop task (inhibitory control)a

Filler words RT (log ms) 347 6.89 (.21) 6.88 (.18) 6.72 (.13) 6.81 (.17) 6.93 (.15) 7.07 (.21)

Congruent words RT 
(log ms)

347 6.86 (.22) 6.84 (.18) 6.67 (.15) 6.79 (.18) 6.92 (.16) 7.05 (.21)

Incongruent words RT 
(log ms)

347 7.01 (.25) 6.98 (.21) 6.81 (.17) 6.91 (.21) 7.06 (.17) 7.24 (.23)

Congruency e�ect (log ms) 347 − .14 (.09) − .14 (.09) − .14 (.08) − .13 (.07) − .14 (.08) − .19 (.11)

Operation span (working memory)

Absolute score 334 44.60 (18.82) 47.39 (18.11) 52.67 (17.67) 46.85 (16.84) 42.77 (18.43) 35.68 (18.97)

Partial score 334 61.77 (13.82) 64.52 (11.02) 67.51 (9.89) 64.38 (11.37) 59.84 (14.04) 54.47 (16.48)

Task switching (cognitive �exibility)a

Single-task trials (log ms) 333 6.42 (.21) 6.38 (.20) 6.27 (.18) 6.36 (.18) 6.49 (.17) 6.59 (.18)

Non-switch trials (log ms) 333 6.88 (.30) 6.77 (.25) 6.64 (.22) 6.84 (.30) 6.99 (.27) 7.10 (.23)

Switch trials (log ms) 333 7.21 (.25) 7.16 (.22) 7.02 (.20) 7.18 (.25) 7.26 (.24) 7.40 (.18)

Switch cost (log ms) 333 − .35 (.16) − .38 (.16) − .38 (.18) − .34 (.15) − .27 (.16) − .30 (.17)

Mixing cost (log ms) 333 − .41 (.22) − .39 (.20) − .37 (.21) − .48 (.24) − .50 (.26) − .51 (.22)

Tower of Hanoi (planning)

Absolute score 348 49.97 (25.82) 40.16 (20.06) 56.74 (26.53) 55.16 (25.76) 47.90 (25.56) 49.29 (27.37)
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�e best �tting model for the Task Switching switch cost included the linear age coe�cient. �e results of 
the model indicated that there was a signi�cant association between the Task Switching switch cost and age, IQ, 
and SES  (R2 = 0.05, F(3, 323) = 5.19, p = 0.002). Age was signi�cantly associated with the log-transformed switch 
cost (linear β = 0.20, p < 0.001), indicating a decrease in switch cost from 10 to 86 years old (i.e., an improve-
ment in cognitive �exibility in terms of ‘switch cost’; Fig. 2D). IQ and SES were not signi�cantly associated with 
switch cost (both ps > 0.134). �e model remained signi�cant when IQ and SES covariates were removed (linear 
 R2 = 0.04, F(1, 331) = 14.81, p < 0.001), showing that age was signi�cantly associated with the Task Switching 
switch cost in our sample (linear β = 0.21, p < 0.001).

�e best �tting model for the Task Switching mixing cost included the linear age coe�cient. �e results of the 
model indicated that there was a signi�cant association between the Task Switching mixing cost and age, IQ, and 
SES  (R2 = 0.07, F(3, 323) = 8.24, p < 0.001). Age was signi�cantly associated with the log-transformed switch cost 
(linear β = − 0.26, p < 0.001), indicating an increase in mixing cost from 10 to 86 years old (i.e., a decline in cogni-
tive �exibility in terms of ‘mixing cost’; Fig. 2E). IQ and SES were not signi�cantly associated with switch cost 
(both ps > 0.103). �e model remained signi�cant when IQ and SES covariates were removed (linear  R2 = 0.07, 
F(1, 331) = 23.86, p < 0.001), showing that age was signi�cantly associated with the Task Switching mixing cost 
in our sample (linear (β = − 0.26, p < 0.001).

