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Abstract

In a spoken dialog system, dialog state

tracking deduces information about the

user’s goal as the dialog progresses, syn-

thesizing evidence such as dialog acts over

multiple turns with external data sources.

Recent approaches have been shown to

overcome ASR and SLU errors in some

applications. However, there are currently

no common testbeds or evaluation mea-

sures for this task, hampering progress.

The dialog state tracking challenge seeks

to address this by providing a heteroge-

neous corpus of 15K human-computer di-

alogs in a standard format, along with a

suite of 11 evaluation metrics. The chal-

lenge received a total of 27 entries from 9

research groups. The results show that the

suite of performance metrics cluster into 4

natural groups. Moreover, the dialog sys-

tems that benefit most from dialog state

tracking are those with less discriminative

speech recognition confidence scores. Fi-

nally, generalization is a key problem: in

2 of the 4 test sets, fewer than half of the

entries out-performed simple baselines.

1 Overview and motivation

Spoken dialog systems interact with users via nat-

ural language to help them achieve a goal. As the

interaction progresses, the dialog manager main-

tains a representation of the state of the dialog

in a process called dialog state tracking (DST).

For example, in a bus schedule information sys-

tem, the dialog state might indicate the user’s de-

sired bus route, origin, and destination. Dialog

state tracking is difficult because automatic speech

∗Most of the work for the challenge was performed when
the second and third authors were with Honda Research In-
stitute, Mountain View, CA, USA

recognition (ASR) and spoken language under-

standing (SLU) errors are common, and can cause

the system to misunderstand the user’s needs. At

the same time, state tracking is crucial because

the system relies on the estimated dialog state to

choose actions – for example, which bus schedule

information to present to the user.

Most commercial systems use hand-crafted

heuristics for state tracking, selecting the SLU re-

sult with the highest confidence score, and dis-

carding alternatives. In contrast, statistical ap-

proaches compute scores for many hypotheses for

the dialog state (Figure 1). By exploiting correla-

tions between turns and information from external

data sources – such as maps, bus timetables, or

models of past dialogs – statistical approaches can

overcome some SLU errors.

Numerous techniques for dialog state tracking

have been proposed, including heuristic scores

(Higashinaka et al., 2003), Bayesian networks

(Paek and Horvitz, 2000; Williams and Young,

2007), kernel density estimators (Ma et al., 2012),

and discriminative models (Bohus and Rudnicky,

2006). Techniques have been fielded which scale

to realistically sized dialog problems and operate

in real time (Young et al., 2010; Thomson and

Young, 2010; Williams, 2010; Mehta et al., 2010).

In end-to-end dialog systems, dialog state tracking

has been shown to improve overall system perfor-

mance (Young et al., 2010; Thomson and Young,

2010).

Despite this progress, direct comparisons be-

tween methods have not been possible because

past studies use different domains and system

components, for speech recognition, spoken lan-

guage understanding, dialog control, etc. More-

over, there is little agreement on how to evaluate

dialog state tracking. Together these issues limit

progress in this research area.

The Dialog State Tracking Challenge (DSTC)

provides a first common testbed and evaluation



Figure 1: Overview of dialog state tracking. In this example, the dialog state contains the user’s desired

bus route. At each turn t, the system produces a spoken output. The user’s spoken response is processed

to extract a set of spoken language understanding (SLU) results, each with a local confidence score. A

set of Nt dialog state hypotheses is formed by considering all SLU results observed so far, including the

current turn and all previous turns. Here, N1 = 3 and N2 = 5. The dialog state tracker uses features of

the dialog context to produce a distribution over all Nt hypotheses and the meta-hypothesis that none of

them are correct.

suite for dialog state tracking. The DSTC orga-

nizers made available a public, heterogeneous cor-

pus of over 15K transcribed and labeled human-

computer dialogs. Nine teams entered the chal-

lenge, anonymously submitting a total of 27 dialog

state trackers.

This paper serves two roles. First, sections 2

and 3 provide an overview of the challenge, data,

and evaluation metrics, all of which will remain

publicly available to the community (DST, 2013).

