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Abstract 

The Dial-a-Ride Problem (DARP) consists of designing vehicle routes and schedules for customers 

with special needs and/or disabilities. The DARP with Electric Vehicles and battery swapping 

stations (DARP-EV) concerns scheduling a fleet of Electric Vehicles (EVs) to serve a set of pre-

specified transport requests during a certain planning horizon. In addition, these EVs can be 

recharged by swapping their batteries with charged ones from any battery-swap stations. This study 

presents three enhanced Evolutionary Variable Neighborhood Search (EVO-VNS) algorithms to 

solve the DARP-EV. Extensive computational experiments highlight the relevance of the investigated 

problem and confirm the efficiency of the proposed EVO-VNS algorithms in producing high quality 

solutions. 

Keywords: Electric Vehicles, Dial-a-Ride problem, Battery swapping, Evolutionary variable 
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1. Introduction

People with mobility impairment face difficulties in accessing their basic needs, particularly with regard

to public transportation and essential healthcare services (Cordeau and Laporte, 2007). The Americans with 

Disabilities Act (ADA) states that people with disabilities should have the same rights with respect to ease of 

access to public transportation as other people (ADA, 2009). Such legislations, besides an increase in public 

awareness to facilitate the lives of the disabled, have led to a substantial demand for specialized transport 

services that cater for the needs of these people.  

Arguably one of the most challenging problems of specialized transport services is the well-known Dial-

a-Ride Problem (DARP), which consists of determining vehicle routes for a set of customers (or patients) 

who need special transport services. In the DARP, it assumed that each user requests transportation from a 

specific origin to a specific destination. In other words, we have a pair of requests that are connected to the 

same user: the outbound request (from origin to destination) and the inbound request (from destination to 

origin). However, it is not mandatory that the customer is transported directly to the destination (i.e., 

customers may share rides) (Muelas et al., 2013). These requests are also specified within certain desired 

pickup or drop off times. The traditional objective in the standard Vehicle Routing Problems (VRPs) is to 
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minimize the total transportation costs. In DARPs, though, the satisfaction of customers (e.g., maximum 

waiting and ride times) is also taken into consideration.  
Real-life applications of the DARP may have additional requirements, depending on the vehicle fleet 

characteristics. This research incorporates several such requirements, namely, i) a fleet of electric vehicles; 

ii) recharging stations with battery-swap services; and iii) a realistic energy consumption function to estimate 

the total energy consumption. In what follows, we explain these new concepts in detail. 

First, in most DARPs, the transport is executed by a fleet of gasoline-fueled internal combustion engine 

vehicles. However, these vehicles are known to be a main source of harmful emissions (i.e., air pollution and 

greenhouse gases (GHGs)) (Demir et al., 2015; Wang et al., 2016). In order to tackle the emissions problem, 

the use of electric vehicles (EVs) has received considerable attention over the past few years in the field of 

the Vehicle Routing Problem (VRP) (see, e.g., Schneider et al., 2014; Goeke and Schneider, 2015; Roberti 

and Wen, 2016; Desaulniers et al., 2016; Hiermann et al., 2016; Hof et al., 2017; Schiffer and Walther, 

2017). This relatively new trend  is well-known as the Electric Vehicle Routing Problem (E-VRP), which is 

strongly related to the field of green vehicle routing, since EVs are operated by a clean and renewable energy 

source (Schneider et al., 2014). More specifically, when a VRP considers any type of alternative fuel 

vehicles, it is called a green VRP (G-VRP), while if only EVs are considered, it is called E-VRP. This has 

inspired us to consider electric vehicles in the context of DARP, which, to the best of our knowledge, has not 

been previously studied in the literature.  

Our DARP-EV arises specifically in healthcare services that concern non-emergency transportation of 

patients, where different patients are transported from certain origins (e.g., homes) to certain destinations 

(e.g., healthcare service locations) to receive treatment, medical examination or physical therapy. Such real-

life applications are common in the field of healthcare transport services as in Australia (Schilde et al., 

2011), Hong-Kong, China (Zhang et al., 2015), Italy (Detti et al., 2017), and Germany (Beaudry et al., 2010). 

However, new technological developments (e.g., electric vehicles) and new challenges (e.g., environmental 

pollution) require new adaptations for the well-known transportation problems, as studied in Wu et al. 

(2015); Travesset-Baro et al. (2015) and Martínez-Lao et al. (2017). One such real world transport 

application service for the transportation of the elderly and the disabled is operated by the company FlexCité, 

France. FlexCité is a private transport that offers services for the exclusive use of people with limited 

mobility. FlexCité has a fleet of electric vehicles (type: Electron II TPMR), where each one contains 

different capacity modes of transportation, with 9 seats place for the disabled person and/or for their 

accompanies and three wheelchairs places. Other different types of electric vehicles (for example, 

ambulances and mini-buses) can be found in the company “Cruise Car” in the US and the company 

“PAM75” in France, with electric vehicle type Nissan e-nv200. 

One important difference between the E-VRP and the traditional VRP, though, is that EVs have 

limitations in terms of driving range, and thus they need to be frequently recharged during their service route. 

The limitation in the driving range of EVs and considering the need for recharging at specialized stations 

have been recently studied in the literature (Erdoğan and Miller-Hooks, 2012; Schneider et al., 2014; Goeke 

and Schneider, 2015; Desaulniers et al., 2016). The main objective of the studied E-VRPs is to plan routes 

efficiently while considering both customers’ visits as well as frequent visits to recharging stations during the 

https://www.flexcite.fr/actualites/lancement-1er-vehicule-electrique-transport-personnes-situation-handicap
https://www.flexcite.fr/actualites/lancement-1er-vehicule-electrique-transport-personnes-situation-handicap
https://www.flexcite.fr/actualites/lancement-1er-vehicule-electrique-transport-personnes-situation-handicap
http://www.cruisecarinc.com/
http://www.avere-france.org/Site/Article/?article_id=6824


  3   
  

working day. Our research is similar to the studied E-VRPs (e.g. Schneider et al., 2014; Goeke and 

Schneider, 2015), where we incorporate EVs as well as the recharging stations in the route planning while 

serving users in the context of DARP. Also, our problem conforms to the new regulations imposed by 

governments and municipalities that aim to decrease emissions, by encouraging companies and agencies to 

utilize EVs and/or other alternative fuel vehicles in their fleet, due to their benefit in terms of environmental 

impact. 

Second, to employ EVs in route planning, the battery recharging strategy becomes an essential aspect of 

the problem, due to many underlying challenges. For example, one challenge that arises in this respect is the 

low energy capacity of batteries, which usually cannot satisfy the needs of general transport customers 

(Fuller, 2016). Another challenge is that the battery may need several hours (e.g., 2-6 hours) to be fully 

recharged from empty (Agrawal et al., 2016). In the majority of E-VRPs, the charging strategy can be full 

recharging with a linear charging function in each visit to a recharging station (Schneider et al., 2014; Goeke 

and Schneider, 2015; Hiermann et al., 2016), or partial recharging with a linear charging function (Felipe et 

al., 2014; Schiffer and Walther, 2017; Desaulniers et al., 2016), or partial recharging with a nonlinear 

function (Montoya et al., 2017; Froger et al., 2017a, b).  

Fortunately, though, there is a sound alternative recharging mechanism that allows an EV to be 

recharged faster in only one to two minutes (Mak et al., 2013). This is done by swapping its battery instead 

of recharging it at a battery-swap station (Hof et al., 2017). Many researchers have recently considered the 

battery-swapping model in VRPs (see, e.g., Liao et al., 2016; Hof et al., 2017; Xu et al., 2017; and Liu and 

Wang, 2017). The battery-swap strategy is particularly useful in the context of the DARP due to the user 

satisfaction constraints that require limiting the user’s ride time. In fact, due to the hard temporal constraints 

in DARP (time windows, ride time and maximum route duration) (Cordeau and Laporte, 2007; and Parragh 

et al., 2008), which makes it hard to effectively design the planning to satisfy the users requests, it is more 

effective to use the battery swapping recharging mechanism, since it allows EVs to be recharged very 

quickly. In addition, the battery-swapping strategy improves the productivity of vehicles and reduces the 

charging costs (Yang and Sun, 2015). In this paper, we consider intermediate stops for battery swapping of 

EVs. In fact, today EVs are quickly entering the market, and as a result public recharging stations are 

increasingly in demand and are becoming more available. Thus, rather than full/partial recharging, we can 

consider that in each visit to any recharging public station, the depleted battery will be replaced by a full one 

as followed by Li (2013).  

Finally, we note that recent studies of EVs with battery-swap feature consider that the new battery is 

deployed after around 100 miles in a single trip (see, e.g., Adler and Mirchandani, 2014; Liao et al., 2016; 

Xu et al., 2017). Nevertheless, this assumption might not be realistic, since the service time to deploy the 

battery depends on the energy consumed by the vehicle during its journey. These factors include engine 

efficiency, regenerative power, road slope, etc. (Wu et al., 2015). To include these factors, we apply a 

realistic energy consumption model of Genikomsakis and Mitrentsis (2017), in order to determine the service 

time when the depleted battery should be replaced by a full one.  

To sum up, the problem at hand is so-called the Dial-a-Ride Problem with Electric Vehicles and battery 

swapping stations (DARP-EV), which can be considered as a combination of the traditional DARP and the 
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E-VRP. In addition, we consider that different types of users need to be transported. For example, a user may 

need a stretcher or a wheelchair. Thus, the EVs fleet considered in our work is a heterogeneous fleet; i.e., it 

consists of vehicles having different capacity resources, such as passenger seats, stretchers and wheelchairs. 

Hence, our problem belongs to the heterogeneous DARP category, as studied by Parragh (2011), Braekers et 

al. (2014), Braekers and Kovacs (2016), and Masmoudi et al. (2016, 2017). Using different capacity 

resources as well as different types of users is considered more complex and more general than the 

traditional DARP (with homogeneous capacity vehicles and single type of users) (Parragh, 2011). 

Since our DARP is a combination of the classical DARP, which is NP-hard (Cordeau and Laporte, 

2007), and the E-VRP, which is also NP-hard (Schneider et al., 2014), the DARP-EV is NP-hard. Thus, it is 

extremely difficult to solve such problem using conventional methods. Specifically, the need for recharging 

(battery swapping), given the limited availability of recharging stations, makes the planning very challenging 

computationally. Therefore, due to its complexity, most researchers resort to developing metaheuristic 

methods to solve medium and large instances of the DARP and its variants (see., e.g., Parragh et al., 2010; 

Parragh, 2011; Parragh and Schmid, 2013; Muelas et al., 2013, 2015; Marković et al., 2015; Braekers and 

Kovacs, 2016; Chassaing et al., 2016; Masmoudi et al., 2016, 2017). On the other hand, exact methods (e.g. 

Branch and Cut) are used only for solving small instances of the DARP and its variants (Cordeau, 2006; 

Parragh, 2011; Braekers et al., 2014; and Liu et al., 2015). 

Moreover, for the E-VRP, exact methods are not able to solve small instances within a fast computation 

time (Goeke and Schneider, 2015). For example, Schneider et al. (2014) confirm that instances of 20 

customers cannot be solved to optimality by commercial solvers in a reasonable processing time. Thus, the 

majority of studied research has also developed metaheuristics to solve this problem (see, e.g., Schneider et 

al., 2014; Goeke and Schneider, 2015; Hof et al., 2016; Hiermann et al., 2016; Keskin and Çatay, 2016). 

Therefore, we decided to develop a metaheuristic approach to solve the DARP-EV. Namely, we propose 

three Evolutionary Variable Neighborhood Search (EVO-VNS) metaheuristic algorithms that can help obtain 

efficient solutions with a reasonable computational effort.  

The contributions of this work are as follows: i) we investigate a practical extension of the DARP as 

described above; ii) we develop three different variants of an effective Evolutionary Variable Neighborhood 

Search (EVO-VNS) algorithm to solve the DARP-EV; iii) extensive numerical experiments are applied to 

assess the performance of the proposed methods on newly generated instances and on the benchmark 

instances of the DARP.  

The remainder of this paper is organized as follows. An overview of the recent literature is provided in 

Section 2. Some problem assumptions are presented in Section 3. A formal description of the problem is 

given in Section 4, whereas Section 5 describes our proposed evolutionary algorithms. Section 6 presents the 

computational results and the conclusions are stated in Section 7. 

2. Literature review 

 This section provides a brief review on recent and related routing problems. We first review the studies 

that focus on metaheuristic algorithms for DARPs, and next we focus on the studies in the domain of electric 
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VRPs. In addition, before we conclude the review, we explain the motivation behind our proposed method 

by presenting a brief discussion on the use of hybrid methods in the DARP and other variants of the VRP. 

2.1. The dial-a-ride problem  

For comprehensive reviews on DARPs, interested readers are referred to the studies of Cordeau and 

Laporte (2007), Doerner and Salazar-Gonzalez (2014) and Molenbruch et al. (2017).  

Due to the complexity of the DARP, several metaheuristic approaches are proposed in the literature. 

These include Variable Neighborhood Search (VNS) (Parragh et al., 2010; Parragh, 2011; Muelas et al., 

2013, 2015), Tabu Search (TS) (Cordeau and Laporte, 2003), Adaptive Large Neighborhood Search (ALNS) 

(Masson et al., 2014), Genetic Algorithm (GA) (Jørgensen et al., 2007), hybrid column generation and Large 

Neighborhood Search (hybrid LNS) (Parragh and Schmid, 2013), and Deterministic Annealing (DA) 

algorithm (Braekers et al., 2014). 

The Heterogeneous DARP (HDARP) is one of the most studied DARPs and takes into account several 

types of users and resources (e.g., a patient seat, a wheelchair space and a stretcher) (Wong and Bell, 2006). 

In the study of Parragh (2011), the HDARP with two types of vehicles and four resources (i.e., stretcher, 

wheelchair, staff seat, patient seat and accompanying person) are studied. The authors proposed Branch-and-

Cut (B&C) and VNS algorithms to solve the HDARP. In another study, Braekers et al. (2014) studied 

multiple depots and heterogeneous vehicles and users for the HDARP. The authors proposed B&C and DA 

algorithms. The HDARP with multiple trips, single depot, and configurable vehicle capacity has been studied 

by Liu et al. (2015). To improve the bounds of their B&C algorithm, the authors introduced two mixed 

integer programming models. They were able to solve instances with up to 22 requests within a running time 

of four hours. Zhang et al. (2015) studied the public patient transportation problem derived from Hong Kong 

hospital authority using a fleet of conventional fuel-operated ambulances. The authors considered the 

sterilization requirement of the ambulance after returning to the depot and introduced the driver’s lunch 

break extension. Later, Lim et al. (2016) considered an application in Hong Kong within the context of the 

multi-trip DARP by including lunch breaks and the presence of an assistant. An efficient heuristic with an 

ad-hoc component was developed and tested on a real-life dataset. In a recent study, Masmoudi et al. (2017) 

proposed a hybrid Genetic Algorithm (GA) to solve the HDARP. Their algorithm includes two crossover 

operators, the first is based on a sequencing strategy of a one-point crossover, while the second is based on a 

merging strategy for selecting individual genes from parent solutions. They also used an additional local 

search phase and four mutation operators to enhance the solution quality. Their algorithm outperforms the 

current state-of-the-art algorithms proposed for both the DARP and the HDARP. 

Some recent works address various extensions of the DARP, which consider more realistic concepts 

(e.g., Marković et al., 2015; Masmoudi et al., 2016; Braekers and Kovacs, 2016) and some dynamic pricing 

procedures (see, e.g., Sayarshad and Chow, 2015; Amirgholy and Gonzales, 2016). 

2.2. The electric vehicle routing problems and their applications 

In the literature, different routing problems resulted from applying different types of electric vehicles 

(such as, electrically-powered, battery-powered and plug-in hybrids) in the logistics operations. Among these 

problems, there are green vehicle routing problems (Nie and Ghamami, 2013; Wang and Lin, 2013; Felipe et 
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al., 2014), transportation network problems (He et al., 2013; Agrawal et al., 2016; Genikomsakis and 

Mitrentsis, 2017), routing problems with partial/full recharging strategy (Schneider et al., 2014; Goeke and 

Schneider, 2015; Hiermann et al., 2016), energy efficient routing of electric vehicles (Eisner et al., 2011; 

Kobayashi et al., 2011; Siddiqi et al., 2011; Sachenbacher et al., 2011), and electric vehicle shortest path 

(Liao et al., 2016). 

Due to the limited driving range of most EVs types, the necessity of visiting stations for recharging is an 

important aspect that should be considered while planning the service of users’ requests in the field of VRPs. 