�e best �tting model for the Tower of Hanoi absolute score included linear, quadratic, and cubic age coef-
�cients. �e results of the model indicated that there was a signi�cant association between the Tower of Hanoi 
absolute score and age, IQ, and SES  (R2 = 0.20, F(5, 336) = 17.00, p < 0.001). Age was signi�cantly associated with 
Tower of Hanoi absolute score (linear β = − 0.15, p = 0.004; quadratic β = − 0.25, p < 0.001; cubic β = 0.21, p < 0.001). 
To interpret the curvilinear relationship between the Tower of Hanoi absolute score and age, we consider the 
model predictions displayed in Fig. 2C. Figure 2C indicates that there is an initial increase in Tower of Hanoi 
absolute scores from 10 to 30 years of age (i.e., an increase in planning ability), a decrease from 30 to 70 years 
of age (i.e., a decrease in planning ability), and a small, but variable, increase from 70 years of age onwards. IQ 
was also signi�cantly associated with the Tower of Hanoi absolute score (β = 0.43, p < 0.001), but SES was not 
(β = 0.005, p = 0.921). �e model remained signi�cant when IQ and SES covariates were removed (cubic  R2 = 0.05, 
F(3, 344) = 6.65, p < 0.001), showing that age was signi�cantly associated with the Tower of Hanoi absolute score 
in our sample (linear β = − 0.41, p = 0.002; quadratic β = − 0.25, p < 0.001; cubic β = 0.26, p < 0.001).

Relationships between measures of executive functions. A series of Pearson’s correlations were 
conducted between the four EF tasks to investigate the relationship between the measures of EF (Table 5). Partial 
correlations were also conducted to control for the e�ects of age. �ese e�ects of age for each EF measure were 

Table 4.  Goodness-of-�t indices for the executive function models with age as the predictor variable (with 
linear, quadratic, or cubic age coe�cients) for each outcome variable. Bold values indicate best �tting model 
according to goodness-of-�t index; RSS = residual sum of squares; FΔ denotes the comparison of models (i.e., 
linear vs. quadratic); − 2LL = log-likelihood. a Overall best-�tting model taking all goodness-of-�t indices into 
consideration.

Model

Model �t indices

ANOVA Likelihood test

AIC BICRSS FΔ p − 2LL χ2 p

Stroop task (congruency e�ect)

Linear 318.98 – – − 471.59 – – 953.18 972.32

Quadratica 294.93 27.31  < 0.001 − 458.26 26.65 < 0.001 928.53 951.50

Cubic 294.93 0.00 0.990 − 458.26 0.00 0.990 930.53 957.33

Operation span (partial score)

Linear 251.50 – – − 421.07 – – 852.14 871.09

Quadratica 225.71 36.79 < 0.001 − 403.38 35.38 < 0.001 818.76 841.50

Cubic 224.20 2.15 0.143 − 402.29 2.19 0.139 818.57 845.10

Task switching (switch cost)

Lineara 304.29 – – − 452.22 – – 914.45 933.40

Quadratic 302.82 1.56 0.213 − 451.43 1.58 0.209 914.87 937.61

Cubic 299.85 3.19 0.075 − 449.82 3.23 0.0722 913.64 940.17

Task switching (mixing cost)

Lineara 295.83 – – − 447.62 – – 905.23 924.18

Quadratic 294.43 1.53 0.216 − 446.84 1.55 0.213 905.68 928.42

Cubic 293.45 1.07 0.301 − 446.30 1.09 0.296 906.59 933.12

Tower of Hanoi (score)

Linear 308.21 – − 467.49 – – 944.97 964.15

Quadratic 289.21 22.14 < 0.001 − 456.61 21.76 < 0.001 925.21 948.22

Cubica 273.74 18.99 < 0.001 − 447.20 18.80 < 0.001 908.41 935.25
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determined from the previously described regression models, i.e., the EF measures were adjusted for the linear, 
quadratic or cubic age e�ects. To adjust for age, the residuals were obtained from the regression line �t when 
�tting each EF measure as a dependent variable in a linear model and age coe�cients (linear, quadratic, or cubic 
age coe�cients) as predictor variables.