Second, this paper summarizes the results of the

challenge, with an emphasis on gaining new in-

sights into the dialog state tracking problem, in

Section 4. Section 5 briefly concludes.

2 Challenge overview

2.1 Problem statement

First, we define the dialog state tracking problem.

A dialog state tracker takes as input all of the ob-

servable elements up to time t in a dialog, includ-

ing all of the results from the automatic speech

recognition (ASR) and spoken language under-

standing (SLU) components, and external knowl-

edge sources such as bus timetable databases and

models of past dialogs. It also takes as input a

set of Nt possible dialog state hypotheses, where

a hypothesis is an assignment of values to slots in

the system. The tracker outputs a probability dis-

tribution over the set of Nt hypotheses, and the

meta-hypothesis REST which indicates that none

of them are correct. The goal is to assign probabil-

ity 1.0 to the correct state, and 0.0 to other states.

Note that the set of dialog states is given. Also

note that Nt varies with t – typically as the dia-

log progresses and more concepts are discussed,

the number of candidate hypotheses increases. An

example is given in Figure 1.

In this challenge, dialog states are generated in

the usual way, by enumerating all slots values that

have appeared in the SLU N-best lists or system

output up until the current turn. While this ap-

proach precludes a tracker assigning a score to an



SLU value that has not been observed, the cardi-

nality of the slots is generally large, so the likeli-

hood of a tracker correctly guessing a slot value

which hasn’t been observed anywhere in the input

or output is vanishingly small.

2.2 Challenge design

The dialog state tracking challenge studies this

problem as a corpus-based task – i.e., dialog state

trackers are trained and tested on a static corpus

of dialogs, recorded from systems using a variety

of state tracking models and dialog managers. The

challenge task is to re-run state tracking on these

dialogs – i.e., to take as input the runtime system

logs including the SLU results and system output,

and to output scores for dialog states formed from

the runtime SLU results. This corpus-based de-

sign was chosen because it allows different track-

ers to be evaluated on the same data, and because a

corpus-based task has a much lower barrier to en-

try for research groups than building an end-to-end

dialog system.

In practice of course, a state tracker will be used

in an end-to-end dialog system, and will drive ac-

tion selection, thereby affecting the distribution of

the dialog data the tracker experiences. In other

words, it is known in advance that the distribu-

tion in the training data and live data will be mis-

matched, although the nature and extent of the

mis-match are not known. Hence, unlike much

of supervised learning research, drawing train and

test data from the same distribution in offline ex-

periments may overstate performance. So in the

DSTC, train/test mis-match was explicitly created

by choosing test data to be from different dialog

systems.

2.3 Source data and challenge corpora

The DSTC uses data from the public deployment

of several systems in the Spoken Dialog Challenge

(SDC) (Black et al., 2010), provided by the Dialog

Research Center at Carnegie Mellon University. In

the SDC, telephone calls from real passengers of

the Port Authority of Allegheny County, who runs

city buses in Pittsburgh, were forwarded to dialog

systems built by different research groups. The

goal was to provide bus riders with bus timetable

information. For example, a caller might want

to find out the time of the next bus leaving from

Downtown to the airport.

The SDC received dialog systems from three

different research groups, here called Groups A,

B, and C. Each group used its own ASR, SLU,

and dialog manager. The dialog strategies across

groups varied considerably: for example, Groups

A and C used a mixed-initiative design, where the

system could recognize any concept at any turn,

but Group B used a directed design, where the

system asked for concepts sequentially and could

only recognize the concept being queried. Groups

trialled different system variants over a period of

almost 3 years. These variants differed in acoustic

and language models, confidence scoring model,

state tracking method and parameters, number of

supported bus routes, user population, and pres-

ence of minor bugs. Example dialogs from each

group are shown in the Appendix.

The dialog data was partitioned into 5 train-

ing corpora and 4 testing corpora (Table 1).

