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Abstract

The comprehensive characterization of neuronal morphology requires tracing extensive axonal 

and dendritic arbors imaged with light microscopy into digital reconstructions. Considerable effort 

is ongoing to automate this greatly labor-intensive and currently rate-determining process. 

Experimental data in the form of manually traced digital reconstructions and corresponding image 
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stacks play a vital role in developing increasingly more powerful reconstruction algorithms. The 

DIADEM challenge (short for DIgital reconstruction of Axonal and DEndritic Morphology) 

successfully stimulated progress in this area selecting six data set collections from different animal 

species, brain regions, neuron types, and visualization methods. The original research projects that 

provided these data are representative of the diverse scientific questions addressed in this field. At 

the same time, these data provide a benchmark for the types of demands automated software must 

meet to achieve the quality of manual reconstructions while minimizing human involvement. The 

DIADEM data underwent extensive curation, including quality control, metadata annotation, and 

format standardization, to focus the challenge on the most substantial technical obstacles. This 

data set package is now freely released (http://diademchallenge.org) to train, test, and aid 

development of automated reconstruction algorithms.

Introduction

Reconstruction of neuronal morphology provides a popular and valuable approach to 

quantifying axonal and dendritic structure. Digital tracing permanently stores relevant 

morphometric information in compact and easily shared files. These data can be re-analyzed 

in future research projects, often in ways not envisioned in the original experimental design 

(Ascoli et al., 2009; Fares and Stepanyants, 2009; Torben-Nielsen and Stiefel, 2009; 

Volman et al., 2009; Snider et al., 2010).

By far the most common digital reconstruction approach involves tracing neurons manually 

where an operator interacts with computer software to individually create and interconnect 

each trace point. Depending on the size, complexity, and number of arbors traced, manual 

reconstructions can take up to several months to finish. As histological and imaging methods 

advance, studies will increasingly benefit from the opportunity to reconstruct greater 

numbers of neurons. The desire to automate this process is progressively becoming a need, 

as current labor-intensive reconstruction methods continue to limit neuroscientific 

productivity.

A few software products for automatically reconstructing neuronal morphology have already 

been developed both in the commercial sector, such as the AutoNeuron extension module 

for Neurolucida (MBF Bioscience, Williston, VT) or Imaris Filament Tracer (Bitplane, 

Zurich, Switzerland) and in academia, including V3D (Peng et al., 2010), ORION (Losavio 

et al., 2008), and NeuronStudio (Rodriguez et al., 2009). However, their infrequent 

application and the intense ongoing activity for further development (Donohue and Ascoli, 

2011) suggest that these existing options have limited utility. Typically, these programs 

perform well with simple neuronal trees or individual data sets, but require extensive human 

intervention for complex arbors or diverse experimental data. The purpose of the 2010 

DIADEM (DIgital reconstruction of Axonal and DEndritic Morphology) challenge was to 

motivate advances in automated reconstruction methods with the hope of developing 

algorithms that tackle the rate-limiting issues faced in the reconstruction process. 

Specifically, automated methods must be capable of producing accurate reconstructions in 

only a fraction of the labor time required to produce manual reconstructions, regardless of 
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how human interaction time is spent (e.g. tuning the automated reconstruction program, 

fixing trace points, etc.).

A large variety of histological preparations and imaging technologies are in use today. 

Laboratories interested in reconstructing neuronal trees typically select among confocal, 2- 

or multi-photon, and bright field microscopy depending on instrument availability, 

resolution requirements, and a broad choice of neuronal labeling method. An additional 

dimension of variability exists in animal species, brain regions, and neuronal type. Axons 

and dendrites vary widely in size and projection both within and across neuronal classes. For 

instance, CA3 pyramidal axon arbors can project to the majority of the hippocampus with a 

total length of 500 mm (Wittner et al., 2007), while dentate granule cell axons have limited 

span and average total lengths of ~8 mm (Buckmaster and Dudek, 1999). Altogether, these 

variables produce a wide array of challenges that automated reconstruction programs must 

face in order to be broadly applicable. Thus, in order to confront such challenges, a 

representative sample of data from a variety of labs was incorporated into DIADEM. This 

review describes common and unique aspects of each of the DIADEM data sets including 

why they were originally acquired, how they were processed and are distributed, and the 

types of demands these data sets provide for automating reconstructions.

The DIADEM Data Sets

Six laboratories provided data that together encompassed a variety of animal species, brain 

regions, cell and arbor types, histology, microscopy, and research goals (Table 1). The 

DIADEM data sets were carefully selected to represent the scientific problems addressed 

with reconstructions and the demands automated algorithms must overcome.

This section briefly describes the original scientific purposes for which each of these data 

sets were acquired, as well as the experimental methods used by each of the data set 

providers, starting with general acquisition steps that apply to all data sets. The magnitude of 

labor required to produce the manual reconstructions is emphasized along with future 

research goals that will require reconstruction automation. The next section explains the 

process undertaken to organize and distribute these data to aid development, evaluation, and 

extension of automated reconstruction algorithms.

