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ABSTRACT 

OH THE DIAMAGNETISM OP FREE EIECTROHS 

The effect of proximity to an infinite potential 

wall "boundary on the eigenvalues of single particle free 

electron states in a magnetic field is calculated. A general 

method for calculating the number of states "below a specified 

energy is described and the diamagnetic susceptibility is 

calculated for three approximations. It is found that the 

landau approximation gives surprisingly good results 

considering its simplicity. A classification of much of 

the important work in this subject is presented in the 

introduction, and a possible discrepancy in the usual 

applications of the WKB approximation is discussed in an 

appendix. 
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THE DIAMAGNETISM OF FREE EIECTRONS 

INTRODUCTION 

How can the effect of the boundaries on the free electron 

diamagnetism be calculated? Bohr2- and van Leeuwen2 have shown that 

classical statistical mechanics gives no magnetic behavior for a 

free electron gas. In any finite container the magnetic moment 

of all the electrons whose orbits are entirely inside the box exactly 

cancels an equal and opposite magnetic moment due to those electrons 

whose orbits intersect the boundaries,3 Thus the effect of the 

boundary seems to be quite Important in determining the behavior of 

a free electron gas. In fact, if the boundary is not considered 

properly, an erroneously large diamagnetism results, which in several 

cases has been interpreted as an explanation for the Meissner effect 

associated with super conductivity.^ However, Landau^ found that 

since the orbital motion of the electron in a magnetic field is 

periodic, the component of the energy in the plane normal to the 

field is quantized in units of Z/xH where M- et/amc is the Bohr 

magneton. This quantization of the energy led to only a small 

diamagnetism when the boundary conditions were chosen so that the 

centers of the electron orbits are required to remain inside a large, 

but finite container. 

Landau's treatment of the boundary conditions seemed so 

crude that many other attempts were made to improve the accuracy of 

his work.^ Essentially two different approaches were used for the 
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calculation of the magnetization of a system of free electrons 

obeying Fermi statistics confined in a finite box* The first defines 

the magnetization in terms of the magnetic moment due to the current 

density at each point in the container. Teller, 7 van Vleck, 8 

Papapetrou,9 and Mnhard10 use this approach by computing the net 

current at each point in the container* This superposition of currents 

from the different states gives zero at all points far from the walls. 

It also gives zero near the wall if classical statistics is used 

and the electrons are allowed a continuous range of energy. However, 

the discrete allowed energies of quantum statistical mechanics, 

with careful consideration of the electrons striking the boundaries, 

leads to the small but finite “Landau” diamagnetism. The difficulty of 

the first approach resolves itself into the determination of the 

wave functions and the corresponding currents near the walls, whereas 

the second approach requires only the energy eigenvalues. 

Mast workers have chosen the second approach using the 

magnetization 

M ^ (~ M*) 1 + e <.E,--2>/KT 

computed by means of the Helmholtz free energy, 

F = - £“ZLB.H) 1~ eclt,/»T °>E 

through the relation, 

« = " (IF)T.V ' 

The essential difficulty of this method lies in the calculation of 

the function, Z(E,H), the number of single particle states in the 
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system "below an energy, E, for a magnetic field, H, which appears in 

the free energy. The operator methods of Peierls,11 and Sa£nz and 

O'Rourke,^2 and the density-matrix approach of Sondheimer and Wilsonl3 

improve the calculation of the sum and arrive at expressions for the 

function, Z(E,H), which are exact in the mathematical sense that no 

other approximations are used other than the assumption that the 

Landau "boundary condition or its equivalent is valid. In these 

calculations, there is no convenient way of considering any but the 

simplest "boundary conditions* 

The most direct approach to the influence of various types 

of boundary conditions on the electrons near the walls of the box 

requires the eigenvalues of the solutions of the Schrodinger 

equation for a free electron in a magnetic field with the boundary- 

conditions on the electron wave functions given at the edges of the 

box. The number of states function, Z(E,H), is then found by 

summing over the eigenvalues in the whole range of possible quantum 

numbers prescribed by the boundary conditions. 