The partioning was intended to explore different

types of mis-match between the training and test

data. Specifically, the dialog system in TRAIN1A,

TRAIN1B, TRAIN1C, TRAIN2, and TEST1 are all

very similar, so TEST1 tests the case where there

is a large amount of similar data. TEST2 uses the

same ASR and SLU but a different dialog con-

troller, so tests the case where there is a large

amount of somewhat similar data. TEST3 is very

similar to TRAIN3 and tests the case where there

is a small amount of similar data. TEST4 uses a

completely different dialog system to any of the

training data.

2.4 Data preparation

The dialog system log data from all three groups

was converted to a common format, which

described SLU results and system output using

a uniform set of dialog acts. For example, the

system speech East Pittsburgh Bus Schedules.

Say a bus route, like 28X, or say I’m not sure.

was represented as hello(), request(route), exam-

ple(route=28x), example(route=dontknow). The

user ASR hypothesis the next 61c from oakland to

mckeesport transportation center was represented

as inform(time.rel=next), inform(route=61c),

inform(from.neighborhood=oakland), in-

form(to.desc=“mckeesport transportation

center”). In this domain there were a total

of 9 slots: the bus route, date, time, and three

components each for the origin and destination,

corresponding to streets, neighborhoods, and

points-of-interest like universities. For complete

details see (Williams et al., 2012).



TRAIN TEST

1A 1B 1C 2 3 1 2 3 4

Group A A A A B A A B C

Year(s) 2009 2009 2009 2010 2010 2011 2012 2011-2 2010

Dialogs 1013 1117 9502 643 688 715 750 1020 438

Turns/Dialog 14.7 13.3 14.5 14.5 12.6 14.1 14.5 13.0 10.9

Sys acts/turn 4.0 3.8 3.8 4.0 8.4 2.8 3.2 8.2 4.6

Av N-best len 21.7 22.3 21.9 22.4 2.9 21.2 20.5 5.0 3.2

Acts/N-best hyp 2.2 2.2 2.2 2.3 1.0 2.1 2.0 1.0 1.6

Slots/turn 44.0 46.5 45.6 49.0 2.1 41.4 36.9 4.3 3.5

Transcribed? yes yes yes yes yes yes yes yes yes

Labelled? yes no no yes yes yes yes yes yes

1-best WER 42.9% 41.1% 42.1% 58.2% 40.5% 57.9% 62.1% 48.1% 55.6%

1-best SLU Prec. 0.356 - - 0.303 0.560 0.252 0.275 0.470 0.334

1-best SLU Recall 0.522 - - 0.388 0.650 0.362 0.393 0.515 0.376

N-best SLU Recall 0.577 - - 0.485 0.738 0.456 0.492 0.634 0.413

Table 1: Summary of the datasets. One turn includes a system output and a user response. Slots are

named entity types such as bus route, origin neighborhood, date, time, etc. N-best SLU Recall indicates

the fraction of concepts which appear anywhere on the SLU N-best list.

Group B and C systems produced N-best lists

of ASR and SLU output, which were included in

the log files. Group A systems produced only 1-

best lists, so for Group A systems, recognition was

re-run with the Pocketsphinx speech recognizer

(Huggins-Daines et al., 2006) with N-best output

enabled, and the results were included in the log

files.

Some information in the raw system logs was

specific to a group. For example, Group B’s logs

included information about word confusion net-

works, but other groups did not. All of this infor-

mation was included in a “system specific” sec-

tion of the log files. Group A logs contained about

40 system-specific name/value pairs per turn, and

Group B about 600 system-specific name/value

pairs per turn. Group C logs contained no system

specific data.

3 Labeling and evaluation design

The output of a dialog state tracker is a proba-

bility distribution over a set of given dialog state

hypotheses, plus the REST meta-hypothesis. To

evaluate this output, a label is needed for each di-

alog state hypothesis indicating its correctness.

In this task-oriented domain, we note that the

user enters the call with a specific goal in mind.

Further, when goal changes do occur, they are

usually explicitly marked: since all of the sys-

tems first collect slot values, and then provide bus

timetables, if the user wishes to change their goal,

they need to start over from the beginning. These

“start over” transitions are obvious in the logs.

