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ABSTRACT

Repetitive DNA, especially that due to transposable

elements (TEs), makes up a large fraction of many

genomes. Dfam is an open access database of fami-

lies of repetitive DNA elements, in which each family

is represented by a multiple sequence alignment and

a profile hidden Markov model (HMM). The initial re-

lease of Dfam, featured in the 2013 NAR Database

Issue, contained 1143 families of repetitive elements

found in humans, and was used to produce more

than 100 Mb of additional annotation of TE-derived

regions in the human genome, with improved speed.

Here, we describe recent advances, most notably

expansion to 4150 total families including a com-

prehensive set of known repeat families from four

new organisms (mouse, zebrafish, fly and nema-

tode). We describe improvements to coverage, and to

our methods for identifying and reducing false anno-

tation. We also describe updates to the website inter-

face. The Dfam website has moved to http://dfam.org.

Seed alignments, profile HMMs, hit lists and other un-

derlying data are available for download.

INTRODUCTION

Annotation of the repetitive content of a genome depends
on the initial discovery of repeat families present in that
genome (so called de novo identi�cation, e.g. (1–3)), fol-
lowed by homology-based annotation (4), in which tools
are used to seek all recognizable members of those families.
The purpose of Dfam is to improve this homology-based
annotation step, using pro�le hidden Markov models (pro-
�le HMMs) to improve detection of remote homologs of
known families. Increased sensitivity is vital, as copies of
older transposable elements (TEs) can be exceptionally dif-
�cult to detect because of accumulated mutations.

For each TE family, Dfam contains a multiple sequence
alignment and a pro�le HMM constructed from that align-
ment. Pro�le HMMs (5,6) are probabilistic models that
capture position-speci�c conservation information (7–10).
The pro�le HMM search tool nhmmer (11) has been in-
corporated as a search engine for RepeatMasker (http://
repeatmasker.org), so that the Dfam pro�le library can be
used by RepeatMasker to increase the amount of genomic
sequence that can be identi�ed as derived from TE activ-
ity. The entries in Dfam are designed to be a drop-in re-
placement for the Repbase-derived library of consensus se-
quences (12) used by RepeatMasker for repeat detection.
In this release, we see an increase in repeat annotation cov-
erage, relative to annotation using RepeatMasker with the
Repbase-derived library and cross match search tool (http:
//www.phrap.org/phredphrapconsed.html). The increase in
the fraction of the genome thus annotated is +5.1% for hu-
man, 5.5% for mice, 4.4% for zebra�sh, 0.7% for �ies and
6.5% for nematodes. In expanding Dfam to include families
from multiple genomes, we selected the four species named
above because of their status as model organisms covering
a broad range of the animal kingdom. Over time, the Dfam
library will continue to grow to include repeat families for
other organisms. This will be done via a combination of
building upon the mature collection of TE families in Rep-
base, and providing curation tools to facilitate the acquisi-
tion of new entries from the wider scienti�c community.

NEW GENOMES

Dfam 2.0 contains all repeat families represented in Rep-
base (20.07) and RepeatMasker (20150807) databases for
5 representative species: H. sapiens [hg38], M. musculus
[mm10], D. rerio [danRer10], D. melanogaster [dm6] and
C. elegans [ce10]. Each family is built around a multiple
alignment of representative sequences. Each of these seed
alignments is based on the Repbase-derived RepeatMasker
library of consensus sequences, leveraging the substantial
effort that has gone into de�ning consensus sequences for
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the numerous repeat families. Each family in Dfam is as-
signed to one or more clades in the NCBI taxonomy (13).
This clade contains all the descendants of the organism in
which the element was active, or which obtained the re-
peat through horizontal transfer. Thus some recently de-
rived TEs are associated with a single species, while others
may be associated with a broader group. For example MIR
(DF0000001), the ‘Mammalian-wide Interspersed Repeat’,
is assigned the taxon Mammalia, and is found in both hu-
mans and mice.
Dfam families include retrotransposons, DNA trans-

posons, interspersed repeats of unknown origin, and a num-
ber of non-TE entries used to annotate satellites or to avoid
annotating noncoding RNA genes as TEs. The distribution
of these constituent family types is given in Table 1.