General Data Set Acquisition Steps

Each data set consisted of manually traced digital reconstructions and image stacks of the 

corresponding tissue. To obtain the image stacks, a portion of neuronal structures are labeled 

in brain tissue and then mounted on microscope slides or imaged in situ in the case of the in 

vivo neocortical projection data set. The slide is viewed through a microscope equipped with 

a digital camera or, for confocal and two-photon microscopy, a photomultiplier tube (PMT). 

The camera can produce a live feed transferred to a computer where specialized software is 

used to trace neural structures without storing imaging data. Alternatively, a series of high 

resolution images of a region of interest taken while changing the focus level provides the 

ability to visualize the entire 3D neuronal structure. These images are stored and 

subsequently loaded into digital tracing software. Reconstructions consist of a connected 

series of individual points that are traced over the image stack structure they are intended to 
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represent. Each point is stored with a unique identifier, its arbor type (e.g. axon or dendrite), 

position in X, Y, and Z, branch thickness, and the previous (i.e. parent) trace point to which 

it connects (Fig. 1A).

Cerebellar Climbing Fiber Data Set

Climbing fibers are axon terminals of inferior olive neurons that provide powerful excitatory 

input to Purkinje cells in the cerebellar cortex. This data set was originally acquired to 

analyze in detail climbing fiber morphological properties and anatomical relationships from 

the axonal origin in the inferior olive through the terminations in the cerebellar cortex 

(Sugihara et al., 1999). For this purpose, biotinylated dextran amine (BDA) was injected in 

the inferior olive of adult rats to label entire olivocerebellar axonal trajectories. BDA is one 

of the most efficient anterograde tracers available (Sugihara, 2011), allowing for direct 

observation and photomicrographic documentation by standard light microscopy (Fig. 1).

It was found that almost all olivocerebellar axons entered the cerebellum via the 

contralateral inferior cerebellar peduncle. On average, seven climbing fibers arose from each 

inferior olive axon. It was also confirmed that climbing fibers typically synapse with 

Purkinje cells in a one-to-one relationship. Since the Purkinje cell dendritic tree is organized 

within a semi-parasagittal (longitudinal) plane, the terminal arbor of the climbing fiber is 

also organized within the same semi-parasagittal plane. Although previous reports suggested 

climbing fibers only synapsed on Purkinje cell dendrites, some proportion of their branches 

contacted the Purkinje cell body. An unreported climbing fiber branch type we classified as 

‘transverse branchlets’ was discovered that traveled in an orthogonal (transverse) direction 

to the terminal arbor of the climbing fiber for a short distance. Transverse branchlets and 

evidence of branch terminations contacting counter-stained interneuronal cell bodies suggest 

that the climbing fiber may contact other cells beyond the underlying Purkinje cell.

A single cerebellar climbing fiber can take 3–4 hours to trace two-dimensionally with a 

camera lucida system. The planar organization of the arbor of a climbing fiber often allows 

it to be localized within a single microtome section of the cerebellum (50–80 μm thick) if 

the section is cut in parallel to the plane of the arbor, favoring automation. Manual 3D 

climbing fiber reconstructions can take 6 to 24 hours full time, with an average estimated at 

14 hours. Tracing entire olivocerebellar single axons from serial sections using a semi-3D 

method (using the section rank multiplied by the section thickness as the z-coordinate) takes 

about 20 days at 6 hours per day or 120 hours.

Although climbing fibers are distributed throughout the cerebellar cortex, the cerebellar 

cortex has transverse (lobular) and longitudinal compartmentalization. The latter is related to 

different levels of expression of several molecules in subpopulation of Purkinje cells. This 

organization reflects the functional localization of the cerebellum. It would be valuable to 

examine potential climbing fiber morphological subsets by cerebellar regional location. The 

relation of climbing fiber morphology to cerebellar compartmentalization will be studied 

better with automated than with manual tracing, since a large sample would be required. 

Moreover, the morphology of climbing fibers is formed in early postnatal days. Several 

methods for artificial alteration of cerebellar development, including genetic manipulation, 

cause different kinds of malformation of climbing fibers as well as of other neuronal 
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components of the cerebellar cortex. Quantitative data obtained by automated tracing 

software may be particularly useful to assess the climbing fiber morphogenetic process.

Olfactory Projection Fiber Data Set

These data came from two studies of the organization of the central olfactory system in 

Drosophila (Marin et al., 2002; Jefferis et al., 2007). Previous work had shown that as in 

vertebrates the axons of olfactory sensory neurons expressing the same odorant receptor 

converge at stereotyped glomeruli in the first relay in the brain, called the antennal lobe in 

insects (Gao et al., 2000; Vosshall et al., 2000). However the anatomical logic of the second 

order neurons, called projection neurons, was not clear. We used a genetic labeling 

technique known as MARCM (Lee and Luo, 1999) to address this problem. The target 

population contained about 90 genetically defined projection neurons (out of an estimated 

total of 150). MARCM allowed us to generate many brains containing single green 

fluorescent protein (GFP) labeled neurons. We imaged brains using whole mount confocal 

microscopy and traced the neurons (Fig. 2) using either manual or semi-automatic 

approaches, such as the Amira (Mercury Computer Systems, Inc., Chelmsford, MA) 

extension module hxskeletonize (Evers et al., 2005). By co-registering different sample 

brains we were able to build up a full 3D atlas (Jefferis et al., 2007).