�e OSpan partial score showed a positive correlation with both the Stroop congruency e�ect and the Tower 
of Hanoi score, with only a relationship with the Tower of Hanoi score remaining once accounting for the e�ects 
of age. �ese �ndings suggest that individuals with a higher working memory capacity also possess better plan-
ning ability, and these relationships are present irrespective of any age e�ects. Finally, Task Switching switch 
and mixing costs showed a negative correlation, re�ecting that individuals with a greater switch cost also had a 
smaller mixing cost, and vice versa, and this pattern remained when accounting for the e�ect of age.

Figure 2.  Relationship between age and executive function measures, adjusted for IQ and SES index. (A) log-
transformed Stroop congruency e�ect, (B) OSpan partial score, (C) Tower of Hanoi score, (D) log-transformed 
Task Switching switch cost; and (E) log-transformed Task Switching mixing cost. �e bold line indicates the 
best-�tting regression line and the dashed line indicates the 95% con�dence intervals (CIs). Stroop congruency 
e�ect and Task Switching switch and mixing costs are reversed scored so that a higher value indicates better 
performance and all variables are z-scored for ease of comparison. Note: All measures were adjusted for IQ and 
SES to be comparable to the described regression models. To adjust for IQ and SES, the residuals were obtained 
from the regression line �t when �tting each executive function measure as a dependent variable in a linear 
model and IQ and SES index as predictor variables.

Table 5.  Correlation matrix of the executive function measures of interest (partial correlation coe�cients 
controlling for the e�ects of age are presented in parentheses). *p < .05, **p < .01, ***p < .001. a Response time 
measures log-transformed and reverse scored.

Measure 1 2 3 4 5

1. Stroop congruency  e�ecta (inhibitory control) –

2. Operation span partial score (working memory) 0.18** (0.09) –

3. Task switching switch  costa (cognitive �exibility) 0.06 (0.08) − 0.06 (− 0.02) –

4. Task switching mixing  costa (cognitive �exibility) 0.02 (− 0.01) 0.12 (0.07) − 0.46*** (− 0.43***) –

5. Tower of Hanoi Score (planning) 0.09 (0.07) 0.30*** (0.29***) 0.02 (0.03) 0.00 (0.01) –
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Comparing developmental trajectories of executive function. To examine whether each compo-
nent of EF followed comparable or distinct developmental trajectories, we conducted across model comparisons 
for the age-related e�ects in the di�erent EFs. �is statistical method allows us to compare EF regression models 
with the same number of predictor variables, allowing direct comparisons between trajectories across these 
tasks. In our data, Task Switching switch and mixing cost models have three predictors (i.e., linear age coe�cient, 
plus IQ and SES), Stroop congruency e�ect and OSpan partial score models have four predictors (i.e., linear and 
quadratic age coe�cients, plus IQ and SES), and the Tower of Hanoi absolute score model has �ve predictors 
(i.e., linear, quadratic, and cubic age coe�cients, plus IQ and SES). �erefore, Task Switching switch cost and 
mixing cost and Tower of Hanoi absolute score revealed di�erent age-related e�ects (i.e., linear-only age e�ects 
vs. cubic age e�ect) and so were not directly compared with any other component of EF; analysis focused on the 
Stroop congruency e�ect versus OSpan partial scores.

