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Abstract—In previous analyses IKEv2 has been shown to suffer
from an authentication vulnerability that was considered not
exploitable. By designing and implementing a novel slow Denial-
of-Service attack, which we name the Deviation Attack, we show
that the vulnerability is actually exploitable. We explain the
attack’s requirements, propose possible counter-measures and
propose two possible modifications of the protocol, which both
overcome the vulnerability.

I. INTRODUCTION

Virtual Private Networks (VPN) have been used for decades

by companies, governments and people. VPNs allow con-

necting two or more distant IP entities as if they were in

a single Local Area Network (LAN). By ”entity” we either

mean a network or a single machine. Since the network be-

tween the entities may be non-trusted, connecting the entities

often implies performing some encryption and some address

translation on the IP traffic between them. In a company, an

entity can among other things denote a traveling employee or a

working site. In the military domain, an entity can among other

things denote a soldier on the battle field or a military base.

More recently, we have observed the rise of commercial VPN

services for the greater public. Companies offer individual

consumers to enter one of the companies’ VPNs so that the

consumers can browse the Internet as if they were in one of the

companies’ LANs. Many people use VPN services to spoof

their location in order to access services denied to them based

on their geographical location. Many people also use them to

evade censorship, since VPN services allow them to hide the

content of their packets between them and the VPN service

company. VPNs thus have become a core technology in the

modern secure Internet, and it is crucial that VPNs remain

secure.

A VPN can be achieved using multiple technologies, among

which the Internet Protocol security (IPsec) architecture [1]

is widely used. Moreover, Internet Key Exchange version 2

(IKEv2) [2] is one of the main protocols used to set up IPsec

VPNs. IKEv2 aims at guaranteeing mutual authentication of

two peers, and at automatically generating the shared secret

that will be of the communication’s security warrant. Thus a

secure VPN relies upon the security of IKEv2, and it is of the

utmost importance that IKEv2 be secure.

Previous analyses of IKEv2 [3], [4] have shown that the

protocol satisfies only a weak form of authentication. These

analyses exhibit an execution trace of IKEv2 that violates

strong authentication: the penultimate authentication flaw.

However, this vulnerability was not considered a serious

concern because it did not question the secrecy of the shared

key generated by IKEv2.

In this paper, we start by giving some background on IKEv2

and previous analyses of the protocol in Section II. In Section

III, we design a novel Denial-of-Service (DoS) attack against

IKEv2 that exploits the penultimate authentication flaw. We

call the novel DoS attack the Deviation Attack. The Deviation

Attack bypasses all measures that were introduced in IKEv2

to resist DoS attacks. We thoroughly discuss the Deviation At-

tack’s flow and details, and calculate the precise quantities that

trigger the attack. To demonstrate the Deviation Attack very

concretely, we implement it in Section IV; thereby attacking

an open-source implementation of IKEv2. We experimentally

verify our expression of the triggering quantities through this

experiment, and provide the source code so that the reader can

easily reproduce the attack.

Finally, in Section V, we explore a number of ways

to protect the implementations only using what the current

protocol specification has to offer. However, we only find

mitigations or incomplete workarounds. We therefore tackle

the problem at a higher level: We propose two possible

inexpensive modifications of the protocol, which both prevent

the attack.

For ethical reasons we informed our country’s national

security agency about the existence of the Deviation Attack.

The security agency gave us some technical feedback as well

as its approval for publishing the attack.

II. BACKGROUND

A. The IKEv2 protocol

Internet Key Exchange version 2 (IKEv2) is the authen-

ticated key-exchange protocol used in the Internet Protocol

security architecture (IPsec). Its specification is managed by

the Internet Engineering Task Force (IETF), and the current

RFC is RFC 7296 [2]. The goal of IKEv2 is to allow two peers

to dynamically negotiate cryptographic algorithms and keys in

order to set up an IPsec communication. As such, it aims to

guarantee mutual authentication of the peers and secrecy of the

negotiated keys. An open-source implementation of IKEv2 is

strongSwan [5].

The IPsec architecture provides security at the networking

layer. It is defined in RFC 4301 [1]. IPsec defines a framework



to establish Virtual Private Networks (VPN). Depending on the

underlying security protocol that is used, IPsec provides either

integrity/authentication protection (AH protocol) or confiden-

tiality and integrity/authentication protection (ESP protocol) of

IP packets that are exchanged between two peers. IPsec also

natively brings some protection against replay attacks (using

this protection is however at the discretion of the receiver of

an IPsec protected packet). To protect packets, IPsec peers

set up Security Associations (SA) between them. A Security

Association is a set of security parameters and keys on which

two peers agree.

