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Abstract

In a spoken dialog system, dialog state tracking refers to the task of correctly inferring the state

of the conversation – such as the user’s goal – given all of the dialog history up to that turn. Dialog

state tracking is crucial to the success of a dialog system, yet until recently there were no common

resources, hampering progress. The Dialog State Tracking Challenge series of 3 tasks introduced

the first shared testbed and evaluation metrics for dialog state tracking, and has underpinned three

key advances in dialog state tracking: the move from generative to discriminative models; the

adoption of discriminative sequential techniques; and the incorporation of the speech recognition

results directly into the dialog state tracker. This paper reviews this research area, covering both

the challenge tasks themselves and summarizing the work they have enabled.

Keywords: Dialog state tracking, spoken dialog systems, dialog modeling, conversational sys-

tems, spoken language understanding

1. Introduction

Conversational systems are increasingly becoming a part of daily life, with examples including

Apple’s Siri, Google Now, Nuance Dragon Go, Xbox and Cortana from Microsoft, and numerous

start-ups. Figure 1 shows the principal components of a modern spoken dialog system. First, the

user produces an utterance as audio. Then automatic speech recognition (ASR) converts this audio

into words in text form. Next, the words in an utterance are converted to a meaning representation

using spoken language understanding (SLU). This SLU result is then passed to the dialog state

tracker (DST) which updates its estimate of the dialog state. This new dialog state is passed to the

dialog policy that decides which action to take. Natural language generation (NLG) and text-to-

speech (TTS) convert this action into words and then into audio. The cycle then repeats.
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Figure 1: Principal components of a spoken dialog system.

The topic of this paper is the dialog state tracker (DST). The DST takes as input all of the dialog

history so far, and outputs its estimate of the current dialog state – for example, in a restaurant

information system, the dialog state might indicate the user’s preferred price range and cuisine,

what information they are seeking such as the phone number of a restaurant, and which concepts

have been stated vs. confirmed. Dialog state tracking is difficult because ASR and SLU errors are

common, and can cause the system to misunderstand the user. At the same time, state tracking is

crucial because the dialog policy relies on the estimated dialog state to choose actions – for example,

which restaurants to suggest.

In the literature, numerous methods for dialog state tracking have been proposed. These are

covered in detail in Section 3; illustrative examples include hand-crafted rules (Larsson and Traum,

2000; Bohus and Rudnicky, 2003), heuristic scores (Higashinaka et al., 2003), Bayesian networks

(Paek and Horvitz, 2000; Williams and Young, 2007), and discriminative models (Bohus and Rud-

nicky, 2006). Techniques have been fielded which scale to realistically sized dialog problems and

operate in real time (Young et al., 2010; Thomson and Young, 2010; Williams, 2010; Mehta et al.,

2010). In end-to-end dialog systems, dialog state tracking has been shown to improve overall system

performance (Young et al., 2010; Thomson and Young, 2010).

Despite this progress, direct comparisons between methods have not been possible because past

studies use different domains and different system components for ASR, SLU, dialog policy, etc.

Moreover, there has not been a standard task or methodology for evaluating dialog state tracking.

Together these issues have limited progress in this research area.

The Dialog State Tracking Challenge (DSTC) series has provided a first common testbed and

evaluation suite for dialog state tracking. Three instances of the DSTC have been run over a three
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year period. Each instance has released a public corpus of transcribed and labeled human-computer

dialogs along with baseline trackers and evaluation tools, and each instance has explored a new

aspect of dialog state tracking. Between seven and nine teams have entered each challenge. This

challenge task series has spurred significant work on dialog state tracking, yielding both numerous

new techniques as well as a standard set of evaluation metrics.

This paper is organized as follows. First, Section 2 formalizes the dialog state tracking problem,

and Section 3 reviews solution methods from the literature. Section 4 then covers the first three

instances of the dialog state tracking challenge – DSTC1, DSTC2, and DSTC3 – including the

task design, data, evaluation methodology, and baselines. Section 5 then covers results from the

challenge tasks. Finally, section 7 concludes.

2. Dialog state tracking: problem definition

First, we define the concept of dialog state. A dialog state st is a data structure drawn from a set S
that summarizes the dialog history up to time t to a level of detail that provides sufficient information

for choosing the next system action. In practice, the dialog state typically encodes the user’s goal

in the conversation along with relevant history – for example, in the bus timetable domain, s may

encode which bus stop the user wants to leave from, where they are going to, and whether the system

has already offered a bus on that route.

A dialog state tracker takes as input all of the observable elements up to time t in a dialog,

including all of the results from the ASR and SLU components, all system actions taken so far, and

external knowledge sources such as bus timetable databases and models of past dialogs. Because the

ASR and SLU are imperfect and prone to errors, they may output several conflicting interpretations.

Specifically, the ASR may output an N-Best list of sentences, a word confusion network (Mangu

et al., 2000), or a lattice; the SLU may output an N-Best list of interpretations. Figure 1 shows

example ASR and SLU N-Best lists.

Given these inputs, the tracker then outputs its estimate of the current state of the dialog s. The

goal is to correctly identify the true current state s∗ of the dialog – for example, the bus stops the user

has actually said they want or whether the user wants the address, opening hours, or price range of

a particular restaurant. However, the true state is typically not directly observable from the inputs,

for a variety of reasons: errors in speech recognition and language understanding, ambiguous or

underspecified utterances, unsignaled changes in the user’s goal, etc. Therefore, robust dialog state

trackers typically output a distribution over multiple possible dialog states b(s). A distribution is

useful because it provides a principled representation of the uncertainty in the dialog state. It also

gives a clear basis for taking clarification actions: for example, if the distribution’s probability mass

is concentrated on two states that differ only in which type of food the user is asking for (say,

“Indian” and “Italian”), this allows the system to ask “Did you want Indian or Italian food?”. Figure

2 shows an example of the dialog state tracking process, and illustrates how effective dialog state

tracking can overcome some of the errors received from the ASR and SLU.

In this paper – and in the DSTC challenge series – we have taken the view that a dialog state

consists of elements with human-interpretable meanings, such as values of bus stops, dates, times,

whether conditions have been met, etc. We have further assumed that a dialog state tracker produces

the key input to an action selector – sometimes also called a “dialog policy” – that chooses an action

or response based primarily on the current dialog state. This view is in line with widely accepted

theoretical models of conversation, such as Clark’s Common Ground (Clark, 1996) and various
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Figure 2: Overview of dialog state tracking. In this example, the dialog state contains the user’s

desired restaurant search criteria. At each turn, the system produces a spoken output. The user’s

spoken response is converted into an N-best list of word hypotheses by the ASR, and then into

another N-Best list of meaning hypotheses by the SLU. Both lists have confidence scores attached.