This structure allows the correctness of each di-

alog state to be equated to the correctness of the

SLU items it contains. As a result, in the DSTC

we labeled the correctness of SLU hypotheses in

each turn, and then assumed these labels remain

valid until either the call ends, or until a “start

over” event. Thus to produce the labels, the la-

beling task followed was to assign a correctness

value to every SLU hypothesis on the N-best list,

given a transcript of the words actually spoken in

the dialog up to the current turn.

To accomplish this, first all user speech was

transcribed. The TRAIN1 datasets had been tran-

scribed using crowd-sourcing in a prior project

(Parent and Eskenazi, 2010); the remainder were

transcribed by professionals. Then each SLU hy-

pothesis was labled as correct or incorrect. When a

transcription exactly and unambiguously matched

a recognized slot value, such as the bus route

“sixty one c”, labels were assigned automati-

cally. The remainder were assigned using crowd-

sourcing, where three workers were shown the true

words spoken and the recognized concept, and

asked to indicate if the recognized concept was

correct – even if it did not match the recognized

words exactly. Workers were also shown dialog



history, which helps decipher the user’s meaning

when their speech was ambiguous. If the 3 work-

ers were not unanimous in their labels (about 4%
of all turns), the item was labeled manually by the

organizers. The REST meta-hypothesis was not

explicitly labeled; rather, it was deemed to be cor-

rect if none of the prior SLU results were labeled

as correct.

In this challenge, state tracking performance

was measured on each of the 9 slots separately,

and also on a joint dialog state consisting of all the

slots. So at each turn in the dialog, a tracker output

10 scored lists: one for each slot, plus a 10th list

where each dialog state contains values from all

slots. Scores were constrained to be in the range

[0, 1] and to sum to 1.

To evaluate tracker output, at each turn, each hy-

pothesis (including REST) on each of the 10 lists

was labeled as correct or incorrect by looking up

its corresponding SLU label(s). The scores and la-

bels over all of the dialogs were then compiled to

compute 11 metrics. Accuracy measures the per-

cent of turns where the top-ranked hypothesis is

correct. This indicates the correctness of the item

with the maximum score. L2 measures the L2 dis-

tance between the vector of scores, and a vector of

zeros with 1 in the position of the correct hypoth-

esis. This indicates the quality of all scores, when

the scores as viewed as probabilities.

AvgP measures the mean score of the first cor-

rect hypothesis. This indicates the quality of the

score assigned to the correct hypothesis, ignoring

the distribution of scores to incorrect hypotheses.

MRR measures the mean reciprocal rank of the

first correct hypothesis. This indicates the quality

of the ordering the scores produces (without nec-

essarily treating the scores as probabilities).

The remaining measures relate to receiver-

operating characteristic (ROC) curves, which

measure the discrimination of the score for the

highest-ranked state hypothesis. Two versions

of ROC are computed – V1 and V2. V1 com-

putes correct-accepts (CA), false-accepts (FA),

and false-rejects (FR) as fractions of all utter-

ances, so for example

CA.V 1(s) =
#CA(s)

N
(1)

where #CA(s) indicates the number of correctly

accepted states when only those states with score

≥ s are accepted, and N is the total number

of states in the sample. The V1 metrics are a
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Figure 2: Schedule2 accuracy averaged over slots

for every tracker on every dataset. Percentages un-

der the datasets indicate the percent of the track-

ers which exceeded the performance of both base-

lines.

useful indication of overall performance because

they combine discrimination and overall accuracy

– i.e., the maximum CA.V 1(s) value is equal to

accuracy computed above.

V2 considers fractions of correctly classified ut-

terances, so for example

CA.V 2(s) =
#CA(s)

#CA(0)
. (2)

The V2 metrics are useful because they measure

the discrimination of the scoring independently of

accuracy – i.e., the maximum value of CA.V 2(s)
is always 1, regardless of accuracy.

From these ROC statistics, several met-

rics are computed. ROC.V1.EER computes

FA.V 1(s) where FA.V 1(s) = FR.V 1(s).
The metrics ROC.V1.CA05, ROC.V1.CA10,

and ROC.V1.CA20 compute CA.V 1(s) when

FA.V 1(s) = 0.05, 0.10, and 0.20 respec-

tively. ROC.V2.CA05, ROC.V2.CA10, and

ROC.V2.CA20 do the same using the V2 ver-

sions.