Setting up an SA requires that the peers share some en-

cryption keys and involves adding entries to their Security

Association Database (SAD). The keys can be manually

put into the peers’ databases, but the maintenance of such

a configuration becomes cumbersome when the number of

peers grows. To ease management of large VPN setups, it

is much more efficient to rely upon dynamic negotiation of

cryptographic material as defined by the IKEv2 protocol.

We call an exchange the association of a request message

and a response message. IKEv2 consists of three main ex-

changes. The IKE SA INIT exchange performs initial setup

of an IKE SA that will be used to protect subsequent ex-

changes of the IKEv2 protocol. During this exchange, peers

agree upon cryptographic algorithms that should be used to

protect further IKEv2 exchanges and establish some common

cryptographic material by running a Diffie-Hellman protocol.

The IKE AUTH exchange authenticates the peers, validates

the IKE SA and sets up a traffic SA (or Child SA). The authen-

tication can be done using pre-shared key (PSK) or digital sig-

nature. It is a counter-measure to the Man-in-the-Middle attack

that can be performed against the Diffie-Hellman exchange of

IKE SA INIT. Finally, the CREATE CHILD SA exchange

has two different purposes. First, it can be used for rekeying

an IKE SA, i.e. for replacing an old IKE SA with a new

one. In this case, its payloads for performing a Diffie-Hellman

exchange (the key-exchange payloads) are mandatory. Second,

it can be used to create a new traffic SA, or to rekey an existing

one. In this case, the key-exchange payloads are optional. If

not provided, the new keys are simply derived from the IKE

SA’s keys. Using the key-exchange payloads provides Perfect

Forward Secrecy for the new traffic SA’s keys, i.e. their secrecy

will not be impacted by the compromise of the IKE SA’s keys.

The CREATE CHILD SA exchange is performed multiple

times during the lifetime of an IKE SA.

B. Related work

In 1999, Meadows finds two authentication weaknesses in

IKEv1 [6], using the NRL protocol analyzer. The first one is a

reflection attack, and the second one is called the penultimate

authentication flaw.

In 2003, IKEv2 is formally verified in the context of the

AVISPA project [3]. The authors find that IKEv2 also suffers

from the penultimate authentication flaw. However, they say

that it cannot be exploited for further purposes. They propose

a counter-measure anyway: the key confirmation.

In 2010, Cremers performs an extensive analysis of IKEv2

[4] using the Scyther tool. He confirms that IKEv2 suffers from

the penultimate authentication flaw and, like in the AVISPA

project, concludes that this vulnerability is harmless.

The penultimate authentication flaw is an execution trace

of IKEv2 that violates the weak agreement authentication

property. Weak agreement is a property that was first defined

by Lowe in [7]. This property states that whenever an agent

A has completed the protocol, apparently with an agent B,

then B has previously been running the protocol, apparently

with A. In the penultimate authentication flaw, A starts a

session as initiator and wants to talk to C. But the intruder

deviates every message A sends, to Responder B, and every

message B sends, back to A (of course messages sent by B

were already addressed to A, so whether the intruder does

not do anything or intercept it and forward it, the attack

remains). The parties proceed normally until A receives the

IKE AUTH response. The AUTH payload is not signed with

the private key of C, so A does not set up a Child SA. A then

sends an IKEv2 INFORMATIONAL message containing an

AUTHENTICATION FAILED notification payload. Intruder

intercepts it and drops it. In the end, B has set up a Child SA

with A, whereas A did not want to set up a Child SA with B.

This is a violation of weak agreement for the responder.

The penultimate authentication flaw is not a full violation

of the intuitive definition of authentication, because there is no

actual impersonation and secrecy is still satisfied. However, we

show in the next Section that the penultimate authentication

flaw allows a Denial-of-Service attack.

III. THE DEVIATION ATTACK

A. Preliminaries

We assume the existence of N + M + 2 IKEv2 parties

called (Initiatori)1≤i≤N , (Responderi)1≤i≤M , Probe, and Vic-

tim. Each party may be either an IKEv2 endpoint (also called

host) or a gateway. Figure 1 presents the attack scenario. On

this figure and throughout the paper, we use the term m1 as an

abbreviation for IKE SA INIT request. We define accordingly

the terms m2, m3, and m4.