Stroop congruency e�ect and OSpan partial score revealed similar curvature in the previous regression 
models (i.e., a quadratic e�ect of age), and so were directly compared. Two regression models were conducted 
and compared to statistically assess whether the age-related e�ects in the Stroop task and OSpan were signi�-
cantly di�erent. In the �rst step, a model was conducted that speci�ed the outcome variable as the z-scores for 
the Stroop congruency e�ect and the OSpan partial score, with the predictor variable as the linear and quadratic 
age coe�cients. In the second step, the same model was speci�ed with the addition of an interaction term that 
included a grouping variable (i.e., a dummy variable) for the Stroop congruency e�ect (coded as 1) and the 
OSpan partial score (coded as 2). In the �nal step, these two models were compared using an ANOVA. If the p 
value was less than 0.05, then the regression slopes for the relationship between Stroop congruency e�ect and 
age versus OSpan partial score and age could be considered signi�cantly di�erent. If the p value was more than 
0.05, then the regression slopes could be considered not statistically di�erent.

�e results indicated that the regression slopes for the Stroop congruency e�ect and OSpan partial score 
were not signi�cantly di�erent (RSSΔ = 2.96, FΔ = 1.11, p = 0.344), suggesting that inhibitory control and work-
ing memory show similar developmental trajectories. As illustrated in Fig. 2, the regression slopes for the other 
components of EF follow di�erent patterns over age, indicating that only inhibitory control and working memory 
have similar developmental trajectories and all other components of EF show distinct developmental trajectories.

Discussion
�e current study explored age-related di�erences in EF from late childhood through to old age in a large, com-
munity-based sample. �ree-hundred and ��y individuals aged 10 to 86-years-old completed tasks to measure 
inhibitory control, working memory, cognitive �exibility, and planning, to identify when age-related changes in 
these EFs �rst become apparent. A�er controlling for any potential e�ects of IQ and SES, analyses revealed that 
inhibitory control and working memory capacity was higher in young adulthood compared to adolescence, with 
inhibitory control showing a decline in participants from ~ 35-years-old, and working memory capacity showing 
a decline in participants from ~ 30-years-old. Planning ability was also higher in young adulthood compared 
to adolescence, but then declined across adulthood, with a small positive change in older age. In line with our 
hypothesis, a dissociation was found for the measures of cognitive �exibility: interestingly, however, this re�ected 
that switch costs decreased across the lifespan, yet mixing costs increased across the lifespan.

�ese �ndings provide insight into the developmental trajectories of inhibitory control, working memory, 
cognitive �exibility, and planning ability across the lifespan, providing a more comprehensive picture of the 
age-related changes in EF than has previously been established. Many of the existing studies that have examined 
aging and EFs have compared a dichotomous sample of younger versus older adults (e.g.,51,93–95), have combined 
individuals into smaller age groups during analysis (e.g.,53,55), or have focused on single aspects of EF, such as 
inhibitory control (e.g.,19,23). Instead, in the current study, we used a continuous age sample to model curvilinear 
age relationships to show the development of EFs from adolescence through to older adulthood, and to highlight 
changes in EFs that emerge throughout adulthood and not speci�cally at the onset of old age (typically considered 
65 years old plus). Studies have largely overlooked adulthood as a period of change, with many studies omitting 
middle-aged adults in their samples examining lifespan changes. Moreover, cognitive performance among ado-
lescents has rarely been compared to middle- or older-aged adults. �e current study therefore makes a unique 
contribution to the literature by demonstrating developmental changes in di�erent EFs, using the same set of 
tasks for all participants, with evidence that declines emerge in inhibitory control, working memory, and plan-
ning as early as the third decade of life. In addition, inhibitory control and working memory follow comparable 
developmental trajectories, with distinct developmental trajectories apparent for the other measures of EF.