Conrad and Figliozzi (2011) incorporate a mixed fleet of vehicles composed of electric and conventional 

vehicles in the context of VRP. To recharge the electric vehicles, the authors consider that the vehicles can 

be recharged any time during traveling, where the number of recharging services needed is estimated by 

dividing the total distance travelled by the limited driving range of the vehicle. This assumption, however, 

may not be very realistic in real-world applications. Erdoğan and Miller-Hooks (2012) proposed the green 

VRP (G-VRP), where the vehicles have a limited driving range, and a limited refueling infrastructure is also 

considered. They assume that the energy consumption is constant, and that the vehicle can visit a recharging 

station more than once during the route. However, they do not include a capacity or time windows 

constraints in their model. Montoya et al. (2015) propose an efficient Multi-Space Sampling Heuristic 

(MSH) to solve the benchmark instances of the G-VRP of Erdoğan and Miller-Hooks (2012). The proposed 

approach can find 8 new best solutions.  

Other studies that consider refueling in G-VRP can be found in Koç and Karaoglan (2016), Adler and 

Mirchandani (2016) and Yavuz (2017). A survey paper related to the G-VRP can be found in Bektaş et al. 

(2016). 

Schneider et al. (2014) extend the G-VRP of Erdoğan and Miller-Hooks (2012) by considering EVs as a 

fleet of vehicles, resulting then in E-VRP. In addition, they consider the traditional VRP constraints, such as 

the capacity of vehicles and time windows of users in their modelling. They developed a hybrid VNS with 

TS method to solve the E-VRP. Extensive experiments are applied and show that the proposed VNS with TS 

provide good results on the benchmark instances of the traditional G-VRP and VRP with Times Windows 

(VRPTW). Goeke and Schneider (2015) study the E-VRP by considering a mixed fleet of electric and 

conventional vehicles. They use a realistic energy consumption function by considering the mass, capacity of 

vehicles and constant speed to determine the time when the EV needs to visit a recharging station, which can 

be considered a similar problem to our case. The energy consumption function is derived from the function 

of the fuel consumption proposed by Bektaş and Laporte (2011) for the conventional vehicles. Montoya et al. 

(2017) and Froger et al. (2017a) study the E-VRP with a nonlinear function to recharge the EVs. The same 

problem is extended by Forger et al. (2017b) by considering that the number of vehicles that can 

simultaneously be charged at any recharging station is limited by the available number of chargers. To solve 

this problem, a metaheuristic composed of two-stages is developed (Iterative Local Search as first stage and 

Benders decomposition as second stage). Felipe et al. (2014) consider a variant of the E-VRP, where they 

allow partial recharging and consider different charging technologies. The work of Wen et al. (2016) 

considers an electric vehicle scheduling problem (E-VSP), where a set of buses with certain start and end 

locations is considered. A mixed integer programming formulation and ALNS were developed, where the 



  7   
  

objective was to minimize the total distance using the minimum number of vehicles to cover all scheduled 

trips.  Hiermann et al. (2016) proposed an ALNS method with labeling procedures and embedded with local 

search to solve the Fleet size and Mix E-VRP with time windows. Keskin and Çatay (2016) developed an 

ALNS approach to solve the E-VRP with partial recharging. Schiffer and Walther (2017) considered electric 

vehicles in the context of a location routing problem, where both routing and siting decisions are 

simultaneously taken into account. In addition to the usual time windows and capacity constraints, different 

charging options are also considered in their work. 

Another emergent problem that uses EVs is the Battery Electric Vehicles (BEVs) routing problem with 

swapping battery stations, which is another stream of research that is related to our problem. Several 

constraints, such as vehicle capacity, delivery time windows, limited locations of recharging/swapping 

battery infrastructure, and a maximum route duration are considered in different studies. For example, Mak 

et al. (2013) proposed two distributionally robust optimization models for the battery-swap location problem 

under limited information concerning requests distribution.  

In another study, Adler and Mirchandani (2014) examined routing of EVs through a network of battery-

swap stations. They also improved a Markov Decision Process (MDP) algorithm using an approximate 

Dynamic Programming (DP) technique to distribute battery switch loads among the stations, in order to 

reduce the average delay of each vehicle.   
Furthermore, numerous studies aimed for accelerating the adoption of BEVs, by attempting to optimally 

deploy and strategically allocate budget for the charging infrastructure, in order to help sustain the mass-

adoption of BEVs (Hof et al., 2017; Liu and Wang, 2017). Moreover, these studies sought also to treat the 

routing, touring, fleet deployment or relocation problem of BEVs to incorporate them in city logistics and 

shared mobility (Liao et al., 2016; Boyacı et al., 2017). 

To sum up, it is apparent that this kind of E-VRP, where a limited driving range and the need to visit 

recharging stations, has received the interest of many researchers in the literature. In addition, some works 

address various extensions of the E-VRP, which consider other realistic concepts (e.g., Liao et al., 2016; 

Roberti and Wen, 2016; Desaulniers et al., 2016; Hof et al., 2017). For the interested readers, more details on 

several variants and new trends in electric VRPs can be found in recent surveys by Martínez-Lao et al. 

(2017) and Pelletier et al. (2017).  

However, based on our literature review, it is also observed that although EVs is widely studied in 

different VRP variants, it is not yet applied in the domain of DARPs. This has inspired us to apply a fleet of 

EVs instead of the traditional conventional vehicles (CVs), taking into account the limited driving range and 

the possible need of recharging as in most E-VRPs. Thus, applying EVs in our DARP-EV distinguishes our 

work from the widely applied EVs in different E-VRPs variants.  

2.3. Hybrid solution methods in DARPs and VRPs 

Examining previous solution methods of the DARP, it appears that hybrid population-based 

metaheuristics for solving this problem are not widely applied, with a few exceptions such as the work of 

Masmoudi et al. (2017), previously discussed in Section 2.1. Also, Masmoudi et al. (2016) endorse the use of 

local search methods within a population-based metaheuristic algorithm for solving complex versions of 

DARPs. In their study, a simple hybridization method is proposed by augmenting the Bees Algorithm (which 
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is a population-based method) with two well-known single-solution based algorithms, namely Demon 

Algorithm (DA) and Simulated Annealing (SA), in order to enhance the intensification around the elite (i.e.,  

best of the best) solutions. In addition, Chassaing et al. (2016) propose an Evolutionary Local Search (ELS) 

approach for solving the DARP. ELS is an extension of Iterated Local Search (ILS), where a randomized 

constructive heuristic is used to generate several copies of the current solution to be used as starting solutions 

for the ELS. Each of these copies is first modified (mutated), before the ELS performs local search by 

combining six neighborhood structures, which are controlled by dynamically updated probabilities in order 

to improve its convergence. 

Taking a wider look at hybrid methods, especially those involving evolutionary algorithms, we observe 

that they have been attempted for solving different combinatorial optimization problems and in particular 

different variants of the VRP. Among these we mention the Hybrid Evolutionary Algorithm (HEA) of Koç et 

al. (2015) for solving the heterogeneous fleet vehicle routing problem with time windows. The HEA 

combines Adaptive Large Neighborhood Search (ALNS) with a population-based search, where what is 

called an Education procedure is applied to repair an offspring resulting from crossover before inserting it 

back to the population. In addition, extensive search around elite solutions is performed using ALNS. A 

similar idea of applying an Education procedure for repairing infeasible solutions is applied in the Hybrid 

Genetic Search with Advanced Diversity Control (HGSADC) of Vidal et al. (2013), for solving a large class 

of time-constrained vehicle routing problems. However, they consider population diversity as an objective 

that should be optimized together with the solution quality. For other hybrid population based methods to 

solve VRP variants including DARPs, interested readers are referred to the survey paper of Braekers et 

al.(2016) and Molenbruch et al. (2017). 

As can be seen from this review, state-of-the-art approaches largely gain from the incorporation of local 

search metaheuristics to improve the population.  

Regarding the hybridization of VNS with population based methods in the literature, we noticed that 

very few works apply this technique for variants of the VRP.  For example, the work of Jabir et al. (2017) 

extend an Ant Colony Optimization (ACO), which is used for route construction in the multi-depot green 

vehicle routing problem, with a local search that uses VNS. Guan and Lin (2016) developed a hybrid VNS 

with ACO to solve the single row facility layout problem. Xia et al. (2016)  proposed an efficient hybrid GA 

using VNS as an improvement phase to solve the dynamic Integrated Process Planning and Scheduling 

(IPPS) problem.  However, to the best of our knowledge, hybridization of VNS with population based 

methods has not been applied before to any variant of the DARP.  Moreover, it seems that the only 

hybridization of VNS applied in the DARP is developed by Parragh and Schmid (2013), where they 

proposed a Large Neighboorhood Search (LNS) with VNS. 

Interested readers can find other hybrid evolutionary methods and other types of hybridization in 

different combinatorial optimization problems in the excellent survey paper of Blum et al. (2011).  

As previously mentioned, in our work we develop an evolutionary VNS for solving the DARP-EV. What 

distinguishes our technique from other hybridization techniques in the literature is that instead of integrating 

the VNS within a fully-operating population-based method as a local search procedure, which is the classical 

hybridization mechanism, we attempt to transform the VNS itself to a semi-population based method.  This 
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is achieved by injecting VNS with several features that are borrowed from evolutionary-based algorithms, as 

will be explained in detail in Section 5 of this paper. 

3. Problem assumptions 

Before we introduce the formal problem description, we present in this section some problem features 

that distinguish our work from previous works and also some simplifying assumptions that have been 

incorporated to make the problem more manageable. In most studied energy consumption models (e.g., 

Erdoğan and Miller-Hooks, 2012; Schneider et al., 2014; Koç and Karaoglan, 2016; Adler and Mirchandani, 

2016; Yavuz, 2017), the energy consumption is considered constant. Nevertheless, in recent years, 

researchers started to consider more realistic energy consumption in routing models that incorporate EVs 

(e.g., Wu et al., 2015; Goeke and Schneider, 2015; Genikomsakis and Mitrentsis, 2017). This has motivated 

us to use a realistic energy consumption model, based on the one proposed by Genikomsakis and Mitrentsis 

(2017). Despite this, we have considered some simplifications in our application of EVs in routing, 

compared to other EVs applications, due to the complexity of our problem as explained next. 

 Regarding the travel speed, we assume that it is constant on each arc, i.e., acceleration phases are 

neglected. In addition, in our EVs, we assume that the gradient is also constant over an arc. Nevertheless, it 

is possible to integrate acceleration patterns in the topology, for example by adding a path having an 

intermediate vertex in each arc. Thus, each of the added vertices will mark the variation in gradient and 

acceleration (Simpson, 2005; Genikomsakis and Mitrentsis, 2017). In our framework, it is also assumed that, 

for each pair (𝑖𝑖, 𝑗𝑗) of the network, the road angle is positive (+2°) if 𝑗𝑗 is a pickup node, whereas the road 

angle is negative (-2°) if 𝑗𝑗 is a delivery node. Without loss of generality, this approach is employed in order 

to take into account the effect of the road network topology on the energy consumption (or regeneration). 

We note that the speed could be handled as a decision variable, which can be increased in order to satisfy 

the time windows, and can be reduced in order to decrease the amount of consumed energy (see, e.g., Bektaş 

and Laporte, 2011; Demir et al., 2012, 2014) for fuel consumption. However, since the vehicle’s speed is 

strongly affected by traffic conditions, we chose not to consider this modeling, similar to the energy 

consumption model of Goeke and Schneider (2015), which is used to calculate the energy consumption in 

the E-VRP with times windows and mixed fleet of conventional and electric vehicles. Since the energy 

consumption affects the battery level (and consequently the need to recharge at a recharging station), these 

simplifying assumptions seem to be even more important within the context of electric vehicles (Goeke and 

Schneider, 2015).   
Another simplifying assumption that we consider is that the effect of outside temperature on the capacity 

of the battery is neglected. In contrast to the applied EVs in the VRPs that assume homogeneous capacity 

vehicles, we introduce in our work a new fleet of EVs containing different capacity resources to serve 

different types of users, which can also arise in the distribution of goods within the context of VRP. For 

example, different resources could be needed to transport different types of goods (e.g. liquids and objects) 

in the same vehicle. In fact, our EVs differ than those studied in the literature in that we consider the 

load/unload of users during the calculation of the energy consumption function, since this has an influence 

on the energy consumption during the route.  To the best of our knowledge, only Goeke and Schneider 

(2015) have considered the impact load/unload of goods on the energy consumption of the EVs. However, 
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the difference between the energy consumption model applied by them and that applied in our case is that 

they consider the efficiency of the electric machine when operating as a motor or as a generator. In addition, 

they consider the recuperation energy constant, and they do not consider the power consumption of 

accessories in their model. This is contrary to our model, where we consider these parameters as variables 

that depend on many factors, based on the model of Genikomsakis and Mitrentsis (2017), as will be defined 

later.  

Finally, we note that there is a slight difference between our model and the model of Genikomsakis and 

Mitrentsis (2017), where they consider the speed and acceleration as well as the road gradient as variables, 

while in our case, as mentioned above, we have modeled these as constant on each traveling arc. Thus, we 

have slightly modified the original model of Genikomsakis and Mitrentsis (2017), which is described in 

detail in the next section.  

4. Problem description 

The DARP-EV can be formally described as follows. We have a complete directed graph G = (V, A), 

where 𝑉𝑉 is the set of all nodes and 𝐴𝐴 = {(𝑖𝑖, 𝑗𝑗): 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗} is the set of arcs connecting each pair of nodes. 

The set 𝑉𝑉 is further partitioned into two subsets; 𝑁𝑁 = {1, … ,2𝑛𝑛} is the set of pickup and delivery nodes and 

𝐹𝐹 = {2𝑛𝑛 + 1, … ,2𝑛𝑛 + 𝑓𝑓} is the set of Battery Swap Station (BSS) nodes. For 𝑛𝑛 user requests, 𝑃𝑃 = {1, … ,𝑛𝑛} 

and 𝐷𝐷 = {𝑛𝑛 + 1, … ,2𝑛𝑛} represent the pickup and the delivery nodes, respectively. The nodes 0 and 2𝑛𝑛+1+𝑓𝑓 

denote the same depot, where every route begins at depot 0 and ends at 2𝑛𝑛+1+𝑓𝑓. We assume that the depot is 

also considered as a BSS node. The complete set of nodes can now be represented as 𝑉𝑉 = 𝑁𝑁 ∪ 𝐹𝐹 ∪ {0, 2𝑛𝑛 +

1 + 𝑓𝑓}. An arc (𝑖𝑖, 𝑗𝑗) in set 𝐴𝐴 has an associated non-negative travel cost 𝑐𝑐𝑖𝑖𝑖𝑖 equal to the distance 𝑑𝑑𝑖𝑖𝑖𝑖 (𝑑𝑑𝑖𝑖𝑖𝑖 =

𝑐𝑐𝑖𝑖𝑖𝑖) and a non-negative travel time 𝑡𝑡𝑖𝑖𝑖𝑖. Moreover, we assume that the number of stops that the vehicle can 

make for swapping its battery is not limited. The time window to visit any BSS node is set to [0, 𝑇𝑇], where 𝑇𝑇 

is length of the planning horizon.  

The mathematical formulation differentiates between visits to users’ nodes on one hand, and visits to 

BSSs nodes and the depot on the other hand. The difference is that each user node must be visited exactly 

once, while BSS nodes may be visited multiple times or may not be visited at all. Moreover, the depot node 

must be visited at the beginning and at the end of each tour, and can also serve, if needed, as a BSS node. To 

allow a subset of vertices to have multiple visits, while others are visited exactly once, a set of 𝑓𝑓’ dummy 

vertices, 𝐹𝐹′ = {2𝑛𝑛 + 𝑓𝑓 + 1, … ,2𝑛𝑛 + 𝑓𝑓 + 𝑓𝑓′} are augmented on the graph 𝐺𝐺 (see, e.g., Erdoğan and Miller-

Hooks, 2012; Schneider et al. 2014; Goeke and Schneider, 2015). Each of these nodes accounts for a 

potential visit to a BSS or depot serving as a BSS.  In other words, these copies of station nodes are needed 

in the model to allow for multiple visits at the original set of nodes (even when done by the same vehicle).  

Thus, we obtain the graph G' = (𝑉𝑉′,𝐴𝐴’), where 𝑉𝑉′ = 𝑉𝑉 ∪ 𝐹𝐹′. The technique of introducing dummy vertices 

was proposed by Bard et al. (1998) to allow for intermediate stops at depots, for the purpose of reloading 

vehicles with goods during their route for delivery. 