Apart from what to measure, there is currently

no standard that specifies when to measure – i.e.,

which turns to include when computing each met-

ric. So for this challenge, a set of 3 schedules were

used. schedule1 includes every turn. schedule2

include turns where the target slot is either present

on the SLU N-best list, or where the target slot

is included in a system confirmation action – i.e.,

where there is some observable new information
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Figure 3: Receiver operating characteristc (ROC)

curve for SLU confidence scores of the 1-best hy-

pothesis in the test datasets. The SLU confidence

score in TEST3 is most discriminative; TEST1 and

TEST2 are the least discriminative.

about the target slot. schedule3 includes only the

last turn of a dialog.

In sum, for each tracker, one measurement is re-

ported for each test set (4), schedule (3), and met-

ric (11) for each of the 9 slots, the “joint” slot, and

a weighted average of the individual slots (11), for

a total of 4 · 3 · 11 · 11 = 1452 measurements per

tracker. In addition, each tracker reported average

latency per turn – this ranged from 10ms to 1s.

3.1 Baseline trackers

For comparisons, two simple baselines were im-

plemented. The first (Baseline0) is a majority

class baseline that always guesses REST with

score 1. The second (Baseline1) follows simple

rules which are commonly used in spoken dialog

systems. It maintains a single hypothesis for each

slot. Its value is the SLU 1-best with the highest

confidence score observed so far, with score equal

to that SLU item’s confidence score.

4 Results and discussion

Logistically, the training data and labels, bus

timetable database, scoring scripts, and baseline

system were publicly released in late December

2012. The test data (without labels) was released

on 22 March 2013, and teams were given a week to

run their trackers and send results back to the orga-

nizers for evaluation. After the evaluation, the test

labels were published. Each team could enter up

to 5 trackers. For the evaluation, teams were asked

to process the test dialogs online – i.e., to make a
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Figure 4: Average rank of top-performing trackers

for the four metrics identified in Figure 6. Rank-

ing was done using the given metric, schedule2,

and the weighted average of all slots. Tn.Em in-

dicates team n, entry m.

single pass over the data, as if the tracker were be-

ing run in deployment. Participation was open to

researchers at any institution, including the orga-

nizers and advisory board. To encourage partici-

pation, the organizers agreed not to identify par-

ticipants in publications, and there was no require-

ment to disclose how trackers were implemented.

9 teams entered the DSTC, submitting a total of

27 trackers. The raw output and all 1452 measure-

ments for each tracker (and the 2 baselines) are

available from the DSTC homepage (DST, 2013).

4.1 Analysis of trackers and datasets

We begin by looking at one illustrative metric,

schedule2 accuracy averaged over slots, which

measures the accuracy of the top dialog hypothe-

sis for every slot when it either appears on the SLU

N-best list or is confirmed by the system.1 Results

in Figure 2 show two key trends. First, relative

to the baselines, performance on the test data is

markedly lower than the training data. Comparing

TRAIN2 to TEST1/TEST2 and TRAIN3 to TEST3,

the relative gain over the baselines is much lower

on test data. Moreover, only 38% of trackers per-

formed better than a simple majority-class base-

line on TEST4, for which there was no matched

training data. These findings suggests that gen-

eralization is an important open issues for dialog

state trackers.

Second, Figure 2 indicates that the gains made

1Results using the joint dialog state are broadly similar,
and are omitted for space.
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Figure 5: Percent of highest-scored dialog state hypotheses which did not appear in the top-ranked SLU

position vs. schedule2 accuracy over all slots. Trackers – including those with the highest accuracy –

for TEST1 and TEST2 rarely assigned the highest score to an SLU hypothesis other than the top. All

trackers for TEST3 and TEST4 assigned the highest score to an SLU hypothesis other than the top in a

non-trivial percent of turns.

by the trackers over the baselines are larger

for Group A systems (TEST1 and TEST2) than

for Group B (TEST3) and C (TEST4) systems.