(Initiatori)1≤i≤N , (Responderi)1≤i≤M , and Victim are con-

nected by a network Net1. Probe and Victim are connected by

a network Net2. Net1 and Net2 may be the same network and

may be the Internet. We write (Ii)1≤i≤N , (Ri)1≤i≤M and V

the Net1 IP addresses.

We call connection the set of SAs that were stored in

a party’s memory right after an IKEv2 phase 1 session

(one IKE SA INIT exchange and one IKE AUTH exchange).

Therefore if everything went well, connection denotes the

set of SAs containing the newly created IKE SA and its

first Child SA. However, if e.g. authentication succeeded but

traffic selector negotiation failed, then connection denotes the

newly created IKE SA alone. We say that a party handles a

connection from the moment the party installs the connection

(stores it in memory) until the moment the party deletes the

connection.
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Fig. 1. Scenario of the Deviation Attack. Intruder deviates p1 and p4 and drops p7.

Let Lapp be the application load, i.e. the amount of memory

occupied by IKEv2 in Victim when there are no connection

installed. We assume that Lapp stays the same during the

attack, i.e. is constant in time. Let L be the load of Victim,

i.e the amount of Victim’s memory that is occupied by (1)

the application and by (2) connections with machines that are

not Probe or Initiator machines. In practice, there could be

other machines than Probe or Initiator machines initiating or

removing connections during the attack, i.e. in general L is

not constant in time. However, we assume for the sake of

simplicity that L is constant in time. We also assume that

Victim’s memory is statically limited, i.e. there is no way for

Victim to obtain more memory capacity during the attack. Let

C be the memory capacity that was allocated to IKEv2 in

Victim. We assume that C was carefully chosen and that we

have C > L.

We say that a connection in a party’s memory is unin-

tended when it was not taken into account when memory

was allocated to the party. Let m be the amount of memory

needed to store all data related to one connection. We say

that a connection in a party’s memory is stale from the

beginning, when the party has received no IKEv2 message for

it since it was installed. After some time and some unanswered

rekeying requests or keep-alive requests, the party removes the

connection. Let S be the average time a connection stale from

the beginning stays in Victim’s memory.

Let Intruder be a machine, connected to Net1. Let t = 0
be the beginning of the attack and D be the attack duration.

We assume for the sake of simplicity that the Initiator parties

send m1 messages to Responder parties at a constant rate σ

between t = 0 and t = D. We express σ in number of IKE

messages per second (and not in packets per second, in case

there is fragmentation). We also assume that, at t = 0, no

Initiator party has any SA established with Victim.

For the purpose of detecting an eventual Denial-of-Service,

we make Probe regularly send m1 messages to Victim.

However, we do not want Probe to affect Victim’s memory

occupation. We thus make Probe’s connections in Victim

ephemeral, i.e. Probe’s connections are removed after a short

time from Victim’s memory. See Section IV-A for a way to

achieve this for the strongSwan IKEv2 implementation.

Let m4t be the m4 message that Probe receives at time

t, and let m1t be the m1 message sent by Probe that led to

m4t (i.e. that belongs to the same session). Let Tr(σ, t) be the

response time of Victim to Probe at time t when throughput

is σ. We define this response time as the difference between

t and the time at which m1t was sent. We assume that the

response time of Victim to Probe is the same as the response

time of Victim to any of the Initiator parties. Let Tacc be the

maximum response time acceptable by Probe, i.e. the response

time after which Probe considers that it has been denied a

service. The value of Tacc is fixed arbitrarily.

We define the following propositions:

Req1 Intruder has the ability to intercept every IP packet sent

by an Initiator party to a Responder party. When Intruder

intercepts a packet, the recipient does not receive it. In



addition, Intruder can either drop the packet, or modify

its destination IP address and send it to Victim.

Req2 All Initiator parties authenticate themselves using sig-

nature mode.

Req3 All Initiator parties are trusted by Victim. This means

that Victim’s Peer Authorization Database (see [1]) allows

connections with all Initiator parties.

Req4 All m1 messages sent by Initiator parties contain at least

one SA proposal (see [1]) that is acceptable to Victim.

B. Attack flow

Assume that Req1, Req2, Req3 and Req4 are satisfied. The

attack proceeds as follows. Intruder intercepts all m1 messages

sent by Initiator parties to Responder parties. Let us consider

the implications of one specific m1 message sent by Initiatori
to Responderj . This message is sent in an IP packet p1. The

message flow is shown on figure 1.

Thanks to Req1, Intruder intercepts the request, changes the

destination IP address to V, and sends it to Victim (packet p2).

We call this process deviation.