We assume that a fleet of EVs  𝐾𝐾 = {𝑘𝑘1, … ,𝑘𝑘𝑘𝑘} is available and each vehicle capacity is defined 

with 𝑄𝑄𝑟𝑟𝑟𝑟, which shows the amount of resource 𝑟𝑟 available on each vehicle 𝑘𝑘. We also assume that there are 

four types of resources available in each vehicle: i) an accompanying person 𝑄𝑄0,𝑘𝑘, ii) a handicapped person’s 
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seat 𝑄𝑄1,k, iii) a stretcher 𝑄𝑄2,𝑘𝑘, and iv) a wheelchair 𝑄𝑄3,𝑘𝑘. The battery capacity for each vehicle is denoted 

as 𝐻𝐻, which is consumed at an energy rate 𝐸𝐸𝐸𝐸 in each time (in minutes). Each user request is associated with 

a time window [𝑇𝑇𝑖𝑖−,𝑇𝑇𝑖𝑖+] and a demand requirement 𝑞𝑞𝑖𝑖𝑟𝑟 for each resource 𝑟𝑟, where this demand at each 

delivery is equal to 𝑞𝑞𝑛𝑛+𝑖𝑖𝑟𝑟  = -𝑞𝑞𝑖𝑖𝑟𝑟. For the convenience of the users, we implicitly set a limit on the maximum 

allowed user ride time 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚. Finally, a service time 𝑠𝑠𝑖𝑖 is needed when visiting a pickup or delivery node 𝑖𝑖 

(∀ i ∈ N), and a swapping battery time 𝑠𝑠𝑓𝑓 when visiting a BSS node 𝑓𝑓∈ F'. Since each vehicle is assumed to 

have only one driver, we use the terms (vehicles and drivers) interchangeably. For each driver, the maximum 

working time per day is 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚.  

The energy consumption at each time 𝑡𝑡 (in minutes) when visiting a node 𝑖𝑖 𝐸𝐸𝐸𝐸(𝑖𝑖)(𝑡𝑡) can be calculated as 

discussed in Genikomsakis and Mitrentsis (2017) by the following equation (1). 
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The first part (1.a) of equation (1) describes the condition when the renovation energy surpasses the 

consumption of the accessories and then the battery reserves this overflow of energy. In the contrary, the 

second part (1.b) considers the situation where the revived energy is not enough for the consumption of the 

accessories, and as a result, this energy is taken off from the storage. Finally, the third part (1.c) accounts for 

the condition in which the energy is not regenerated. Consequently, the vehicle is not empowered and the 

accessories do not consume the energy which is already taken off from the storage. The tractive power 𝐹𝐹𝐹𝐹 

equation (2) is calculated as: 

𝐹𝐹𝐹𝐹[N]=(1
2
.𝜌𝜌.𝐴𝐴𝑓𝑓 .𝐶𝐶𝐷𝐷 .𝑣𝑣2+𝑚𝑚(𝑢𝑢𝑗𝑗).𝑎𝑎 + 𝐶𝐶𝑓𝑓 .𝑚𝑚.𝑎𝑎 +  𝑚𝑚(𝑢𝑢𝑗𝑗). 𝑔𝑔.(sin(𝛼𝛼𝑖𝑖𝑖𝑖) +𝐶𝐶𝑟𝑟.cos(𝛼𝛼𝑖𝑖𝑖𝑖))). 𝑣𝑣.  (2) 

The mechanical power 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 can be calculated using the following equation (3)  

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜[W] =�
𝐹𝐹𝐹𝐹. 𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔                    if 𝐹𝐹𝐹𝐹 < 0,
𝐹𝐹𝐹𝐹/𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔                  if 𝐹𝐹𝐹𝐹 > 0.                                                                   (3) 

The input power of the motor 𝑃𝑃𝑖𝑖𝑖𝑖[W] is depending on the sign of traction power to wheel, which is defined 

by equation (4). 

𝑃𝑃𝑖𝑖𝑛𝑛=�
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 .𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛                if 𝐹𝐹𝐹𝐹 < 0,
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜/𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛               if 𝐹𝐹𝐹𝐹 > 0.                                                                   (4) 

Hence, if the 𝑃𝑃𝑖𝑖𝑖𝑖 value is negative (𝑃𝑃𝑖𝑖𝑖𝑖 < 0), EV can recuperate the energy during the regenerative state. In 

this case 𝑃𝑃𝑖𝑖𝑖𝑖 is then calculated by equation (5) 

𝑃𝑃𝑖𝑖𝑖𝑖[W]=�
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 .𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛             if 𝐹𝐹𝐹𝐹 < 0,
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜/(𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)       if 𝐹𝐹𝐹𝐹 < 0.                                                                 (5) 

Depending on the mechanical power 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 and the input power of the motor 𝑃𝑃𝑖𝑖𝑖𝑖 values, it is necessary to 

calculate the efficiency of the electric machine 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 or 𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔 when operating as motor or as a generator, 
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respectively. In this regard, using the coefficients of Table 1, we use the following piecewise function in 

equation (6) to calculate the curb-efficiency. The same function is also shown in Figure.1. 

 

1
( )      if 0 0.251 2

3
( )                    if 0.25 0.7554

                   if 0.7576

x x
x

eff x x x

x x

ϕ ϕ
ϕ

ϕ ϕ

ϕ ϕ

+ ≤ <
+

= + ≤ <

+ ≥









                                                     (6) 

 where 𝑥𝑥 presents the mechanical power 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 as a fraction of its rated power value 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, in other words, 𝑥𝑥 

=0.001|𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜|/𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚. 

 
Fig. 1. Piecewise function of the efficiency  

Table 1 
                Coefficients used for motor/generator mode  

Coefficient Motor mode (𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚) Generator mode (𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔) 
𝜑𝜑1 0.924300 0.925473 
𝜑𝜑2 0.000127 0.000148 
𝜑𝜑3 0.012730 0.014849 
𝜑𝜑4 0.080000 0.075312 
𝜑𝜑5 0.860000 0.858605 
𝜑𝜑6 -0.073600 -0.062602 
𝜑𝜑7 0.975200 0.971034 

Based on the sign of 𝑃𝑃𝑖𝑖𝑖𝑖 in equations (4) and (5), the electric output value of the battery 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 can be 

calculated using equation (7).  

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏=𝑃𝑃𝑖𝑖𝑖𝑖+𝑃𝑃𝑎𝑎𝑎𝑎.                                                                                                                  (7) 

We note that in Genikomsakis and Mitrentsis (2017) vehicle speeds as well as the acceleration rates are 

considered as variables. Since vehicle speed is subject to traffic conditions, we did not adopt the variable 

speed modeling in our study. We assume that vehicle speed is constant in each arc since we do not consider 

instantaneous acceleration/deceleration phases. However, we have adopted the vehicle mass as a variable on 

the function of Genikomsakis and Mitrentsis (2017). This is because the mass of the vehicle has an effect on 

the energy consumption, as explained in Goeke and Schneider (2015). In other words, the consumption 

depends on the current payload of a user 𝑢𝑢. Thus, the vehicle mass function 𝑚𝑚(𝑢𝑢) can be defined as 𝑚𝑚(𝑢𝑢) =
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𝑚𝑚𝑣𝑣+𝑚𝑚𝑢𝑢𝑢𝑢, where 𝑚𝑚𝑣𝑣 represents the curb weight and 𝑚𝑚𝑢𝑢 is the weight of the user. In addition, we note that 𝑢𝑢𝑗𝑗 

presents the number of users available in the vehicle when arriving at the next user 𝑗𝑗. 

The physical constants and vehicle properties of the specific vehicle “Nissan Leaf model” 

(Carsales.com.au, 2015) and coefficients are adopted from Genikomsakis and Mitrentsis (2017) and are 

summarized in Tables 2.  

     Table 2 
     Parameters and technical specifications of the vehicle  

Notation Description Value 
𝑔𝑔 Gravitational constant (m/s2) 9.8066 
𝜌𝜌 Air mass density(kg/m3) 1.25 
𝐴𝐴𝑓𝑓 Frontal surface area of the vehicle(m2) 2.19 
𝐶𝐶𝑑𝑑 Coefficient of aerodynamic drag 0.29 
𝐶𝐶𝑓𝑓 Mass correction factor 0.05 
𝐶𝐶𝑟𝑟 Coefficient of rolling resistance  0.008 
𝑣𝑣 Vehicle speed (km/h) 17 
𝐻𝐻 Capacity of battery (kW) 40a 
𝛼𝛼 Road angle 2b 
𝑎𝑎 Acceleration (m/s2) 0 
𝑚𝑚𝑣𝑣 Vehicle mass + driver (kg)  1633 
𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 Coefficient of gear efficiency 0.97 
𝑃𝑃𝑎𝑎𝑎𝑎 Power consumption of accessories(W) 300 
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 Rate power (kW) 75 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 normalization factor of motor efficiency 0.987 
𝑅𝑅𝑅𝑅𝑅𝑅 Round trip efficiency 0.95 
𝑚𝑚𝑢𝑢 Average weight of user(with wheelchair) in kilograms 70(80)c 

     a Estimated value from Tesla Motors (2013), represents around 100 miles for one trip to be 
       depleted (Lion battery) 
       bhttps://www.engineeringtoolbox.com/slope-degrees-gradient-grade-d_1562.html 
     cAverage value estimated from Centers for Disease Control and Prevention (2012) 

The DARP-EV consists of planning a set of routes to satisfy a set of transport users by considering the 

minimization of the total routing costs. A solution to the DARP-EV must satisfy the following conditions: i) 

the pickup node must be visited before its corresponding delivery node, ii) the total demand of the route for 

all visited nodes must not exceed the resource capacity, iii)  each node must be served within its time 

window, such that if a vehicle arrives early, it must wait until the beginning of the time window, iv) the 

maximum ride time of each user must not be exceeded, v) the same vehicle must visit the pickup and 

delivery nodes of the same user, vi) each vehicle can visit a BSS node for swapping the depleted battery, if 

the remaining energy level in its battery is not enough to serve the next user, and vii) each route should start 

and end at the same depot and the duration of  the route should not exceed the maximum working time. 

Figure 2 presents an example of the DARP-EV containing 3 vehicles (routes) and 14 users, where each 

user 𝑖𝑖 should be picked up from its origin 𝑖𝑖+ to its destination 𝑖𝑖−, two battery swap stations and the depot, 

which can also serve as a BSS. The value along each route shows the amount of charge in the battery when 

the vehicle arrives at the node of each user 𝑖𝑖 and to the BSS node. Vehicle 𝑉𝑉1 visits the BSS node 𝐹𝐹1 to 

replace the battery by a full one after servicing the nodes 4+, 4−, 7+, 7−, 6+, 6−, 14+, 14− in order to be able 

to service the nodes 5+, 5− before returning back to the depot. Vehicle 𝑉𝑉2 services the nodes 

3+, 11+, 11−, 9+, 9−, 3−, 2+, 2−, 1+, 1− and returns to the depot without visiting any 𝐹𝐹𝑓𝑓 nodes. Vehicle 

𝑉𝑉3 visits 𝐹𝐹1 node after servicing the nodes 8+, 10+, 8− to continue its travel to serve the nodes 

13+, 10−, 13−, 12+, 12−. From Figure 2 it can be observed that a battery swapping station can be visited 

http://www.teslamotors.com/batteryswap
bhttps://www.engineeringtoolbox.com/slope-degrees-gradient-grade-d_1562.html
https://www.cdc.gov/nchs/data/series/sr_11/sr11_252.pdf
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many times by the same or different vehicles as the 𝐹𝐹1 node, and a station may not necessarily be visited at 

all as the  𝐹𝐹2 node.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Illustrative example of the DARP-EV 

 We now present a Mixed-Integer Non-Linear Program (MINLP) formulation for the DARP-EV that is 

inspired by the standard DARP formulation as in Parragh (2011) and the G-VRP of Erdoğan and Miller-

Hooks (2012), which can be extended to the E-VRP by assuming that the fleet is composed of EVs, as 

mentioned by Schneider et al.(2014). More specifically, constraints (9)-(21) of our model are already used in 

the DARP formulation of Parragh (2011), with slight modifications in these constraints by considering the 

BSS node (and its dummy vertex). Constraints (22)-(24) are the same as in the formulation of Erdoğan and 

Miller-Hooks (2012). We note that constraints (15), (20), (22) and (23) are not in integer linear form. This is 

intended to make the problem formulation easier to understand. Since a metaheuristic is used to solve the 

problem, the integer linear formulation is not needed. 

The DARP-EV can be formulated as follows: binary variables 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘  are equal to 1 if arc (𝑖𝑖, 𝑗𝑗) is included in 

the solution and 0 otherwise. Continuous variables 𝐵𝐵𝑖𝑖𝑘𝑘  represent the time that vehicle 𝑘𝑘 starts servicing 

node 𝑖𝑖. Continuous variables 𝑄𝑄𝑖𝑖𝑟𝑟𝑟𝑟 indicate the load of resource 𝑟𝑟 on vehicle 𝑘𝑘 immediately after visiting 

node 𝑖𝑖. Continuous variables 𝑙𝑙𝑖𝑖𝑘𝑘 represent the ride time of user 𝑖𝑖 ∈ 𝑃𝑃 on vehicle 𝑘𝑘. Continuous variables 

𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 (𝑖𝑖) represent the battery charge level of the vehicle when visiting node 𝑖𝑖. 
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The objective function (8) aims to minimize the total routing costs, including BSS costs. Constraints (9)-

(11) ensure serving the pickup and delivery pair by the same vehicle. Constraints (12)-(13) ensure that each 

vehicle 𝑘𝑘 starts at the origin depot and ends at the corresponding destination depot, while constraints (14) 

define arc flows. Constraints (15) and (16) set the capacity values. Constraints (17) make sure that a vehicle 

leaves the depot with an empty load. Constraints (18) define the ride time of each user in each route, which is 

bounded by constraints (19). These constraints also enforce the precedence relationship between the pickup 

and delivery nodes. Constraints (20) define the beginning of service at each node. Constraints (21) impose 

the time windows. Constraints (22) track the fuel level of the vehicle according to the sequence and type of 

the visited nodes. If 𝑖𝑖  is a customer node and 𝑗𝑗 is visited immediately after 𝑖𝑖 (𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 ) with vehicle 𝑘𝑘, the first 

term in Constraints (22) will ensure that the fuel level is reduced when the vehicle arrives at 𝑗𝑗 according the 

distance from 𝑖𝑖 to 𝑗𝑗 and the fuel consumption rate. Constraints (23) guarantee that the vehicle will not be 

stranded due to shortage in fuel by ensuring that after visiting any customer in the route, there is enough fuel 

remaining to return to the depot either directly or through a BSS. We note that Constraints (23) can be 

modified to 𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 (𝑗𝑗)≥{𝐸𝐸𝐸𝐸𝑡𝑡𝑗𝑗0, 𝐸𝐸𝐸𝐸𝑡𝑡𝑗𝑗𝑓𝑓}, since we only need to make sure that the vehicle can either return to the 

depot or visit a BSS for battery swapping with the remaining battery. Constraints (24) guarantee that the 

battery is full after visiting a BSS node. Constraints (25) define the time duration of the route of each vehicle, 

which is strictly limited by 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚. Finally, constraints (26) define binary decision variables.  
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5. Evolutionary variable neighborhood search algorithms for the DARP-EV 

This section presents three different variations of our proposed evolutionary Variable Neighborhood 

Search (EVO-VNS) algorithm to solve the DARP-EV. The VNS algorithm was first introduced by 

Mladenovic and Hansen (1997) and used widely since then because of its simplicity, effectiveness, and 

adaptability to solve many VRPs variants (see, e.g., Mladenović et al., 2012; Carrizosa et al., 2013; Polat et 

al., 2015; Wei et al., 2015; Sarasola et al., 2016; Todosijević et al., 2016) including DARP and its variants 

(see, e.g., Parragh et al., 2009; Parragh et al., 2010; Parragh, 2011; Schilde et al., 2011, 2014; Muelas et al., 

2013; 2015; Parragh et al., 2014; Detti et al., 2016). Caporossi et al. (2016) and Mladenović et al. (2017) 

provided recent and successful applications of the VNS in different combinatorial optimizations problems.  

Contrary to the basic traditional VNS that searches iteratively around a single initial solution, which 

limits its exploration power of large search spaces, our EVO-VNS, exploits a population of solutions as 

normally done in population-based metaheuristics. We combine features from famous evolutionary and 

swarm based techniques, namely the Genetic Algorithm (GA) proposed by Holland (1975), the Shuffled 

Frog-Leaping Algorithm (SFLA) proposed by Eusuff et al. (2006), and the Bees Algorithm (BA) of Pham et 

al (2006). This structure is intended to maintain population diversify (Fang and Wang, 2012) and ensure 

global exploration for our EVO-VNS. In addition, our algorithm restarts at each VNS iteration from a 

different initial solution. This can enhance its diversification power, allowing it to skip unnecessary iterations 

around local optima. Moreover, we enhance the VNS by increasing its intensification power around 

favorable solutions. This is intended to boost the performance of the classical VNS and improve its 

convergence towards better solutions. Thus, this process of hybridization shapes a new hybrid VNS that 

includes the main advantages of two or more well-known metaheuristic approaches in a judicious way. Our 

approach is a novel approach, since we are not aware of any work that utilizes such evolutionary hybrid VNS 

for solving any variant of the VRP including the DARP.  

