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ABSTRACT
ON THE DIAMAGNETISM OF FREE ELECTRONS

The effect of proximity to en infinite potential
wall boundary on the eigenvalues of single particle free
electron states in a magnetic field is calculated. A general
method for calculetling the number of states below a specified
energy is described and the diamsgnetic susceptlibility is
calculated for three approximations., It is found that the
Iandau approximation gives surprisingly good resulis
considering its simplicity. A classification of much of
the important work in this subject is presented in the
introduction, and 'a possible discrepancy in the usual
applications of the WKB approximation is discussed in an

appendix.
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THE DIAMAGNETISM OF FREE ELECTRONS

INTRODUCTION

How can the effect of the boundaries on the free electron
dismagnetism be calculated? Bohrt and ven Ieeuwen? have shown that
classical statbistical mechanics gives no magnetic behavior for a
free electron gas. In any finite container the magnetic moment
of a1l the electrons whose orbits are entirely inside the box exacily
cancels an equal and opposite magnetic moment due to those electrons
vhose orbits intersect the boundaries.3 Thus the effect of the
boundary seems to be quite important in determining the behavior of
a free electron gas. Iu fact, if the boundary is not considered
properly, an erroneously large diamagnetism results, which in several
cases has been interpreted as an explanation for the Meissner effect
associated with super conductivity.l‘ However, Iandau’ found that
since the orbital motion of the electron in a magnetic field is
periodie, the component of the energy in the plane normal to the
Tield is quantized in units of 2uH vhere u=eh/amc is the Bohr
magneton. This quantizetion of the energy led to only a small
diamagnetism when the boundary conditions were chosen so that the
centers of the electron orbits are required to remain inside a lerge,
but finite container,

Landsu's treatment of the boundary conditions seemed so
crude that meny other attempts were made to improve the accuracy of

his xmrk.6 Essentially two different approaches were used for the
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calculation of the magnetization of a system of free electréns
obeying Fermi statistics confined in a finite box. The first defines
the magnetization in terms of the megnetic moment due to the current
density at each point in the container. Teller,T van Vieck,S
Papapetrou,9 and Iinhardl© use this approach by computing the net
current at each point in the container. This superposition of currents
from the different states gives zero at all points far from the walls.
It also gives zero near the wall if classical statist:l.cé is used |
and the electrons are allowed a continuous range of energy. However,
the discrete allowed energies of quantum statistical mechanics,
with careful consideration of the electrons striking the boundaries,
leads to the smell but finite "Landau” diamagnetism. The difficulty of
the first approach resolves itself into the determination of the
wveve fumctions and the corresponding currents near the walls, vwhereas
the second approach requires only the energy eigenvalues.

Most workers have chosen the second approach using the

magneftization

SE: 1
M = 21 (—a_ﬁ) 1+ e LEi=-2)/KT

computed by means of the Helmholtz free energy,

- = 1
F = N’Z - .C Z(EH) 1 + elE-I7%T o E

through the relation,

M= - g—s_)r,v :

The essential difficuliy of this method lies in the calculation of
the function, Z(E,H), the number of single particle states in the
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system felow an energy, E, for a magnetic field, H, which appears in
the free energy. The operator methods of Peierls ;11 and Sednz and
O'Rourke,12 snd the density-matrix approach of Sondheimer end Wilsonl3
iﬁxprove the calculation of the sum and arrive at expressions for the
function, Z(E,H), which are exact in the mathematical sense that no
other approximatiﬁns are used other than the assumption that the
Landsu boundery condition or its equivalent is valid. In these
calculations, there is no convenient way of considering any but the
simple_st boundary conditions.

The most direct approach to the influence of various types
of boundary conditions on the electrons near the walls of the box
requires the eigenvalues of the solutions of the SchrBdinger
equation for a free electron in a megnetic field with'the bouwdary
conditions on the electron wave functlons given at the edges of the
box. The number of states function, Z(E,H), is then found by
suming over the eigenvalues in the whole range of possible quantum
numbers prescribed by the boundary conditions.

Landau achieved this result by assuming that the
eigenvalues do not depend on the position of the center of the
electron orbit with respect to the boundary, requiring only that
the centers remain inside the box. (This condition or its
equivalent is irherent in the work of all the previously mentioned
authors), The first two terms of an Euler-Maclawrin expansionlu vere

used to approximate the sum over quantum numbers in obtaining the
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constant **I.s.ndau" diamagnetism; whose magnitude turns out to be
exactly one-third the Paul spin paramagnetism,1? Landau and
Peierlsl6 later applied the Poisson summation formula*T 4o the sum
over guantum numbers in the calculation of the fumction, Z(E,H), and
obtaiﬁed an oscillatory behavior which is qualitetively similer to
that observed experimentally by de Heas and ven Alphen;la

Dingle,19 Ham,2°v and Iifshitz end Kosyvich2l use the
WKB approximation to £ind the eigenvalues as a funection of the |
position of the electron orbital center with respect to the boundary,
the magnetic field, and the quantun numbers, and then used the
Poisson summation formula to evaluate Z(E,H). Osborne®2 and Steele®3
use the WKB approximation and number theoretical methods to obtain
essentially the same results. A possible discrepancy in the WKB
approximation will be discussed in an appendix.

