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Conversational systems are increasingly becoming a
part of daily life, with examples including Apple’s Siri,
Google Now, Nuance Dragon Go, Xbox, and Cortana

from Microsoft, and those from numerous startups. In the
core of a conversation system is a key component called a
dialog state tracker, which estimates the user’s goal given all
of the dialog history so far. For example, in a tourist infor-
mation system, the dialog state might indicate the type of
business the user is searching for (pub, restaurant, coffee
shop), the desired price range, and the type of food served.
Dialog state tracking is difficult because automatic speech
recognition (ASR) and spoken language understanding (SLU)
errors are common and can cause the system to misunder-
stand the user. At the same time, state tracking is crucial
because the system relies on the estimated dialog state to
choose actions — for example, which restaurants to suggest.
Figure 1 shows an illustration of the dialog state tracking
task.

Historically dialog state tracking has been done with
hand-crafted rules. More recently, statistical methods have
been found to be superior by effectively overcoming some
SLU errors, resulting in better dialogs. Despite this progress,
direct comparisons between methods have not been possible
because past studies use different domains, system compo-
nents, and evaluation measures, hindering progresss. The
Dialog State Tracking Challenge (DSTC) was initiated to
address this barrier by providing a common test bed and
evaluation framework for dialog state tracking algorithms.

■ In spoken dialog systems, dialog state
tracking refers to the task of correctly inferring
the user’s goal at a given turn, given all of the
dialog history up to that turn. The Dialog
State Tracking Challenge is a research com-
munity challenge task that has run for three
rounds. The challenge has given rise to a host
of new methods for dialog state tracking and
also to deeper understanding about the prob-
lem itself, including methods for evaluation.
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Figure 1. The Dialog State Tracking Problem.

The left column shows the actual dialog system output and user input. The second column shows two SLU n-best hypotheses and their
scores. The third column shows the label (correct output) for the user’s goal. The fourth column shows example tracker output, and the
fifth column indicates correctness.
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Challenge Design
The dialog state tracking challenge studies this prob-
lem as a corpus-based task. When the challenge
starts, labeled human-computer dialogs are released
to teams, with scripts for running a baseline system
and evaluation. Several months later, a test set of
unlabeled dialogs is released. Participants run their
trackers, and a week later they return tracker output
to the organizers for scoring. After scoring, results
and test set labels are made public.

The corpus-based design was chosen because it
allows different trackers to be evaluated on the same
data, and because a corpus-based task has a much
lower barrier to entry for research groups than build-
ing an end-to-end dialog system. However when a
tracker is deployed, it will inevitably alter the per-
formance of the dialog system it is part of relative to
any previously collected dialogs. In order to simulate
this mismatch at training time and at run time, and
to penalize overfitting to known conditions, dialogs
in the test set are conducted using a different dialog
manager, not found in the training data.

The first DSTC used 15,000 dialogs between real
Pittsburgh bus passengers and a variety of dialog sys-
tems, provided by the Dialog Research Center at
Carnegie Mellon University (Black et al. 2010). The
second and third DSTCs used in total 5,510 dialogs
between paid Amazon Mechanical Turkers, who were
asked to call a tourist information dialog system and
find restaurants that matched particular constraints,
provided by the Cambridge University Dialogue Sys-
tems Group (Jurcicek, Thomson, and Young 2011).

Each DSTC added new dimensions of study. In the
first DSTC, the user’s goal was almost always fixed
throughout the dialog. In the second DSTC, the
user’s goal changed in about 40 percent of dialogs.
And the third DSTC further tested the ability of track-
ers to generalize to new domains by including entity
types in the test data that were not included in the
training data — for example, the training data
included only restaurants, but the test data also
included bars and coffee shops.

In this relatively new research area, there does not
exist a single, generally agreed on evaluation metric;
therefore, each DSTC reported a bank of metrics,
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sourced from the advisory board and participants.
This resulted in approximately 10 different metrics,
including accuracy, receiver operating characteristic
(ROC) measurements, probability calibration, and so
on. Each metric was measured on various subtasks
(such as accuracy of a particular component of the
user’s goal), and at different time resolutions (for
example, every dialog turn, just at the end, and so
on.) Every combination of these variables was meas-
ured and reported, resulting in more than 1000 meas-
urements for each entry. The measurements them-
selves form a part of the research contribution: after
the first DSTC, a correlation analysis was done to
determine a small set of roughly orthogonal metrics,
which were then reported as featured metrics in
DSTC2 and DSTC3, focusing teams’ efforts. These
featured metrics were accuracy, probability quality
(Brier score), and a measure of discrimination com-
puted from an ROC curve.

Each DSTC has been organized by an ad hoc com-
mittee, including members of the group providing
the dialog data.

Participation and Results
About nine teams have participated in each DSTC,
with global representation of the top research centers
for spoken dialog systems. Participants have mostly
been academic instutions, with a minority of corpo-
rate research labs. Results have been presented at spe-
cial sessions: DSTC1 at the annual Special Interest
Group on Discourse and Dialogue (SIGdial) confer-
ence in 2013 (Williams et al. 2013); DSTC2 at SIGdi-
al in June 2014 (Henderson, Thomson, and Williams
2014); and DSTC3 at IEEE Spoken Language Tech-
nologies (SLT) Workshop in December 2014 (forth-
coming).

Papers describing DSTC entries have broken new
ground in dialog state tracking; the best-performing
entries have been based on conditional random fields
(Lee and Eskenazi 2013), recurrent neural networks
(Henderson, Thomson, and Young 2014), and web-
style ranking (Williams 2014). At present, dialog state
trackers are able to reliably exceed the performance
of a carefully tuned hand-crafted tracker — for exam-
ple, in DSTC2, the best trackers achieved approxi-
mately 78 percent accuracy versus the baseline’s 72
percent. This is impressive considering the maximum
performance possible with the provided SLU is 85
percent, due to speech recognition errors.

Prior to the DSTC series, most work on dialog state
tracking was based on generative models; however,
the most successful DSTC entries have been discrim-
inatively trained models, and these are now the dom-
inant approach. Thus the DSTC series has had a clear
impact on the field.

Future Activities
All of the DSTC data will remain available for down-
load, including labels, output from all entries, and
the raw tracker output.1,2 We encourage researchers
to use this data for research into dialog state tracking
or for other novel uses. In addition, a special issue to
the journal Dialogue and Discourse will feature work
on the DSTC data, and we anticipate publication in
2015. In future challenges, it would be interesting to
study aspects of dialog state beyond the user’s goal —
for example, the user’s attitude and expectation. It
would also be interesting to consider turn-taking and
state tracking of incremental dialogs, where updates
are made as each word is recognized. Finally,
researchers with dialog data available who would be
interested in organizing a future DSTC are encour-
aged to contact the authors.
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