The main steps of the EVO-VNS are shown in Algorithm 1. The algorithm runs for a number of 

iterations until no improvement is achieved of the global best solution after five consecutive iterations. First, 

an effective construction heuristic is used to generate the initial population of size 𝑃𝑃𝑃𝑃𝑃𝑃. Then, for a number 

of iterations, the following steps are performed. In step 1, each solution in 𝑃𝑃𝑃𝑃𝑃𝑃 is evaluated according to the 

fitness function, and solutions are sorted according to fitness from the highest to lowest. In step 2, the 

population 𝑃𝑃𝑃𝑃𝑃𝑃 is divided into 𝑚𝑚 groups, each one contains (𝑐𝑐) solutions (i.e., 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑚𝑚. 𝑐𝑐). In this process, 

the first solution goes to group 1, second solution goes to group 2, the 𝑚𝑚th solution goes to group 𝑚𝑚, and 

solution 𝑚𝑚+1 goes back to the first group and so on. This step is similar to the generation of solutions in the 

SFLA proposed by Eusuff and Lansey (2003). 

In step 3, for each group, the following steps are applied. First, 𝑠𝑠 solutions are selected based on the 

roulette wheel selection mechanism. If the best solution of the current group is not improved in the last three 

consecutive iterations, a Merge Crossover 1 (MX1) based on the DARP study of Masmoudi et al. (2017) is 

applied as a perturbation phase between one solution from (𝑠𝑠) and one solution from (𝑐𝑐 − 𝑠𝑠) to create a new 

solution. The main feature in the MX1 operator is that the new solution generated after crossover will inherit 

information from the already improved solution 𝑠𝑠 in the current group 𝑛𝑛 and another highly diversified 
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solution (𝑐𝑐 − 𝑠𝑠). This new solution construction mechanism thus enables the algorithm to achieve the 

required balance between intensification around a good solution in the group 𝑛𝑛, and exploration of new 

regions of the search space. 

The MX1 crossover step is then followed by the procedure of repairing infeasible solutions of Masmoudi 

et al. (2017) (respecting the feasibility of a solution is explained in subsection 5.4). The only difference is 

that we generate a new solution based on our constructive heuristic described in subsection 5.1, in case the 

solution is still infeasible after all attempts to repair the current solution. In fact, the MX1 operator permits to 

produce a new solution that inherits good characteristics of both selected solutions (Masmoudi et al., 2017), 

in order to better diversify the search, while maintaining the feasibility of the solution as much as possible. In 

order to implement the MX1 crossover, a simple chromosome encoding of the solution is needed, as 

described in subsection 5.2.6. If crossover is applied, (𝑠𝑠) new solutions are then obtained and replace the 

original 𝑠𝑠 solutions in the current group; otherwise, the original (𝑠𝑠) solutions are not changed. 

Then, in step 3.2, these (𝑠𝑠) solutions are sent to the intensification phase using an effective single-

solution based metaheuristic algorithm, namely VNS. We use here three different types of VNS (i.e., VNS1, 

VNS2 and VNS3). Each 𝑠𝑠 solution improved by the VNS algorithm is then memorized in a list 𝐿𝐿𝑚𝑚, where 𝑚𝑚 

corresponds the index of the current group. In step 4, the best solution 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏   is selected from the memorized 

solutions obtained from all 𝐿𝐿𝑚𝑚 lists. If the objective function of 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is smaller than that of 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗  (f (𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) < 

f (𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗ )), where 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗  is the global best solution, 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 becomes the new global best solution. In step 5, the 𝑠𝑠 

new solutions obtained after applying VNS on each group are migrated to the next population. To complete 

the population 𝑃𝑃𝑃𝑃𝑃𝑃, new (𝑃𝑃𝑃𝑃𝑃𝑃-𝑠𝑠) solutions are generated in step 6. These two steps (5 and 6) are based on 

the well-known Bees Algorithm (BA) metaheuristic of Pham et al (2005). The main advantage of step 5 is 

that it permits the best solutions to survive to the next EVO-VNS iteration, while the purpose of step 6 is to 

increase the diversification of the search in the next EVO-VNS iteration as well.  

Algorithm 1: The evolutionary variable neighborhood search algorithm 
Initial population: Generate the initial population 𝑃𝑃𝑃𝑃𝑃𝑃 using a set of construction heuristics; f (𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗ ) =∞; 

           Repeat 
Step 1: Sort the solutions in descending order according to their fitness; 
Step 2: Divide the population 𝑃𝑃𝑃𝑃𝑃𝑃 into 𝑚𝑚 groups, each group contains 𝑐𝑐 solutions;  
Step 3: For each group 𝑚𝑚 DO 

            Step 3.1: Select (𝑠𝑠) solutions using roulette wheel selection from the 𝑐𝑐  
            solutions; 

If no improvement of the best solution of the current group after three  
       consecutive iterations Do 

        Perform the crossover operator between one solution from s and one 
        solution from (𝑐𝑐 − 𝑠𝑠) of the current group;   
        Replace the (s) solutions with the (s) new solutions in the current  
        group; 

                 End If                                               
          Step 3.2: Perform VNS on each of the 𝑠𝑠 solutions and memorize the new 
          solution in list 𝐿𝐿𝑚𝑚; 

     Step 4: Select the best memorized solution 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  from the lists 𝐿𝐿𝑚𝑚; 
If f (𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) < f (𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗ ) Then   

𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗ ← 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
    Step 5: Insert the 𝑠𝑠 new solutions in the population;  
    Step 6: Generate 𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑠𝑠 new solutions to complete the population 𝑃𝑃𝑃𝑃𝑃𝑃; 

        Until No improvement has been achieved after five consecutive iterations 
Return: 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗  

5.1. Initialization phase 
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For the initialization phase, we use a modified version of the insertion heuristic proposed by Braekers et 

al. (2014) to insert the users as in the DARP. In addition, we consider the replacement of the battery by a 

new full one if it is depleted. 

We first initialize a list 𝐿𝐿 with a set of users to be served. Then, the following steps are performed. A 

user 𝑖𝑖 is randomly selected from the list 𝐿𝐿 and inserted in one of the already existing available vehicles in the 

best position that respects time windows, ride time and a maximum route duration. If a user 𝑖𝑖 cannot be 

inserted in the route due to violation of the battery level, the selected user is re-inserted together with a BSS 

node 𝑓𝑓. This is done by selecting the nearest 𝑓𝑓 node to the already existing node and inserting it between the 

previously inserted node of user 𝑖𝑖-1 and the current user 𝑖𝑖. This insertion procedure is applied until all users 

are served.  

5.2. Three variants of the variable neighborhood search algorithm  

As defined by Mladenovic and Hansen (1997), the VNS algorithm can be broken down into two phases: 

a deterministic phase, in which a local search converges to a local optimum, and a stochastic phase put in 

place to escape the local optima. As in the standard VNS, the stochastic part (called shaking phase) of the 

algorithm consists of generating a new solution 𝑥𝑥′ in a given neighborhood. As for the descent with variable 

neighborhood, the search uses an initial solution 𝑥𝑥 as a starting point, and uses a set of 𝑁𝑁ℎ neighborhoods ℎ 

= {1, … , ℎ𝑚𝑚𝑚𝑚𝑚𝑚}. At each iteration, a random solution 𝑥𝑥’ is generated from the current neighborhood 𝑁𝑁ℎ. Then, a 

local search is applied to 𝑥𝑥’ which generates a new solution 𝑥𝑥”. If this new solution 𝑥𝑥” is better than 𝑥𝑥’, an 

update is performed, and the process resumes with the first neighborhood. Otherwise, the same steps are 

repeated after selecting the next neighborhood ℎ + 1. The algorithm returns 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 when the number of 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣 

iterations is reached.  

In our study, we propose three different enhanced VNS variants due to many characteristics and features 

added compared to the traditional VNS in the literature, with the aim to achieve efficient solutions to our 

problem. We describe these variants in the following subsections. 

5.2.1 Variable neighborhood search with roulette-wheel selection VNS1  

In this section, we present the first version of our VNS (denoted VNS1), as described in Algorithm 2. 

First, both the current and best solutions are initialized with the selected solution from the current group of 

the population, or obtained after crossover (if done). The algorithm runs for 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣1 times. At each iteration, a 

new solution x' is generated from x using the current neighborhood 𝑁𝑁ℎ. In this regard, and instead of 

choosing the route pairs randomly as in the majority of studied VNS approaches in the DARP (see., e.g., 

Parragh et al., 2009; Parragh et al., 2010; Parragh, 2011; Schilde et al., 2011, 2014; Muelas et al., 2013; 

2015), in our VNS1 the routes chosen in all neighborhood structures are selected by the roulette wheel 

method, for the exclusion of several infeasible exchange operations (Polat et al., 2015; Hof et al., 2017).  

The solution x’ is improved by our local search strategy, which contains four local search operators {I1, 

I2, I3 and I4} followed by the Insert Battery-Station (IBS) and Remove Battery-Station (RBS) operators. The 

last two operators are needed because the solution may become infeasible due to insufficient battery level, 

after applying neighborhood and local search operators to obtain a new solution 𝑥𝑥”. To select the new 

solution 𝑥𝑥”,   we adopt a first improvement strategy, where all possible neighboring solutions are generated 
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using the current local search operator until the first improving solution is found. Otherwise, the next local 

search operator, in order, is performed. If no improvement is obtained after all local searches, the procedure 

stops and outputs the current solution.   

One of the main characteristics of our VNS1 is that the order of the local search operators (i.e., I1, I2, I3 

and I4) is determined based on their performance score at the previous iteration, instead of a random order. 

For the selection process, we use the roulette wheel selection procedure of the ALNS. We note that in the 

beginning of the local search procedure, the order of the local search operators is generated randomly. If the 

new solution 𝑥𝑥” is feasible and is better than the current solution, it is accepted. On the other hand, if the new 

cost is higher than the current cost, the new solution may be accepted subject to a given probability 

distribution of Cauchy function proposed by Tiwari et al. (2006): 𝑇𝑇𝑖𝑖/(𝑇𝑇𝑖𝑖2 + ∆𝐸𝐸2), where 𝑇𝑇𝑖𝑖  is the current 

temperature and ∆𝐸𝐸 represents the difference in cost between the current and the adjacent solution. The 

temperature is decreased with the cooling scheme: 𝑇𝑇𝑖𝑖 = 𝛿𝛿 *𝑇𝑇𝑖𝑖−1, where 𝛿𝛿 is the cooling rate, and i is the 

iteration number.  

Following Tiwari et al. (2006) and Lin and Vincent (2015), Cauchy probability function is efficient and 

gives more opportunities to escape from local optima than the traditional Boltzmann function of 

Metropolis et al. (1953), which is the acceptance criterion applied in most VNS algorithms. If the obtained 

solution is better than the best solution (𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is updated, 𝑥𝑥” becomes the current solution 𝑥𝑥 and the 

procedure resumes with the first neighborhood. Otherwise, the next neighborhood stucture is applied.  

Algorithm 2: Variable neighborhood search algorithm with roulette-wheel selection (VNS1) 
Initialize A set of neighborhood structures 𝑁𝑁ℎ, where h = {1, … , ℎ𝑚𝑚𝑚𝑚𝑚𝑚}; 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =x = the current initial solution  𝑠𝑠; 
and  𝑇𝑇𝑖𝑖 =𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 
Repeat 

h  1; 
Repeat 

Generate a new solution 𝑥𝑥′ from the ℎ𝑡𝑡ℎ  neighborhood of 𝑥𝑥 (𝑥𝑥′ ∈  𝑁𝑁ℎ(𝑥𝑥)); 
  Apply local search procedure on 𝑥𝑥′ to obtain 𝑥𝑥′′; 
  If f (𝑥𝑥′′) ≤ f (𝑥𝑥) or accepted by the acceptance criterion Then 
   x  𝑥𝑥′′; 
   k  1; 
   If f (𝑥𝑥′′) < f (𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) then 
    xbest  𝑥𝑥′′; 
   End If 
  Else 
   h  h +1; 
  End if 
  Update the weights of operators; 
                Until h=ℎ𝑚𝑚𝑚𝑚𝑚𝑚+1 
              𝑇𝑇𝑖𝑖 = 𝛿𝛿 *𝑇𝑇𝑖𝑖−1; 
Until The number of iterations 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣1 
Return 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
5.2.2 Variable neighborhood search with selected local search VNS2 

The structure of the second VNS (denoted by VNS2) is similar to Algorithm 2. The differences are 

detailed as follows. The first difference is that, after obtaining a new solution 𝑥𝑥’, 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙 iterations is applied on 

the current 𝑥𝑥’. At each 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙 iteration, only one local search operator from {I1, I2, I3 or I4} is selected based 

on its performance. Thus, this procedure helps to better exploit the movements of the current selected local 

search structure. The selected operator is applied on 𝑥𝑥’ followed by the IBS and RBS operators, resulting in a 

←

←
←

←

←
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new solution 𝑥𝑥′′. After this step, if the objective function of 𝑥𝑥” is better than that of 𝑥𝑥’, 𝑥𝑥” replaces 𝑥𝑥’. After 

𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙 iterations, a new 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is updated if found.  

The final difference is in the acceptance function. In VNS2, we use the acceptance function of the 

Record-to-Record Travel (RRT) of Dueck (1993). Specifically, if the objective function of 𝑥𝑥” is less than that 

of the current value 𝑅𝑅𝑅𝑅𝑅𝑅 minus the deviation 𝐷𝐷𝐷𝐷𝐷𝐷 (𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐷𝐷𝐷𝐷𝐷𝐷), where 𝑅𝑅𝑅𝑅𝑅𝑅 is the objective function value of 

the best solution observed so far and 𝐷𝐷𝐷𝐷𝐷𝐷 is equal to 0.01*𝑅𝑅𝑅𝑅𝑅𝑅, the new solution is accepted. During the 

process of search, the 𝑅𝑅𝑅𝑅𝑅𝑅 value is updated based on the objective function of 𝑥𝑥”. The detailed steps of our 

VNS2 are shown in Algorithm 3.  

Algorithm 3: Variable neighborhood search with selected local search  (VNS2) 
Initialize A set of neighborhood structures 𝑁𝑁ℎ, where h = {1, … , ℎ𝑚𝑚𝑚𝑚𝑚𝑚}; 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =x = the current initial solution  𝑠𝑠;  
Repeat 

h  1; 
Repeat 

Generate a new solution  𝑥𝑥′ from the ℎ𝑡𝑡ℎ  neighborhood of 𝑥𝑥 (𝑥𝑥′ ∈  𝑁𝑁ℎ(𝑥𝑥)); 
𝑐𝑐=1; 
While (c ≤ 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙) 

   Perform a local search operator from {I1, I2, I3 or I4} on 𝑥𝑥′ to obtain 𝑥𝑥′′; 
   Perform IBS and RBS on 𝑥𝑥′′; 
   If f (𝑥𝑥′′) ≤ f (𝑥𝑥′) or accepted by the acceptance criterion Then 
    𝑥𝑥′  𝑥𝑥′′;      
  End While 
  If f (𝑥𝑥′) < f (𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) then 
   xbest  𝑥𝑥′; 
   h  1; 
  Else 
   h  h +1; 
                  Update the weights of operators;  
                  Until h=ℎ𝑚𝑚𝑚𝑚𝑚𝑚+1   
Until The number of iterations 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣2 
Return 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
5.2.3 Variable neighborhood search with descend acceptance VNS3 

The final proposed VNS variant is named as VNS3. The following distinguishes VNS3 from the two 

previous VNS algorithms. First, instead of generating only one point selected randomly in the current 

neighborhood structure 𝑁𝑁ℎ, the procedure generates many random neighboring solutions from the current 

neighborhood structure. More specifically, for each neighborhood 𝑁𝑁ℎ, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 iterations are applied, such that 

in each iteration a random neighboring point 𝑥𝑥′of the current solution is generated. The number of iterations 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is assumed to be equal to the number of vehicles in each instance. Then, the new solution 𝑥𝑥′ is 

improved by the local search strategy.  