This work demonstrated a highly stereotyped spatial map of olfactory information in one 

higher olfactory center in the fly brain (the lateral horn). This map is much more distributed 

than that in the first olfactory relay; anatomical convergence and divergence likely allow 

integration of information originating from different glomeruli. Mapping projects of this sort 

could be used to provide a full 3D atlas of the estimated 100,000 neurons in the fly brain. 

Tackling a project of such scale would require increased throughput of confocal imaging of 

brains and genetic labeling schemes that allow many neurons to be distinctly labeled in the 

same brain. Progress has been made on both of these points. However, the typical time for 

manual tracing of the relatively simple neurons in our data set was about 20 minutes, and 

many neurons are much more complex, so tracing remains a major bottleneck.

Neocortical Layer 1 Axon Data Set

Acquisition of this data set was originally motivated by the study of the cellular and circuit 

mechanisms of experience-dependent plasticity and repair (Canty and De Paola, 2011). To 

understand the full capacity of reorganization of the adult mammalian brain, neurons, their 

synapses and activity patterns therein need to be studied in situ over extended periods of 

time. Due to technical challenges in tracking defined axonal pathways in living animals little 

is known about the regulation of axonal plasticity in the adult brain. Axons arborize 

extensively in Layer 1 of the neocortex and form a remarkably dense and poorly 

characterized network. Axons can be effectively labeled, visualized and imaged in vivo 

using a membrane-bound form of GFP expressed in subsets of neurons (Thy-1 mouse line 

15, De Paola et al., 2003) and 2-photon microscopy (De Paola et al., 2006). At the moment 

the analysis of axonal morphology and dynamics from 2-photon fluorescent image stacks 

heavily relies on manual reconstructions and is both arduous and extremely time-consuming. 

Each isolated 150×150×50 μm stack (x-y-z, L1 axon data set) took several hours to trace, 

excluding proofreading. To reconstruct by hand all Thy1-GFP labeled axons in the first two 
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cortical layers of a slice of the mouse cortex, a volume of approximately 10×10×0.15 mm, 

from just one time point, would take several years of work, excluding the mapping of 

synaptic sites. The value of accurate and efficient automated reconstruction algorithms will 

be amplified when applied to the same region of circuitry over several time points, enabling 

identification and quantification of any ensuing length or synaptic rearrangements.

Data for the Qualifier and Training rounds (Fig. 3) came from the whole mount fixed brain 

of a 2 month-old animal. The left hemisphere was imaged approximately in the motor 

cortex, using a Prairie ULTIMA 2-photon system (Prairie Technologies) controlled via 

Prairie view software. Nine overlapping stacks of various thickness (range: 33–64 μm) were 

captured, with approximate 15 μm overlap in x-y. Data for the Final round was imaged from 

a 4-month old mouse through a viewing window (Holtmaat et al., 2009) under ketamine/

xylazine anesthesia, using the same acquisition settings as for the other rounds (Table 1), 

except having 10 overlapping tiles (z-thickness range: 50–88 μm). This is the only DIADEM 

data set acquired in a living animal. This means that movement artifacts due to the animal 

breathing and blood vessel contraction could make the automated reconstructions more 

challenging, especially when repeated over consecutive imaging sessions.

Neuromuscular Projection Fiber Data Set

The invertebrate nervous system is believed to be highly stereotyped due to tight genetic 

control; each neuron can often be identified by its specific structure and connectivity. To 

what extent such neuronal level stereotypy exists in mammals remains unclear. One major 

difficulty is to identify the exact counterpart of a mammalian neuron within a large 

population of similar cells for comparison. The mouse interscutularis muscle (a small ear 

muscle) is suitable to identify pairs of corresponding motor neurons with identical functions 

and compare their morphology and connections (Lu et al., 2009a). This peripheral 

neuromuscular circuit has several advantages. Adult motor axons can be readily resolved 

optically, and so are their synapses onto muscle fibers (the neuromuscular junction). 

Furthermore, in adult skeletal muscles, each muscle fiber is innervated by exactly one motor 

neuron. Therefore, the entire synapse-level wiring diagram, or “connectome,” can be 

obtained using optical microscopy. According to Henneman’s size principle (Henneman et 

al., 1965), motor neurons are recruited in a fixed order, which in turn corresponds to their 

motor unit sizes (the number of muscle fibers innervated by a motor neuron). Thus, neuronal 

counterparts can be identified by virtue of their motor unit size and rank within each 

connectome.

Production of this data set aimed at addressing these open issues using thy-1-YFP-16 

transgenic mice (Feng et al., 2000), which express cytoplasmic yellow fluorescent protein 

(YFP) in all motor neurons. As optical sectioning is needed for tracing the trajectory of each 

axon, confocal microscopy was adopted for imaging (Fig. 4).