In response, because Req4 is satisfied, Victim sends an m2

message to Initiatori (packet p3). Initiatori receives it, and

sends an m3 message to Responderj (packet p4). Intruder

deviates the m3 message to Victim (packet p5).

On reception of the m3 message, authentication of Initiatori
to Victim succeeds because authentication is done using

signature mode (Req2) and because Initiatori is trusted by

Victim (Req3). However, TS and cryptographic algorithms

negotiation may fail (TS negotiation will fail in most cases).

If TS and cryptographic algorithms negotiation fail, then only

one IKE SA is stored. If TS and cryptographic algorithms

negotiation do not fail, then one IKE SA and one Child SA

are stored. According to our definition of ”connection”, at

this point Victim has installed one connection with Initiatori.

Victim then sends an m4 message to Initiatori (packet p6).

On reception of the m4 message, Initiatori fails the au-

thentication step, since it intended to speak with Responderj ,

not with Victim. Initiatori thus sends an IKEv2 notification

AUTHENTICATION FAILED to Responderj (packet p7). In-

truder intercepts the notification and drops it (thanks to Req1).

As a result, an unintended connection was added in Victim’s

memory.

In this paper, we only explore memory exhaustion as a

possible cause of Denial-of-Service. We state that if Req1,

Req2, Req3 and Req4 are satisfied, then there is a throughput

σ that allows Intruder to cause a Denial-of-Service. More

formally:

Theorem III.1. If Req1, Req2, Req3 and Req4 are satisfied,

then:

{σ | ∃t ∈ [0, D] | Tr(σ, t) > Tacc} 6= ∅ (1)

Proof: Since Victim’s memory is statically limited, there

exists a throughput σ such that, at some time during the attack,

Victim is in Denial-of-Service by memory exhaustion.

C. Minimum throughput and DoS time

We can now define Σmem as the minimum throughput

triggering a memory exhaustion.

Definition III.1.

Σmem = min({σ | ∃t ∈ [0, D] | Tr(σ, t) > Tacc})

When σ > Σmem, we define T s
mem(σ) as the time at which

DoS starts, and T e
mem(σ) as the time at which DoS ends.

Definition III.2. Let σ > Σmem. We define:

T s
mem(σ) = min({t ∈ [0, D] | Tr(σ, t) > Tacc})

T e
mem(σ) = max({t ∈ [0, D] | Tr(σ, t) > Tacc})

We confront the following theorem with the experiment in

Section IV. To do so we implement the Deviation Attack and

measure in different experimental setups the time at which

DoS starts.

Theorem III.2. We state that:

Σmem =
C − L

m×min(D,S)

Furthermore, when σ > Σmem, memory exhaustion starts and

ends at:

T s
mem(σ) =

C − L

mσ

T e
mem(σ) = max(D,S)

Proof:

Summing up implications of all m1 messages sent by

Initiator parties to Responder parties, at time t, Victim has

installed σ × t connections in its memory. However, all

these connections are stale from the beginning, so they are

removed after S seconds. Therefore at time t, the number of

unintended connections that are present in Victim’s memory

is σ×min(t, S). Victim thus suffers from memory exhaustion

at time t if and only if:

σ ×min(t, S) >
C − L

m

Since the attack last D seconds, the attack leads to a memory

exhaustion if and only if:

σ ×min(D,S) >
C − L

m

Which yields our expression of Σmem.

Now we assume that σ > Σmem. Memory exhaustion will

start as soon as:

σ × t >
C − L

m

Which yields our expression of Tmem.

Memory exhaustion lasts until connections are removed and

the attack has stopped, i.e. until T e
mem(σ) = max(D,S).



D. Discussion of the Deviation Attack

a) The Deviation Attack when pre-shared keys are in use:

Note that we do not require that Victim authenticates itself

using signature mode. In other words, even if authentication

is performed asymmetrically, with Victim using signature and

the Initiator machines using PSK, the attack still works.