As pointed by Wei et al. (2015), this technique permits to better explore the region of the selected 

neighborhood structure around the current solution. In addition, in VNS3, we only accept a better solution 

(i.e., we follow a straightforward descend acceptance strategy without applying an acceptance function as 

done in VNS1 and VNS2). Thus, VNS3 follows the original VNS of Mladenovic and Hansen (1997). 

Moreover, the selection of routes is also done in a random way in our VNS3. The framework of the proposed 

VNS3 is shown in Algorithm 4. 

Algorithm 4: Variable neighborhood search algorithm with descend acceptance  (VNS3) 
Initialize A set of neighborhood structures 𝑁𝑁ℎ, where h = {1, … , ℎ𝑚𝑚𝑚𝑚𝑚𝑚}; 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  =x = the current initial solution  𝑠𝑠; 

←

←

←
←

←
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Repeat 
h  1 
Repeat 

Repeat 
Generate a new solution  𝑥𝑥′ from the ℎ𝑡𝑡ℎ neighborhood of 𝑥𝑥 (𝑥𝑥′ ∈  𝑁𝑁ℎ(𝑥𝑥)); 

   Perform the local search strategy on 𝑥𝑥′ to obtain 𝑥𝑥′′; 
   If f (𝑥𝑥′′) < f (𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) then 
    x  𝑥𝑥′′; 
    xbest  𝑥𝑥′′; 
   Else if f (𝑥𝑥′′) < f (𝑥𝑥) 
    x 𝑥𝑥′′    

Until 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 iterations is reached; 
h  h+1; 

 Until h=ℎ𝑚𝑚𝑚𝑚𝑚𝑚  
Until The number of iterations 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣3 
Return 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
5.2.4. Neighborhood search operators 

During each step of the VNS algorithms, several well-known neighborhood search operators inspired 

and adopted from the literature are applied in the phase of shaking. According to Hemmelmayr et al. (2009), 

the neighborhood move is an important phase and should balance between perturbation and conservation of 

the good parts in the current solution. In this regard, four effective neighborhood search structures (i.e., N1, 

N2, N3 and N4) with different movements are developed as described below.  

As Mladenović and Hansen (1997) pointed, the order of neighborhood search operators is very critical in 

VNS. Usually neighborhood structures are chosen such that the size of the neighborhood increases as VNS 

progresses from one structure to the next. Thus, at the initial stages {N1, N2}, small changes are performed 

around the incumbent solution. Moving further from the current solution {N3, N4} is only done if the small 

changes were ineffective.  As a result, we follow the following order of neighborhood structures N1, N2, N3 

and N4. 

Swap (N1): This operator is inspired from Braekers et al. (2014). The swap operator consists of swapping 

either two requests or two vehicles belonging to two different routes. To apply this operator, we first select 

one route. Then, two types of swaps are considered: swapping any user request in this route with a user 

request selected from another route, or swapping a vehicle in this route with another vehicle from a different 

route. 

Remove-sequence (N2): This neighborhood operator is inspired from Parragh et al. (2010) while taking into 

account the features of the DARP-EV. First, this operator selects two routes. Thereafter, a sequential range 

𝑦𝑦= {1, 2, 3, 4 or 5} (based on the number of users in the route) of successive users from the route is selected 

randomly. The chosen sequences (including the BSS node 𝑓𝑓, if found) are then removed from their current 

route and re-inserted one after another at their best positions in other routes. It is observed in each range that 

the pickup and delivery of a user must be chosen. When the user is reinserted, the algorithm examines all 

potential combinations of insertion positions of pickup and delivery nodes in the selected route. If there is no 

possible feasible insertion, the one that has the lowest cost is chosen as in Muelas et al. (2013) and inserted 

in any position. 

Cross-exchange (N3)-(N4): This neighborhood is proposed by Osman (1993), where  𝑏𝑏 consecutive users 

are transferred moving from one specific route (route 1) to another different one (route 2). Subsequently, 𝑑𝑑 

←

←
←

←

←
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consecutive users are carried from route 2 to route 1. The random selection of 𝑏𝑏 is bounded between 2 and 3, 

and 𝑑𝑑 is chosen at random equivalent to 𝑏𝑏 or 𝑏𝑏-1. As suggested in Hemmelmayr et al. (2009), this procedure 

is conducted to obtain more diversification of the search. Furthermore, as long as the segment distance is 

lengthier, the chance to have an effective swap is minimized. In the course of this study, the segment length 

is restricted between 2 (N3) and 3 (N4). Considering its capacity of achieving an effective diversification, 

this version of neighborhood move is often applied in the perturbation stage (see, e.g., Polacek et al., 2004; 

Hemmelmayr et al., 2009). 

 

5.2.5. Local search operators 

The local search operation is applied in order to intensify the search around the solution obtained from 

neighborhood structures. Regarding our local search, it is composed of two intra-route operators (Relocate 

and 4-opt) and two inter-route operators (2-opt* and remove-two-insert-one), which are capable of 

enhancing the solution in a rapid and successful way. A detailed description of the operators is provided 

below. 

2opt* (I1): This operator is proposed by Potvin and Rousseau (1993). Two arcs from distinct routes are 

deleted so as to disconnect each route into two segments. Thereafter, each first segment of one particular 

route is linked with the last segment of the other route, so as to come up with two new routes.   

Remove-two-insert-one (I2): This operator is adopted from Xiang et al. (2006). It consists of removing two 

randomly selected users from a vehicle and then trying to insert them one by one in another vehicle in their 

best position.  

Relocate (I3):  This operator is similar to the previous operator but it is applied in the same vehicle. This 

operator is applied on each user in the vehicle by removing the user and reinserting it in the best possible 

position. In this case, three types of moves of relocating a user 𝑖𝑖 are considered; the first, consists of 

relocating only the pickup node of the selected user 𝑖𝑖. The second is for the delivery node of user 𝑖𝑖, while the 

third consists of removing a user 𝑖𝑖 and then inserting the delivery node of this user immediately after its 

pickup node. 

4-opt (I4): This operator is adopted from Braekers et al. (2014), and has shown its effectiveness to improve 

solutions in the field of DARP. This operator consists of selecting four consecutive arcs to be deleted from 

only one selected route. In other words, the order of the three successive nodes can change in the route. We 

note that this operator is applied on each set of four consecutive arcs in the selected route.    

The probability of choosing operator 𝑑𝑑 at iteration t, is calculated using the roulette wheel mechanism as 

in Ropke and Pisinger (2006): 𝑃𝑃𝑑𝑑𝑡𝑡+1 = 𝑃𝑃𝑑𝑑𝑡𝑡(1- 𝑟𝑟𝑝𝑝) + 𝑟𝑟𝑝𝑝𝜋𝜋𝑖𝑖/𝜔𝜔𝑖𝑖, where 𝑟𝑟𝑝𝑝 is the roulette wheel parameter, 𝜋𝜋𝑖𝑖 is the 

score of the operator 𝑖𝑖, and 𝜔𝜔𝑖𝑖 is the number of times that the operator 𝑖𝑖 has been used. The score of an 

operator is increased by 𝜋𝜋1 if the operator finds a new best solution, otherwise, it is enhanced by 𝜋𝜋2 if it 

locates a better solution than the current one. On the other hand, it is increased by 𝜋𝜋3  if the current selected 

operator finds an approved solution that is non-improving. After 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 iterations, the new weights are 

adjusted using the obtained scores. 
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After applying neighborhood and local search moves, there is a possibility of having some unnecessary 

BSS nodes in a solution. In addition, the current solution may require adding other BSS node(s). In order to 

avoid having any of these situations, two operators are proposed. 

Remove Battery-Station (RBS): This operator is intended to examine each pair of nodes (𝑖𝑖, 𝑗𝑗). The BSS 

node is removed if the level of charge in the battery at node 𝑖𝑖 is sufficient to reach node 𝑗𝑗. 

Insert Battery-Station (IBS): An important factor in the context of EVs, is to determine the latest time at 

which recharging the vehicle has to take place, in order to prevent it from getting stranded due to lack of 

energy (Schneider et al., 2014; Goeke and Schneider, 2015). Thus, inspired from Liao et al. (2016), the 

proposed idea of the IBS operator is that if the remaining charge level in the battery of the vehicle 𝑘𝑘 at node 𝑖𝑖 

is not sufficient to directly reach node j, an insertion of a BSS node 𝑓𝑓 is performed. This is done by locating 

the nearest 𝑓𝑓 node(∀𝑓𝑓 ∈ 𝐹𝐹) to the current node 𝑗𝑗 to do a battery swap.   

5.2.6. Chromosome encoding 

In our EVO-VNS, an MX1 crossover operator is applied leading to the necessity for encoding a solution. 

A chromosome (solution) is encoded using a sequence of available vehicles 𝑣𝑣𝑘𝑘, each starts its trip from the 

depot (denoted by 0) and returns back to the same depot. For each vehicle route, we assume an ordered list of 

pickup and drop off nodes as well as the visited BSS nodes 𝐹𝐹𝑓𝑓 (if found). To encode the pair of nodes for 

each user 𝑖𝑖,  ℎ𝑖𝑖+ and ℎ𝑖𝑖− represent the pickup and delivery nodes of this user, respectively. So, for example, if 

a solution has two routes (i.e., two vehicles),  eight requests and one BSS node, the chromosome encoding 

will be as follows: 0,1+,1-,4+,5+,4-,5-,6+,𝐹𝐹1,2+,5-,6-,2-,0 for vehicle 𝑣𝑣1 and 0,3+,7+,8+,3-,8-,7-,0 for vehicle 𝑣𝑣2. 

Figure 3 shows an example of a solution of these two routes. 

V1 0 1+ 1- 4+ 5+ 4- 5- 6+ 𝐹𝐹1 2+ 5-  6- 2- 0 
V2 0 3+ 7+ 8+ 3- 8- 7- 0       

Fig.3: An example of chromosome encoding 

5.3. Generation of new solutions 

To complete the population 𝑃𝑃𝑃𝑃𝑃𝑃, new (𝑃𝑃𝑃𝑃𝑃𝑃 – s) solutions should be generated using a new heuristic. Our 

heuristic is based on destroy-reinsert users. First, s users are selected from the current solution and put in a 

list 𝐿𝐿. Second, a 2-regret insertion heuristic as in Ropke and Pisinger (2006) is applied to re-insert the 

temporarily deleted users. For each request 𝑖𝑖 in 𝐿𝐿, ∆𝑓𝑓𝑖𝑖
𝑝𝑝 the insertion cost of the request 𝑖𝑖, is identified in the 

best route as well as at its best position. At each iteration, the request 𝑖𝑖∗ is chosen to be inserted in its best 

position according to the following formula 𝑖𝑖∗ ≔ arg max
𝑖𝑖∈𝐿𝐿

(∑ ∆𝑓𝑓𝑖𝑖
𝑝𝑝𝑘𝑘

𝑝𝑝 − ∆𝑓𝑓𝑖𝑖1). In case there is no possibility to 

incorporate more users in a route, or otherwise if all requests are inserted, the heuristic stops.  

As Pisinger and Ropke (2007) indicated, deleting a large number of users in the removal phase may have 

a considerable effect on the results. Accordingly, we applied the following technique to select a number of 

users 𝑢𝑢. If the number of users in the instance is less than 50 users, 𝑢𝑢 is selected randomly between five and 

10. Otherwise, 𝑢𝑢 is chosen randomly between five and 20. 

5.4. Evaluation function 
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In each step of our algorithms, whenever a new solution is generated, it must be evaluated by the 

evaluation function in terms of feasibility and cost. We evaluate the solution by the following evaluation 

function based on Cordeau and Laporte (2003) as 𝑓𝑓(𝑥𝑥) = 𝑐𝑐(𝑥𝑥) + ∑ 𝛼𝛼𝑞𝑞𝑟𝑟(𝑥𝑥) + 𝛽𝛽𝛽𝛽(𝑥𝑥) + 𝛾𝛾𝛾𝛾(𝑥𝑥) +3
𝑟𝑟=0

𝜏𝜏𝜏𝜏(𝑥𝑥) + 𝑜𝑜(𝑥𝑥). The term c(x) gives the routing costs of solution x. Variables 𝑞𝑞𝑟𝑟(𝑥𝑥),𝑑𝑑(𝑥𝑥), 𝑤𝑤(𝑥𝑥), 𝑎𝑎(𝑥𝑥) and 

𝑜𝑜(𝑥𝑥) denote violations of the following constraints in order: vehicle load, route duration, time windows, 

maximum ride time and the battery state of the vehicle. Following Parragh et al. (2010) and Cordeau and 

Laporte (2003), the first four violations are calculated as follows: 𝑞𝑞𝑟𝑟(𝑥𝑥) = ∑ (𝑄𝑄𝑖𝑖𝑟𝑟𝑟𝑟2𝑛𝑛
𝑖𝑖=1 − 𝑄𝑄𝑟𝑟𝑟𝑟)+, 𝑑𝑑(𝑥𝑥) =

∑ (𝐵𝐵2𝑛𝑛+𝑓𝑓′+1
𝑘𝑘𝐾𝐾

𝑘𝑘=1 − 𝐵𝐵0𝑘𝑘 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)+,  𝑤𝑤(𝑥𝑥)=∑ (𝐵𝐵𝑖𝑖𝑘𝑘2𝑛𝑛
𝑖𝑖=1 − 𝑇𝑇𝑖𝑖+)+ and 𝑎𝑎(𝑥𝑥) = ∑ (𝐿𝐿𝑖𝑖𝑘𝑘𝑛𝑛

𝑖𝑖=1 − 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚)+. Note that these 

terms are applied only for all i ∈ N where 𝑥𝑥+ = {0, 𝑥𝑥},∀ 𝑘𝑘 ∈ 𝐾𝐾. Besides the previous constraints, the level of 

the battery in the vehicle must be respected in the solution. 𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 (𝑖𝑖)=𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 (𝑖𝑖 − 1)-EC𝑐𝑐𝑖𝑖−1,𝑖𝑖
𝑘𝑘 , if 𝑖𝑖 ∈ 𝑉𝑉′ and 

𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 (𝑖𝑖)=H, if 𝑖𝑖 ∈ 𝐹𝐹′. Binary term o(s) is equal to 0 if 𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 (𝑖𝑖) ≥ 0,∀ 𝑖𝑖 ∈ 𝑉𝑉′,∀ 𝑘𝑘 ∈ 𝐾𝐾 and 1 otherwise. The 

penalty parameters (𝛼𝛼,𝛽𝛽, 𝛾𝛾 𝑎𝑎𝑎𝑎𝑎𝑎 𝜏𝜏) are dynamically adjusted during the search as in Cordeau et al. (2001), 

i.e., if the current solution respects the  vehicle load constraint, 𝛼𝛼 is divided by 1+𝛿𝛿, where 𝛿𝛿 is a uniform 

number generated randomly between 0 and 0.5; otherwise, 𝛼𝛼 is multiplied by 1+𝛿𝛿. The same penalty 

procedure is applied to parameters 𝛽𝛽, 𝛾𝛾 𝑎𝑎𝑎𝑎𝑎𝑎 𝜏𝜏. 

It should be noted that for a solution x to become a new best solution, we must have 𝑞𝑞𝑟𝑟(𝑥𝑥)= 𝑑𝑑(𝑥𝑥)=  𝑤𝑤(𝑥𝑥)= 

𝑎𝑎(𝑥𝑥) = 𝑜𝑜(𝑥𝑥)=0, for each resource 𝑟𝑟 =0, 1, 2, 3. 

In order to evaluate a route, we follow the adapted eight-step evaluation procedure of Parragh et 

al.(2010) that is proposed by Cordeau and Laporte (2003), as shown in Algorithm 5. The algorithm applies 

the forward time slack concept of Savelsbergh (1992), proposed for the VRP, after adapting it to the DARP. 

The forward time slack 𝑆𝑆𝑆𝑆𝑖𝑖 for a node 𝑖𝑖 ∈ 𝑁𝑁 is calculated as:𝑙𝑙𝑗𝑗𝑘𝑘 

𝑆𝑆𝑆𝑆𝑖𝑖= min
𝑖𝑖≤𝑗𝑗≤𝑦𝑦

{∑ 𝑊𝑊𝑝𝑝 + (min {𝑙𝑙𝑗𝑗𝑘𝑘 − 𝐵𝐵𝑗𝑗𝑘𝑘 , 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑗𝑗}𝑖𝑖≤𝑝𝑝≤𝑗𝑗 )+} 

Where 𝑗𝑗 ∈  {𝑛𝑛 + 1, … ,2𝑛𝑛} is the destination of user 𝑖𝑖, and 𝑦𝑦 is the last node in the route.𝑊𝑊𝑝𝑝 is the waiting 

time at node 𝑝𝑝, and 𝑃𝑃𝑗𝑗 represents the ride time of the user from 𝑖𝑖 to 𝑗𝑗,  given that 𝑗𝑗 − 𝑛𝑛 is visited before 𝑖𝑖 on 

the route; 𝑃𝑃𝑗𝑗=0 for all other 𝑗𝑗.The forward time slack  𝑆𝑆𝑆𝑆𝑖𝑖 represents the maximum amount of time that the 

departure of the vehicle from node 𝑖𝑖 can be delayed, without causing a violation in the time window and 

maximum ride time constraints. 