landau achieved this result by assuming that the 

eigenvalues do not depend on the position of the center of the 

electron orbit with respect to the boundary, requiring only that 

the centers remain inside the box. (This condition or its 

equivalent is inherent in the work of all the previously mentioned 

authors), The first two terms of an Euler-Maclaurin expansion^ were 

used to approximate the sum over quantum numbers in obtaining the 
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constant ’'Landau” diamagnetism# whose magnitude turns out to "be 

exactly one-third the Paid, spin paramagnetism.Landau and 

Peierlsl^ later applied the Poisson summation fomula^T to the sum 

over quantum numbers in the calculation of the function, Z(E,H), and 

obtained an oscillatory behavior which is qualitatively similar to 

that observed experimentally by db Haas and van Alphen.-*-® 

Dingle, 19 Ham,2° and Lifshitz and Kosyvich2! use the 

WKB approximation to find the eigenvalues as a function of the 

position of the electron orbital center with respect to the boundary, 

the magnetic field, and the quantum numbers, and then used the 

Poisson summation formula to evaluate Z(E,H). Osborne22 and Steele2^ 

use the WKB approximation and number theoretical methods to obtain 

essentially the same results. A possible discrepancy in the WKB 

approximation will be discussed in an appendix. 

MinnajaSk and the present author attempt to calculate 

the eigenvalues more exactly for an infinite potential 'trail at the 

boundaries of the box, and show that the crude boundary condition 

applied by Landau gives values for Z(E,H) that are really very close 

to what would be obtained by an exact solution of the boundary value 

problem with an infinite wall. 

The present paper presents a general method for taking 

explicit account of the effects of the wall of the box on the free 

electron diamagnetism in terms of the functional dependence of the 

energy eigenvalues on the position of the orbital center relative to 
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the walls. These eigenvalues are then used to calculate the number 

of states* Z(E,H), in quantum number space with energy less than 

E, by means of the Euler-Maclaurin expansion. Using Fermi 

statistics, the Helmholtz free energy, F, is calculated from Z(E,H). 

The magnetization and the susceptibility then follow directly from 

the free energy. 

Consideration of the free electron case permits good 

approximate calculations which may be extended to more realistic 

models which would consider the effects of (a) the lattice field, 

(b) the Coulomb interaction between the electrons, (c) collisions 

of the electrons with phonons and with impurities, and (d) the 

scattering properties of the surface. 



DEMMmATION OF EIGENVALUES 

The simplest and most direct way to calculate the effect 

of the boundary on the susceptibility, ^ , of a system of free electrons 

in a magnetic field, H, comes from the statistical mechanical relation 

between the magnetization, 

M = 

and 1die Helmholtz free energy, 

F = N y — J~o ^ + Q'te-yi/Kr • 

The Fermi energy, ^, is defined either in terns of the total number 

of electrons in the system, 

N = r~m . i— dE J0 (C5E/H 1 +e(
e-'?)/Kr 

or by the relation 

(if) T.V.M = ° 

which are equivalent statements. 

The above definition of the magnetization in terms of the 

free energy is equivalent to the definition in terms of the individual 

magnetic moments of the electron states* To show this, write 

we have 

M = 

We may also write 

/**) 
Vo>H E 

 1 olE. 

o> EJrt V, H \O>H/T,V,2 

but /5|) cAE is just the density of states function used to transform 
IC5E/T(V,H 
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the situ to an integral, so that 

^  L. 
M = ; V «$ H /t,v 1 + eCBi-?)/kr 

The number of states, Z(E,H), below an energy, E, is 

obtained by summing all those electron eigenstates in quantum number 

space with an energy less than E in a magnetic field, H. The required 

energy eigenstates come from the solutions of the SchrSdinger equation 

for a free electron in a magnetic field when the appropriate boundary 

conditions on the electron wave functions are considered* 

In order to solve the SchrBdinger equation, the Hamiltonian 

of an electron in an electromagnetic field may be written 

°H (?«?»*) - [ P “ §£(?•*)]' + & <?(?.*) 
in Gaussian units. In a more realistic model the potential, would 

include Idle periodic lattice field as well as other effects. Here, 

the potential is assumed to he zero everywhere except outside the box 

in the x-direction where it Is infinite, that is, 

• 1X1 x C?»fc) —■*°° 1X1 > U. 