Moreover they may be looser requirements than the ones

we impose in this paper. For example the Deviation Attack is

possible when the Initiator machines and Victim use a PSK to

communicate with each other and when this PSK is the same

as the one used by the Initiator and Responder machines to

communicate with each other. If those two PSKs are different

then the attack does not work.

b) Why Initiatori does not refuse message p3: In the

context of a Deviation Attack, Initiatori sees that the source

IP address of message p3 (see figure 1) is not the destination

address of message p1. At first glance, this observation could

be the witness of an odd situation. However, the IKEv2 RFC

specifically says that “Incoming IKE packets are mapped to an

IKE SA only using the packet’s SPI, not using (for example)

the source IP address of the packet” [2]. This is why Initiatori
does not refuse message p3.

c) A way to obtain enough requests to deviate: For

the attack to work, there need to be a sufficient rate of

IKE SA INIT requests that are sent from the Initiator parties

to the Responder parties, in a duration short enough. If

this situation never arises, Intruder may have a workaround:

it can drop all messages coming from the Initiator parties

and going to the Responder parties, for a given time. After

some unanswered IKEv2 keep-alive requests (if Dead Peer

Detection is activated, see Section V-A) or some unanswered

CREATE CHILD SA requests, the Initiator parties may con-

sider their connections with the Responder parties as broken

and may send new IKE SA INIT requests for each broken

connection. This solution works for example if the connections

are configured so as to be automatically set back up when

broken (option “closeaction=restart” in strongSwan), or so as

to be automatically set up when an outbound IP packet arrives

(option “auto=route” in strongSwan).

d) Classification among DoS attacks: The Deviation

Attack belongs to the category of slow DoS attacks (SDA).

A definition of SDAs is given in [8]. An SDA is a DoS attack

that requires very low amount of bandwidth. To do so, SDAs

usually target a listening daemon on a host by exploiting some

application layer vulnerability. Indeed, the Deviation Attack

makes an IKEv2 daemon unavailable by exploiting a weakness

in the application and requires very low amount of bandwidth

compared to classic flooding DoS techniques.

Although it seems easier to do a simple denial of service

using a high traffic load, protection from classic flooding tech-

niques is possible by means of Intrusion Detection Systems

(IDS). The Deviation Attack is much harder to detect.

IV. ATTACKING AN IKEV2 IMPLEMENTATION

To concretely demonstrate the Deviation Attack implica-

tions, we attack the strongSwan open-source IKEv2 implemen-

tation. Our experiment code is available at [9]. Our experiment

also allows us to experimentally verify our expression T s
mem

that we give in theorem III.2.

A. Setup

a) Global setup: In our experiment, target IKEv2 imple-

mentation is strongSwan version 5.1.2. However throughout

this Section, we will use the software term when covering a

topic that is not specific to strongSwan. Except when indicated,

we use the default options for software.

To reproduce the attack, we create 3 Linux Virtual Machines

(VM) representing Victim, Probe and Intruder, and Ndemo

VMs representing (Initiatori)1≤i≤N , where Ndemo is a config-

urable parameter. We do not instantiate the Responders, since

we only need their IP addresses; we do not really need the

machines.

All machines are connected through the same local (virtu-

alized) network, and they are the only ones connected to it.

Using Section III-A notation, we have Net1 = Net2 and this

network is local. Using a local network allows us to easily

reproduce the deviation of packets by Intruder, as explained

below. Moreover it ensures more control over networking

propagation times and over the daemon’s resource loads.

We create a Certificate Authority that we call CA. We

generate for Probe, Victim and each Initiator a certificate

signed by CA, and its associated private key. We place in

Probe, Victim and each Initiator their respective certificates

and private keys, along with CA’s certificate.

b) Implementing the Initiators: We decided, for practical

reasons, not to create the N Initiators of the generic scenario,

but instead to only create Ndemo Initiators, with each of them

sending N
Ndemo

m1 messages to the Responders. Furthermore,

we make the Initiators intending to talk to only one Responder

peer. This makes it easier to implement Intruder because that

way Intruder only needs to spoof one IP address (see below

to understand why Intruder performs spoofing). Because of

these simplifications and to stay faithful to the generic scenario

depicted in Section III, we had to change two options of

strongSwan in Victim and the Initiators. We explain that in

the experiment code’s README.md file.

For strongSwan, we set the rightid option in the Initiators

like below. The “%” sign forces strongSwan not to send IDr

in the IKE AUTH request. We explain in Section IV-C why

this is necessary.

rightid="%CN=responder"

Listing 1. The rightid option in strongSwan

The Initiators try to establish connections with Responder

at a configurable rate σ. We stop the attack after some

configurable time D.

c) Implementing Intruder: To reproduce the deviation of

packets by Intruder, we use an ARP cache poisoning attack

[10]. In this attack, Intruder sends ARP replies to all Initiators,

binding its MAC address to Responder’s IP. This way, all

packets sent by Initiators to Responder are intercepted by

Intruder. To perform this attack, we use the arpspoof tool [11]



in Intruder. We then use Linux iptables command to redirect

the traffic towards Victim and to drop the AUTH FAILED

notification. Of course this method is only possible because

we use a local network. In reality, when Net1 is not a local

network, deviation has to be made using other ways.

d) Implementing Victim: We use Linux Control groups

(Cgroups) to allocate a (configurable) memory of exactly C

to Victim for software. Note that in our setup, TS payloads

sent by the Initiators are not valid propositions for Victim.