Whereas the baselines consider only the top SLU

hypothesis, statistical trackers can make use of

the entire N-best list, increasing recall – compare

the 1-best and N-best SLU recall rates in Table 1.

However, Group A trackers almost never assigned

the highest score to an item below the top position

in the SLU N-best list. Rather, the larger gains for

Group A systems seem due to the relatively poor

discrimination of Group A’s SLU confidence score

(Figure 3): whereas the trackers use a multitude

of features to assign scores, the baselines rely en-

tirely on the SLU confidence for their scores, so

undiscriminative SLU confidence measures ham-

per baseline performance.

4.2 Analysis of metrics

This challenge makes it possible to study the em-

pirical differences among the evaluation metrics.

Intuitively, if the purpose of a metric is to order

a set of trackers from best to worst, then 2 met-

rics are similar if they yield a similar ordering over

trackers. Specifically, for every metric m, we have

a value x(m, d, s, t) where d is the dataset, and

s is the evaluation schedule, and t is the tracker.

We define r(m, d, s, t) as the rank of tracker t

when ordered using metric m, dataset d and eval-

uation schedule s. Using these ranks, we compute

Kendall’s Tau for every d, s, and pair of metrics

m1 and m2 (Kendall, 1938). We then compute the

average Kendall’s Tau for m1 and m2 by averag-

ing over all d and s.2

Results are in Figure 6. Here we see 4 natu-

ral clusters emerge: a cluster for correctness with

Accuracy, MRR, and the ROC.V1.CA measures; a

cluster for probability quality with L2 and Aver-

age score; and two clusters for score discrimina-

tion – one with ROC.V1.EER and the other with

the three ROC.V2 metrics. This finding suggest

2A similar analysis over schedules showed that the differ-
ences in ranking for different schedules were smaller than for
metrics.
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that measuring one metric from each cluster will

contain nearly the same information as all 9 met-

rics. For example, one might report only Accu-

racy, L2, ROC.V1.EER, and ROC.V2.CA5.

Using these 4 metrics, we rank-ordered each

tracker, using schedule2 and a weighted average

of all slots. We then computed the average rank

across the 4 test sets. Finally we selected the set

of trackers with the top three average ranks for

each metric. Results in Figure 4 emphasize that

different trackers are tuned for different perfor-

mance measures, and the optimal tracking algo-

rithm depends crucially on the target performance

measure.

5 Conclusion

The dialog state tracking challenge has provided

the first common testbed for this task. The data,

evaluation tools, and baselines will continue to be

freely available to the research community (DST,

2013). The details of the trackers themselves will

be published at SIGDIAL 2013.

The results of the challenge show that the

suite of performance metrics cluster into 4 natural

groups. We also find that larger gains over conven-

tional rule-based baselines are present in dialog

systems where the speech recognition confidence

score has poor discrimination. Finally, we observe

substantial limitations on generalization: in mis-

matched conditions, around half of the trackers en-

tered did not exceed the performance of two sim-

ple baselines.

In future work, it should be verified that im-

provements in dialog state tracking lead to im-

provements in end-to-end dialog performance

(e.g., task completion, user satisfaction, etc.). In

addition, it would be interesting to study dialogs

where goal changes are more common.
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Appendix 1: Sample dialog excerpts

Below are transcripts of calls in the DSTC corpus.

The user’s side shows utterances as transcribed by

human annotators.

Group A

SYS: Welcome to the CMU Let’s Go bus informa-

tion system. To get help at any time, just say Help

or press zero. What can I do for you?

USR: 61c evening hours

SYS: For example, you can say, when is the next

28X from DOWNTOWN to THE AIRPORT? or

I’d like to go from MCKEESPORT to HOME-

STEAD tomorrow at 10 a.m.

USR: i’d like to go [noise]

SYS: Where are you leaving from?

USR: from Kennywood tomorrow at 6:30 PM

SYS: Leaving from MCKEE. Is this correct?

USR: yes

SYS: Okay What is your destination?

USR: downtown

SYS: Going to DOWNTOWN. Is this correct?

USR: yes

SYS: Right When do you want to travel?