SEED ALIGNMENT CONSTRUCTION

Our techniques for constructing seed alignments for each
family have advanced since the initial Dfam release. Each
seed alignment consists of up to 2000 sequences belonging
to that family. Family membership and sequence bound-
aries are determined by RepeatMasker with its most sen-
sitive settings, using the consensus sequence of the family
(from Repbase), and cross match. If more than 2000 in-
stances are available, instances in the most divergent quar-
tile are removed and 2000 from the remaining set are cho-
sen randomly. Alignments covering over 75% of the consen-
sus length are used before shorter fragments are considered.
If regions with low coverage remain, 10x coverage at each
position is achieved (if possible) by adding instances from
another source organism (e.g. alligator, platypus). For each
sequence, the alignment against the consensus is provided
by RepeatMasker; these sequences are joined into a mul-
tiple sequence alignment based on their alignments to the
shared consensus.
For Dfam2, construction of seed alignments was done in

this way to make maximal use of existing high-quality cu-
rated families. The RepeatMasker alignments have the fol-
lowing advantages: (i) There are very few false positives or
false extensions into unrelated DNA. (ii) RepeatMasker ex-
cises simple repeat expansions and insertions of younger
TEs, so that more and longer uninterrupted instances of un-
derlyingTEs can be recognized and included in the seed. (iii)
RepeatMasker uses directional alignment parameters (gap
penalties and log-odds substitution matrices) accurately re-
�ecting isochore-speci�c neutral decay patterns from an
original sequence (the consensus) to the current state of
copies. (iv) A single genomic sequence may be matched by
two or more family searches, because many TEs are related
to each other. We call these redundant hits. By letting Re-
peatMasker pick the best from among those redundant hits,
we largely avoid assigning such a sequence to the wrong
seed alignment. However, Dfam seed alignments are not re-
quired to be derived fromRepeatMasker annotation. In the
future, some seed alignments will be constructed directly
during the family curation process, rather than depending
on a consensus sequence and RepeatMasker run.
Even when using RepeatMasker alignments based on cu-

rated consensus sequences, multiple issues can lead to sub-
optimal seed alignments, especially for lower copy elements.

In these cases, some intervention is required. (i) Copies am-
pli�ed through tandem or segmental duplications long af-
ter the activity of the transposable elements can skew the
pro�le of a family, particularly if few copies are available
overall. To reduce this problem, in any case where there are
instances that have >90% similarity to each other over 250
bp of �anking DNA on either side, we select only one rep-
resentative copy. (ii) The repeat databases, even for human,
are far from complete and a genome harbors many copies
of unrepresented elements that may be (partially) matched
by those in the database in the RepeatMasker analysis. In-
clusion of these matches dilutes the signal for the intended
element. The fact that these cross-matches tend to show
higher divergence from the consensus motivates the previ-
ously mentioned exclusion of the most divergent sequences
from the seed. (iii) Another problem can arise when a low
copy number element contains similarity to a high copy ele-
ment, e.g. a complex repeat like SVA including anAlu. Even
if RepeatMasker mistakenly annotates only a very small
fraction of the high copy element as a fragment of the low
copy element, this small fraction may overwhelm the count
of true instances in that region of the seed alignment. When
this seed is used to search the genome, the signal induced
by these mistakenly included sequences may exacerbate the
problem of wrongly annotating members of the high copy
family. Since these matches are only to a part of the consen-
sus or model, sequences covering only those regions where
the consensus matches a more common repeat are excluded
from the seed alignment. This last method has not yet been
automated, and has been applied to a few families bymanu-
ally removing incorrectly included sequences from the seed.
In Dfam 1.0, all sequences in the seed alignment were

required to come from the human genome. A major im-
provement in the quality of the HMMs in Dfam 2.0 derives
from the ability to build seed alignments not only from in-
stances in the target genome but from any other genome
containing copies of the same TE. For example, copies of
an element active before the eutherian radiation are present
in a reconstructed eutherian ancestral genome (14,15), in
which far fewer substitutions have accumulated. Likewise,
the highly diverged copies in mouse of TEs that were active
before the rodent-primate split, are present relatively intact
in the human genome, as the neutral decay rate in primates
has been much lower than in rodents. Models for such old
repeats constructed from human alignments performed bet-
ter in mouse, both with respect to sensitivity and selectivity,
than models constructed from mouse-only copies (data not
shown). In the current release, for models with incomplete
seed coverage, we chose to use related but slower evolving
species to generate the seed. As an example, alligator in-
stances were used to supplement several amniote-wide re-
peats. For the zebra�sh, fruit �y and nematode, all models
were built from native sequences, as no genomes of slower
evolving close relatives or reconstructed ancestors exist as
yet.