A set of dialog state hypotheses is enumerated, here by simply considering all SLU results observed

so far, including the current turn and all previous turns. Then the dialog states are scored. Note

how observing “italian” a second time in the ASR/SLU causes the dialog state for “food=italian”

to accumulate considerable probability mass in the second turn, even through “italian” was never

the top hypothesis from the ASR or SLU. This illustrates one way that dialog state tracking can

overcome local ASR/SLU errors.

models of dialog as joint action (Cohen and Levesque, 1990), which assume that dialog relies on

some (usually shared) representation of the participants’ joint intentions and beliefs. While this

is the dominant approach, it is worth mentioning alternatives. First, dialog state can instead be a

latent representation, with responses selected – or in principle generated – using continuous-space

representations (Lowe et al., 2015). Further, it is possible to dispense with state tracking altogether,

and instead produce responses based only on the most recent user turn (Ritter et al., 2011) – or

in principle directly from features of the dialog history. A comparison with these methods would

require end-to-end evaluations of spoken dialog systems, which is outside the scope of the DSTC

series, and this paper.1

In the next section we review methods for dialog state tracking.

3. Methods for dialog state tracking

Broadly speaking there are three families of dialog state tracking algorithms: hand-crafted rules,

generative models, and discriminative models.

1. Dialog state tracking in situated environments – for example, robots or embodied agents – is also out of scope for

this review, but it is noted that dialog state tracking is also used in this setting (Bohus and Horvitz, 2009; Ma et al.,

2012).
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3.1 Hand-crafted rules for dialog state tracking

Early spoken dialog systems used hand-crafted rules for dialog state tracking. In their earliest form,

these approaches generally considered only a single SLU result, and tracked a single hypothesis for

the dialog state. This design reduces the dialog state tracking problem to an update rule F (s, ũ′) =
s′ that maps from an existing state s and the 1-best SLU result ũ′ to a new state s′. For example, the

MIT JUPITER weather information system maintained a set of state variables which were updated

using hand-written rules in a dialog control table (Zue et al., 2000). Similarly, the Information State

Update approach used hand-written update rules to track a rich data structure called an “information

state” (Larsson and Traum, 2000).

Hand-crafted rules have the benefit that they do not require any data to implement, which is

a benefit for bootstrapping. Rules also provide an accessible way for developers to incorporate

domain knowledge. However, one short-coming of tracking a single dialog state is an inability to

make use of the entire ASR or SLU N-Best list, and the benefit of tracking multiple dialog states

was suggested nearly two decades ago by Pulman (1996). Thus, more recent dialog state trackers

based on hand-crafted rules compute scores for all dialog states suggested by the whole ASR/SLU

N-best list (Wang and Lemon, 2013; Sun et al., 2014a). These methods use hand-designed formulas

to compute a posterior b(s) of a dialog state s given ASR/SLU confidence scores and previous

estimates of b(s), and thus can overcome some SLU errors (Figure 2).

Using hand-designed formulas for computing b(s) suffers from a crucial limitation: formula

parameters are not derived directly from real dialog data, so they require careful tuning and do

not benefit or learn from dialog data. This limitation motivates the use of data-driven techniques,

which can automatically set parameters in order to maximize accuracy. Chief among the data-driven

techniques are generative and discriminative models, described next.

3.2 Generative models for dialog state tracking

Generative approaches posit that dialog can be modeled as a Bayesian network that relates the

dialog state s to the system action a, the (true, unobserved) user action u, and ASR or SLU result

ũ. When the system action and ASR/SLU result are observed, a distribution over possible dialog

states can be computed by applying Bayesian inference. A number of probabilistic formulations

have been explored for how to relate these quantities; one illustrative example is:

b′(s′) = η
∑

u′

P (ũ′|u′)P (u′|s′, a)
∑

s

P (s′|s, a)b(s) (1)

where b(s) is the previous distribution over dialog states, b′(s′) is the (updated) distribution over

dialog states being estimated, P (ũ′|u′) is the probability of the ASR/SLU producing the observed

output ũ′ given the (true, unobserved) user action u′, P (u′|s′, a) is the probability of the user taking

action u′ given the true dialog state s′ and system action a, P (s′|s, a) is probability of the dialog

state changing to s′ given it is currently s and the system takes action a, and η is a normalizing

constant.

Variants of Eq. 1 account for different factorizations of the hidden state. For example, Williams

and Young (2007) includes a term that accumulates dialog history, such as whether the contents of

s has been confirmed or not. DeVault and Stone develop a Bayesian network that includes separate

random variables for an observed dialog action and an underlying intention, and includes condi-

tional probability terms that express common-sense relationships between actions, intentions, and
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plausible states termed “contexts” (DeVault and Stone, 2007; DeVault, 2008). Other factorizations

have also been presented for modeling dialog in specific settings, such as troubleshooting an inter-

net router (Williams, 2007). Eq. 1 most closely follows Williams (2008); the appendix of Williams

(2012a) provides a derivation. In all of these examples, the key assumption is that a distribution over

possible (hidden) dialog states can be inferred using a Bayesian network that encodes a designer’s

knowledge about conversation. The parameters of the models must be estimated of course; this

can be done either from labeled dialogs, or inferred from unlabeled dialogs using methods such as

Expectation Maximization (Syed and Williams, 2008) or Expectation Propagation (Thomson et al.,

2010).

Early approaches to generative dialog state tracking enumerated all possible dialog states, then

used variants of Eq. 1 to score them (Roy et al., 2000; Zhang et al., 2001; Heckerman and Horwitz,

1998; Horvitz and Paek, 1999; Meng et al., 2003; Williams et al., 2005). This approach is quadratic

in the number of dialog states, which is intractable, particularly given that Eq. 1 must run in real

time and the number of states s can be enormous. This limitation has led to two approximations:

maintaining a “beam” of only the most likely members of s (Young et al., 2007; DeVault and Stone,

2007; DeVault, 2008; Kim et al., 2008; Henderson and Lemon, 2008; Mehta et al., 2010; Williams,

2010; Raux and Ma, 2011; Gasic and Young, 2011), or further factorization of Eq. 1 (Williams,

2007; Bui et al., 2009; Thomson and Young, 2010). These approximations enable generative models

to operate in real-time, but impose other constraints, such as limiting the form of P (s′|s, a), which

can restrict the classes of dialogs that can be accurately modeled (Young et al., 2013).

In end-to-end evaluations, generative approaches have been shown to yield better dialog perfor-

mance than hand-crafted rules (Young et al., 2010; Thomson and Young, 2010). Even so, genera-

tive models cannot easily incorporate large sets of potentially informative features from the ASR,

SLU, dialog history, and elsewhere: all dependencies between features must be explicitly modeled,

which requires an impractical amount of data. As a result, for tractability, generative models gen-

erally make independence assumptions which are invalid, or important features of dialog history

have to be ignored, which introduce violation of the Markov assumption. For example, it is often

assumed that errors are generated from a uniform distribution, when in fact they are highly corre-

lated: “twenty” is much more often mis-recognized as “seventy” than as “downtown pittsburgh”

(Williams, 2012c). The net effect is poor estimates of b(s). Together these issues have spurred

interest in discriminatively trained direct models, covered next.

3.3 Discriminative models for dialog state tracking

In contrast to generative models, discriminative approaches to dialog state tracking compute scores

for dialog states with discriminatively trained conditional models of the form b′(s′) = P (s′|f ′),
where f ′ are features extracted from the ASR, SLU, and dialog history. The key benefit of discrimi-

native models are that they can incorporate a large number of features, and can be optimized directly

for prediction accuracy.