Reconstruction speed with Reconstruct (Fiala, 2005), the semi-automated reconstruction 

method employed in the muscle connectome analysis (Lu et al., 2009b), strongly depends on 

data quality and complexity. Under optimal conditions (i.e., crisp-clear images, with axonal 

profiles well segregated from their neighbors, and minimal user intervention required), the 

maximal speed is ~4 mm axon per hour. Under typical conditions (i.e., some axonal profiles 
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not perfectly segregated; relatively large change in brightness; presence of intracellular 

organelles, etc., requiring user intervention), the speed is ~0.5 mm per hour. The total arbor 

length per axon ranges from ~5 mm to ~10 mm, and in each interscutularis muscle there are 

12–16 axons. Thus the total time spent to reconstruct one muscle connectome was 

approximately 200–250 hrs. Subsequent concatenation of reconstructed axons from 

individual stacks into a single 2D montage in Photoshop (Adobe Systems, San Jose, CA) 

took 5–20 min per stack depending on the complexity of data, so the total time was 20–30 

hrs. 2D re-tracing with NeuronJ (Meijering et al., 2004) to obtain the tree structure took 

about 10–20 min per axon or 2–3 hours in total.

Many further questions can be addressed by connectomic analysis of neuromuscular circuits. 

For instance, do axons “compartmentalize” their territories in large muscles? What is the 

organization of innervations when the circuit is still undergoing the postnatal re-organization 

known as synapse elimination? Answering these questions requires large numbers of data 

sets with more axons, more complicated innervation patterns, and less well-resolved 

structures. Analyzing such data sets manually would be extremely tedious and inefficient. It 

is expected that fully automated reconstruction algorithms, together with advances in 

labeling and imaging techniques, will facilitate such investigations.

Hippocampal CA3 Interneuron Data Set

The neuronal network in hippocampal area CA3 is composed of numerous subtypes of 

inhibitory interneurons which receive segregated inputs from different sources, including the 

commissural/association fibers from CA3 pyramidal cells, perforant path (PP) from 

entorhinal cortex layer 2, and mossy fibers (MF) from dentate gyrus granule cells. CA3 

interneurons with soma in strata lacunosum-moleculare (L-M) and radiatum (R) provide a 

substantial fraction of dendritic and somatic feed-forward inhibition to CA3 pyramidal cells. 

The original purpose for the anatomical reconstruction of these interneurons was to assess 

the properties and mechanisms of temporal integration in R and L-M interneurons by taking 

advantage of the ability to activate independently convergent MF and PP inputs (Calixto et 

al., 2008).

Whole-cell recordings with biocytin-filled pipettes were obtained from the soma of putative 

interneurons localized 60–80 μm from the slice surface, and identified visually with infrared 

video microscopy and differential interference contrast optics. Advantages of biocytin are its 

high solubility in aqueous solutions and a small molecular weight, both of which facilitate 

injection using patch pipettes. In addition, biocytin is less expensive than alternatives such 

as Phaseolus Leucoagglutinin (PHA-L), and is easily transported by rat neurons to reveal 

the fine detail of axonal and dendritic processes. Biocytin-labeled interneurons were 

reconstructed with the Neurolucida tracing system from all sections containing the cell (Fig. 

5).

Complete three-dimensional reconstruction (dendritic and axonal arbors) was possible in 

only 10% of labeled interneurons (N=13). These cells underwent meticulous morphometric 

analysis, yielding novel information about the dendritic and axonal morphological 

distributions of R and L-M interneurons in area CA3 (Ascoli et al., 2009). These digital 

reconstructions took about 1–2 hrs for simple trees and 3–4 hrs for complex arbors. Tracing 
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a complete cell takes around 10 days for a full time technician (around 5 hrs of work not 

counting the breaks due to fatigue and eye strain). The learning curve for developing the 

ability to identify the appropriate segments for an accurate manual reconstruction is slow 

(about 6 months). The key issue is to become skilled at making subtle focus adjustments, in 

order to “optically isolate” the relevant segments from surrounding spurious structures (e.g. 

blood vessels). Researchers responsible for checking and editing automated reconstructions 

should also undergo the same training.

Visual Cortical Layer 6 Neuron Data Set

The neocortex is organized as an array of vertical columns spanning all six cortical layers. In 

sensory cortices, neurons within single columns share similar response properties; 

orientation columns in the visual cortex are one well known example. This data set was 

acquired to help understand how the contributions of cells in each layer of the cortical 

column give rise to neural selectivity for stimulus features. Towards that end, neurons in the 

cat’s primary visual cortex are recorded whole-cell in situ during the presentation of various 

stimuli, and later stained to correlate structure with function. The neural reconstruction 

contributed to DIADEM is a pyramid cell near the top of layer 6 (Fig. 6). The axon 

arborized most densely in layer 4 and the dendrites branched extensively in upper layer 6 

and throughout 4 (the sites where thalamic afferents terminate).

This neuron was included in a study that associated axonal projection pattern with 

physiological class and position in the cortical microcircuit. Pyramids in layer 6 were found 

to project not only to layer 4, as previously known (Gilbert, 1983), but also to layer 2+3. 

Furthermore, they had receptive fields similar to those recorded in the target lamina. Taking 

physiology and anatomy into account suggested that pyramidal cells in layer 6 receiving 

direct input from the thalamus preferentially innervate other thalamorecipent neurons. 