Thus a connection will only consist of one childless IKE SA

(containing two unidirectional SAs).

We observed in our experiment that when there is no

memory left for software, the Linux Out-Of-Memory killer

(OOM killer) of Victim kills the software process. This

leads to the loss of all installed SAs. This is undesirable

behaviour: setting back up all SAs might take some time,

meanwhile suspending the protected IP flow that used traffic

SAs. To observe a memory exhaustion in our experiment, we

therefore disable the Out-Of-Memory killer of the kernel and

of software’s control group in Victim.

e) Implementing Probe: The Probe VM tries to set up

a new IPsec connection every 2 seconds (configurable). For

each attempt, after Tacc = 5 s (configurable), Probe checks

if the attempt has succeeded and reports the result. Finally,

as explained in Section III-A, we make Probe’s connections

in Victim ephemeral. To do so, we use specific options for

strongSwan in Victim. We explain that in the experiment

code’s README.md file.

B. Verifying our DoS time expression

To experimentally verify our expression of T s
mem, we mea-

sure L and m for software in the context of our setup, verify

that L and m are constants (i.e. that they do not depend on

C or σ), and measure T s
mem (measured T s

mem) when tuple

(C, σ) varies.

We measured σ during the experiment (measured σ) and

observed that it was different from the σ we configured

(configured σ). This is most probably due to virtualization.

For the experimental verification of theorem III.2 not to be

affected by the fact that configured σ and measured σ are

different we thus use measured σ to calculate the T s
mem value

predicted by theorem III.2 (Expected T s
mem).

For consistency we use a warm up run. Furthermore for

each tuple (C, σ) we perform the measure of T s
mem (resp. σ)

10 times. We then take the average of T s
mem’s (resp. σ’s) mea-

sures as our value of measured T s
mem (resp. measured σ).

To measure m we fill Victim’s memory with a high number

of connections at some given throughput, and divide the

memory increase by the number of connections. There are

several ways to measure the amount of memory used by a

process. To be consistent with how we limit memory available

to software (using cgroups), we take the value stored in

software’s cgroup file memory.usage in bytes.

In our experiment, we have L = Lapp, where Lapp is the

amount of memory occupied by IKEv2 in Victim when there

is no connection installed (as defined in Section III-A). To

measure L we thus simply measure the amount of memory

used by software when there are no connections installed.

C. Results

We observe that strongSwan differs from IKEv2’s RFC on

one point. When the IKE AUTH request IDr payload does not

correspond to any of the responder’s identities, strongSwan

notifies that no matching peer configuration has been found

and cancels the IKE SA establishment. In the RFC, it is said

the following: “If the IDr proposed by the initiator is not

acceptable to the responder, the responder might use some

other IDr to finish the exchange”. In other words, if IDr does

not correspond to one of its identities, the responder might

install a Child SA anyway, and use some other IDr to finish

the exchange.

The IKE AUTH request IDr payload is optional, both

in the RFC and in strongSwan. The behaviour adopted by

strongSwan and described above thus implies the following

for the Deviation Attack: When the Initiator machines run

strongSwan and are configured so as to not send an IDr pay-

load, the attack works. However, when they run strongSwan

and are configured so as to send an IDr payload, the attack

does not work, since IDr would be equal to a Responder

machine’s identity, and not Victim’s.

Not sending IDr payload in an IKE AUTH request is

not an uncommon configuration, since it allows to hide the

responder’s identity to an active attacker. We explain this in

section V-A.

Our measures of L and m confirm that L and m do not

depend on C or σ (or very little). We obtain L ≈ 1MB and

m ≈ 18.805 kB. Figure 2 shows the result of our measures

of T s
mem. Our measures are close to the values predicted by

theorem III.2: we obtain an average relative error of 1.3% and

a maximum relative error of 2.4%.