The first presentation of discriminative state tracking trained from data is believed to be Bohus

and Rudnicky (2006). Here, a hand-written rule enumerates a set of k dialog states to score, for

example by considering the top S1 SLU hypotheses from the current turn, top S2 SLU hypotheses

from the previous turn, and the top S3 SLU hypothesis from the turn before that. An additional

state hypothesis s accounts for the situation when none of the hypotheses is correct, for a total of

k = S1+S2+S3+1 states to score. With a fixed number k of classes, standard multiclass logistic
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regression classification is then applied, in which one weight is estimated for every (class,feature)

pair. Features were taken from SLU output and dialog history.

Subsequent work has explored numerous variations of this approach. Metallinou et al. (2013)

alter the logistic regression model so that it learns a single weight for each feature. This enables an

arbitrary number of hypotheses to be scored since the number of weights to learn no longer increases

with the number of state hypotheses to score. Williams (2014) applies a ranking algorithm which

has the ability to construct conjunctions of features. Henderson et al. (2013) applies a deep neural

network as a classifier.

All of the approaches above encode dialog history in the features to learn a simple classifier.

By contrast, three other approaches have explicitly modeled dialog as a sequential process. First,

a discriminative Markov Model can be applied, where the distribution from the previous turn’s

prediction can be used as a feature (Ren et al., 2014b,a). Second, dialog can be cast as a conditional

random field (CRF) (Lafferty et al., 2001), in which features are associated with each dialog turn,

and CRF decoding determines the most likely final dialog state conditioned on the entire sequence

(Lee and Eskenazi, 2013; Ren et al., 2013; Kim and Banchs, 2014; Ma and Fosler-Lussier, 2014c).

Third, recurrent neural networks can be estimated where the inputs are the observed ASR/SLU

results, and the output is a distribution over dialog states (Henderson et al., 2014d).

Henderson et al. (2014d) is also notable for operating directly on ASR output, without an SLU

(c.f. Figure 1). This has two benefits: first, it removes the need for feature design, and the risk

of omitting an important feature, which can degrade performance unexpectedly (Williams, 2014).

Second, it avoids the work of building a separate SLU model.

All of the approaches above require in-domain dialog data for training. When a small amount

of labeled data exists for the target domain, multi-domain learning can be applied (Williams, 2013).

When no labeled data exists – for example, when a system is first deployed – it is possible to use

unsupervised adaptation from a base model for a related domain. The basic idea is to find points

in the dialog where a state component value is assigned a high score – such as food=italian –

then treat that predicted value as a label, and adjust model parameters to predict that label earlier in

the dialog (Lee and Eskenazi, 2013; Henderson et al., 2014e). This approach allows a generic slot

tracking model to be adapted to a specific slot for which labeled data does not exist.

The approaches above infer user behavior directly from the dialog data, and make no a priori

assumptions about the structure of P (s′|f ′). Since some properties of human behavior with dialog

systems is known – for example, that people typically change their goal only in certain situations –

it is possible to devise rules that score dialog states using functions of the ASR or SLU confidence

scores, and then estimate a handful of parameters of the rules from data (Higashinaka et al., 2003;

Kadlec et al., 2014; Sun et al., 2014a). Since the primary source of uncertainty in dialog state

tracking is the ASR or SLU, these methods can perform very well when the confidence scores are

reliable.

With so many methods for dialog state tracking proposed, it is vital to have benchmark tasks for

making performance comparisons. This need motivated the Dialog State Tracking Challenge series

of research community tasks, described next.
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4. Challenge tasks

4.1 Overview

The over-arching research aim of the DSTC series has been to understand which existing methods

for dialog state tracking perform best, and encourage new work that advances the state-of-the-art. As

part of that aim, the DSTC series has also examined which evaluation measurements are appropriate

for dialog state tracking.

To date there have been three completed dialog state tracking challenges. Each has used logs of

human-computer dialogs in different domains, with different properties:

DSTC1 used a corpus of dialogs with various systems that participated in the Spoken Dialog

Challenge (SDC) (Black et al., 2010), provided by the Dialog Research Center at Carnegie Mellon

University. In the SDC, telephone calls from real passengers of the Port Authority of Allegheny

County, which runs city buses in Pittsburgh, were forwarded to dialog systems built by different

research groups. The goal was to provide bus riders with bus timetable information. For example, a

caller might want to find out the time of the next bus leaving from Downtown to the airport. In this

domain, the goal of the user typically remains fixed for the duration of the dialog.

DSTC2 aimed to extend the results of DSTC1 to another domain, as well as broaden the scope

to include user goal changes. This challenge relied on a corpus of dialogs in the restaurant search do-

main between paid participants (through Amazon Mechanical Turk) and various systems developed

at Cambridge University (Young et al., 2014). The goal of the user is to find specific information

such as price range or phone number about a restaurant that fulfills a number of constraints such as

cuisine or neighborhood.

DSTC3 expanded the domain of DSTC2 to include new slots which do not occur in the training

data. This simulates the crucial problem of adapting a dialog system to a new domain for which little

dialog data is available, while data for a similar but different domain might already exist. DSTC3

used all the data from DSTC2 as training set, as well as a new set of dialogs (also collected by

Cambridge University researchers (Jurčı́ček et al., 2011)) on a broader tourist information domain,

covering bars and cafes in addition to restaurants.

4.2 Challenge Design

The dialog state tracking challenges take a corpus-based approach – i.e., dialog state trackers are

trained and tested on a static corpus of dialogs, recorded from systems using a variety of state

tracking models and dialog managers. The challenge task is to re-run state tracking on these dialogs

– i.e., to take as input the runtime system logs including the SLU results and system output, and

to output scores for dialog states. This corpus-based design was chosen because it allows different

trackers to be evaluated on the same data, and because a corpus-based task has a much lower barrier

to entry for research groups than building an end-to-end dialog system.

In practice of course, a state tracker will be used in an end-to-end dialog system, and will

drive action selection, thereby affecting the distribution of the dialog data the tracker experiences.

In other words, it is known in advance that the distribution in the training data and live data will

be mismatched, although the nature and extent of the mis-match are not known. Hence, unlike

much of supervised learning research, drawing train and test data from the same distribution in

offline experiments may overstate performance. So in all three challenges, train/test mis-match was
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explicitly created by choosing test data to be from different dialog systems, and, in the case of

DSTC3, with a different set of slots to be filled.