Likewise, connections between layer 6 and 2+3 link neurons that occupy later stages of 

processing. This project was one of several devised to explore organizing principles of the 

cortical column (Hirsch et al., 1998a; Hirsch et al., 1998b; Martinez et al., 2002; Hirsch et 

al., 2003; Martinez et al., 2005).

The methods used for anatomical reconstruction are standard. During recording, biocytin 

dissolved in the internal solution of the patch pipette filled the soma, axon, and dendrites. At 

the end of the experiment, the brain was perfused and cut into sections 100 μm thick. The 

tissue was processed using conventional techniques: horseradish peroxidase conjugated to 

avidin (Vector Laboratories, Burlingame, CA) binds biocytin; afterwards the enzyme 

catalyzes the polymerization of 3,3’-diaminobenzidine, which forms a visible deposit. The 

processed sections were viewed under a light microscope at high power (63× or 100× 

objectives). Individual neurons were traced by hand with the aid of a commercial 

computerized 3D reconstruction system consisting of a Lucivid CRT fitted to project a video 

display of the tracing over the brightfield image, Ludl motorized stage and controller, and 

Neurolucida software. The total human labor for the manual reconstruction of this neuron 

from the image stack is estimated as 4 months of full time work.
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Data Set Processing and Organization

The image stacks and associated digital manual reconstructions from five of the data sets 

were each further separated in subsets to use in distinct phases of the DIADEM competition: 

the “Training”, “Qualifier”, and “Final” Rounds. In the Training Round, contestants were 

provided images with the labeled neuronal structure and corresponding manual 

reconstructions to help develop automated reconstruction algorithms. In the Qualifier 

Round, image stacks were provided without manual reconstructions and later used to score 

the accuracy of the submitted automated reconstructions. The Final Round was set up as an 

in-person tournament-conference, where contestants had no prior access to the image stacks 

or manual reconstructions (Ascoli, 2008). The sixth data set was only used in the Final 

Round to test algorithm performance on a type of data not provided during software 

development. The DIADEM competition rules and organization are comprehensively 

explained online (http://diademchallenge.org/rules.html), and specific aspects are further 

discussed by Gillette et al. (2011).

Although the data sets were provided in a variety of formats, some general preparation 

methods were used for all. In all cases, data sets were annotated with extensive metadata 

describing their source and processing steps. To standardize the data sets for DIADEM, all 

image stacks were converted to lossless TIFF format. Reconstruction files were all 

converted to the compact, non-proprietary SWC format using the freeware 

NLMorphologyConverter (http://www.neuronland.org). Neuromantic (http://

www.reading.ac.uk/neuromantic), a free program to visualize and manipulate image stacks 

and SWC files, was chosen for judges to inspect and correct contestant submissions. 

Because Neuromantic measures coordinate distance in pixels for the XY plane and image 

sequence number within the stack for the Z axis, all manual reconstructions had to be scaled 

from their original physical unit (microns). Reconstructions were run through the StdSwc 

error checking software (http://neuromorpho.org/neuroMorpho/StdSwc1.21.jsp), which logs 

common mistakes found in manual reconstructions (Halavi et al., 2008), such as large Z 

jumps. This step also ensured the consistent adoption of a common topological convention 

across data sets. Most branch points in neuronal trees consist of one parent branch splitting 

into two child branches (i.e. bifurcations). It is also possible (although rarer) for a branch to 

split into more than two branches. Depending on the intended analyses, some labs 

reconstruct these “multifurcations” as such, while others represent them as multiple adjacent 

bifurcations. StdSwc was employed to identify multifurcations so they could be edited into 

adjacent bifurcations to enforce a binary tree structure for the convenience of developers 

(see Instruction 19 at http://diademchallenge.org/

neuromuscular_projection_fibers_readme.html for the only exception in the Final Round).

Other aspects that are relevant to neuromorphological reconstructions did not affect 

processing and operation of DIADEM and were therefore not given a major emphasis. For 

example, neuronal tissue can shrink extensively during histological preparation, particularly 

in Z, thus requiring correction factors for accurate morphometric analysis. Because 

shrinkage correction is a post-reconstruction process and does not affect branch topology, it 

was not a point of consideration for DIADEM.
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Data sets varied in number and size of manual reconstructions. Because arbor topology was 

the emphasized challenge in DIADEM, and the measurement of diameter was not 

considered as a factor in the competition (see Gillette et al., 2011, for an explanation of the 

rationale for these choices), number of branches was selected as the sample unit. 

Reconstructions were chosen and organized to have substantial sample sizes (>150 

branches) across data sets and DIADEM rounds (Table 2).

Neurolucida aided in data processing along with free software programs, including: 

AxioVision LE (Carl Zeiss MicroImaging GmbH, Germany) for opening images in 

propriety LSM format; ImageJ (http://rsbweb.nih.gov/ij) for converting between bit depths 

and other options; L-Measure (Scorcioni et al., 2008) for extracting useful morphological 

measures; and Volume Integration and Alignment System (VIAS; http://research.mssm.edu/

cnic/tools-vias.html) for stitching image stack tiles together and determining relative X, Y 

and Z positions (i.e. translation values).