In line with our predictions, and supporting previous  studies61, the current study highlighted that di�erent 
aspects of cognitive �exibility showed distinct age e�ects. As expected, there was an increase in mixing costs 
across adulthood, but switch costs decreased across adulthood. Mixing costs have generally been found to be 
greater in older adults (e.g.,54–58) there are mixed results in regard to switch costs, with some studies reporting an 
age-related increase (e.g.,59), a U-shaped  trajectory53 or no age-related di�erences (e.g.,58,59), most likely due to 
di�erences in the task switching paradigms. We note that the current study used an alternating-runs paradigm 
without a preparatory cue-stimulus interval, which is analogous to Hu� et al.’s84 task-switching paradigm with 
comparable aging results. In addition, switch and mixing costs showed a negative correlation, re�ecting that indi-
viduals with a greater switch cost also had a reduced mixing cost, and vice versa, and this pattern also remained 
when accounting for the e�ect of age. �is �nding replicates that seen in Hu� et al.84 in which a dissociation was 
found between switch and mixing costs across age groups. Hu� et al.84 suggested that this dissociation is due to 
di�erences in the attentional systems in younger versus older adults. �ey suggest that younger and middle-aged 
adults experience a larger switch cost as their attentional systems become tuned to the task set in the single-task, 
and this inertia to executing the same rule in the single-task slows the recon�guration to respond to the switch 
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trials in the mixed-task. Older adults experience a reduced switch cost as their attentional systems are less well 
tuned to the task set in the single-task, and so do not experience the same slow down to respond to switch tri-
als in the mixed-task. Moreover, older adults experience a larger mixing cost due to the additional attentional 
demands of maintaining two task sets in the mixed-task as compared to a single task set in the single-task. In 
summary, results of the task switching paradigm demonstrate dissociations between switch and mixing costs 
across the lifespan, indicating that adolescents and younger adults have more di�culty switching between task 
sets, and middle-aged and older adults have more di�culty maintaining task sets.

In the current study, we utilized four widely used tasks to measure inhibitory control, working memory, 
cognitive �exibility, and planning as components of EF. We investigated the relationship between these measures 
and found that individuals with a higher working memory capacity also had better planning ability, and these 
relationships remained when accounting for the e�ects of age. �is �nding suggests a link between working 
memory capacity and planning ability, or alternatively it could suggest that some EF tasks purported to measure 
singular aspects of EF may also require other EF processes to complete. �is is supported by prior literature 
which has suggested that ‘planning’ may be indicative of a more complex executive skill, requiring activation of 
other aspects of EF to be successful (e.g.,26,96,97). For instance, working memory may be required when utilizing 
planning abilities to allow thinking ahead and execution of steps to achieve a set  goal26,97; Hill and  Bird98 also 
suggest that the traditional tower tasks (as used here to assess planning abilities) may require working memory, 
the inhibition of prepotent responses, and the generation of problem-solving ideas.

Interestingly, there were no other relationships between the measures of EF. Other research has documented 
very weak relationships between EF tests and EF factors, leading to the conclusion that these are dissociable 
components of EF and providing support for the fractionated EF theory (e.g.,83,97,99). Studies that do report 
relationships between components of EF tend to use several di�erent EF tasks to assess each component and use 
an SEM approach to �t and compare models. For instance, Miyake et al.83 report in their study that, following 
completion of nine tasks used to assess shi�ing, updating, and inhibition, a three-factor model �tted the data best, 
highlighting distinguishable factors of: cognitive �exibility (shi�ing), updating, and inhibition. In the current 
study, we did not aim to assess whether EF is a unitary or diverging construct, and as such data is not optimised 
to investigate this speci�cally. However, the lack of correlations between tasks in the current data suggest that 
the tasks are tapping into distinguishable capacities rather than ‘umbrella’ EFs. Furthermore, EFs di�erentiate 
from middle to late  childhood100. Our study is unique in exploring four separate measures of EFs (as opposed 
to an aggregated measure of cognitive performance), allowing across model comparisons which revealed that 
inhibitory control and working memory follow similar developmental trajectories, and all other measures of EF 
show distinct developmental trajectories.