4.3 Data

The corpus for DSTC1 was produced with dialog systems from three different research groups, here

called Groups A, B, and C. Each group used its own ASR, SLU, and dialog manager. The dialog

strategies across groups varied considerably: for example, Groups A and C used a mixed-initiative

design, where the system could recognize any concept at any turn, but Group B used a directed

design, where the system asked for concepts sequentially and could only recognize the concept

being queried. Groups trialled different system variants over a period of almost 3 years. These

variants differed in acoustic and language models, confidence scoring model, state tracking method

and parameters, number of supported bus routes, user population, and presence of minor bugs. The

fact that these systems were actually deployed and used by the general public presented a number of

challenges, most notably acoustic and linguistic conditions made ASR significantly more difficult

than in more controlled settings. The average length of a dialog in DSTC1 is 14.1 turns. More

descriptive statistics are given in Table 1. DSTC1 released 5 train sets and 4 test sets. In all train

sets, user speech was transcribed, but only 3 of the 5 train sets were labeled for SLU and dialog

state correctness. After the evaluation, data inconsistencies were discovered in one of the test sets

(Test 4, cf. Table 1). As result, that test set has been excluded from all results reported in this paper.

Example dialogs from DSTC1 are provided in the Appendix.

DSTC2 and DSTC3 use a large corpus of dialogs with various telephone-based dialog systems

that was collected using Amazon Mechanical Turk. The dialogs used in the challenges come from

6 conditions; all combinations of one of three possible dialog managers and one of two possible

speech recognisers. There are roughly 500 dialogs in each condition, of average length 7.88 turns

from 184 unique callers. More descriptive statistics are given in Table 1. Example dialogs from

DSTC2 and DSTC3 are provided in the Appendix.

4.4 Dialog state definition and labeling

In DSTC1, the dialog state consists of a frame of informable slots which are slots provided by the

user that describe their goal, such as the bus route and origin bus stop. The slots and approximate

number of values for each are shown in Table 2. To determine the true dialog state, first each SLU

hypothesis on each SLU N-Best list was manually labeled for its correctness. Each SLU hypothesis

could contain values for more than one slot, such as from=downtown,to=airport. In making

labeling decisions, the labeler could view the dialog history, and it was possible that zero, one, or

more than one SLU hypothesis were labeled as correct. If the value for a slot had been provided

but no correct value appeared in the SLU results, a special value called rest was considered to be

correct.2 At every turn, trackers output a scored list of values for every slot, including the special

rest value. For evaluation, a dialog state was scored as correct if all of its slots were assigned values

which had previously been marked as correct, or rest if no correct values had yet been observed for

that slot value. Thus, in DSTC1, there could be multiple correct dialog states, and the best possible

tracker could achieve 100% accuracy. Note that, in DSTC1, there was no explicit set of slot values,

2. The term rest refers to the remainder, as in “the rest of the unenumerated SLU hypotheses”.
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# Dialogs
Goal

Changes
WER

SLU

F-score

DSTC1

Train1 2,344 - 46.4% 45.3%

Train+2 10,619 - 42.0% -

Test3 2,485 - 55.1% 38.5%

DSTC2
Train 1,612 40.1% 26.4% 75.7%

Devel. 506 37.0% 31.9% 71.6%

Test 1,117 44.5% 28.7% 73.8%

DSTC3
Train4 3,235 41.1% 28.1% 74.3%

Test 2,275 16.5% 31.5% 78.1%

Table 1: Statistics for the data sets for all three challenges. Goal Changes is the percentage of dialogs in

which the user changed their mind for at least one slot. WER and SLU F-score are on the top ASR and SLU

hypotheses respectively. Further details of the datasets are given in Williams et al. (2013), Henderson et al.

(2014b), and Henderson et al. (2014a).
1This row combines sets Train 1A, Train 2 and Train 3 from DSTC1.
2This row combines sets Train 1B and 1C from DSTC1. In these dialogs, user speech was transcribed, but

SLU and dialog state correctness were not labeled.
3This row combines sets Test 1, Test 2, and Test 3 from DSTC1. In this paper, Test 4 has been excluded due

to data issues.
4The Training set for DSTC3 is the combination of Train, Dev, and Test sets from DSTC2.

Slot Size

bus route 100

date -

time -

origin street 500-10,000

origin neighborhood 20-100

origin PoI 50-500

destination street 500-10,000

destination neighborhood 20-100

destination PoI 500-10,000

Table 2: Slots used for DSTC1 and their approximate number of values. The ranges of values are due to

the fact that systems used to collect the dialogs had different internal designs and covered different numbers

of street descriptions, neighborhoods and Points of Interests (PoI).
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because dialogs were recorded from systems built by different research groups without a shared

ontology.

Slot DSTC2 Train DSTC2 Test DSTC3 Train DSTC3 Test Informable

type 1 1 1 3 yes

area 5 5 5 15 yes

food 91 91 91 28 yes

name 113 113 113 163 yes

pricerange 3 3 3 4 yes

near — — — 52 yes

hastv — — — 2 yes

hasinternet — — — 2 yes

childrenallowed — — — 2 yes

addr — — — — no

phone — — — — no

postcode — — — — no

Table 3: Ontology used in DSTC2 and DSTC3 for tourist information. Counts do not include the special

Dontcare value.

In DSTC2-3, the dialog state and labeling procedure was defined somewhat differently. In

addition to informable slots, the dialog state in DSTC2-3 included 2 other quantities. First, the

state included requested slots, which are the slots the user wants to retrieve, such as the phone

number, or price range (of a restaurant). Second, the state included the search method which

indicated if the user wanted to query by providing constraints, providing the name of a restaurant,

navigating a results list, etc. The values and sizes of all of the slots in DSTC2-3 are given in Table

3. In DSTC2-3, informable slots could take a special value called dontcare which means the user

said they had no preference for that slot – for example, “I don’t mind which type of food.”

In addition, DSTC2-3 was based on an explicit ontology. Because of this, unlike in DSTC1,

user requests in DSTC2-3 were labeled with slot-value pairs taken from the ontology, regardless of

the correctness of the SLU output. As a result, in DSTC2-3, at each turn there was a single correct

dialog state, and because the SLU often did not contain the correct interpretation, a tracker that took

the SLU as input could at best achieve less than 100% accuracy.

In addition to labeling dialog state, all user speech for all datasets was transcribed, either through

crowd-sourcing or professional services.

4.5 Tracker output and evaluation metrics

Each tracker outputs a probability distribution over the set of possible dialog states. The goal is to

assign probability 1.0 to the correct state, and 0.0 to other states. In each dialog state hypothesis

output by a tracker, every slot is scored, so to be correct, the hypothesis must have perfect precision

and recall.

Based on the ground truth, a number of metrics were computed on each tracker’s output. Ac-

curacy measures the percent of turns where the top-ranked hypothesis is correct. This indicates the

correctness of the item with the maximum score. L2 measures the L2 distance between the vector

of scores, and a vector of zeros with 1 in the position of the correct hypothesis. This indicates the

quality of all scores, when the scores are viewed as probabilities.
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AvgP measures the mean score of the first correct hypothesis. This indicates the quality of the

score assigned to the correct hypothesis, ignoring the distribution of scores to incorrect hypotheses.

MRR measures the mean reciprocal rank of the first correct hypothesis. This indicates the quality

of the ordering of the scores (without necessarily treating the scores as probabilities).