Algorithm  5: The eight-step evaluation scheme 
1. Set departure time 𝐷𝐷0𝑘𝑘:= 𝑒𝑒0 
2. Compute beginning of service (𝐵𝐵𝑖𝑖𝑘𝑘), departure time (𝐷𝐷𝑖𝑖𝑘𝑘 = 𝐵𝐵𝑖𝑖𝑘𝑘 + 𝑠𝑠𝑖𝑖), battery level (𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 (𝑖𝑖)); arrival time 
(𝐴𝐴𝑖𝑖𝑘𝑘), waiting time (𝑊𝑊𝑖𝑖

𝑘𝑘 = 𝐵𝐵𝑖𝑖𝑘𝑘 − 𝐴𝐴𝑖𝑖𝑘𝑘), and load of vehicle (𝑄𝑄𝑖𝑖𝑟𝑟𝑟𝑟) for each node 𝑖𝑖 along the route 
If some 𝐵𝐵𝑖𝑖𝑘𝑘> 𝑙𝑙𝑖𝑖𝑘𝑘, or 𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 (𝑖𝑖) < 0, or 𝑄𝑄𝑖𝑖𝑟𝑟𝑟𝑟  > 𝑄𝑄𝑟𝑟𝑟𝑟, Go to step 8 

3. Compute 𝑆𝑆𝑆𝑆0   
4. Set 𝐷𝐷0𝑘𝑘 ≔ 𝑒𝑒0+min{𝑆𝑆𝑆𝑆0, ∑ 𝑊𝑊𝑝𝑝}0<𝑝𝑝<𝑦𝑦   
5. Update 𝐴𝐴𝑖𝑖𝑘𝑘, 𝑊𝑊𝑖𝑖

𝑘𝑘 , 𝐵𝐵𝑖𝑖𝑘𝑘 and 𝐷𝐷𝑖𝑖𝑘𝑘  for ech node on the route 
6. Compute 𝑙𝑙𝑖𝑖𝑘𝑘 for each request on the route   

If all 𝑙𝑙𝑖𝑖𝑘𝑘 ≤ 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚  Go to step 8 
7. For evry node j that is an origin 

(a) Compute 𝑆𝑆𝑆𝑆𝑗𝑗 
(b) Set 𝑊𝑊𝑗𝑗

𝑘𝑘:= 𝑊𝑊𝑗𝑗
𝑘𝑘+ min{𝑆𝑆𝑆𝑆𝑗𝑗, ∑ 𝑊𝑊𝑝𝑝}𝑗𝑗<𝑝𝑝<𝑦𝑦 ; 𝐵𝐵𝑗𝑗𝑘𝑘:= 𝐷𝐷𝑗𝑗𝑘𝑘+ 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑗𝑗; 𝐷𝐷𝑗𝑗𝑘𝑘:= 𝐵𝐵𝑗𝑗𝑘𝑘+ 𝑠𝑠𝑗𝑗  

(c) Update 𝐴𝐴𝑖𝑖𝑘𝑘, 𝑊𝑊𝑖𝑖
𝑘𝑘, 𝐵𝐵𝑖𝑖𝑘𝑘  and 𝐷𝐷𝑖𝑖𝑘𝑘  for each node that comes after j in the route 

(d) Update 𝐿𝐿𝑖𝑖𝑘𝑘  for each request 𝑖𝑖 whose destination is after 𝑗𝑗 
If all 𝐿𝐿𝑖𝑖𝑘𝑘 ≤ 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚  of requests whose destinations lie after j, Go to step 8 



  25   
  

8. Compute changes in violation and calculate 𝑓𝑓(𝑥𝑥)  

5. Computational experiments 

This section presents the detailed numerical results obtained by our proposed algorithms. All 

implementations are done using C programming language on a configuration of Intel Core i7-5555U 3.14 

GHz and 8 GB RAM. 

5.1. Data and experimental setting 

To test our algorithms, we use three sets of data: small-, medium- and large-sized instances. All our 

instances contain heterogeneous user types and are generated similar to the instance generation of Masmoudi 

et al. (2017). There are three sets (U, E, I), which are modified versions of the instances created by Parragh 

(2011) and Braekers et al. (2014) for the small- and medium-sized instances, and from Cordeau and Laporte 

(2003) for the large-sized instances. For the small and medium instances, these instances include up to four 

vehicles and 96 requests. The time windows of users on small and medium instances are set to 15 minutes. 

The maximum user ride time (𝐿𝐿 𝑚𝑚𝑚𝑚𝑚𝑚) and service time (si) at each location are set to 30 minutes and three 

minutes, respectively.  

For the large-sized instances (20 instances), these instances contain up to 144 requests and 13 vehicles. 

The service time is equal to three minutes for each user, and the transportation time in minutes is assumed to 

be equal to the Euclidean distance between any locations. The maximum daily working time for each vehicle 

has a limit of 480 minutes, while the maximum ride time is 90 minutes.  

In the first set of instances (R1a-R10a), the time windows range between 15 and 45 minutes. In the 

second set of instances (R1b-R10b), the time windows are set to be between 30 and 90 minutes.  The 

capacity of the vehicle contains four types of resources: a staff seat, a patient’s seat, a stretcher, and a 

wheelchair place. To generate the instances (U, E, I), Masmoudi et al. (2017) assumed certain probabilities 

of patients’ requesting facilities and companions as shown in Table 3. The adopted and generated instances 

with their detailed results can be downloaded from the http://www.ddarp-ev-73.webself.net. 

                                     Table 3  
                                     Probabilities used to generate instances by Masmoudi et al. (2017) 

Instance 
set Patient request probabilities Probability for a 

companion (%) 
  Seat (% )  Stretcher  (% )  Wheelchair (% )     
U 0.50 0.25 0.25 0.00 
E 0.25 0.25 0.50 0.10 
I 0.83 0.11 0.06 0.50 

We assume that the vehicle capacity resources include one staff seat, six patient seats, one wheelchair 

place, and one stretcher.  

To complete our DARP-EV instance sets regarding the number of BSSs, we calculate the number of 

stations adaptively according to the number of users in each instance. Precisely, for 𝑛𝑛 users, the number of 

recharging stations is assumed to be 0.1*|𝑛𝑛| as done in Goeke and Schneider (2015). The coordinates of BSS 

nodes are randomly generated in a specific square area (i.e., [−10, 10]2). We assume that the initial depot is 

considered also as a BSS node. Thus, the BSS nodes (together with the depot) are set along the route, such 

that the vehicle departs from the depot with a full-battery charge. 

http://www.ddarp-ev-73.webself.net/
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5.2. Parameter settings 

Before testing our algorithms, it is essential to do extensive experiments to obtain the best parameter 

values. Therefore, we have chosen the parameters based on recommendations from the literature or by 

making preliminary experiments to obtain a good tradeoff between solution quality and computational time.  

A summary of all parameters used in our algorithms are shown in Table 12 in Appendix A. 

Concerning the VNS1 algorithm, the initial temperature value 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 was set to 100 and the cooling rate 𝛿𝛿 

equal to 0.99975, as suggested by Ropke and Pisinger (2006) and Demir et al. (2012). For VNS2 and VNS3, 

we have 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = number of vehicles in each instance, respectively. For VNS1, VNS2 and VNS3, the 

number of iterations is denoted as  𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣1, 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣2 and 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣3. On the other hand, the overall EVO-VNS 

algorithm outputs the best solution when no improvement after five consecutive iterations. Since we have 

additional diversification procedures, our parameters  𝜋𝜋1, 𝜋𝜋2 and 𝜋𝜋3 for VNS1 and VNS2 are set equal to 15, 

10 and 5, respectively. The adjustment parameters have been set as 𝜋𝜋1 ≥ 𝜋𝜋2 ≥ 𝜋𝜋3 to reward an operator for 

good performance, as adopted values from Masmoudi et al. (2016). 

Regarding the hybrid variants of VNS (i.e., the three EVO-VNS variants), to obtain the required good 

parameters of the hybridization, we tune our parameters similar to the procedure followed by Goeke and 

Schneider (2015) and Masmoudi et al. (2016). We first identified the parameters that we believe have a 

strong effect on solution quality, namely, the number of groups 𝒎𝒎, the number of solutions in each group 𝒄𝒄, 

and the number of solutions selected based on roulette wheel selection 𝒔𝒔. Then, we identified for each of 

these parameters a base setting that has good performance. After this, we tested different settings for each 

parameter, and then we kept the best setting found among them, while we tuned the rest of the parameters. 

The order of tuning the parameters is taken randomly. Table 4 and its detailed results in the website shows 

the different settings tested for each parameter, and the deviation Best%(Avg%) from the best solution found 

in five runs, using this setting, compared to the result obtained using the best setting for the same parameter. 

The analysis is done on a set of instances, which contain various levels of heterogeneity of users, and the 

requests vary from small to large. We highlight the best setting for each parameter in bold.    

In more details, the following method is applied to tune 𝒎𝒎, 𝒄𝒄 and 𝒔𝒔. Firstly, we set the size of each group 

population 𝒎𝒎. Secondly, for each 𝒎𝒎 value, we assess the effectiveness of different combinations of the pair 

(𝒄𝒄, 𝒔𝒔). In this regard, we note that several diversification mechanisms and components of the different 

evolutionary algorithms that we have incorporated in our VNS variants will need to run many times during 

an iteration, which is computationally expensive. Thus, we have chosen a small population size (𝑷𝑷𝑷𝑷𝑷𝑷), 

where the tested number of groups 𝒎𝒎 is equal to 2,  3 and 4, the tested number of solutions in each group 𝒄𝒄 is 

equal to 4, 5, 6, 7 and 8, and the tested number of solutions selected based on roulette wheel selection 𝒔𝒔 is 

equal to 2 and 3. 

Table 4 
 Identification of the best parameter setting for the hybrid EVO-VNS  

    m 2   3 4 
 (c, s) (5;2) (6;2) (4;2) (6;3) (7;3) (8;3)   (4;2) (5;2) (6;2) (6;3) (7;3) (8;3) (4;2) (5;2) (6;2) (7;2) (8;2) (6;3) 
Best 733.84 733.43 733.19 732.98 733.04 732.74  732.33 732.33 732.33 732.33 732.30 732.33 732.32 732.32 732.32 732.32 732.25 732.24 
Best% 0.22 0.16 0.13 0.10 0.11 0.07  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 
Avg 739.14 737.46 736.28 735.77 735.63 735.16  734.97 734.00 733.46 733.40 733.40 733.49 733.28 733.34 733.12 732.91 733.06 732.32 
Avg% 0.22 0.16 0.13 0.10 0.11 0.07  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 

http://www.ddarp-ev-73.webself.net/
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CPU 
(min) 

4.92 4.33 3.35 3.20 3.63 3.74   5.35 5.68 5.27 7.46 8.04 8.60 9.68 10.42 12.13 12.25 13.67 14.79 

As shown in Table 4 and its detailed results in the website, the parameter values of 𝑚𝑚, 𝑐𝑐 and 𝑠𝑠 

considerably affect the solution quality. As indicated by the results, the quality of average and best solutions 

shows a slight improvement when using 𝑚𝑚=4 with differents values of 𝑐𝑐 and 𝑠𝑠, and also require an additional 

computational time. The best parameters are chosen based on obtaining a high quality solution in a short 

CPU time. Thus, the following parameter values were finally selected, 𝑚𝑚=3, 𝑐𝑐=6 and 𝑠𝑠=2 for all our 

algorithms, in order make a fair comparison to evaluate their performance. 

Finally, we note that the number of iterations of each evolutionary algorithm is only set to 1,000 

iterations (i.e., 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣1=𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣2=𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣3=1,000). This reduction was intended to reduce the computational time of 

our evolutionary algorithms.  

5.3. Computational analysis  

This section presents the detailed results obtained by our algorithms after testing them not only on the 

generated instances of the DARP-EV, but also on the benchmark DARP instances of Masmoudi et al. (2017). 

5.3.1. Results on the DARP instances of Masmoudi et al. (2017) 

To further prove the efficiency of our evolutionary algorithms, we used the benchmark DARP instances 

with heterogeneous users of Masmoudi et al. (2017). If we assume a fleet of conventional vehicles, with each 

vehicle having full tank capacity instead of EVs, the DARP-EV can be easily transformed to the DARP.  

In order to compare with the hybrid Genetic Algorithm (GA) of  Masmoudi et al. (2017), each algorithm 

(including the hybrid GA), was run on every instance five times, as also done in Masmoudi et al. (2017). For 

each table in this subsection, column “BKS” represents the best known solutions. The column “Best%” 

(“Avg%”) indicates the percentage of deviation from the optimal solution (best known solution) in small-

medium (large) instances, and the computation time in minutes is symbolized by “CPU”. The detailed results 

of these tables are shown in the website. We note that, the negative percent deviations in EVO-VNS1, EVO-

VNS2 and EVO-VNS3 algorithms indicate an improvement in solution with respect to the best value found 

by the hybrid GA. Tables 5 and 6 show the results obtained for the small-medium instances and the large 

instances, respectively. 

It should be noted that we cannot compare the performance of the algorithms with respect to the 

computational time with that reported in Masmoudi et al. (2017) for the sake of a fair comparison with the 

previously published method. This is because a different machine has been used to run our algorithms than 

that used for the hybrid GA of Masmoudi et al. (2017). In addition, estimating the speed factor of the 

configuration applied in Masmoudi et al. (2017) as well as that of our machine is not possible by using 

Dongarra (2014) table, since no relevant information is reported in Dongarra (2014) and in Linpack (2016). 

In addition, as mentioned in Masmoudi et al. (2017), the computational power of MFlops and the speed 

factor of the configuration applied for the hybrid GA are not known. Thus, in Tables 5 and 6 the 

computational time is reported only for the record, and is not intended for an accurate comparison with the 

previously published methods. In general, though, our algorithm is run within a reasonable computational 

time. 

Table 5 

http://www.ddarp-ev-73.webself.net/
http://www.ddarp-ev-73.webself.net/
http://www.roylongbottom.org.uk/
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Comparison of the hybrid GA and our algorithms on small-medium instances 

Inst. BKS* 
 Hybrid GA  EVO-VNS1  EVO-VNS2  EVO-VNS3 
 Best % Avg % CPU 

(min) 
Best % Avg % CPU 

(min) 
Best % Avg % CPU 

(min) 
Best % Avg % CPU 

(min) 
a2-16 331.16*  0.00 0.00 0.23  0.00 0.00 0.34  0.00 0.00 0.35  0.00 0.00 0.37 
a2-20 347.03*  0.00 0.00 0.47  0.00 0.00 0.85  0.00 0.00 0.88  0.00 0.00 0.99 
a2-24 450.25*  0.00 0.00 0.38  0.00 0.00 0.65  0.00 0.00 0.68  0.00 0.00 0.75 
a3-18 300.63*  0.00 0.00 0.23  0.00 0.00 0.39  0.00 0.00 0.41  0.00 0.00 0.45 
a3-24 344.91*  0.00 0.00 0.35  0.00 0.00 0.52  0.00 0.00 0.54  0.00 0.00 0.57 
a3-30 500.58*  0.00 0.00 0.41  0.00 0.00 0.72  0.00 0.00 0.77  0.00 0.00 0.91 
a3-36 583.19*  0.00 0.00 0.57  0.00 0.00 1.13  0.00 0.00 1.19  0.00 0.00 1.40 
a4-16 285.99*  0.00 0.00 0.20  0.00 0.00 0.33  0.00 0.00 0.34  0.00 0.00 0.39 
a4-24 383.84*  0.00 0.00 0.29  0.00 0.00 0.50  0.00 0.00 0.53  0.00 0.00 0.59 
a4-32 500.24*  0.00 0.00 0.55  0.00 0.00 0.91  0.00 0.00 0.96  0.00 0.00 1.06 
a4-40 580.42*  0.00 0.00 0.58  0.00 0.00 1.02  0.00 0.00 1.07  0.00 0.00 1.21 
a4-48 670.52*  0.00 0.00 0.81  0.00 0.00 1.35  0.00 0.00 1.41  0.00 0.00 1.62 
a5-40 500.06*  0.00 0.00 0.52  0.00 0.00 0.99  0.00 0.00 1.05  0.00 0.00 1.24 
a5-50 693.77*  0.00 0.00 0.67  0.00 0.00 1.15  0.00 0.00 1.21  0.00 0.00 1.37 
a5-60 828.90*  0.00 0.00 0.97  0.00 0.00 1.61  0.00 0.00 1.68  0.00 0.00 1.87 
a6-48 614.36*  0.00 0.00 0.70  0.00 0.00 1.48  0.00 0.00 1.56  0.00 0.00 1.82 
a6-60 847.58*  0.00 0.06 1.00  0.00 0.06 1.55  0.00 0.06 1.59  0.00 0.08 1.70 
a6-72 949.17*  0.00 0.03 1.33  0.00 0.00 2.25  0.00 0.00 2.31  0.00 0.00 2.46 
a7-56 740.63*  0.00 0.05 0.79  0.00 0.00 1.55  0.00 0.00 1.66  0.00 0.05 1.97 
a7-70 946.32*  0.00 0.08 1.12  0.00 0.05 1.87  0.00 0.06 1.96  0.00 0.07 2.19 
a7-84 1092.90  0.00 0.09 1.37  0.00 0.08 2.71  0.00 0.08 2.87  0.00 0.09 3.33 
a8-64 762.81  0.00 0.03 0.93  0.00 0.13 1.56  0.00 0.15 1.62  0.00 0.12 1.77 
a8-80 982.71  0.00 0.06 1.38  0.00 0.02 2.50  0.00 0.03 2.63  0.00 0.09 2.96 
a8-96 1265.36  0.00 0.05 1.51  0.00 0.08 2.62  0.00 0.13 2.70  0.00 0.13 2.88 
Avg 645.97  0.00 0.05 0.72  0.00 0.02 1.27  0.00 0.02 1.33  0.00 0.03 1.49 

* Optimal solutions provided by Braekers et al. (2014) with Branch and Cut (B&C) algorithm  

b Results of Masmoudi et al.(2017), programmed in C and executed on 4 GHz Intel laptop with 1.86 GB RAM. 