A uniform magnetic field, H, along the z-direction may 

be obtained without loss of generality by choosing the vector 

potential, 

A (V.*) = (o,Hx,oV 

The relation between magnetic induction and the vector potential, 

B - V*A 
then yields the external induction 

B. = * H 
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as required. The electrons themselves contribute a teim, y\\ , to 

the internal induction 

B' = H ( 1 + HTT X ) 

The susceptibility, , is of the order of 1o“
fc
cgs units, thus this 

contribution is neglected here, although Mnhard
2
® and Klein

2
? 

consider this question some in detail. 

By replacing the momentum, p, by its equivalent quantum 

mechanical operator, & , the classical Hamiltonian is taken over into 

quantum mechanics as the Schrbdinger equation for energy characteristic 

states as follow? 

This equation may be separated by choosing solutions of the following 

form: 

utx) e + iKxZ . 

Solutions of this type permit periodic boundary conditions to be 

applied in the y,z-directions with propagation vector components 

U - 3JLL K
S “ La. K* = 

where l,m are integers.
2
® The equation for U(x) then becomes 

0- [*#•?- Ki - 0,-^*n U = o 
which is the equation for a simple harmonic oscillator with center 

at *>=H ^ • ®“80lutl0ns of tMsequation nust then BatlEfy 

the applied boundary conditions, the simplest of which are that the 

solutions, tl(x), be zero at the boundary,
2
9 that is, 

UCX) = O a X = +% , . 
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To facilitate the mathematical consideration of this 

problem, perform the following transformations* 

t c 
e H k 

X 
z 

where ^ = et/wc is the Bohr magneton and 

5The sign of t (Greek Zeta) is chosen so that the eigenvalues, > 

can be expressed in terms of the variables 

2* 

■which are proportional to the distance of the center of the electron 

orbit, XQ, from the respective boundaries, +- *£ , and - . After 

making the required transformation, the resulting equation is 

^Ujr- + (A-^)UU)=O. 

57he boundary conditions usually applied to the harmonic oscillator 

equation require that the solutions, U^C
5
?), approach zero as X 

approaches plus or minus infinity. 57his is equivalent to requiring 

that 

- 60 •» tx 

that is, that the center of the electron orbit be far from, both 

boundaries. These solutions are obtained by transforming to a new 

dependent variable 

V (- uc*f) e.
5 ^ 

The derivatives are 

.iyJ 
u' = (N/'- ) e ^ 

and 
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Thus 

U" = (v" - ?xv - v) e'*^1 

a" + (x- *x)u = o 
transforms to 

V" - 2 v / + C A-1) V = O 

among whose solutions are the Hermite polynomials, with 

eigenvalues, ;\= *n + 1 . Thus for a box which is inf initely large in 

the x-direction (such that 1^ approaches infinity and XQ approaches 

zero, because x© must be far from either boundary), the proper 

orthonormal election wave functions are 

U»«) = f 2«»l VifT* e-»?' 

For a box that is large but finite in the x-direction, the set of 

zero-order eigenvalues {w+i} approximate the actual eigenvalues, 3° 

Piv , extremely well, as long as the distance from the center of the 

electron orbit, XQ, to either boundary, X- , is much greater than 

the classical radius of the electron orbit, Y = , Since the 

electron wave function has an inflection point, u" = O , at the radius 

of the electron orbit, it is sufficient to require that the inflection 

point lie well inside the boundary. This is equivalent to the 

conditions 

A- » o a A - £** > > o . 

The solutions proportional to the Hermite polynomials are also the 

correct ones whenever the boundary of the box happens to fall exactly 

on a zero of a Hermite polynomial, since the condition that 
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u» l1) = o 

at the boundary is satisfied. A graph of the behavior of the 

eigenvalues, Av(^o) , as a function of the boundary parameter, r*. (the 

position of the center relative to the boundary) may be constructed 

from a table of the zeros of the Hermlte polynomials, 31 which are 

circled in the graph (Figure l). Only within the graph of the 

classical turning points, there any great deviation from 

the zero-order eigenvalues.^ 

Further solutions of the equation 

U " + ( >.- f’') U = O 

are obtained by transforming to the independent variable 

* - 

The derivatives are 

dV _ clV dg _ , adv 
dr ~ dr dir ~ 

and 

sfL = £xi±l)\ sLY _ M.T + 2. 
oir* 4r'[cLxJ

+
 dt dTf - 4Tdt»+ df 

Thus 

^ s* + UM)V. o 

transforms to 

+ <■*- - (^)v = o. 