In addition, two versions of the receiver-operating characteristic (ROC) curves were computed,

which measure the discrimination of the score for the highest-ranked state hypothesis. ROC.V1

computes ROC as a fraction of all utterances, and ROC.V2 computes fractions of correctly classi-

fied utterances. From each of these two curves, four values were extracted. ROC.V1.EER and

ROC.V2.EER give the equal error rate – i.e., the value at which the number of false accepts

and number of false rejects are equal. Using the V1 curve, ROC.V1.CA05, ROC.V1.CA10,

ROC.V1.CA20 give the percent of correctly accepted utterances when the false-accept rate is set

to 5%, 10%, and 20%, respectively; and using the V2 curve, ROC.V2.CA05, ROC.V2.CA10,

ROC.V2.CA20 give the percent of correctly accepted utterances when the false-accept rate is set to

5%, 10%, and 20%, respectively.

In addition, several additional metrics were computed for DSTC2-3. Neglogp is the mean

negative logarithm of the score given to the correct hypothesis, − logpi. Sometimes called the

negative log likelihood, this is a standard score in machine learning tasks. Two metrics, Update

precision and Update accuracy measure the accuracy and precision of updates to the top scoring

hypothesis from one turn to the next. For more details, see Higashinaka et al. (2004), which finds

these metrics to be highly correlated with dialog success in their data.

Apart from what to measure, when to measure – i.e., which turns to include when computing

each metric, must also be defined. For DSTC1, a set of 3 schedules were used. schedule1 includes

every turn. schedule2 include turns where the target slot is either present on the SLU n-best list,

or where the target slot is included in a system confirmation action – i.e., where there is some

observable new information about the target slot. schedule3 includes only the last turn of a dialog.

For DSTC2 and DSTC3, user goals can change during a dialog, making schedule3 less meaningful.

Consequently, only schedule1 and schedule2 were used for these challenges.

4.6 Baselines

All three challenges featured a common simple baseline that mimics standard (non-statistical) ap-

proaches commonly used in spoken dialog systems, denoted ‘team0 entry0’. It maintains a single

hypothesis for each slot. Its value is the SLU 1-best with the highest confidence score observed so

far, with score equal to that SLU item’s confidence score. In addition, DSTC1 featured a simpler

majority baseline which always selects the rest hypothesis for each turn. Two more baselines were

provided for DSTC2 and DSTC3. The focus baseline, denoted ‘team0 entry1’, includes a simple

model of changing goal constraints. Beliefs are updated for the goal constraint s = v, at turn t,

P (s = v), using the rule:

P (s = v)t = qtP (s = v)t−1
+ SLU (s = v)t (2)

where 0 ≤ SLU(s = v)t ≤ 1 is the SLU confidence score for s = v given by the SLU in turn t,

and qt =
∑

v′ SLU(s = v′)t ≤ 1.

Another baseline tracker, based on the tracker presented in Wang and Lemon (2013) is included

in the evaluation, denoted ‘team0 entry2’. This tracker uses a selection of domain independent

rules to update the beliefs, similar to the focus baseline. One rule uses a learnt parameter called
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the noise adjustment, to adjust the SLU scores. Finally, an oracle tracker is included in DSTC2

and DSTC3 under the label ‘team0 entry3’. This reports the correct label with score 1 for each

component of the dialog state, but only if it has been suggested in the dialog so far by the SLU. This

gives an upper-bound for the performance of a tracker which uses only the SLU and its suggested

hypotheses.

4.7 Participants

Participation to each challenge was free to any group willing to submit one or more entries by the

challenge evaluation deadline. Participants were kept anonymous and only referred to in terms of

team and entry numbers (e.g. team2.entry4), except when they chose to give their identity in their

own published papers. Between 7 and 9 research groups participated in each challenge, fielding

between 27 and 31 trackers in total, as shown in Table 4.

# Teams # Trackers

DSTC1 9 27

DSTC2 9 31

DSTC3 7 28

Table 4: Participation statistics for all three challenges. A subset of teams entered multiple DSTCs.

5. Challenge entries and results

5.1 Which metrics are appropriate for dialog state tracking?

As mentioned above, the evaluation in each of the DSTCs measured numerous properties of each

entry, including accuracy, probability quality, score discrimination, etc. Therefore, the question

immediately arises which metrics are most appropriate to study. Two studies have examined this

question.

First, in DSTC1, metrics were clustered by their correlations with each other, and found to form

4 clusters: one related to correctness with Accuracy, MRR, and the three ROC.V1.CA metrics;

a second related to probability quality with L2 and AvgP; a third related to score discrimination

with only ROC.V1.EER; and a fourth also related to score discrimination with the ROC.V2.CA

measures (Williams et al., 2013). This study suggests that, within each cluster, it is sufficient to

choose a single metric, since all metrics within a cluster will empirically yield nearly the same

ordering of entries.

Second, in DSTC2, the question of what to measure was posed differently, as “Which evaluation

metric and schedule would best predict improvement in overall dialog performance?” (Lee, 2014).

The author uses the data to optimize a reinforcement learning-based dialog manager, then runs a

regression analysis to see which metrics are the best predictors of end-to-end dialog performance.

L2, AvgP, and Accuracy are found to be the most predictive. The study also finds that evaluating

the joint goal is more predictive than evaluating slots in isolation, and that metrics evaluating only

discrimination (e.g., ROC.V2) are not good predictors of dialog performance.

Given these findings, we focus on Accuracy and L2 on joint goals throughout the results section.

For consistency, we report results on schedule2. We note, however, that all metrics from every

tracker in all three DSTCs are publicly available for analysis.
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5.2 What were the entries, and what was their performance?

Tables 5-7 show the entries with the highest joint goal accuracy from each team in DSTC1-3, using

schedule 2. The descriptions in these tables are based on a participant survey included with each of

the DSTCs, and references are provided if teams identified their entry in a publication.

5.3 What types of errors do the trackers make?

As pointed out by Smith (2014), it is important to examine the types of errors made by a tracker in

order to make improvements. To do this, at each turn, we compare the top dialog state output by

each tracker with the true dialog state, and examine each slot. If a slot value is present in both the

true and output dialog states and the slot values are equal, we mark the slot as correct. If the slot

value is present in both the true and output dialog states and the slot values are not equal, we mark

the slot as wrong – i.e., a substitution error. If the slot value is present in the true dialog state but

not in the output dialog state, we mark the slot as missing – i.e., a deletion error. Finally, if the slot

value is not present in the true dialog state but is present in the output dialog state, we mark the slot

as extra – i.e., an insertion error. Note that, since there are multiple slots in a dialog state, a single

turn may have multiple slot-level errors.

Results are given in Figure 3 (p. 22), including performance of the best baselines. These results

show that the dominant error type is missing slots. Since all error types were scored equally, this

result suggests that teams were rather conservative about guessing the slot value when confidence

was low. It also suggests that recall in the upstream SLU is an important issue.

5.4 How much opportunity for improvement remains?

We next compared each tracker to the strongest baseline, and computed the percentage of turns

where the tracker was correct and the baseline was not, and the percentage of turns where the

baseline was correct and the tracker was not.

Results are shown in Figure 4. Even the best trackers – which in total make fewer errors than

the baseline – still make some errors that the baselines do not. This implies that there is additional

scope for improvement, perhaps through combining multiple trackers using ensemble methods (Lee

and Eskenazi, 2013; Sun et al., 2014b; Henderson et al., 2014b).