Table 6 
Comparison of the hybrid GA and our algorithms on large instances 

Inst. BKSa 
 Hybrid GAb  EVO-VNS1  EVO-VNS2  EVO-VNS3 

 Best% Avg% CPU 
(min) 

Best% Avg% CPU 
(min) 

Best% Avg% CPU 
(min) 

Best% Avg% CPU 
(min) 

R1a 195.97  0.00 0.00 0.44  0.00 0.00 0.71  0.00 0.00 0.61  0.00 0.00 0.78 
R2a 336.34  0.00 0.00 0.85  0.00 0.00 1.18  0.00 0.00 1.32  0.00 0.00 1.47 
R3a 586.18  0.00 0.63 0.94  0.00 0.17 1.40  0.00 0.07 1.44  0.00 0.19 1.84 
R4a 640.03  0.00 0.40 1.48  -0.16 0.36 2.21  -0.16 0.32 2.60  -0.16 0.50 2.59 
R5a 714.83  0.00 0.51 1.82  -0.24 0.26 2.77  -0.20 0.28 2.94  -0.24 0.15 3.72 
R6a 883.02  0.00 0.52 2.40  -0.10 0.02 4.16  -0.05 0.46 3.83  -0.08 0.09 4.48 
R7a 312.05  0.00 0.29 0.47  -0.35 0.35 4.79  -0.35 0.24 5.74  -0.35 0.14 5.90 
R8a 553.82  0.00 0.44 0.81  0.04 0.47 5.24  0.07 0.31 5.52  0.10 0.34 5.55 
R9a 746.23  0.00 0.35 1.62  -0.21 0.30 7.33  -0.25 0.40 7.89  0.10 0.25 7.30 

R10a 963.08  0.00 0.64 2.29  0.09 0.15 10.74  0.11 0.25 10.77  0.11 0.19 11.62 
R1b 190.39  0.00 0.00 0.57  0.00 0.00 0.80  0.00 0.00 0.91  0.00 0.00 1.11 
R2b 312.92  0.00 0.38 1.03  0.00 0.00 1.63  0.00 0.23 1.75  0.00 0.00 1.94 
R3b 551.95  0.00 0.22 1.36  0.00 0.22 2.06  0.00 0.24 2.29  0.03 0.23 3.91 
R4b 606.08  0.00 0.73 2.00  -0.13 0.40 2.95  -0.08 0.07 5.46  -0.05 0.41 3.41 
R5b 641.84  0.00 0.05 2.93  -0.21 0.04 4.42  -0.21 0.04 5.70  -0.21 0.02 4.65 
R6b 832.53  0.00 0.46 3.66  0.03 0.40 5.51  0.03 0.28 6.50  0.06 0.27 7.18 
R7b 276.52  0.00 0.00 0.79  -0.13 0.03 1.21  -0.13 0.12 0.81  -0.13 0.16 1.21 
R8b 530.56  0.00 0.32 1.53  -0.11 0.23 4.24  -0.11 0.13 4.41  -0.11 0.20 5.49 
R9b 699.06  0.00 0.59 2.84  -0.13 0.19 6.54  -0.06 0.26 6.28  -0.02 0.33 6.91 
R10b 902.17  0.00 0.53 3.11  0.12 0.22 11.71  0.15 0.38 11.11  0.11 0.73 12.61 
Avg 573.78  0.00 0.35 1.65  -0.07 0.19 4.08  -0.06 0.20 4.39  -0.04 0.21 4.68 

a Best known solutions provided by Masmoudi et al.(2017) 
b Results of  Masmoudi et al.(2017), programmed in C and executed on 4 GHz Intel laptop with 1.86 GB RAM. 

      
Table 5 shows that our algorithms match the optimal solutions computed by the B&C of Braekers et al. 

(2014) for the small-medium instances. Looking at the average gaps of five runs, our EVO-VNS1, EVO-
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VNS2 and EVO-VNS3 algorithms obtain 0.02%, 0.02%, and 0.03% , respectively, compared to 0.05% of the 

hybrid GA. More importantly, Table 6 clearly shows that our algorithms are competitive with the hybrid GA 

method of Masmoudi et al. (2017) on large instances in terms of solution quality. Our algorithms improve 

the results by 0.07%, 0.06% and 0.04% on average. This points out to the steadiness of our evolutionary 

algorithms in terms of locating high quality solutions in most of the runs. In terms of the average deviation of 

the average results (calculated for five runs) from the best solutions of the hybrid GA, our algorithms 

achieved 0.19%, 0.20% and 0.21%, compared to 0.35% achieved by the hybrid GA. Overall, these results 

confirm that our proposed algorithms are competitive compared to the hybrid GA of Masmoudi et al. (2017) 

in terms of solution quality. This, however, comes at the expense of computational time, which is in fact 

more than twice that of the Hybrid GA of Masmoudi et al. (2017). This may be due to the new components 

that we added to our VNS, in order to enhance its exploration and exploitation powers, which has 

undoubtedly increased the overall computational time. 

5.3.2. Results on our DARP-EV instances 

In this section, we present the results on our generated instances of the DARP-EV. In each table in this 

section, columns “Best” and “Avg” present the best and average solution values, respectively. The column 

“%” following each of the “Best” (“Avg”) columns provides the percentage of deviation from the best 

solution value “BS” obtained by any of the three algorithms for a given instance. For the column “CPU”, it 

presents the average CPU time in minutes. Each instance is calculated five times by applying each algorithm. 

The results of our suggested methods on the small-medium and large instances are indicated in Tables 7 and 

8, respectively. 

    Table 7 
    Comparison of our three algorithms on small and medium instances 

Instance 
 BS 

 EVO-VNS1    EVO-VNS2    EVO-VNS3 

Best % Avg %  CPU 
(min) 

  Best % Avg %  CPU 
(min) 

  Best % Avg %  CPU 
(min) 

𝑈𝑈� 668.51 668.74 0.02 668.89 0.03 2.52  668.96 0.05 669.57 0.12 2.60  669.09 0.06 669.66 0.12 3.04 

𝐸𝐸� 684.36 684.64 0.02 684.77 0.03 2.18  684.83 0.05 685.34 0.10 2.53  684.99 0.06 685.28 0.09 3.02 

𝐼𝐼 ̅ 668.15 668.38 0.02 668.69 0.05 2.68  668.50 0.03 668.94 0.08 3.31  668.84 0.07 669.33 0.13 3.60 
𝑈𝑈𝑈𝑈𝑈𝑈����� 673.67 673.92 0.02 674.12 0.04 2.46   674.10 0.05 674.62 0.10 2.81   674.30 0.06 674.76 0.11 3.22 

As seen from Table 7, there is a slight difference in our algorithms in terms of finding best solutions for 

most of the instances. In fact, the EVO-VNS1 algorithm obtains the best solutions at least one time for 66 

instances. On the other hand, EVO-VNS2 obtains the best result only for 62 instances, while EVO-VNS3 

finds the best solutions for 57 instances. The three algorithms were capable of obtaining the same best 

solutions for 51 out of 72 instances. Regarding the average, the EVO-VNS1, EVO-VNS2 and EVO-VNS3 

algorithms have a gap equal to 0.02%, 0.05% and 0.06%, respectively, from the best solution for all 

instances. This articulates that the diversification and intensification mechanisms applied in our algorithms 

have considerable contribution in improving the solution quality. 

    Table 8 
    Comparison of our three algorithms on large-sized instances 

Instance 
 BS 

 EVO-VNS1    EVO-VNS2    EVO-VNS3 

Best % Avg %  CPU 
(min) 

  Best % Avg %  CPU 
(min) 

  Best % Avg %  CPU 
(min) 
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𝑈𝑈� 605.76 606.08 0.04 608.59 0.40 9.00  606.20 0.08 610.08 0.63 10.16  606.59 0.11 610.14 0.63 10.62 

𝐸𝐸� 616.95 617.59 0.09 620.29 0.47 8.09  617.80 0.13 621.20 0.63 9.07  617.69 0.11 621.17 0.63 9.47 

𝐼𝐼 ̅ 610.85 611.51 0.08 614.32 0.50 10.58  611.48 0.08 614.89 0.55 11.97  611.31 0.08 615.04 0.63 12.52 

𝑈𝑈𝑈𝑈𝑈𝑈����� 611.18 611.73 0.07 614.40 0.45 9.22   611.82 0.10 615.39 0.60 10.40   611.86 0.10 615.45 0.63 10.87 

The results shown in Table 8 clearly indicate that our algorithms are able to gain good solution quality. 

EVO-VNS1 obtains the best solutions for 49 instances, while EVO-VNS2 can find the best solutions for 45 

instances, and EVO-VNS3 for 43 instances. Generally, in 28 cases, all methods are effective in obtaining the 

same best solutions. Taking the average values over five runs for each algorithm, the average of the best 

result deviates from the best solution by 0.07% for EVO-VNS1, 0.10% for EVO-VNS2 and 0.10% for EVO-

VNS3. On the other hand, the average gap percent is equal to 0.45% for EVO-VNS1, 0.60% for EVO-VNS2 

and 0.63% for EVO-VNS3. Generally, all three algorithms perform well and are able to obtain good-quality 

solutions for large instances.  

To evaluate the effectiveness of hybridizing our VNS algorithms with different new components 

(population-based), we compared our evolutionary algorithms (EVO-VNS1, EVO-VNS2 and EVO-VNS3) 

with non-hybrid variants of the same algorithms (i.e., VNS1, VNS2 and VNS3).  

Table 9 
The contribution of our evolutionary algorithms compared to the standard algorithms  

Instance (Data) VNS1  VNS2  VNS3 

Best % Avg % CPU  Best % Avg % CPU  Best % Avg % CPU 

Type-U (Small-Medium) 670.36 0.20 672.27 0.44 1.59  670.43 0.25 673.50 0.65 1.64  670.89 0.33 674.98 0.82 1.93 

Type-E (Small-Medium) 686.42 0.25 689.26 0.63 1.37  686.76 0.28 689.18 0.58 1.60  686.61 0.30 690.07 0.70 1.91 

Type-I (Small-Medium) 669.66 0.17 672.61 0.55 1.70  669.89 0.21 672.75 0.58 2.10  670.86 0.34 673.13 0.59 2.28 

Average 675.48 0.21 678.05 0.54 1.55  675.69 0.25 678.48 0.61 1.78  676.12 0.32 679.40 0.70 2.04 

Type-U (Large) 610.05 0.61 613.26 1.16 6.02  610.11 0.67 614.60 1.34 6.80  611.71 0.86 614.88 1.43 7.09 

Type-E (Large) 620.84 0.55 624.27 1.06 5.38  621.10 0.61 625.25 1.22 6.03  623.20 0.90 626.27 1.42 6.29 

Type-I (Large) 615.49 0.67 618.01 1.08 7.06  615.26 0.65 618.90 1.19 7.99  617.61 0.94 620.01 1.40 8.35 

Average 615.46 0.61 618.51 1.10 6.15  615.49 0.64 619.58 1.25 6.94  617.50 0.90 620.39 1.42 7.24 

Table 9 compares the average of five runs and the best results for all instances of each data set, using 

each algorithm. Columns “Best” (“Avg”) report the best (average) solution values of our implemented 

standard algorithms (i.e., VNS1, VNS2 and VNS3). Columns “%” presents the percentage of deviation from 

the best (Avg) solutions obtained by our VNS1, VNS2 and VNS3, compared to the EVO-VNS1, EVO-VNS2 

and EVO-VNS3.  

The results in Table 9 clearly indicate that our evolutionary algorithms outperform the standard 

algorithms in terms of best solution value and average solution quality. In terms of average value of five runs 

for the small-medium instances, VNS3, for example, has obtained an average value of 679.40 compared to 

674.76 obtained by EVO-VNS3, with an average gap difference equal to 0.70%.  For the larger instances, the 

use of our evolutionary strategies achieves remarkable improvement in comparison with the standard 

methods in terms of best solution and average solution value over five runs. This confirms that our 

evolutionary algorithms are more stable and more efficient than the standard algorithms. In addition, the 

detailed results of Table 9 show the ability of the evolutionary algorithms to obtain good solutions in most of 

the runs, in comparison with the standard algorithms. Moreover, in large-sized instances, the basic VNS1, 
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VNS2 and VNS3 can only find 29, 22 and 16 best solutions, compared to 49, 45 and 43 found by the EVO-

VNS1, EVO-VNS2 and EVO-VNS3 algorithms.  

Finally, a comparative study is shown in Table 13 in Appendix B to assess the impact of using the 

population phase, with and without the crossover MX1 operator and other components in our EVO-VNS 

algorithms. 

5.4. Energy consumption function versus constant energy consumption 

In this section, we evaluate the impact of applying the realistic energy consumption function adopted in 

our algorithms. We have tested two strategies: Realistic Consumption (RC) function of Genikomsakis and 

Mitrentsis (2017) that is the case of our current study, and Constant Consumption (CC) which is equal to 380 

W/mile (EPA) applied also using the same vehicle model described in Table 2. We chose to test our EVO-

VNS1 using both these two strategies. Table 9 displays the results of the comparison. In Table 10 (and its 

detailed results in the website), the Column “Nb-stat available” presents the number of BSSs available in 

each instance and the Column “Nb-Bat-swap” presents the number of battery-swaps performed by the 

vehicles in each instance. Each instance is solved five times by applying each algorithm. 

                     Table 10 
                     Importance of the realistic energy consumption function in our algorithms 

Inst. BS 
  EVO-VNS1 with RC   EVO-VNS1 with CC 

  Best Best% Avg Avg%   Best Best% Avg Avg% 
U 668.51  668.74 0.02 668.89 0.03  669.98 0.24 670.95 0.39 
E 684.36  684.65 0.02 684.77 0.03  685.51 0.15 686.35 0.26 
I 668.15  668.38 0.02 668.69 0.04  669.13 0.15 670.36 0.32 
UEI 673.67   673.92 0.02 674.12 0.03   674.87 0.18 675.89 0.32 

From Table 10, we can see that using the RC strategy is better than applying the CC strategy with an 

average gap equal to 0.02%(0.03%) compared to 0.18%(0.32%), respectively. In addition, from the detailed 

results of this table in our website, we can observe that in some instances, the results obtained through the 

application of the RC strategy in terms of the number of battery swaps are better than the best results realized 

with the use of the CC strategy (as indicated in bold). For the rest of the instances, we observe that, in both 

RC and CC strategies, our algorithms were capable of obtaining the same results. As we anticipated before, 

our algorithms with the use of realistic consumption energy function have performed well. Moreover, using 

the RC strategy is more efficient than the CC strategy, as also confirmed by De Gennaro et al. (2015). 