GENOME ANNOTATION

When annotating a genome with Dfam, two important is-
sues should be considered: (i) Redundant hits arise when
more than one family matches a single genomic sequence;
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Table 1. Composition of Dfam. In addition to the repeat families represented here, Dfam contains 76 non-coding RNA families and 92 satellite families

Retrotransposons DNA transposons Unknown origin

Human only 428 46 1
Mouse only 544 9 8
All mammals 388 277 62
Zebra�sh 1074 766 13
Fly 165 27 10
Nematode 57 98 8

a tool must compare such redundant hits, and assign the
‘best” TE classi�cation to each region. (ii) Young TEs often
insert in the middle of an already-present TE. We should
account for these, for example by identifying and extract-
ing the younger inserts, then searching remaining sequence
for older TEs. We recommend using RepeatMasker for an-
notation, as it has incorporated Dfam and nhmmer, while
also handling these concerns. For the annotation of mam-
malian genomes with Dfam models, RepeatMasker �rst
identi�es and clips out near-perfect simple tandem repeats,
using TRF (16), then follows a multi-stage process designed
to ensure accurate annotation of possibly-nested repeats.
For non-mammals, the TRF step is followed by only a single
excision and masking pass of all repeats.
In all cases, Dfam models are searched against the tar-

get genome using model-speci�c score thresholds described
later. The format of RepeatMasker’s Dfam-based output is
nearly identical to the traditional cross match-based out-
put, with cross match type alignments of copies to con-
sensus sequences extracted from the HMMs. As a matter
of convenience, we also provide a simplistic script, called
dfamscan.pl, to address redundant hits.

SENSITIVITY AND FALSE ANNOTATION; BENCH-
MARKS AND IMPROVEMENTS

Our analyses with the initial release of the database (17)
found increased coverage by pro�le HMMs relative to their
consensus counterparts, while simultaneously maintaining
a low false discovery rate. For this release we have further
developed methods for benchmarking the speci�city and
sensitivity of the models. To assess speci�city, we developed
two benchmarks, one designed to identify the rate of false
positive hits, and the other designed to identify cases of
overextension. In overextension, a hit correctly matches a
truncated true instance but then extends beyond the bounds
of that instance into �anking non-homologous sequence
(18). We de�ne coverage to be the number of nucleotides
in real genomic sequence that are annotated by the search
method. Assuming the benchmarks correctly suggest the
rate of false coverage, sensitivity is the genomic coverage
minus false coverage. Using these new benchmarks we were
able to identify areas for improvement in the model build-
ing processes. Here we describe our new benchmarks, ap-
proaches we have used to reduce false annotation, and the
impact on annotation.

New benchmark for false positives

We use a synthetic benchmark dataset to estimate false pos-
itive hit rates and to establish family-speci�c score thresh-
olds, which indicate the level of similarity required to be

considered safe to annotate. Until Dfam 1.3, we used re-
versed, non-complemented sequences as our false positive
benchmark, as this appeared to be the most challenging (i.e.
produced the most false positives) of the method we tested
with TE identi�cation algorithms. Starting with Dfam 1.4
we switched to a newbenchmark, using simulated sequences
that display complexity comparable to that seen in real
genomic sequence. These sequences are simulated using
GARLIC (19), which uses a Markov model that transi-
tions between six GC content bins, basing emission prob-
ability at each position on the most recently-emitted three
letters (a fourth-order Markov model). After constructing
such sequences, GARLIC inserts synthetically diverged in-
stances of simple repeats based on the observed frequency
of such repeats in real genomic GC bins. Sequences pro-
duced byGARLICmore accuratelymatch the distributions
of k-mers found in real genomic sequence, and are a more
stringent benchmark (produce more false hits) than other
methods tested, including reversed genomic sequence.
As in previous Dfam releases, the false positive bench-

mark is used to establish score thresholds for each model.
The ‘gathering’ (GA) threshold is to be applied when the
family is known to exist in the annotated organism, and en-
sures high sensitivity with a low frequency of false positives
among annotated sequences. For example, a family pro�le
may have a mouse-speci�c GA threshold, which should be
used in annotating members of that family in the mouse
genome. The ‘trusted cut-off’ (TC) threshold is more strin-
gent, and is intended for use when annotating other organ-
isms. When searching Dfam models with nhmmer, the GA
threshold is accessed using the �ag ‘--cut ga’, and the TC
threshold is accessed using ‘--cut tc’.