5.5 What is the value beyond SLU?

Figure 5 shows the same analysis for an “SLU-based oracle tracker”, again for the best-performing

entry for each team. This tracker considers the items on the SLU N -best list – it is an “oracle” in the

sense that, if a slot/value pair appears that corresponds to the user’s goal, it is added to the state with

confidence 1.0. In other words, when the user’s goal appears somewhere in the SLU N -best list, an

oracle in DSTC1 would always achieve perfect accuracy. The only errors made by the oracle are

omissions of slot/value pairs which have not appeared on any SLU N -best list. Due to the use of the

rest meta-value in DSTC1, the oracle always achieves 100% accuracy (c.f. Section 4.4). Therefore

only results for DSTC2 and DSTC3 are shown.

Figure 5 shows that, for the best trackers, 5% or more of tracker turns outperformed the oracle.

These teams also used ASR features, which indicates they were successfully using ASR results

or dialog history to infer new slot/value pairs – i.e., to improve the recall of the existing SLU.
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Unsurprisingly, despite these gains no team was able to achieve a net performance gain over the

oracle.

5.6 What is the state-of-the-art?

Synthesizing the results above, we can summarize the properties of state-of-the-art dialog state

trackers:

• Discriminative models: The strongest entries are consistently discriminative models. Al-

though some rule-based systems have achieved noteable performance – for example, team2

entry1 in DSTC1, team3 entry1 in DSTC2, and team4 entry0 in DSTC3 – in no case has a

rule-base or generative model achieved best performance in any of the DSTCs.

• Use ASR features: The best trackers consistently incorporate low-level ASR features. Low-

level ASR features such as N-best scores and word confusion network scores provide ad-

ditional signals that improves precision (Williams, 2014). Further, incorporating the ASR

results themselves yields additional dialog state hypotheses that improve recall (Section 5.5).

• Sequential: The best trackers either model dialog directly as a sequence – CRFs for team6

entry4 in DSTC1 and RNNs for team4 in DSTC2 and team3 in DSTC3 – or otherwise in-

corporate extensive dialog history features, as in team2 entries 1 and 3 in DSTC3, which

used hundreds of features from the dialog history. Passing only the distribution over hidden

states from one turn to the next, as is often done with generative or rule-based approaches,

does not perform as well. Relying on the distribution over states assumes that state transitions

are Markovian; this result suggests that states may be encoding insufficient history for the

Markov assumption to be valid.

• Capture feature interactions: The best trackers directly model interactions between fea-

tures. For example, the best trackers in DSTC2 and DSTC3 directly modeled feature interac-

tions, either via (recurrent) neural networks or collections of decision trees. Approaches that

do not capture feature interactions, such as log-linear models where each feature of a dialog

state affects its score independently – for example, team5 entry1 in DSTC1 – were not top

finishers.

• Joint posteriors: In DSTC1 and DSTC2, the best systems computed a joint posterior over

all slots, rather than computing a posterior as a product of the marginals for each slot. The

gain observed in DSTC1 (Table 5b) was particularly large, whereas the gain in DSTC2 was

present but small (Henderson et al., 2014b). This difference is probably due to differences

in the domains: bus stops and bus routes requested by real callers in DSTC1 were highly

correlated, whereas the subjects in DSTC2 and DSTC3 were given a specification with slot

values drawn closer to uniform.

6. Practical issues and lessons learned

The main effort in organizing the DSTC series was the preparation of the data. In DSTC1, this

task was particularly labor-intensive because there was no ontology of bus stops available, which
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Entry Reference Description

team1 entry1 (Henderson et al., 2013) Deep neural network

team2 entry1 (Wang and Lemon, 2013) Hand-crafted rules based on confidence scores

team3 entry2 (Zilka et al., 2013) Discriminative classifier + hand-crafted transition proba-

bilities

team4 entry1 (anonymous) Discriminative dynamic Bayesian network

team5 entry1 (Williams, 2013) Decision tree

team6 entry4 (Lee and Eskenazi, 2013) Discriminative + generative (system combination); unsu-

pervised prior adaptation

team7 entry1 (anonymous) Discriminatively trained graphical model

team8 entry4 (anonymous) Support vector machines

team9 entry4 (Kim et al., 2013) Generative plus discriminative re-scoring.

(a) DSTC1 entries. References cited where teams identified their entry in a published paper. Description

based on survey collected from participants.

Features Goals Joint Goals

Entry ASR SLU Acc. L2 Acc. L2

majority class baseline1 X 0.554 0.631 0.166 1.180

1-best baseline1 X 0.564 0.599 0.241 1.078

team1 entry1 X 0.674 0.612 0.349 1.067

team2 entry1 X 0.683 0.532 0.354 1.055

team3 entry2 X 0.650 0.503 0.339 0.964

team4 entry1 X 0.565 0.626 0.278 1.045

team5 entry1 X 0.691 0.503 0.237 1.087

team6 entry4 X 0.765 0.443 0.466 0.890

team7 entry1 X 0.615 0.562 0.283 1.058

team8 entry4 X 0.584 0.592 0.226 1.098

team9 entry4 X 0.724 0.492 0.357 1.024

SLU-based oracle X 1.000 0.000 1.000 0.000

(b) DSTC1 results. The top performing trackers from each team are selected. Results are derived from

combining all test sets in the evaluation. In DSTC1, none of the entries used the ASR output. 1Williams

et al. (2013).

Table 5: Entries and results of DSTC1.
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Entry Reference Description

team1 entry0 (Kim and Banchs, 2014) Linear CRF

team3 entry0 (Smith, 2014) Discourse rules + dialog act bigrams

team4 entry2 (Henderson et al., 2014d) Recurrent neural network

team6 entry2 (anonymous) Maximum entropy Markov model, with DNN output dis-

tribution

team7 entry4 (Sun et al., 2014b) System combination of a Deep neural network and max-

imum entropy model

team8 entry1 (Lee et al., 2014) Hidden Information State Model + Goal Change Han-

dling Model + System-User Action Pair weighting Model

team9 entry0 (anonymous) Baseline, augmented with priors from a confusion matrix

team2 entry2 (Williams, 2014) Recurrent neural network

team4 entry0 (Henderson et al., 2014d) Recurrent neural network

team7 entry0 (Sun et al., 2014b) System combination of a Deep neural network, maximum

entropy model, and rules

team2 entry1 (Williams, 2014) Ranking (lambdaMART)

team2 entry3 (Williams, 2014) Ranking (lambdaMART)

team5 entry4 (anonymous) ASR/SLU re-ranking

(a) DSTC2 entries. References cited where teams identified their entry in a published paper. Description

based on survey collected from participants.