The confluent hypergeometric equation33 

- (*-
z

)£i- *■ 
F
 = o 

is satisfied by the functions 

«P, («;*«*> = 
1 +
 ?

2 +
 '• 
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and 

Z1"* iM**- jr+lja-JfiZ). 

Thus the general solution of 

U"+ (A-*a)u = o 

may he written as 

U*C?) = e'^’f ?‘) + < 

The two constants A and B permit the function to satisfy two 

independent boundary conditions*3^ 

For simplicity, the box is treated as if it were a 

potential well in the x-direction with the potential growing to 

Infinity outside the boundaries at x = ± ^ , so that the electron 

wave function, U^(T), must be zero outside the box. Thus the 

boundary conditions are 

U*( X.) - O a U* (*;) = o 
that is, 

A iF< (1"5f; k s O + t. B,F, i J O = o 
and 

A,F, i: rn * r, B,F,C3-^-, a .• o = o 

two homogeneous algebraic equations in the two constants A and B. 

The negative of the ratio of the coefficients yields 

__A_ _ Xo 1F1 j3> » • XL ) X, *FV (^HT ; ir; X* ) 

a transendental equation for the eigenvalues, Ay (S’.,?*,), in terms of 

the two voundary parameters X* and 2^ # 
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A further simplification results if the assuraption35 is 

made that the length* Iq, of the hox in the x-direetlon and the 

magnetic field, B, are large enough so that any electron feels the 

influence of only one boundary at a time, that is 

L, > Y wv«x = 

uhere >2 the Fermi energy, about 10 eV. This is equivalent to the 

box being larger than the diameter of the biggest electron orbit, or 

(?,-?■)’ = |?U, l/Vve.* » 

Since both boundaries influence the eigenvalues, ,Y, )* in the 

same way, it is sufficient to consider the electron center, XQ, as 

being close to only one boundary, say, x- + ^. Thus may be 

treated as if it were very large uhile is small in comparison. 

The asymptotic expansion of the confluent hypergeometric function 

gives 

iF< (*;*,•*> - e2 x*'* { 1 + OCMl.z-- 

thus as , 

rw 

and 
^ tiC) - 

- *+
1 

X 

so that 

*,*(»?, *.*.*> ~ r; 

-A ~ r(V») rt*S)/r(aO 
This choice of - A makes the electron wave function go to sero as 

B 

approaches negative infinity, that is 

U*(?) O; * 



“ ik — 

The eigenvalue equation then becomes 

rc4*) =o 

and the electron wave functions may he written as 

i. !--\ .1_~jr*Vf r / 1 >»») Zrtk) r p-A B v*) l IU(T) -ce ^ p(*-*.j 1 w1 *+ •» *•>* / 1^1 \ -H i ». > ’y./ j 

which is proportional to the Weber function^ 
. _i*» f -^TT C /_ P 1 zl\ zVoTf F' (IzI. 2. . zM 1 ,tp 

Dp(z} = e **■ 1 r(lzf) '
1 v. x i a »T J p(-p/SLj 1 i

 \ *- » X i a / | * 

where A=ip+1 and z=TVx, which satisfies the Weber equation 

^Dp(») + CP
4
± ~ ) ^f(

2
) = O . 

The eigenvalue equation above is equivalent to finding the zeros of 

the Weber function, DP(*>-0, which may be done numerically in a 

number of different ways. 