5.4. The effect on battery capacity 

In this subsection, we analyze the effect of using different battery capacity 𝐻𝐻 value in terms of the 

objective function as well as on visiting the BSSs.  In this experiment, we use EVO-VNS1 as an example. In 

Table 11, three different battery capacity values 𝐻𝐻=35, 30 and 25 are tested against the original 𝐻𝐻=40 value, 

using our EVO-VNS1, with the limitation restraints of route duration and the number of available vehicles. 

The experiment’s results are applied to all instance types for each data set. The column “Best%” (“Avg%”) 

indicates the percentage of deviation from the best solution  (column “BS”) obtained by any algorithm for a 

given instance for 𝐻𝐻=40. The detailed results are given in our website. In addition, in the detailed results of 

this table, we show the number of available BSSs in each instance in the column denoted by “Nb-Ava-BSS”, 

http://www.ddarp-ev-73.webself.net/
http://www.ddarp-ev-73.webself.net/
http://www.ddarp-ev-73.webself.net/
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the columns “Nb-Veh” and “Nb-Cl” present the number of available vehicles and the number of users in 

each instance, respectively, while, the column “Nb-Bat-swap” presents the number of visited BSSs.  

Table 11 
Impact of battery capacity 

Instance (Data) BS 
𝐻𝐻=40   𝐻𝐻=35   𝐻𝐻=30   𝐻𝐻=25  

Best% Avg% CPU 
(min) 

  Best% Avg% CPU 
(min) 

  Best% Avg% CPU 
(min) 

  Best% Avg% CPU 
(min) 

Type-U (Small-Medium) 668.51 0.02 0.03 2.52  0.65 0.67 2.56  1.29 1.33 2.40  2.81 2.91 2.56 
Type-E (Small-Medium) 684.36 0.02 0.03 2.18  0.80 0.82 2.20  2.03 2.07 1.98  3.99 4.10 2.02 
Type-I (Small-Medium) 668.15 0.02 0.05 2.68  1.04 1.07 2.72  1.93 1.99 2.55  3.51 3.61 2.79 

Average 673.67 0.02 0.04 2.46   0.83 0.86 2.49   1.75 1.79 2.31   3.44 3.54 2.46 
Type-U (Large) 605.76 0.04 0.40 9.00 

 
0.21 0.70 9.11 

 
0.28 0.77 9.21 

 
1.07 1.56 9.91 

Type-E (Large) 616.95 0.09 0.47 8.09 

 
0.25 0.85 8.18 

 
0.34 0.94 8.30 

 
2.25 2.85 8.94 

Type-I (Large) 610.85 0.08 0.50 10.58 

 
0.46 1.07 10.73 

 
0.87 1.49 10.86 

 
1.95 2.56 11.91 

Average 611.18 0.07 0.45 9.22   0.31 0.87 9.34   0.50 1.06 9.46   1.76 2.32 10.25 

 From Table 11 and its detailed results in the website, we can see that changing the battery capacity value 

influences the objective function. The average gap for the best run (five runs) is equal to 0.83%(0. 86%), 

when using 𝐻𝐻=35, 1.75%(1.79%), when using 𝐻𝐻=30, and 3.44%(3.54%) when using 𝐻𝐻=25 for the small- 

medium size instances. This increase in the objective function value is related to the additional distances and 

costs caused by visiting the BSSs. In fact, the number of visits to the BSSs increases with each reduction 

of 𝐻𝐻. Specifically, the number of BSS visits varies between 0 and 4 using 𝐻𝐻=40, which presents our case, 

between 0 and 5 using 𝐻𝐻=35, between 1 and 5 using 𝐻𝐻=30, and between 1 and 8 for 𝐻𝐻=25. Moreover, using 

𝐻𝐻=30 leads to infeasible solutions for 5 out of 72 instances, while for 𝐻𝐻 =25, 19 infeasible solutions are 

obtained. For the large instances, we can see also that the objective function value increased with each 

reduction of the battery capacity. 

We also observed that the small-medium instances that are characterized with a short time window 

interval tend to include many visits to BSSs in many instances and for different battery capacities. This is 

expected, since the vehicles need to travel longer distances in order to satisfy the tight time windows 

constraint, i.e., they cover larger areas. On the other hand, instances that are characterized with a large time 

window usually have no visits for BSSs using 𝐻𝐻=40, while they have only one or two visits when using 

𝐻𝐻=35, 𝐻𝐻=30 and 𝐻𝐻=25. 

6. Conclusions 

This paper presents a practical version of the dial-a-ride problem and investigates electric vehicles with 

battery swapping stations (DARP-EV). The use of electric vehicles has been already observed in practice, 

especially in the domain of healthcare services. Hence, there is a need for developing new models and 

solution techniques considering electric vehicle technologies. This paper provides a new formulation that 

allows the recharging of an electric vehicle by swapping its depleted battery with a full one in each visit to a 

battery swapping station, in order to continue its working day and fulfill all users' requirements. We 

proposed three Evolutionary Variable Neighborhood Search (EVO-VNS) algorithms for solving the DARP-

EV by introducing effective (population-based) construction and diversification mechanisms and advanced 

local search operators. After conducting thorough sensitivity analysis and parameter tuning, our algorithms 

were intensively put into experimentation on generated data sets with different sizes (small, medium and 

http://www.ddarp-ev-73.webself.net/
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large). As demonstrated by the experimental results, our algorithms obtain high quality solutions during 

moderate processing times. In addition, the results demonstrate that our proposed algorithms, which combine 

features of evolutionary metaheuristics with VNS, have more advantages in their performance than our 

standalone VNS method. Furthermore, high quality solutions were obtained by our proposed algorithms in 

comparison with a recent hybrid GA algorithm for the DARP.  

Finally, we highlight some limitations that are considered in our work, which constitute various 

attractive avenues for future investigation. First, the accuracy of the energy consumption estimation 

presented in our work depends on the resolution of the road network representation. Applying the energy 

consumption function for all nodes has implications on the accuracy of the estimated energy consumption. 

The current modelling approach is intended to exemplify the application of an EV energy consumption 

function in the DARP-EV formulation. However, the accuracy of the energy consumption model can be 

improved by considering that the trip between two nodes consists of smaller segments, each one with its own 

road angle and possible speed profile. In addition, to make the EVs model more realistic, the EVs can 

consider the combination of the brake power, battery loss, temperature, drive loss, acceleration, deceleration, 

as well as the consideration of the effect of the payload. For more details, interested readers are referred to 

Simpson (2005). The implementation of these approaches, though, is out of the scope of the current paper 

and it is suggested in the conclusions as possible directions for future work. In addition, from a 

methodological perspective, developing exact solution methods, such as Branch-and-Cut for solving 

moderate size instances of the DARP-EV, and designing efficient metaheuristic techniques for solving rich 

variants of the problem are interesting research directions. For example, considering realistic energy 

consumption as well as other relevant constraints to solve practical applications, such as the Shared-Taxi 

VRP and the Share-a-Ride Problem (SARP). Finally, considering a real data set in the field of DARP-EV is 

also one of the promising perspectives of this work. 
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The parameters used in our standard algorithms are shown in Table 12. 

   Table 12 
   Parameters used in the standard algorithms 

Algorithm Description of parameters Best value  
VNS1 Number of iterations (𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣1) No improvement of the best solution 

after five consecutive iterations 
 Roulette wheel parameter  (𝑟𝑟𝑝𝑝) 0.70 
 Score of a global better solution ( 𝜋𝜋1) 15 
 Score of a better solution ( 𝜋𝜋2) 10 
 Score of a worse solution ( 𝜋𝜋3) 5 
 Initial temperature ( 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) 100 
  Cooling rate (𝛿𝛿) 0.99975  
VNS2  Number of iterations (𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣2) No improvement of the best solution 

after five consecutive iterations 
 Roulette wheel parameter  (𝑟𝑟𝑝𝑝) 0.70 

 Score of a global better solution ( 𝜋𝜋1) 15 
 Score of a better solution ( 𝜋𝜋2) 10 
 Score of a worse solution ( 𝜋𝜋3) 5 
 Deviation value (𝐷𝐷𝐷𝐷𝐷𝐷) 0.01* current global Record 

 Number of iterations to apply local search (𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙) Number of vehicles in the instance 

VNS3  Number of iterations (𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣3) No improvement of the best solution 
after five consecutive iterations 

 Number of iterations to apply neighborhood (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) Number of vehicles in the instance 

EVO-VNS1 Number of groups (𝑚𝑚) 3 
  Number of solutions in each group (𝑐𝑐)  6 
 Number of solutions to be improved by VNS variant (𝑠𝑠) 2 
 Stopping criterion of the EVO-VNS1 (𝑛𝑛𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻1) No improvement of the best solution 

after five consecutive iterations 
 Number of iterations  of VNS1 (𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣1) 1,000 
 Roulette wheel parameter  (𝑟𝑟𝑝𝑝) 0.70 
 Score of a global better solution ( 𝜋𝜋1) 15 
 Score of a better solution ( 𝜋𝜋2) 10 
 Score of a worse solution ( 𝜋𝜋3) 5 
 Initial temperature ( 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) 100 
 Cooling rate (𝛿𝛿) 0.99975  
EVO-VNS2 Number of groups (𝑚𝑚) 3 
  Number of solutions in each group (𝑐𝑐)  6 
 Number of solutions to be improved by VNS variant (𝑠𝑠) 2 
 Stopping criterion of the EVO-VNS2 (𝑛𝑛𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻2) No improvement of the best solution 

after five consecutive iterations 
 Number of iterations  of VNS2 (𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣2) 1,000 
 Roulette wheel parameter  (𝑟𝑟𝑝𝑝) 0.70 
 Score of a global better solution ( 𝜋𝜋1) 15 
 Score of a better solution ( 𝜋𝜋2) 10 
 Score of a worse solution ( 𝜋𝜋3) 5 
 Deviation value (𝐷𝐷𝐷𝐷𝐷𝐷) 0.01* current global Record 

 Number of iterations to apply local search (𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙) Number of vehicles in the instance 

EVO-VNS3 Number of groups (𝑚𝑚) 3 
  Number of solutions in each group (𝑐𝑐)  6 
 Number of solutions to be improved by VNS variant (𝑠𝑠) 2 
 Stopping criterion of the EVO-VNS3 (𝑛𝑛𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3) No improvement of the best solution 

after five consecutive iterations 
 Number of iterations  of VNS3 (𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣3) 1,000 
 Number of iterations to apply neighborhood (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) Number of vehicles in the instance 

 

Appendix B: Effect of the different algorithmic components on the EVO-VNS 

We investigate here the effect of integrating our different components (i.e., our population phase based 

on the SFLA and the BA as well as using the MX1 operator) on our standalone (enhanced)VNS to diversify 

the search and improve the quality of solutions. For this purpose, we use VNS1, as an example, where some 

combinations are compared based on our standalone(enhanced) VNS1 by adding in each time different 
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component(s). The results of this comparison are shown in Table 13, where we use the benchmark instances 

of Masmoudi et al. (2017). Combination “1” represents our standalone (enhanced) VNS1. Combination “2” 

represents the combination of adding the population phase based on the SFLA and the component adopted 

from the BA (i.e., step 2 and steps 5 and 6, respectively, of Algorithm 1) to the standalone VNS1. In other 

words, this combination represents our EVO-VNS1 without the MX1 operator. The last combination “3” is 

the combination of adding to the standalone(enhanced) VNS1 both the population phase and the MX1 

operator, which reflects our complete EVO-VNS1 with MX1 operator shown in Algorithm 1. 

In Table 13, the column “Best”(“Avg”), presents the best (Avg) solutions provided by the hybrid GA of 

Masmoudi et al. (2017). The columns “Best%” (“Avg%”) indicate the percentage of deviation from the 

best(Avg) results obtained by the hybrid GA of Masmoudi et al. (2017), respectively. The obtained results 

(best and average) values of this table are shown in our website. 

Table 13 
Effect of different components  

Inst. Hybrid GA  Combination 1  Combination 2  Combination 3 
 Best Avg CPU 

(min) 
 Best% Avg% CPU 

(min) 
 Best% Avg% CPU 

(min) 
 Best% Avg% CPU 

(min) 
R1a 195.97 195.97 0.44  0.00 0.00 1.13  0.00 0.00 0.95  0.00 0.00 0.71 
R2a 336.34 336.34 0.85  0.00 0.00 1.87  0.00 0.00 1.56  0.00 0.00 1.18 
R3a 586.18 589.86 0.94  0.00 0.14 2.22  0.00 -0.39 1.84  0.00 -0.46 1.40 
R4a 640.03 642.56 1.48  0.40 0.27 3.48  0.00 0.00 2.86  -0.16 -0.04 2.21 
R5a 714.83 718.51 1.82  0.00 0.23 4.39  -0.02 0.10 3.64  -0.24 -0.26 2.77 
R6a 883.02 887.65 2.40  0.82 0.75 6.55  0.13 -0.33 5.40  -0.10 -0.50 4.16 
R7a 312.05 312.96 0.47  0.69 1.00 7.58  0.15 0.43 6.29  -0.35 0.05 4.79 
R8a 553.82 556.23 0.81  0.90 0.94 8.30  0.31 0.20 6.89  0.04 0.03 5.24 
R9a 746.23 748.87 1.62  1.12 1.12 11.63  0.18 0.07 9.68  -0.21 -0.05 7.33 

R10a 963.08 969.22 2.29  1.13 1.17 16.99  0.39 0.61 14.12  0.09 -0.48 10.74 
R1b 190.39 190.39 0.57  0.00 0.00 1.26  0.00 0.00 1.05  0.00 0.00 0.80 
R2b 312.92 314.12 1.03  0.00 0.36 2.58  0.00 -0.38 2.14  0.00 -0.38 1.63 
R3b 551.95 553.15 1.36  0.00 0.69 3.26  0.00 0.19 2.70  0.00 0.01 2.06 
R4b 606.08 610.48 2.00  0.58 0.30 4.66  0.16 -0.14 3.86  -0.13 -0.32 2.95 
R5b 641.84 642.15 2.93  0.69 0.77 6.99  -0.13 0.13 5.80  -0.21 -0.01 4.42 
R6b 832.53 836.32 3.66  0.86 0.68 8.70  0.23 0.27 7.18  0.03 -0.06 5.51 
R7b 276.52 276.52 0.79  0.90 1.27 1.92  0.00 0.34 1.60  -0.13 0.03 1.21 
R8b 530.56 532.28 1.53  0.73 0.91 6.74  0.23 0.43 5.64  -0.11 -0.09 4.24 
R9b 699.06 703.15 2.84  1.22 0.99 10.31  0.42 0.06 8.52  -0.13 -0.40 6.54 
R10b 902.17 906.91 3.11  1.28 1.55 18.47  0.51 0.83 15.27  0.12 -0.30 11.71 
Avg 573.78 576.18 1.65  0.57 0.66 6.45  0.13 0.12 5.35  -0.07 -0.16 4.08 

As seen in Table 13, we observe that using only our standalone(enhanced) VNS1 (combination “1”) 

cannot obtain good results compared the best (average) solutions of the hybrid GA of Masmoudi et al. 

(2017), with a positive deviation gap equal to 0.57%(0.66%). A considerable improvement is obtained by 

adding our evolutionary phase to the VNS1(combination “2”), where in some instances a negative deviation 

gap is obtained compared to the best and average results of the hybrid GA. Thus, combination “2” shows 

clearly that using a population phase based on SFLA as well as using the BA technique of diversification 

contribute positively to the quality of solutions and clearly outperform the standalone(enhanced)VNS1. This 

can be attributed to their added value in terms of balancing between exploration and exploitation. Comparing 

combination “2” and combination “3”, we observe positive percent deviation values of the results obtained 

by combination “2” compared to combination “3”, relative to the hybrid GA. Therefore, it is evident that 

applying this strategy alone is still unable to keep away from convergence to local optima during the 

http://www.ddarp-ev-73.webself.net/


  40   
  

evolutionary process. In fact, the elimination of our MX1 from the evolutionary process made the 

performance of combination “2” unsuccessful, compared the results obtained by the hybrid GA, as well as to 

our proposed EVO-VNS1 with MX1 (combination “3”). In conclusion, applying all SFLA, BA and MX1 

components to our standalone VNS1 is indeed the most effective combination, compared to the other 

combinations. Our EVO-VNS1 can obtain good results compared to the hybrid GA, although with a slight 

improvement of 0.07%(0.16%) in terms of best(average) results of the hybrid GA.      

 

 


	Abstract
	1. Introduction
	2. Literature review
	3. Problem assumptions
	5.2. Three variants of the variable neighborhood search algorithm
	4
	5
	5.8
	5.1. Data and experimental setting

	6. Conclusions
	Acknowledgements
	References