V. COUNTER-MEASURES

A. Trying to protect implementations of the current protocol

Users who cannot afford to be targeted by the Deviation

Attack need immediate protection. In this Section, we show

that the cookie and puzzle mechanisms that were introduced

in IKEv2 to resist DoS attacks are of no use against the

Deviation Attack. We then note that Dead Peer Detection can

be a small mitigation and consider two measures that prevent

the attack but suffer from significant drawbacks: using PSK

authentication and giving enough resources to Victim.

a) Existing DoS counter-measures: The cookie mecha-

nism [2] was introduced to protect IKEv2 against a mem-

ory exhaustion due to reception of a large amount of

IKE SA INIT requests. If this mechanism is in place, when

the responder detects a large number of half-open IKE SAs,

it responds to each IKE SA INIT request (that does not

contain a cookie) with an IKEv2 INFORMATIONAL message

containing a cookie. The cookie is a keyed hash of the request.

The initiator then sends the same request again with the

cookie added to it, and the responder verifies that the cookie

and the request match. This means that the attacker needs



C (in MB) 50 50 50 50 200 200 200 200

Configured σ (in m1 messages/s) 1 5 10 30 1 5 10 30

Measured σ (in m1 messages/s) 1.0 4.8 9.5 25.6 1.0 4.9 9.5 24.1

Expected T s
mem (in s) 2605 541 274 101 10582 2159 1111 438

Measured T s
mem (in s) 2617 547 280 103 10771 2202 1124 445

Relative error in % 0.5 1.1 2.1 2.4 1.8 2.0 1.1 1.6

Fig. 2. Predicting and measuring DoS start time T
s

mem
during some Deviation Attacks against strongSwan.

to keep in memory the IKE SA INIT requests it sends. It

thus makes it more costly for an attacker to fill the half-

open SA database of a gateway. However, in the Deviation

Attack, cookies will be handled by the Initiator parties and

not by Intruder. Activating cookies thus has absolutely no

effect on Intruder’s memory requirements. Therefore, it does

not increase the cost of the attack in terms of memory. Note

that the cookie mechanism also increases the time between the

reception of an IKE SA INIT request by Victim and the filling

of its memory with the new SA. But this neither increases the

throughput of packets the attacker needs to deviate, nor the

duration needed for the Deviation Attack to succeed.

The puzzle mechanism is specified in [12]. It is an improve-

ment of the cookie mechanism. The initiator now needs to

remember its request and to solve a puzzle before sending

its request again. Like the cookie mechanism, the puzzle

mechanism is stateless for the responder. Puzzles increase the

cost of an attack in CPU power. However, in the deviation

attack, it is the Initiator parties who need to solve the puzzles,

not the Intruder. So puzzles, like cookies, are of no use against

the Deviation Attack.

b) Dead Peer Detection: Dead Peer Detection [13]

(DPD) is a mechanism left as an option in IKEv2. In fact,

in strongSwan, it is not enabled by default. When DPD is in

use, whenever a party sees that no traffic has recently been

received on an IKE SA or any of its Child SAs, then it may

send a keep-alive request to the SA’s peer. If the peer does not

respond, after several retransmissions, the party may remove

the IKE SA and all its Child SAs from its memory. In the

context of the Deviation Attack, DPD reduces S, the average

time a connection stale from the beginning stays in memory.

Since Σmem is inversely proportional to S, DPD makes it

harder to achieve a memory exhaustion using the Deviation

Attack.

However, reducing S too much can create an overload on

the network, so S cannot be too low. When DPD is enabled

in strongSwan, using default values for the other options, we

have S = 195s, which multiplies Σmem by 18. Therefore,

DPD only mitigates memory exhaustion.

c) Pre-Shared Key authentication: As we point out in

Section III-B, the Deviation Attack is not possible when PSKs

are used for authentication, provided that the Initiator ma-

chines and Victim do not share the same PSK as the Initiator

machines and the Responder machines. Therefore using PSK

is a counter-measure. However, PSKs and certificates do not

fulfil the exact same needs. PSKs are used when the number of

peers is relatively low. If this is not the case, another counter-

measure must be considered.

d) Giving enough resources to Victim: One solution to

the memory exhaustion is to give enough memory power to

Victim to handle as many connections as there can be. Victim

would then need to be given a memory of at least Lapp+Nt×
m, where Nt is the number of peers that Victim trusts. This

counter-measure is efficient since memory is cheap nowadays.

However, IKEv2 should not rely on such a recommendation

to its users.

B. Improving the protocol specification

Attempts to protect implementations of the current protocol

are either not sufficient to prevent the Deviation Attack, or

present significant drawbacks. For this reason, we propose

two modifications of the protocol specification that deter its

vulnerability to the Deviation Attack.

a) Using IDr payload: A way to modify the protocol

would be to make the IDr payload in IKE AUTH request

mandatory, and to modify its processing by the responder.