The diversity of data types presented various book keeping challenges beyond basic format 

conversion. The hippocampal and visual cortical data sets were initially traced not from 

image stacks, but from the live feed of the digital camera. Image stacks were therefore 

obtained specifically for DIADEM after acquisition of the manual reconstructions. Due to 

methodological differences, every trace point had to be re-aligned with the image stacks by 

hand for each manual reconstruction. These same two data sets also contained neuronal 

structures that projected through more than one slice of tissue (i.e. serial physical sections), 

requiring multiple image stacks for a single reconstruction. Although serial sections are 

considerably challenging in digital reconstructions, this aspect was excluded from DIADEM 

to focus progress on more fundamental topological challenges. These reconstructions were 

thus broken into pieces so that each would be contained within an image stack 

corresponding to a single physical section. This operation involved complex decisions as to 

where to disconnect trees, as branches often pop in and out of sections (Fig. 8D). Strict rules 

were thus applied to help contestants know when to terminate traces (e.g. instruction 12 at 

http://diademchallenge.org/hippocampal_ca3_Interneuron_readme.html).

Four of the six data sets came with multiple image stacks each covering only a portion of a 

given tree in the XY plane. Although tiles can be merged into complete image stack 

mosaics, the high resolution of these images makes such mosaics large enough to overload 

standard computer systems. Image stack tiles were therefore kept separate and translation 

values were instead provided to align image stack tiles with each other and with manual 

reconstructions. The only exception was for the hippocampal CA3 interneuron data set, 

which was provided with the individual tiles already stitched together into image stack 

mosaics of up to 7 GB. Since this size exceeds the current capability of standard personal 

computers, alternative scaled down image stacks and associated manual reconstructions 

were also produced, without altering human visual appearance and thus suitable for accurate 

manual reconstructions.

As for all experimental records, neither the image stacks nor the manual reconstructions of 

any of the six data sets are “perfect”. Manual reconstructions served as ‘gold standards’ not 

by virtue of being necessarily the best, but because they reached a level of accuracy deemed 
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sufficient for publication by the data providers and the peer reviewing community 

(Kaspirzny et al., 2002; Scorcioni et al., 2004). One way to gauge the subjectivity of a 

manual trace is to compare independently traced reconstructions of the same neuron. Among 

the climbing fibers, one tree was traced twice by different people using the same software, 

and three trees traced twice by the same person after a considerable length of time in 

between (Fig. 7). Two of these latter cells were traced using different reconstruction 

programs (Brown et al., 2005). Using the DIADEM metric for quantifying topological 

similarity (Gillette et al., 2011), all duplicate traces scored >0.90, whereas 0 and 1 equal no 

and perfect similarity, respectively. Any automated reconstruction that scored at least as 

high for the respective data sets would then likely have reached a quality of reconstruction 

as good as humans can discern. None of the other data sets provided had duplicate traces, 

but only the visual cortical neuron and possibly some of the olfactory projection trees had as 

many subjective areas as the climbing fiber data set. Thus, algorithms would have to score 

even higher for the neocortical, CA3, and neuromuscular data sets to reach human capability 

in tracing quality.

One benefit of accurate automated reconstruction methods would be to avoid accidental 

human errors. All DIADEM data sets underwent thorough checks for operator mistakes, 

including missing branches, incorrect termination or bifurcation positions, and incorrect 

branch connectivity. To reflect the expert opinions of the providers, each and every 

proposed edit was systematically confirmed with the original manual tracer to verify 

whether the reconstruction point in question was meant to be traced that way or resulted 

from an accidental error. By minimizing the influence of human mistakes, metric scores 

better reflected real topological challenges. From the original and edited reconstructions, the 

DIADEM metric was used to quantify the (typically minimal) effect of human error in 

manual tracing. Correcting confirmed errors was nonetheless useful to avoid “red herring” 

effects in algorithm development and tuning.

Last but not least, all image stack tiles and reconstructions were extensively quality checked 

to verify topology, translation values, scaling, and format conversion.

Automated Reconstruction Demands

Although each data set provided a unique set of representative challenges for automated 

reconstruction algorithms, there also existed several commonalities. In every data set, some 

images were shared by more than one arborization. Branches from the tree of interest often 

overlapped with those from other arbors not supposed to be traced. A ubiquitous challenge 

for automation algorithms is presented when branches either overlap or are positioned next 

to each other (Fig. 8A through C). Consistency in labeling intensity and/or individual branch 

morphology can help distinguish overlapping from closely apposed but non-overlapping 

branches. Overlaps with non-branch structures or ‘background noise’ (Fig. 8D) include 

incidentally- or counter-stained cells and imaging-related distortions. Since such noise can 

have voxel intensity and other parameters with similar values to branches, differentiation 

must rely on structural shape differences. Intracellular labeling volume must be optimized to 

avoid background interference from other neuronal structures (Sugihara, 2011). Moreover, 

short neuronal branches can be difficult to distinguish with light microscopy from dendritic 
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spines, axonal boutons (both typically excluded from reconstructions) or simply labeling 

artifacts (Fig. 8B). When quantifying the topological accuracy of automated reconstructions, 

these ‘spurs’ were excluded using a branch path length threshold empirically derived for 

each data set by sampling the longest branches left untraced in the manual reconstructions 

(Gillette et al., 2011). Humans can use other information beyond length to distinguish 

protuberances, varicosities, and artifacts from short branches. Similarly, labeling gaps along 

branch paths are common in histological preparations (Fig. 8D). Humans use gestalt 

properties to identify branch continuations across smaller gaps. For larger gaps, however, 

the missing information may be too much to make topological assumptions.