For each family, thresholds were established for each
Dfam organism known to contain instances of that family.
All models were searched against that organism’s genomic
sequence, and also against a simulatedGARLIC genome of
the same size. All newmodels were searchedwith anE-value
cut-off of 100. The GA threshold was chosen to ensure an
empirical false discovery rate of ≤0.2% and maximum E-
value of ≤100. The GARLIC hit count is assumed to rep-
resent the number of false hits on genomic sequence, and
false discovery rate (FDR) is the percent of all genomic hits
that are false hits; see (17). When there are<50 000 true hits
in the family, FDR = 0.2% dominates; for very high count
families, the E-value threshold will limit accepted false an-
notation. The TC threshold is at least as high as necessary
to reach an E-value of 0.0001 for thatmodel, and is adjusted
upwards so that it is always higher than any false hit on the
GARLIC sequence (i.e. an empirical FDR of ∼0).
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Overextension

We developed a related benchmark to assess overextension
behavior. Our benchmark uses GARLIC to place truncated
and mutated instances of known TEs into simulated back-
ground. We expect matches to these planted instances, and
any expansion of alignments into the �anking simulated se-
quence can be identi�ed as overextension. This benchmark
highlighted the fact that false extensions were a greater con-
cern than we previously reported.
Many repeat families demonstrate non-random patterns

of association with particular composition landscapes (iso-
chores). For example, L1s are usually located within AT-
rich regions (20,21). If a true L1 fragment is found within
an AT-rich region of the pro�le, and the �anking unaligned
portion of the query is also AT-rich, a sequence align-
ment method may be lured into extending into that non-
homologous �anking sequence, not because of homology,
but because of composition. In (17), we assessed overex-
tension by interleaving true repeats with reversed genomic
sequence, without regard for the �anking composition.
This led to an underestimate of the overextension problem.
GARLIC inserts repeat copies preferentially into regions of
GC content similar to those in which they most often oc-
cur, and it is this pattern that seems to most strongly induce
overextension in nhmmer. Similar indications of overexten-
sion (not shown) were seen in a benchmark with design
much like that in (17), but where repeat copies were placed
in reversed sequence in precisely the same position in which
they occurred in unreversed sequence (i.e. the surrounding
sequence was now a false positive, but the bounding GC
content was precisely the same as it was in unreversed se-
quence).

Reducing overextension by increasing average relative en-
tropy

In the context of sequence alignment, relative entropy
(22,23) amounts to the expected score of an aligned charac-
ter. Lower relative entropy corresponds to increased diver-
gence among sequences. For single-sequence comparison
methods like cross match and blast (8), a single scoring ma-
trix is applied across the entire alignment; expected scores
do not vary from position to position. Low relative entropy
substitution matrices have been shown to permit high levels
of overextension (24,25), and low relative entropy has a sim-
ilar impact in the context of pro�le hidden Markov model
alignment (Rivas & Eddy, submitted). Previously, nhmmer
aimed to construct pro�le HMMs with a target average rel-
ative entropy of 0.45 bits per position; raising this default
to 0.62 bits/position did not greatly detract from hit sen-
sitivity, but did reduce levels of overextension. An example
of the impact of target relative entropy on the sensitivity
and overextension of one repeat family is given in Figure 1.
The impact of relative entropy on overall human coverage
is shown in Table 2.