In general, there is no single task or task battery that can exhaustively measure all aspects of EF, and tests of 
individual EF are rarely “process pure”97,101. Furthermore, there is some debate about whether tasks measure the 
underlying concept that they are purported to measure. For example, it has been suggested that participants may 
solve the Tower of Hanoi problems in a step-by-step manner instead of in a multi-step, planful  manner102. It is 
also likely that the speci�c processes involved in each task di�er across individuals and cohorts. For example, 
the method of administration used in the OSpan task here (i.e. requiring participants to select their answer from 
letters in a 4 × 3 grid) is likely to have di�erentially a�ected performance among the older participants since 
they are less familiar with computers and are known to experience age-related di�culties in visual search tasks 
and motor control (e.g.,103,104). In addition, it is noted that we used a single task to measure each component of 
EF. �ere may be speci�c aspects of each EF that may follow di�erent developmental trajectories—for example, 
inhibitory control could be divided into automatic and e�ortful  inhibition105. However, the aim of the current 
study was to examine how four separable EFs (inhibitory control, working memory, cognitive �exibility, and 
planning) may continue to change and di�er across the lifespan, to further our understanding of age-related 
cognitive changes that may be present; to do this, we selected four well-established tasks that were suitable for use 
across the participant sample age-range, 10–86 years. �is allowed direct comparison of task performance across 
di�erent participant ages. It is noted, as previously  recommended106, that in future studies it would be bene�cial 
to include multiple measures of each component of EF to elucidate whether these age-related changes re�ect the 
underlying EF or whether the age-related e�ects are task- or paradigm-speci�c. Furthermore, dual-tasks of EF 
may reveal greater age-related declines as multiple EFs are loaded in a single task; for example, loading working 
memory in younger adults has been found to reduce both inhibitory control and switching  ability107. Tasks need 
to be sensitive enough to detect age-related  declines108 and should account for general cognitive  processing61. �e 
four EF tasks in the current study were found to be age-sensitive a�er adjusting for general cognitive declines in 
response latencies and for IQ and SES, and therefore suitably provide an overall lifespan description of EF. We 
note that our analyses did not factor in the in�uence of gender on EFs, though gender was unequally distrib-
uted across the age groups in our sample (e.g., 47% females among adolescents but 82% females among adults). 
Previous research has provided mixed evidence for gender or sex di�erences in executive functioning (e.g.,109), 
and these analyses were beyond the scope of the current paper, however it would be bene�cial for future studies 
to systematically explore this in�uence further. Gender details in our sample are available alongside task data 
on the OSF repository.

Here, we describe the overall developmental trajectories of EFs. To increase con�dence in �ndings relating 
to this main aim, we controlled for any e�ects of IQ and SES when exploring age e�ects on EFs, due to evidence 
suggesting that some components of EF may be related to IQ and  SES54,56,67. For IQ measures, our results high-
lighted a relationship with inhibitory control, working memory, and planning ability, above the e�ects of age. 
�is may also explain why, in our measure of planning ability, a small, variable, improvement in abilities is seen 
from 70 years old onwards. Notably, the older age participants who took part in this study had higher IQ scores 
(full scale, verbal, and performance) than any other age group included in analysis; participants in this study were 
community-based, and this higher IQ may re�ect that those experiencing the optimum ‘healthy’ aging experience 
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are more likely to agree to take part in research studies such as these. �is provides insight into healthy aging 
processes and may indicate that IQ holds a protective role against age-related declines in EF, although further 
research aimed at directly examining this suggestion, particularly its role in predicting planning abilities, is 
required. It is interesting to note that in this study, SES was not related to any component of EF, above the e�ects 
of IQ and age. So far, no other study has examined current SES on adult EF; literature has instead used a longi-
tudinal approach to examine how SES during a distinct period (typically childhood) predicts later EF (e.g.,110). 
�e current �ndings therefore suggest that an individual’s SES can change over the lifespan, which may have an 
additional e�ect on  cognition111, and that SES may be less critical for EF a�er childhood.