To establish the location of a branch in the depth of the tissue, humans scroll through images 

within the stack looking for maximum focus. Branches that are just out-of-focus appear to 

diffuse in all directions, interfering with the ability to localize in-focus neighboring 

branches. Furthermore, at a certain distance from focus, the membrane boundaries of 

branches can be relatively more intense. As the image moves out-of-focus, the spatial 

separation between opposite borders of a branch may produce the optical illusion of two 

separate smaller branches (Fig. 8C). Because interference from above and below focus 

limits the utility of denser image samples in Z, stacks are typically acquired with larger 

inter-image distances than XY pixel sizes. The resulting poorer resolution in Z than on the 

plane can exacerbate the above issues. Expert determination of correct topology in manual 

reconstructions is a complex and not yet well understood process involving progressive 

accumulation of evidence (i.e. process of elimination), branch angle constraints, and 

“forward momentum” in branch path direction.

Most data sets compounded several of the challenges described above in unique ways. Such 

“real world” combination of issues made the data set both extremely challenging to trace, 

but also particularly appropriate to isolate the objective difficulty that automated algorithms 

must overcome.

For example, climbing fibers consist of numerous branches, yet are physically small and 

structurally dense. Higher magnification imaging is therefore required to resolve the large 

numbers of overlaps. In turn, this amplifies motorized stage inaccuracies and causes small 

alignment imperfections between the mosaic image tiles (Fig. 8A). Though these offsets are 

minor for humans to trace through, they can be debilitating for automated algorithms. 

Additionally, light microscopy is limited by wavelength, resulting in fuzzy images at high 

magnification levels regardless of pixel resolution. Other data sets, such as the olfactory 

projections, varied widely in degree of difficulty among samples. While some trees were 

fairly simple, the most complex arbors exhibited such considerable overlap in the distal 

terminating regions (Fig. 2) as to be challenging for even the human eye to follow.

Neocortical projection image stack sets did not contain the entirety of trees, but rather just 

an anatomical region of interest, thus lacking considerable information from adjacent 

locations, which would be potentially useful for interpreting the topology of overlapping 

branches (Fig. 3). Neuromuscular projection fibers not only coexisted in mostly the same 

image stack tiles but also often fasciculate. This resulted in extreme overlap between 

projections (Fig. 4). Humans could achieve a high degree of certainty of an individual path, 
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but only with very close attention to detail at high resolution and by continuously scrolling 

through stacks while following the path. Hippocampal CA3 Training and Qualifier Round 

trees all came from axons and dendrites of the same interneuron, while the Final Round data 

came from a different interneuron using different image stack sections. Despite the larger 

number of branches overall (Fig. 5), the trees themselves were typically sparse with long, 

straight branch segments. Branches projected deeply in Z but in a mostly straightforward 

manner, which proved helpful for humans to discern branch overlaps from bifurcations.

The visual cortical pyramidal cell was introduced directly in the Final Round to provide a 

combination of demands without previous experience in the Training and Qualifier Rounds. 

Like the neuromuscular projection data set, these trees were extremely large in overall size 

and required extensive tiling across image stacks (Fig. 6). Also like the neuromuscular set, 

branches contorted significantly as they projected in Z, but with more subjectivity when 

trying to follow paths due to other overlapping branches and background noise. Like the 

hippocampal CA3 interneuron data set, both dendrites and axons were labeled with biocytin 

and moved in and out of serial sections, resulting in gaps of varying lengths along branches.

In some cases, visualization and imaging demands can turn the least subjective tracing into 

the most difficult data for computers to automatically reconstruct. To start, good resolution 

is required for complex arbors, but higher magnification yields larger image sizes and 

greater image numbers. The resulting longer algorithm execution times constitute an 

impediment to effective program optimization. Moreover, correspondingly greater computer 

memory requirements may exceed the means of standard laboratory desktops, thus reducing 

the broad applicability and potential scientific impact of the automated reconstruction 

program. Separating image stacks into tiles that capture portions of the total projection may 

ease this load, but at a cost. Dealing with individual tiles requires tools to reconstruct 

portions of data and automatically stitch them back together as a single reconstruction. As 

imaging methods advance and data sets become larger, methods for separating and 

recombining reconstructions may be critical to the success of automated tracing algorithms.