Position speci�c entropy weighting to reduce overextension

In seed alignments, some columns are more conserved than
others. More-conserved columns have higher relative en-
tropy than less-conserved columns. Moreover, these align-

ments often show variability in coverage––some columns
are represented by many sequences, while others are only
represented by a few. This is particularly true in fami-
lies where few full-length copies are known. When com-
puting a pro�le HMM from a seed alignment, HMMER
mixes observed counts with a prior distribution; more ob-
served counts means less reliance on the prior, and (on av-
erage) greater relative entropy. Thus Dfam’s pro�le HMMs
demonstrate position-speci�c variability in relative entropy
due to a combination of the number of observations in a
column and the conservation within those observations.
By default, the average (per-position) relative entropy of a

model, after mixing observed counts with the prior model,
might be much higher than the target average relative en-
tropy (0.62 bits per position). HMMER achieves the tar-
get value by down-weighting the number of observations,
in a process called entropy weighting (9). This essentially in-
creases the in�uence of the prior. The default in HMMER
is to uniformly down-weight observations in all columns by
a multiplicative factor, picking a factor that causes the tar-
get to be reached. We found that this can be problematic
in the case of very fragmented Dfam seed alignments, in
which there can be high variability in column coverage. For
columns with relatively few observations, the uniform mul-
tiplier can lead to unreasonably small (adjusted) observa-
tions. This is common, for example, due to the pervasive 5’
truncation of LINE copies, where observed counts in one
part of the seed can be more than an order of magnitude
smaller than in another. Similar to observations of high
overextension under low relative entropy scoring schemes,
we found that Dfam overextension preferentially occurs in
hits that end in these regions of low local relative entropy
(data not shown).
Beginning with the Dfam 1.4 release, we devised a new

scaling approach, which reduces the relative entropy of re-
gions with higher coverage to a greater extent than those
with lower coverage. Rather than �nding a uniform mul-
tiplier, this method identi�es an exponential scaling factor
s that leads to the target relative entropy. Suppose a col-
umn has k observed letters; the scaled count will be ks. This
factor 0 ≤ s ≤ 1 is applied to each column. Each scaled
count will be between 1 and the true observed count k, and
columns with low k are less dramatically down-weighted.
This weighting variant is the new --eentexp �ag in nhmmer.
See Figure 2 for an example of the impact of this approach
on position-speci�c relative entropy. Employing the expo-
nential weighting function on the Dfam seed alignments led
to a decrease in overextension of hits for many models.
We evaluated the new Dfam release, based on these two

changes in relative entropy calculation (target level, en-
tropy weighting) using a GARLIC benchmark sequence
and found the false discovery rate to be more than halved
(Table 3). Even these rates are likely an overestimate of
the true overextension FDR, since the benchmark contains
fragmentary TE instances, while full length instances in real
genomic sequence can not be overextended. Importantly,
75% of the improvement in overextension came from the
elimination of long (>100 bp) overextensions (Figure 3).
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Figure 1. In�uence of average relative entropy on annotation for one family. This plot shows the impact of target average relative entropy values of the
Charlie15a (DF0000089) model on both annotation coverage (true positives) and overextension. Using the Charlie15a seed, pro�le HMMs were built with
HMMER’s hmmbuild tool, with varying target average relative entropy values ranging from 0.4 to 0.9 bits per position, using the --ere �ag. The largest
of these values represents the average relative entropy of the model when no sequence downweighting (entropy weighting) is performed. Coverage was
assessed by searching each entropy-weighted pro�le HMM against the human genome. Overextension was assessed by searching each pro�le against a
simulated genome containing fragments of true Charlie15a elements planted into realistic simulated genomic sequence built using GARLIC.

Table 2. In�uences of average relative entropy on annotation for all human families

Average relative entropy Overextension change (bp) True positive change (bp)

0.40 1 187 973 (472 522)
0.42 686 251 (255 520)
0.44 242 979 (43 430)
0.46 (242 979) 43 430
0.48 (717 069) 119 880
0.50 (1 160 532) 200 545
0.52 (1 586 452) 104 369
0.54 (2 001 938) (2416)
0.56 (2 440 201) (121 426)
0.58 (2 812 553) (287 361)
0.60 (3 236 722) (586 724)
0.62 (3 624 644) (873 070)
0.64 (3 976 080) (1 264 674)
0.66 (4 326 797) (1 629 825)
0.68 (4 670 024) (2 011 169)
0.70 (4 974 778) (2 462 143)

Using the GARLIC benchmark with inserted TE fragments, we tested a variety of target average relative entropy values, assessing the impact on coverage
and overextension across all human models. Values in parentheses are negative, indicating a reduction in overextension or coverage from the previous
default of 0.45 bits per position. We chose to update the default in HMMER to a higher value (0.62) to reduce overextension while only sacri�cing a
modest amount of true positive matches.