It is interesting to note that not every individual demonstrated the same developmental pro�le of EF; for 
example, some older adults show equivalent performance in tasks to younger adults. �e current study used a 
cross-sectional design to identify when age-related di�erences emerge when examining performance on four key 
measures of EF abilities. Given the scope of this design, results can only assess group-level age-related changes. 
Cross-sectional studies are potentially confounded by cohort e�ects and might therefore overestimate age-related 
changes, potentially failing to accurately explore age-related changes in task performance at an individual-level 
(i.e., how an individual’s EF capacities change over time;  see112). For instance, prior studies using longitudinal 
analysis have highlighted that during middle age (i.e., 20–60 years), cognitive abilities such as speed of processing 
decline, but at a smaller rate than may be indicated in cross-sectional analyses (e.g.,113). �e current study pro-
vides insight into the presence of age-related di�erences in EF abilities across the lifespan using a cross-sectional 
approach; it would be of interest in future to further this research by utilizing longitudinal designs to furthering 
our understanding of how EFs change with age, and individual di�erences that may in�uence these changes. It 
is also noted that the current sample consisted of a community sample of healthy adult volunteers functioning at 
high levels and may therefore, as discussed above, represent ‘successful’ aging within this particular population. 
�ere may be other factors that in�uence an individual’s performance on the EF tasks over and above age-related 
e�ects, which would be of interest to examine in future research; for example, there may be protective factors that 
o�set declines in EFs, such as increased cardiovascular �tness in older age relating to better inhibitory  control114.

As previously stated, EFs play an important role in daily life. Poor EFs can lead to social  problems80,81, obesity 
and  overeating79,115, lower productivity and di�culty keeping a  job82, and people with better EF abilities have 
been shown to enjoy an improved quality of  life78.  Diamond1 highlights the importance of EFs for maintenance of 
mental and physical health. Given this, it is important to further our understanding of how EF abilities continue 
to change and evolve across the lifespan, examining not only childhood/adolescence and older adulthood, but 
observing di�erences across all of adulthood. Furthering prior research that has sought to establish changes in 
EFs across the lifespan (e.g.,40,42,48; see  also41), the current study used four tasks to assess key EF abilities, includ-
ing inhibitory control, working memory, cognitive �exibility, and planning abilities, providing further insight 
into cross-sectional changes seen in EF abilities across the lifespan. EF is a ‘functional construct’, involved in 
helping individuals conduct deliberate, goal-directed thoughts and  actions48; by examining which aspects of EF 
do or do not change across the lifespan, and which tasks are able to sensitively assess di�erences in EF abilities 
across di�erent ages, we are able to gain information about the overall EF construct. �e tasks used in the cur-
rent study were shown to be suitable for use with individuals from ten to 86 years of age, sensitively detecting 
di�erences in EF abilities. Additionally, by identifying the ages at which changes in EFs are seen, we may be able 
to develop targeted interventions to help maintain e�cient EF capacities, in turn assisting in increased success 
in real-world scenarios. By analysing the data in the current study as a continuous sample, allowing curvilinear 
relationships to be examined, results highlight changes in EF abilities can be observed from young adulthood, 
and emphasise the importance of looking at all ages when examining cognitive changes, rather than focussing 
on ‘younger’ versus ‘older’ age groups.

Conclusion
We explored developmental changes in inhibitory control, working memory, cognitive �exibility, and planning 
ability from 10 years old to 86 years old in a large, community-based sample of healthy individuals. We show 
that working memory capacity and planning ability continue to develop over adolescence and into early adult-
hood. Crucially, we show that declines emerge as early as the third decade of life in inhibitory control, working 
memory, and planning, which is much earlier than has previously been considered. In addition, we demonstrate 
a dissociation for measures of cognitive �exibility, with switch costs decreasing and mixing costs increasing up to 
older age, indicating that adolescents and young adults have di�culties switching tasks sets, whereas middle-aged 
and older adults have di�culties maintaining task sets. In general, studies have largely overlooked adulthood as a 
period of change in EFs, with studies focussing on their development in childhood, or comparing dichotomous 
groups of young versus older adults in studies of cognitive aging. �e �ndings of the current study highlight the 
value of including adolescents and middle-aged adults to provide a comprehensive lifespan description of the 
distinct developmental trajectories of EFs.
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