This is the crux of the problem because there is no known3? 

explicit expression for the eigenvalues, Av( ?»), as a function of the 

boundary parameter, Z*> or for thezeros, Z, of the Weber function 

in terms of the parameter, p. In this paper* an approximation is 

used which is comparatively close to the actual eigenvalues. The 

eigenvalues may be calculated numerically from the eigenvalue equation 

above, or the asymptotic expansions^ of the Weber functions may be 

used to obtain approximate results* For the electron orbit center, 

XQ, outside the box, that is, for positive values of j£, the 

asymptotic expansion is 

UA(<o) ~ e~ f 1 - 4. CA-Q(^-3)CX-S-HX-7^ ) 

The implicit equation for the eigenvalues in terms of the boundary 

parameter, 
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•J - (*--n ( X-Sl . (n»1H\-iUA-5-HV7) 

is asymptotic in the sense that if a finite number of terms are 

retained, the roots,of the resulting polynomial approximate the 

required eigenvalues to a certain accuracy which increases as the 

boundary parameter* , goes to infinity or as the eigenvalues 

approach an odd integer (corresponding to the Semite polynomial 

eigenvalues) but decreases, as moire terms are: used in the polynomial.39 

If the eigenvalue is an odd integer, the implicit equation terminates 

to a polynomial which is equivalent to a Hermite polynomial of the 

same eigenvalue# The implicit equation gives good results for 

x when the approximation is terminated after the t-th tern. 

The (t+l)-th term then gives an estimate of the error while the sum 

of the following terms diverges. 1 , 

For large negative values of &, that is, for the center 

of the electron orbit well inside the boundary, the asymptotic 

expansion of the Weber function is 

- ^ l • 
Using the fact that XS>- x-a.v-1 will be small in comparison to unity, 

set U*(?°o) = 0 and approximate 

pM-X\ — pf _y_ s') ~ - -~1-- — —a C~— 

Using only the first term in each of the brackets, an approximation110 

to the eigenvalues 

~ + 1 4 /NJ 

viVaF 
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is obtained which'Is good fear f0 <c -Vjew+T. Uhls approximation is 

asymptotic in the same sense as thie preceding# 

/ 

t 1 . ; 

* 



GAICULATION OP THE NUMBER <F STATES, Z(E,H) 

Now calculate the number of states, Z(E,H), below an 

energy, E, by counting the number of points in quantum number space, 

( ,Ky,Kz), contained in the volume bounded by the constant energy 

surface 

^ 4- 

(an inverted parabolic cylinder with its axis parallel to Ky), and 

the Ky,Kz-plane. The quantum states will lie on the eigenvalue 

surfaces, Av (fo), and are uniformly distributed when projected on 

the Ky,Kz-plaae. Since LQ and L3 are relatively large, the sums over Ky 

and Kg may be approximated by integrals.^ Therefore, a good approx¬ 

imation to the required total number of states, Z(E,H), is obtained 

by summing over the index, V, all the areas (projected on the 

KyjKjj-plane) enclosed by the intersection of the eigenvalue surfaces 

with the constant energy cylinders, as illustrated in Figure II. If 

the stsa over V were replaced by an integral, then there would be no 

magnetic effect whatsoever,^ because it is contained entirely in 

the terms which give the difference between the sum and the integral 

over quantum numbers. 

The intersection of the constant energy surface 

E-JAH Vii 

with the eigenvalue surfaces, Xy«o), is obtained by solving for 

the variable 

Kz ~ VE - JUH 

The boundary parameter 



"
a

*
 

Figure II 

) 

> 
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depends on Ky, as does the eigenvalue curves 

/Vi? C *o\  (. kvj) 
Rnd 

VAXo) — k,CK^. 

The area enclosed by the intersection when projected on the Ky,Kz-plane 

is obtained by taking the real part of the Integral of the function 

is then obtained by multiplying the area, A, by the density of 

the index, V, with a factor of ^ because the area, A, refers to 

only one quadrant. Only the real part, (3? a , of the complex quantity 

in the brackets is of physical interest since this represents possible 

states in quantum number space. Elimination of the imaginary 

contribution is accomplished by steaming v* and integrating Ky over 

such ranges as the radical remains real, that is, 

{ K -MH >1 O . 

The notation and computation is simplified by choosing 

dimensionless variables as follows: 

KX(K^ - VET"- ' 

with respect to Ky from zero to infinity, 

The number of states function, 

ZCET.H) = 4 Re (ft, 
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The number of states function may then he written as 

"VUC. * 
Three approximations to the eigenvalue curves, Av> (£) , 

will he considered. In order to obtain the major terms in each of 

these approximations, the sum over the index, v* , will he replaced 

by the Euler expansion^ as follows: 

where a and h are not necessarily integers. 