USR: 6:30 PM

SYS: Leaving at 6 30 p.m.. Is this correct?

USR: [noise] yes

SYS: Alright Hold on. I’ll look that up. There is

a 71D leaving FIFTH AVENUE AT DARRAGH

MCKEE at 6 40 p.m.. It will arrive at FIFTH AV-

ENUE AT MARKET at 6 58 p.m.. To get more

information about buses related to this trip, you

can say, when is the next bus, or, when is the pre-

vious bus. To ask about a different trip, you can

say, start a new query. If you are finished, you can

say goodbye.

USR: start a new query

SYS: Okay, let’s start from the beginning.

USR: ...

Group B

SYS: East Pittsburgh Bus Schedules. Say a bus

route, like 28X, or say I’m not sure.

USR: 61A

SYS: Okay, 61A. To change, say go back. Where

are you leaving from?

USR: Downtown

SYS: Okay, downtown. You can always say go

back. And where are you going to?

USR: East Pittsburgh East Pittsburgh

SYS: Pittsburgh. Is that right?



USR: No

SYS: Oh, sorry, where are you going to?

USR: East Pittsburgh

SYS: Okay, East Pittsburgh. Do you want times

for the next few buses? Say yes or no.

USR: Yes

SYS: Ok, the next few buses. To change, say go

back. At 7:45 PM today, there is a 61 A, from

Fifth Avenue And Market Street, Downtown, ar-

riving Dynamo Alley And Beech Avenue, In East

Pittsburgh, at 8:42 PM. Say repeat, next, previous,

or start over.

Group C

SYS: Welcome to the Lets Go! bus information

system for Pittsburgh. Where would you like to

leave from?

USR: [noise]

SYS: Where do you wanna leave from?

USR: [noise] um I’m leaving from Forbes avenue

and Murray avenue

SYS: I’m sorry but I do not know any stops in the

moon neighborhood. The routes I currently cover

are the following: 28X, 54C, 56U, 61A, 61B, 61C,

61D and 64.

USR: um I need the scheduling information for the

61D

SYS: Where would you like to leave from?

USR: Forbes and Murray

SYS: Where do you wanna go?

USR: Greenfield

SYS: When are you going to take that bus?

USR: 61D

SYS: When are you going to take that bus?

USR: 61D

SYS: When would you like to travel? Say next bus

for the the next bus .

USR: next bus

SYS: The next bus from forbes avenue at murray

to greenfield is the 61D, leaving at 8 43 p.m. . It

arrives at murray avenue at loretta at 8 52 p.m. .

You may now say. next bus, previous bus, restart,

or goodbye.

USR: [noise] good-bye

SYS: Thank you goodbye

Appendix 2: Example log fragment

Following is a log from a call in TRAIN3. Some
elements have been omitted for space. Logs are
formatted in JavaScript Object Notation (JSON).

{

"session-id": "dt-201007221854-4808D",

"turns": [ {

"input": {

"asr-hyps": [

{ "asr-hyp": "sixty one b",

"score": 0.834314,

},

...

],

"slu-hyps": [

{ "slu-hyp": [

{"act": "inform",

"slots": [["route", "61b"]]},

],

"score": 0.834314,

},

...

],

"audio-file": "002.raw",

"start-time": 7.504

},

"output": {

"start-time": 0.078,

"transcript": "East Pittsburgh Bus

Schedules. Say a bus route, like

28X, or say I’m not sure.",

"dialog-acts": [

{ "act": "hello",

"slots": [] },

{ "act": "request",

"slots": [["route",null]] },

{ "act": "example",

"slots": [["route","28x"]] },

{ "act": "example",

"slots": [["route","dontknow"]] }

],

}

"system-specific": {

"wcn": {

"best_path_score": 0.9965,

"best_path": {

"word": ["sixty","one","b"],

"prob": [ 1.0,1.0,0.9965 ],

}

"network": [ ... ]

},

"nbest": [

{

"normSpeechLhood": -152.654,

"lastSpeechFrame": 266,

"numFrames": 354,

"udelta": -3.0280,

"speechLikelihood": -15876.0,

},

...

],

...

},

},

...

]

}