Minor planar (XY) positional jitter of structures along their depth (Z) presents another 

potential issue for computers. Microscope stages exhibit a certain amount of ‘wiggle’ during 

the imaging operation, which leads to small offsets between image stacks. Human operators 

typically recognize this issue easily, and can trace seamlessly while ignoring small spatial 

fluctuations in image stack structures. Algorithms must cope with such imperfections 

currently produced by state of the art imaging techniques. Several of these demands may be 

resolvable algorithmically with appropriate pre-processing steps. However, if the 

accumulation of preprocessing steps involves substantial human intervention, then 

automation is in practice just shifting labor time on to a different pipeline stage. Proper 

development of automation algorithms thus requires consideration of challenges from both 

the inherent structure of different types of arbors and the variety of experimental methods. 

Tandem advances in neuronal imaging techniques will no doubt play a complementary role 

in advancing automation methods for neuronal reconstruction. One example includes the use 

of genetic markers for differentially coloring individual neurons to aid in visual 

segmentation (Lu, 2011).
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Concluding Remarks: Data Set Availability Beyond DIADEM

The utility of automated neuronal tracing algorithms is measured in the time they save 

researchers and the quality and quantity of data they can reconstruct. The DIADEM data sets 

were selected to represent the diverse state of the field at large. With such variety inevitably 

came countless peculiarities in data formats, conventions, and exceptions. In turn, these 

complexities triggered the organization of an elaborate processing pipeline to produce a 

more transparent collection focusing directly on the true reconstruction challenges that 

automation methods must overcome. The DIADEM data sets took years to acquire, 

reconstruct, annotate, process, and organize. While such effort was specifically targeted for 

the DIADEM competition, the ultimate scope of this initiative was to serve as a motivator 

for encouraging automated algorithmic development. As a publicly available and freely 

distributed online package, the DIADEM data set continues to support progress towards this 

goal even outside of the competitive framework. In particular, image stacks, digital tracings, 

and metadata from all rounds, including manual reconstructions not previously provided to 

DIADEM contestants, are released at http://diademchallenge.org. Image stacks provide a 

permanent and portable method to develop and evaluate programs, while manual 

reconstructions provide a gold standard that can be used to quality check automated 

reconstructions against the current labor-intensive reconstruction method they must replace. 

It is expected that further algorithm development will leverage this resource in testing, 

training, and evaluation, using the DIADEM results and metric (Gillette et al., 2011) as a 

benchmark.

Availability of these data sets has already stimulated advancement of neuronal 

reconstruction tools beyond the DIADEM challenge (http://pacific.mpi-cbg.de/wiki/

index.php/Diadem_Challenge_Data). A mailing list (http://listserv.janelia.org/mailman/

listinfo/diadem_challenge) has also been created so that competitors, judges, data set 

owners, other domain experts, and anyone else interested can cooperate to maintain the 

thrust towards full automation. The intent is for DIADEM to function as a starting point 

rather than a final result.
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Fig. 1. 

(A) Portion of an SWC reconstruction file. Each row represents one trace point with a 

unique ID, arbor type tag, X, Y and Z position, radius, and parent ID. (B through D) 

Training (cyan), Qualifier (yellow) and Final (red) Round climbing fiber manual 

reconstructions. Reconstructions slightly offset from image stacks for better visualization.
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Fig. 2. 

(A) Olfactory projection neuron tree sample. Red square encompasses region in (B), which 

shows the topological complexity of the terminal region. Reconstruction slightly offset from 

image stacks for better visualization.
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Fig. 3. 

Example neocortical axon trees (colored separately) overlap and project over the same 

image stack tiles. Branch radius added for better visualization.
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Fig. 4. 

All 12 separately colored reconstructed neuromuscular projection fibers within the image 

stack (A) are shown (B). Zoomed-in regions show similarity in path near origin (C) and 

complex branch overlaps in terminal regions (D).
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Fig. 5. 

(A) Complete CA3 hippocampal interneuron reconstruction. (B and C) Disconnected tree 

samples from two serial sections. Dendrites are either black or dark blue and axons are 

bright green, cyan, orange, and red. Colors besides bright green and black are used to match 

tree samples in (A) to (B and C).
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Fig. 6. 

(A) Complete visual cortical neuron (black = dendrites; all other colors = axons). (B) 

Separately colored examples of disconnected trees from the same serial section projecting 

across image stack tiles.
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Fig. 7. 

Examples of automated reconstruction demands. (A) Climbing fibers reach the limit of light 

resolution resulting in fuzzy images when zoomed-in. Black dashed arrow shows slight 

image tile offset. (B) Neocortical branches contain boutons that resemble dendritic spines 

and are difficult to differentiate from small branches (orange arrows). Green arrowhead 

shows one of the many challenging overlaps of separate projections. (C) Visual cortical 

trees often have faint interbouton branch regions obscuring branch connectivity at 

bifurcations and overlaps (green arrow). Out-of-focus branches exhibit ‘halos’ that can be 

mistaken as being additional branches (purple arrow). (D) Hippocampal CA3 interneurons 

contain branch gaps (red square zoomed-in on the right) and background artifacts that 

surround branches.
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Fig. 8. 

Duplicate climbing fibers manually reconstructed by the same person (A) and by two 

different people (B). (C) Zoomed-in red region of (A) shows cyan branch extending farther 

than magenta. (D) Cyan and magenta trees exhibit topological differences resulting in 

different branch segment directionality as depicted by the arrows along the trace lines.
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