In the first approximation, Landau assumed only that 

the center of the electron orhit, XQ, must remain inside the 

boundaries at x=±^, that is, ?£wcax=o , and that the eigenvalues 

are constant xv>+i , independent of the boundary parameter. 

This gives for the number of states 

Z,0=H) - g- St* [ } 

The sum may he approximated as follows: 

■yj-E-a.v-11 •=. cix — -5^ 3^ (s-x) 1 | o ■+.. 
vxe-!4 

l7 = c 

= ^ t*0“* *... 

The contribution at the tipper limit in the approximation is pure 

imaginary and is therefore neglected. Thus the Landau approximation 

to the number of states may he written as 

*.(«.to = iasMMtS/*{W -drew)-'**...}. 
The second approximation^ suggests that since the 

eigenvalues increase as the orbit center approaches the boundary, 
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the electron states are# in effect* pushed away from the boundary* 

This situation may be represented by allowing the eigenvalues to 

remain constant* as in the landau approximation* but requiring 

that no electron state shall be allowed within same fraction of the 

classical radius from the boundary* that is* ^ v*«x = - Vav+i . The 

electron states which would have been in the boundary region are 

replaced at the top of the electron sea effectively raising the 

Fermi level. This type of approximation yields a number of states 

function as follows: 

(Se f i 

g-y £- 
== f ^ iE. 

2-TTx Vfte./ I Vso 

She first sm is identical to the landau approximation* irhile the 

second sum is approximated as tolXomt 

}. 

   , r t*Vx g >/«-3.v-Tv/XvTr - -2. Je Vs^xSET lx + .. . 

Only the integral approximation to the sum is retained in this case 

since only the major correction term is desired* which is then multiplied 

by a factor ^J^rH which is of the order of 10'^when Li~l cm and 

H ~ -to1*gauss* If the transformation x= e is made and the 

imaginary contribution neglected, then the integral becomes 

fo «-y'
A
 4

,A
ol^ ^ ae

x
 "

C8/>
pfj

C
)
3A)
 = ^ 

£X
 • 

Therefore the second approximation to the number of states function is 

Z,W,H) = {W/*-ibc«>-v‘- S.JI 
In the third approximation* an attempt is made to 

represent the actual eigenvalue curves* Av(-?*0), by assuming that 
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tlie eigenvalues are essentially constant, k?i?f0) = xv + 1 , up to the 

point - -V*v+7 and are close to the function : 

^ ( #>) = 7.V -M +■ C’?T.'+>®F+T)X 

for It . The number of states function is then given by 

the following 

r oo r r-vaw+1' r 
- V5L97T’ • 

Vxt-lV-1 -T<*o-+ VaVtV) 

*+T 

The first integral is identical to that of the second approximation. 

By transforming to the variable 

y - (?a +'{iv*4 )V (a e-i.v-1) = 1 V*£-xv-i' y"l/i d.^ 

the second integral becomes 

•i(x£-xv-t) /0
1 dl^= 1 (xe-xv-1 ) ni34ir(4) 

The sum of this term may then be approximated by an integral as 

follows t 
pfc TYX 

Uz-xv-O = a I ce-*> dx =• £
a
- A 

J a 

PC-) 

V<£-K 

V=o 

Thus the number of states function is 

Z,(«.H)« W(?S)Uiil»*^-*lxirK -TZM+-\ 
where the S' contributions from the two integrals have cancelled 

identically, leaving only a very small contribution which is 

independent of £. This result indicates that the landau approximation 

is remarkably good considering its simplicity. 

The magnetization is 

ki r~(£Z) 1 ,-i p 
H = Jo UH;T,V,H 1 + ete-f)/»c

T 

Substituting €-'E/XPLWJ the number of states functions became 
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zaM) = { MI^AW^HV *n-] 
z^e.H) = ^ £J1H *...}. 

The three approximations are taken together to show the parallel 

development. The partial differentials of the number of states„ ... 

functions with respect to the magnetic field are therefore 

{££.] — - L|UxU3 f&-)
3/x
 GSTH + .. 