The appropriate behaviour would be not to install a Child

SA when IDr is not acceptable (defined below), but instead,

to cancel the establishment of the IKE SA, by sending an

AUTHENTICATION FAILED notification to the Initiator.

Let us define the term acceptable we used above. The IPsec

and IKEv2 specifications should have a new mandatory field in

the PAD. We call this field the local ID field. We should also

rename the ID field, described in RFC 4301, Section 4.4.3,

to remote ID field, for consistency. The local ID field would

be a non-empty list of IDs. Each ID would be in the same

format as the ID field (it can use wildcards, for example).

When an IKE AUTH request arrives, a PAD lookup is done.

A PAD entry would match the request when both the remote

ID field and the local ID field match respectively the IDi and

IDr payloads.

Note that, as we explain in Section IV-C, strongSwan

already implemented the local ID field. It corresponds to the

leftid attribute of the ipsec.conf configuration file.

The IDr modification, however, has one drawback. Assume

Alice initiates an IKEv2 session with Bob, using the non-

modified protocol. According to [14], IKEv2 was designed so

as to hide both identities from a passive attacker and Bob’s

identity from an active attacker as well. It does not hide Alice’s

identity from an active attacker because it is Alice who reveals



its identity first using IDi payload. The attacker can learn this

identity by impersonating Bob’s IP address.

Now assume that we modify the protocol using the IDr

method. Using the same attack where the intruder imperson-

ates Bob, the intruder is now able to learn the identity of

Bob, and even to prove that Alice intended to speak to Bob.

In other words, this modification works but the responder’s

identity would no longer be hidden from an active attacker.

This may be a problem if sensitive information can be found

in the ID payload. This is often the case, as people often

use Distinguished Names (DN), where the country, institution

name and email address are given.

b) Adding key confirmation: There is a way to modify

IKEv2-Sig that does not require to disclose the responder ID

before it is cryptographically verified. We add a third ex-

change, called the key confirmation and written KEY CONF.

This exchange is exactly the same as an IKEv2 keep-alive

exchange: an empty INFORMATIONAL request and an empty

INFORMATIONAL response. We require that the responder

installs its connection only after having received a valid

KEY CONF request and that the initiator installs its connec-

tion only after having received a valid KEY CONF response.

Key confirmation was first proposed by Basin et al. in [3] as a

counter-measure to the penultimate authentication flaw. Since

the Deviation Attack exploits the latter, key confirmation is a

counter-measure to the Deviation Attack.

One other modification could have been to simply add a

mandatory AUTH SUCCESS message as an acknowledge-

ment to the IKE AUTH response. However, in IKEv2, all

messages, except for error messages, exist in pairs. This is

because IKEv2 is carried over UDP, so the only way to be

sure that a request has been received is to wait for a response

message and to set up retransmissions in case it does not arrive

(until a timeout). With the KEY CONF response, the initiator

is now sure, when it installs its connection, that the responder

has installed its.

Adding an exchange to the protocol can be seen as a

increase of its cost, as it will take a more time to establish a

connection. But a KEY CONF message requires only a very

little amount of time and computational power to generate and

process, because there is no asymmetric cryptography or key

derivation operations to perform. It is therefore a very efficient

solution to prevent the Deviation Attack.

VI. CONCLUSION AND FUTURE WORK

In this paper, we designed a novel slow Denial-of-Service

attack against IKEv2: the Deviation attack. We explained

its working flow, and precisely evaluated its requirements

and consequences. To concretely demonstrate the attack, we

successfully implemented it against the strongSwan open-

source implementation. The source code to reproduce the

Deviation Attack is available at [9].

The central position that IKEv2 occupies in modern in-

frastructures leaves no doubt that counter-measures need to

be taken. We discussed the efficiency of the available means

to protect implementations of the current protocol. However,

none of them were complete solutions. Worse, the cookie

and puzzle mechanisms that were introduced in IKEv2 to

counter DoS attacks are completely ineffective against the

Deviation Attack. We thus tackled the problem at a higher

level and proposed two possible inexpensive modifications of

the protocol, which both prevent the attack.

Finally, as we have seen, this paper outlines the importance

of the weak agreement property for authentication protocols.

Its violation does not necessarily imply a violation of secrecy,

but we have shown that it can allow other attacks. In particular,

when the protocol sets up some connection in the parties’

memories, it can lead to a DoS attack. It could be interesting

to verify weak agreement for TLS, SSH, and other stateful

authentication protocols.
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