Features Joint Goals Search Method Requested

Entry ASR SLU Acc. L2 Acc. L2 Acc. L2

1-best baseline1 X 0.619 0.738 0.879 0.209 0.884 0.196

focus baseline1 X 0.719 0.464 0.867 0.210 0.879 0.206

HWU baseline2 X 0.711 0.466 0.897 0.158 0.884 0.201

team1 entry0 X 0.601 0.648 0.904 0.155 0.960 0.073

team3 entry0 X 0.729 0.452 0.878 0.210 0.889 0.188

team4 entry2 X 0.742 0.387 0.922 0.124 0.957 0.069

team6 entry2 X 0.718 0.437 0.871 0.210 0.951 0.085

team7 entry4 X 0.735 0.433 0.910 0.140 0.946 0.089

team8 entry1 X 0.699 0.498 0.899 0.153 0.939 0.101

team9 entry0 X 0.499 0.760 0.857 0.229 0.905 0.149

team2 entry2 X 0.668 0.505 0.944 0.095 0.972 0.043

team4 entry0 X 0.768 0.346 0.940 0.095 0.978 0.035

team7 entry0 X 0.750 0.416 0.936 0.105 0.970 0.056

team2 entry1 X X 0.784 0.735 0.947 0.087 0.957 0.068

team2 entry3 X X 0.771 0.354 0.947 0.087 0.941 0.090

team5 entry4 X X 0.695 0.610 0.927 0.147 0.974 0.053

SLU-based oracle1 X 0.850 0.300 0.986 0.028 0.957 0.086

(b) Results of DSTC2 evaluation. The top performing trackers from each team are selected. Results are split

by the input features used. 1Henderson et al. (2014b), 2Wang and Lemon (2013).

Table 6: Entries and results of DSTC2.
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Entry Reference Description

team1 entry3 (anonymous) Rules with parameters inferred from data

team6 entry0 (anonymous) Generative model trained with cascading gradient descent

team7 entry1 (Ren et al., 2014a) Markovian neural network model

team3 entry2 (Henderson et al., 2014c) Recurrent neural network

team5 entry0 (Sun et al., 2014a) Rules that operate on confidence scores

team2 entry0 (anonymous) Maximum entropy model

team2 entry3 (anonymous) System combination: maximum entropy, CRF, rules

team3 entry0 (Henderson et al., 2014c) Recurrent neural network

team4 entry0 (Kadlec et al., 2014) Rules with parameters inferred from data

(a) DSTC3 entries. References cited where teams identified their entry in a published paper. Description

based on survey collected from participants.

Features Joint Goals Search Method Requested

ASR SLU Acc. L2 Acc. L2 Acc. L2

1-best baseline1 X 0.555 0.860 0.922 0.154 0.778 0.393

focus baseline1 X 0.556 0.750 0.908 0.134 0.761 0.435

HWU baseline2 X 0.575 0.744 0.967 0.062 0.767 0.417

team1 entry3 X 0.561 0.733 0.963 0.097 0.774 0.401

team6 entry0 X 0.507 0.736 0.927 0.120 0.907 0.157

team7 entry1 X 0.576 0.652 0.957 0.116 0.938 0.101

team3 entry2 X 0.616 0.565 0.966 0.061 0.939 0.100

team5 entry0 X 0.610 0.556 0.968 0.091 0.949 0.090

team2 entry0 X X 0.585 0.697 0.965 0.114 0.929 0.121

team2 entry3 X X 0.582 0.639 0.970 0.065 0.938 0.138

team3 entry0 X X 0.646 0.534 0.966 0.061 0.943 0.091

team4 entry0 X X 0.630 0.627 0.853 0.272 0.923 0.136

SLU-based oracle1 X 0.717 0.565 0.988 0.02 0.946 0.107

(b) Results of DSTC3 evaluation. The top performing trackers from each team are selected. Results are split

by the input features used, with bold indicating the top result in the group. 1Henderson et al. (2014a), 2Wang

and Lemon (2013).

Table 7: Entries and results of DSTC3.
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(c) DSTC3

Figure 3: Average number of slots in error per turn (bar chart, left axis), and average number of

correct slots per turn (black diamonds, right axis) for the best tracker from each team in each of

the DSTCs. See text for explanation of error types. The left axis shows negative numbers so that

the top of each plot indicates ideal performance for both errors (bars) and correctness (diamonds).

Team IDs are not consistent across different DSTCs.
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Figure 4: Percentage of all turns where the top tracker from each team did better than the baseline

(white bar) or worse than the baseline (black bar) for the joint goal accuracy metric. Note that the

team IDs are not consistent across different DSTCs.
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Figure 5: Percentage of all turns where the top tracker from each team did better than the SLU-

based oracle (white bar) or worse than the oracle (black bar) for the joint goal accuracy metric.

DSTC1 is not shown because its design resulted in the oracle always achieving 100% accuracy, so

it was not possible to beat the performance of the oracle in DSTC1. Note that the team IDs are not

consistent across different DSTCs.
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required manually labeling each SLU hypothesis for correctness. This was done by a mixture of

professional transcribers and crowd workers, at a cost of a few thousand dollars. Edge cases were

difficult for either group, and many utterances needed to be manually labeled by the organizers,

often by consulting native Pittsburghers or researching Pittsburgh geography. A further difficulty in

preparing the data for DSTC1 was the need to design a dialog act ontology that represented dialog

acts produced by three dialog systems from different research groups. By comparison, preparing

the data for DSTC2-3 required much less work because an explicit ontology simplified labeling,

and dialogs were drawn from a single system which included system-side dialog act tags. Future

challenges might benefit from following the approach in DSTC2-3.

The DSTC organizers decided to continue to make the data freely available after the conclusion

of the challenge. This has had unforeseen benefits: first, the DSTC data now forms a sort of bench-

mark for the field, with groups continuing to report results on it after the challenge proper (Lee,

2013; Ma and Fosler-Lussier, 2014b; Zilka and Jurčı́ček, 2015; Fix and Frezza-Buet, 2015). In

addition, the DSTC1-3 corpora have been used to examine which state tracking evaluation metrics

correlate with dialog success (Lee, 2014), perform detailed error analyses of state trackers (Smith,

2014), and for dialog act classification and SLU experimentation (Ma and Fosler-Lussier, 2014a;

Ferreira et al., 2015). We encourage future challenges to continue this tradition.

7. Perspectives and Conclusion

Although dialog state tracking is a crucial problem in spoken dialog systems, until recently it re-

ceived only sporadic attention. Throughout the 1990s, hand-crafted rules were the dominant solu-

tion in both research and production systems. In the early 2000s, researchers recognized the need

to model uncertainty explicitly and make use of all of the information on the SLU N-Best list, and

proposed several methods, with generative models being most common. Yet work was sporadic and

different methods were rarely compared: different groups operated their own dialog systems, and

there was no standardized dataset and framework for evaluation.

The Dialog State Tracking Challenge has introduced the first shared datasets and common eval-

uation metrics for this problem, and has catalyzed substantial new work into this research problem.

In particular, the DSTC series has underpinned three broad advances.

The first contribution of the DSTC series has been to change the dominant approach from gen-

erative models to discriminatively trained classifiers. Prior to the DSTC series, generative models

were most common. The DSTC series has illustrated the weaknesses in generative models that hin-

dered accuracy, such as the inability to handle a large number of features. In their simplest form,

discriminatively trained classifiers take as input a feature vector of fixed size, where the features

summarize dialog history up to the current turn.