Table 3. Improvements to false annotation

FDR due to false hits FDR due to overextension

cross match + consensus 0.12% 1.09%
nhmmer + Dfam 1.3 0.63% 5.74%
nhmmer + Dfam 2.0 0.17% 2.34%

We used RepeatMasker to search the full set of human families against (i) the human genome (to count annotation coverage) and (ii) a GARLIC overexten-
sion benchmark based on simulated human genome sequence (to assess false coverage and overextension). This is a pessimistic estimate of the overextension
FDR. RepeatMasker was tested with cross match (v 1.080812) and the Repbase-derived RepeatMasker library (20.07, 20150807), and using nhmmer to
search with both Dfam 1.3 pro�le models and Dfam 2.0 models.
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Figure 2. Impact of exponential entropy weighting on position-speci�c relative entropy. L1PREC2 5end (DF0000315) per-position relative entropy av-
eraged over 30 bp windows with uniform and exponential entropy weighting functions. The region around position 1900 caused both false hits and
overextension of true hits when using uniform entropy weighting; most of these were removed with the higher positional relative entropy generated using
exponential entropy weighting.

Figure 3. Distribution of overextension lengths. Pro�le HMMs for human Dfam families were searched against an overextension benchmark trained on
human sequence data, built usingGARLIC. For each hit aboveGA threshold, overextension was calculated. The plot shows, for each overextension length,
the number of hits with that length. Application of our two changes (increased average relative entropy and exponential entropy weighting) clearly reduced
the frequency of very long overextensions.

Overall annotation results

Dfam and nhmmer have been incorporated into Repeat-
Masker, and were used to annotate the �ve represented
genomes: human [hg38], mouse [mm10], zebra�sh [dan-
Rer10], �y [dm6], and nematode [ce10]. Validation using our
benchmark indicates that false annotation can be kept low
while retaining a high coverage. Speci�cally, Tables 4 and 5
demonstrate the gains in annotation coverage of Dfam rel-
ative to the prevalent method of annotating based on align-
ment to consensus sequences from the Repbase-derived Re-
peatMasker library.

NEW FEATURES ON THE WEBSITE

Multiple species

Changes to the Dfam website largely revolve around sup-
port for the presence of repeat families belonging to multi-
ple species. The majority of the changes are on the back end
of the website, involving speed and scalability. Here, we de-
scribe a few features that are visible on the website. On the
Summary tab, the Hit Statistics section now provides ob-
served hit counts for all appropriate species, as exempli�ed
in Figure 4.
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Table 4. Increase in number of annotated interspersed repeats, using Dfam + nhmmer

Interspersed repeats
(count) All repeats (count) Increase (count)

Human Consensus 3 743 222 4 532 893
Dfam 4 007 051 4 708 414 175 521

Mouse Consensus 3 112 647 4 691 497
Dfam 3 640 848 5 152 510 461 013

Zebra�sh Consensus 2 757 001 3 577 995
Dfam 3 058 971 3 790 149 212 154

Fly Consensus 22 819 119 232
Dfam 24 676 120 868 1636

Nematode Consensus 46 566 80 064
Dfam 71 855 103 212 23 148

For each organism,RepeatMaskerwas run using (i) cross matchwith consensus sequences from theRepbase-derivedRepeatMasker library and (ii) nhmmer
with Dfam2. Interspersed repeats are shown separately, while the all repeats count also includes locally repetitive satellites and short tandem repeats.

Table 5. Coverage gains for each organism, using Dfam + nhmmer

Genome size
(no Ns)

Interspersed
repeats (bp) All repeats (bp) Increase (bp)

Increase
(% of genome)

Human Consensus 2 937 655 681 1 416 407 169 1 536 018 323
Dfam 1 570 963 110 1 686 550 773 150 532 450 5.1%

Mouse Consensus 2 647 537 730 1 091 472 267 1 179 145 848
Dfam 1 234 765 488 1 324 034 627 144 888 779 5.5%

Zebra�sh Consensus 1 338 605 546 715 260 228 785 961 593
Dfam 781 171 892 844 630 681 58 669 088 4.4%

Fly Consensus 137 077 099 20 456 863 25 281 658
Dfam 21 611 976 26 230 068 948 410 0.7%

Nematode Consensus 100 286 070 10 245 891 12 532 750
Dfam 16 904 376 19 030 107 6 497 357 6.5%

RepeatMasker was used to search each organism as in Table 4. The genome size corresponds to assemblies hg38, mm10, danRer10, dm6 and ce10 respec-
tively, in each case with random, chrUn and alt sequences removed and Ns ignored.