1<*H/T,V,W ” ■ X*tTT' 'J B ‘ 

. #W = - fe)v‘{ iJf H “ TC>(9 1 
(&U =- • 

The temperature-independent contribution to the boundary effect is 

Indicated by the zero-temperature approximation,^ so that the Fermi 

function, 

-1 
|(f) " 1+: elf-yi/HT 

may be represented by a step function, that is 

B > f (£) = 1 B*-\ ^ f (. B) =-o 

Therefore the magnetizations are written as 

M' = - V4 H /".V* JB =■ - 

, M.= - \ 

M» = - + iErJ? ■?} . 

Therefore, the susceptibilities per unit volume are 

% = (£)’4 ^ 

X. = t $ = - rW ^ ~ Sj? (2) * 1 
X3 = ts* - - TV* ^ - i. 

Therefore, the first term is the landau diamagnetic term 
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X,'~ -■ 1xTTa i\ 

or If the first approximation to 

XVH 

is substituted, the result is 

X 
I -a -a. W> (faTr^MV/q 

~ 3 }*■ { V ) 

The correction terms in the latter approximations have the correct 

qualitative dependence on the size of the box and on the magnetic 

field that one -would expect, that is, the correction terms get 

larger as the box gets smaller and also as the magnetic field 

decreases because of the dependence on Vi and ]/n . These 

approximations are valid only in the case of very high fields. 

Landau* s work is rigorously correct in the case of infinite magnetic field 

while the correction terras derived here are attempts to evaluate the 

deviations for finite fields. It is questionable whether the 

correction terms have any physical significance^ since it appears 

that they are results of the approximations used and not of any real, 

observable effect. 

**■**«•*****•**#*#■&*****•*#***** * * * # * * # 

I would like to acknowledge the help and encouragement 

that Dr. ¥. V. Houston has given to me by suggesting this problem and 

assisting me in all phases of its development. 



Appendix I s Comments 

She majority of the papers listed in the notes are on 

deposite in Physics Department HeapsLibrary at Rice University under 

the title, "Photocopies of papers related to the 'boundary effect on 

the diamagnetism of free electrons. •* 

Papers of historical interest are recorded in Rotes 6 

end 47. Since these papers are rarely referred to in the literature, 

it is felt advisable to note them here so that they may not be 

overlooked. 

Several of the latter reviews on tie subject of the 

electron theory of metals are recorded in Rote 48. 

Only a sample of the extensive russian literature on this 

subject is recorded in Rotes 21 and 49. 
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Appendix II : MB Approximation 

It is the purpose of the appendix to point out a possible 

discrepancy in the usual applications of the MB approximation to the 

calculation of the boundary effect on free electron diamagnetism. She 

eigenvalue curves calculated from the MB approximation, shown in 

Figure III, give an excellent approximation to the actual eigenvalue 

curves on the right-hand side of the graph. But the MB approximation 

gets -worse and worse as one goes to the left-hand side of the graph, 

until Idle MB curves terminate at the inner classical turning point 

with zero slope and infinite higher derivatives. All the workers who 

use the MB approximation (see p.4) then asrne that the eigenvalues 

are constant to the left of the inner classical turning point and 

essentially ignore the gap in the eigenvalue curves which gives rise 

to a correction to the magnetization proportional to H'^the 

reciprocal of the cube root of the magnetic field. Dingle (Note 19, 

paper VI, p.468) uses the curves as shown and obtains a positive 

contribution to the magnetization, that is, a paramagnetic correction 

to the susceptibility. Steele23 essentially moves the eigenvalue curves 

down bodity until they join onto the constant eigenvalue curves at 

the inner classical turning point and obtains a negative contribution 

to the magnetization or a diamagnetic correction to the susceptibility. 

Ham?0 includes a factor*, ck, which essentially moves the curves up 

or down at will. Dingle’s results are Obtained when <x = \and 
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Steel’s -when oc= V* *' ■ Ham shows a graph of the eigenvalues (Note 20, 

Figure I, p«1115) equivalent to those used "by Steele in his 

calculations* Ilfshitz and Kosyvlch21 use other variahle parameters besides 

the one equivalent to Horn’s huh using a different approach they 

obtain results identical to those of Ham when the proper values of 

the parameters are uOed* ; 



BouwcAat'y Parawtler 

Figura I11 
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