The second contribution of the DSTC series has been to enable the development of discrimina-

tive sequential models for dialog state tracking. Unlike simple classifiers, sequential models take as

input a set of features at each turn, avoiding the need to design features that summarize the dialog

history. Thus, sequential models substantially simplify the feature engineering process, reducing

effort. Because they properly account for dialog as a temporal process, they also have the potential

to improve accuracy, and this has been demonstrated in DSTC entries.

The third and most recent contribution of the DSTC series has been to underpin models which

take the ASR results as input directly, eschewing the SLU entirely. This move further reduced the

feature engineering effort – these methods use only primitive ASR features and require essentially

no feature design at all. By providing direct access to the raw input signal, they also have the
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potential to provide a further improvement in accuracy, which has also been demonstrated in the

DSTC series.

A key outstanding question for the field is whether improvements in dialog state tracking pe-

formance translate to improvements in end-to-end dialog system performance, such as improved

task completion or user satisfaction. Two early studies show promising results. First, Lee et al.

(2014) performed off-line reinforcement learning experiments on the (static) DSTC1 corpus, and

showed that improved dialog state tracking performance is indeed correlated with improved dialog

performance. Second, Kim et al. (2014) constructed a user simulator, and used simulated dialogs to

compare an existing generative tracker with a discriminative tracker that had been shown to yield

better dialog state tracking accuracy. They found that the discriminative tracker yielded better end-

to-end dialog performance. The use of a simulated user and learned dialog policy implies that the

distribution of dialog states encountered at test time was different than that encountered in training,

and the fact that the discriminative tracker performed well suggests it had not overfit the training

data. While these are promising results, the definitive test will be a deployment with real users,

which (to our knowledge) has not yet been done. We encourage future DSTC instances to consider

end-to-end evaluations with real users.

The first three instances of the dialog state tracking challenge have tackled human-computer

interaction in two domains with dialog systems from multiple research groups, including situations

where users’ goals may change and where new slots are present at runtime. Given the positive

results achieved to date, the next instance of the challenge – DSTC4 – will tackle state tracking in

human-human conversation (Kim et al., 2016). Human-human conversation presents a host of new

challenges, and addressing these is a step toward the long-standing goal of learning a dialog system

from example human-human conversations.
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Appendix 1: Sample dialog excerpts

Below are transcripts of calls in the DSTC corpus. The user’s side shows utterances as transcribed

by human annotators.

DSTC1 : Group A

SYS: Welcome to the CMU Let’s Go bus information system. To get help at any time, just say Help

or press zero. What can I do for you?
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USR: 61c evening hours

SYS: For example, you can say, when is the next 28X from DOWNTOWN to THE AIRPORT? or

I’d like to go from MCKEESPORT to HOMESTEAD tomorrow at 10 a.m.

USR: i’d like to go [noise]

SYS: Where are you leaving from?

USR: from Kennywood tomorrow at 6:30 PM

SYS: Leaving from MCKEE. Is this correct?

USR: yes

SYS: Okay What is your destination?

USR: downtown

SYS: Going to DOWNTOWN. Is this correct?

USR: yes

SYS: Right When do you want to travel?

USR: 6:30 PM

SYS: Leaving at 6 30 p.m.. Is this correct?

USR: [noise] yes

SYS: Alright Hold on. I’ll look that up. There is a 71D leaving FIFTH AVENUE AT DARRAGH

MCKEE at 6 40 p.m.. It will arrive at FIFTH AVENUE AT MARKET at 6 58 p.m.. To get more

information about buses related to this trip, you can say, when is the next bus, or, when is the

previous bus. To ask about a different trip, you can say, start a new query. If you are finished, you

can say goodbye.

USR: start a new query

SYS: Okay, let’s start from the beginning.

USR: ...

DSTC1 : Group B

SYS: East Pittsburgh Bus Schedules. Say a bus route, like 28X, or say I’m not sure.

USR: 61A

SYS: Okay, 61A. To change, say go back. Where are you leaving from?

USR: Downtown

SYS: Okay, downtown. You can always say go back. And where are you going to?

USR: East Pittsburgh East Pittsburgh

SYS: Pittsburgh. Is that right?

USR: No

SYS: Oh, sorry, where are you going to?

USR: East Pittsburgh

SYS: Okay, East Pittsburgh. Do you want times for the next few buses? Say yes or no.

USR: Yes

SYS: Ok, the next few buses. To change, say go back. At 7:45 PM today, there is a 61 A, from

Fifth Avenue And Market Street, Downtown, arriving Dynamo Alley And Beech Avenue, In East

Pittsburgh, at 8:42 PM. Say repeat, next, previous, or start over.
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DSTC1 : Group C

SYS: Welcome to the Lets Go! bus information system for Pittsburgh. Where would you like to

leave from?

USR: [noise]

SYS: Where do you wanna leave from?

USR: [noise] um I’m leaving from Forbes avenue and Murray avenue

SYS: I’m sorry but I do not know any stops in the moon neighborhood. The routes I currently cover

are the following: 28X, 54C, 56U, 61A, 61B, 61C, 61D and 64.

USR: um I need the scheduling information for the 61D

SYS: Where would you like to leave from?

USR: Forbes and Murray

SYS: Where do you wanna go?

USR: Greenfield

SYS: When are you going to take that bus?

USR: 61D

SYS: When are you going to take that bus?

USR: 61D

SYS: When would you like to travel? Say next bus for the the next bus .

USR: next bus

SYS: The next bus from forbes avenue at murray to greenfield is the 61D, leaving at 8 43 p.m. . It

arrives at murray avenue at loretta at 8 52 p.m. . You may now say. next bus, previous bus, restart,

or goodbye.

USR: [noise] good-bye

SYS: Thank you goodbye

DSTC2 and DSTC3 (Training Set)

SYS: Which part of town?

USR: The north uh area

SYS: Which part of town?

USR: A cheap place in the north

SYS: Clown cafe is a cheap restaurant in the north part of town.

USR: Do you have any others like that?

SYS: Galleria is another cheap restaurant in the north.

USR: What is their phone number and address?

DSTC3 (Test Set)

SYS: Thank you for calling the Cambridge Information system. Your call will be recorded for

research purposes. You may ask for information about a place to eat, such as a restaurant, a pub, or

a cafe. How may I help you?

USR: i would like to find a pub with an internet connection and a tv

SYS: The Bakers, which has an internet connection, is a great pub with a television.

USR: what is the address phone number and price range
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SYS: The Bakers is located on 176 East Road and its phone number is 01223304121. The price

for main courses ranges from 6 pounds to 8 pounds 49 and the price for a cheapest pint of beer is 2

pounds 25.

USR: [noise]

SYS: The Bakers is an outstanding pub.

USR: what is the address

SYS: The Bakers is on 176 East Road.

USR: what is the phone number

SYS: The phone number of The Bakers is 01223304121.

USR: what is the price range

SYS: The Bakers is in the cheap price range.

USR: thank you good bye
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