Figure 4. Hit statistics for MLT1A (DF0001126).

On theModel tab, the various coverage distribution plots
are tied to the selection of an organism of interest, while
general plots (such as those describing the seed alignment)
are independent of this selection. Similarly, the Hits tab
presents hits distributed across karyotype plots, depending
on the selected organism, as seen in Figure 5. The Down-
loads tab also allows species-speci�c hit table downloads.

New coverage plot

We have developed a new plot that compactly represents the
distribution of hits along the family model according to a
selectable score or E-value threshold. The plot also shows
position-speci�c levels of conservation and insertion among
those hits. It can highlight opportunities for improved cura-
tion or biologically interesting conservation patterns. For
example, Figure 6 shows the plot for MIR, showing a
steadily higher coverage in the center, which may be a con-
sequence of an unresolved subfamily structure and/or of
common exaptation of sequences in this ‘core domain’ (28–
30).

FUTURE CHALLENGES/DIRECTIONS

With this release, we have expanded the taxonomic coverage
of Dfam, and expect that the increased annotation of the
four new species will be a valuable addition. More impor-
tantly, we have begun to establish the framework for expan-
sion to represent repetitive elements from across the tree of
life. Over the coming years we will develop Dfam with two
main approaches:

(1) continue the protocol used here to build alignments
and pro�le HMMs from the Repbase-derived Repeat-
Masker library, which contains consensus sequences for
TEs from dozens of organisms;

(2) build curation assistance tools to enable straightfor-
ward external contribution of families to the open-
access Dfam database.

In order to support the species expansion in Dfam, we
made signi�cant changes to the database schema and mid-
dleware. Transposable elements can be tremendously prodi-
gious, leaving millions of copies per element in a single
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Figure 5. Hits displayed on karyotypes. This plot shows the distribution of HAT1 CE (DF0001401) elements across C. elegans chromosomes, demonstrat-
ing the well-known accumulation of some DNA transposons towards telomeres (26,27).

Figure 6. Coverage, Conservation, and Insert plot for MIR (DF0000001).

genome; closely-related families result in redundant hit
data. The tables storing the hits in Dfam1.0 contained over
110 million entries for the 1,143 families in human, and
these numbers have grown to over 230 million entries for
4,150 total families in the current �ve organisms. In order to
meet this scale, we refactored the schema to limit database
tables to manageable scale, and optimized numerous data
management scripts. Even so, expansion to repeat elements
belonging to dozens or hundreds of organisms will over-
whelm the current database format. We have begun devel-
opment of more scalable options using a mix of relational
and NoSQL database components. These will require fur-
ther development, both in terms of technical architecture

and overall framework for handling clade-speci�c repeats
across the ever-growing collection of sequenced organisms.
Though changes to entropy weighting in nhmmer have

substantially improved overextension behavior on our
benchmarks, the problem is not solved. Additional methods
are necessary to ensure that maximal sensitivity is retained,
while further eradicating overextension. Another important
source of false hits, discussed in the �rst Dfam paper, but
still not resolved, is the handling of degenerate tandem re-
peats. Current methods involve masking both genomic se-
quence and family pro�le HMMs; new methods must be
developed to directly model the existence of low complexity
and tandemly repetitive sequence in genomic data.
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AVAILABILITY

The Dfam2 website site is available at http://dfam.org.
Dfam data can be freely downloaded using the Download
link at the top of every Dfam web page, either as �at �les
or in the form of MySQL table dumps. The Dfam database
is supported by nhmmer, a part of HMMER3.1. A release
snapshot of HMMER3.1, including the version of nhmmer
used to produce the database and the results in this paper,
is available via the same link. Data and scripts used to pro-
duce the various tables and �gures can be downloaded at
http://dfam.org/web download/Publications/NAR2016/.
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