Minnaje24 and the present author attempt to calculate
the eigenvelues more exactly for an infinite potential wall at the
boundaries of the box, and show that the crude bvoundary condition
applied by landau gives values for Z(E,H) thet are really very close
to wvhat would be obtained by an exact solution of the boundary value
problem with an infinite wall,

The present paper presents a general method for teking
explicit account of the effects of the wall of the box on the free
electron diamagnetism in terms of the functlonal dependence of the

energy elgenvalues on the position of the orbital center relative to



the walls. These eigenvalues are then used to calculate the number
of states, Z(E,H), in quantum number space with energy less than

E, by means of the Euler-Maclaurin expansion. Using Fermi
statistics, the Helmholtz free energy, F, is calculated from Z(E,H).
The magnetization and the susceptibility then follow directly from
the free energy.

Consideration of the free electron case permits good
approximste calculations which may be extended to more realistic
models which would consider the effects of (a) the lattice field,
(b) the Coulomb interaction between the electrons, (c) collisions
of the electrons with phonons and with impurities, and (d) the

scattering properties of the surface.



DETERMINATION OF EIGENVALUES

The simplest and most direct way to calculate the effect
of the boundary on the susceptibility, X , of a system of free electrons
in & magnetic fleld, H, comes from the statistical mechanical relation
between the magnetization,

M= = (Skh,
and the Helwholtz free energy,
F = Np - fw:z(EH)T,r—é-};mT—O\E

The Fermi energy, VE is defined either in terms of 'bhe total number
of elactrons in the system,25

N dE

i
h
@Tﬁ

H o1+ e(E-RukT

{o%:)r,v,n =0

which are equivalent statements.

or by the relation

The above definition of the magnetization in terms of the
free energy is equivalent to the definition in terms of the individual

magnetic moments of the electron states. To show this, write

= - () — [2F _ [3F 39
M (éH TV (&\*)T,V,Q (c)*z)-r.v,n (éH )'r.v
but since
oF _
(‘97)T,V,H =0
we have
= - (3) f ] o E
M = (AH Ty H Tve 1+e (BT ‘
We may also write
2 = - [32Z oF
(QH)T.V.E - (&E)T,V.H (&H)T.V.Z

but (j’é‘) dE. is Just the density of states function used to transform

Tl!

-



the sum to an integral, so that
_SE; 1
M = 2: (aH)T,v 1+ e (Ei-717kT

The number of states, Z(B,H), below an energy, E, is
obtained by summing all those electron eigenstates in quantum number
space with an energy less then E in a magnetic f£ield, H. The required
energy eigenstates come from the solutions of the Schrdinger equation
for a free electron in a magnetic field vwhen the appropriate boundary
conditions on the electron wave functions are considered,

In order to solve the Schr¥dinger equation, the Hamiltonian
of an electron in an electromagnetic field may be written

H(Ft) = & [F- &R @EHDT + e P@E.¢)
in Goussisn wnits: In & more reslistic model the potential, <P, would
include the periodic latbice :E‘iei_d as well as other effects, Here,
the potential is assumed to be Zei'o everyvhere except outside the box
in the x~direction where it is infinite, that is,

D(Fit)—o= x| > &L

2 *

R@E =0 Ix< Lk

A uniform magnetic field, H, along the z~direction may
be obtained without loss of generality by choosing the vector
potential,

K(Etb;'t) = (o, Hx,OB.
The relation between magnetic induection and the vector potential,
B = VY« A

then yields the extermal induction



as required. The electrons themselves contribute a term, XH » Lo
the internal induction

B’ = H (1+#TX)
The susceptibility, X', is of the order of 10"’cgs units, thus this
contribution is neglected here, although Linhard26 and Klein27
consider this question scme in detail,

By replacing the momentum, p, by its equivalent quantum
mechanical operator, % aa—? , the classical Hamiltonian is taken over into
quantum mechanics as the Schrtdinger equation for energy characteristic
states as follows: ‘

Ne=-R[ S (H-igter 8] = Fe
This equation may be separated by choosing solutions of the following
forms
W(x,gz)= ux) e ¥+ X2
Solutions of this type permit periodlic boundary conditions to be

applied in the y,z-directions with propagation vector components

- 2Tl _ 2T
Ky = T10 , RKz= 5=

vhere 1l,m are integers.2® The equation for U(x) then Becomes
Sl [AmE- k2 - (k- La) ]u =

vhich is the equation for a simple harmonic oscillator with center

at Xo= é—:—t K‘S' The solutions of this equation must then satisfy

the spplied boundary conditions; the simplest of vhich are that the

solutions, U(x), be zero at the boundary,2? that is,

ux) = o xX=+k -k

> 2 °
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To facilitate the mathematical consideration of this

problem, perform the follgwing transformations:

A= E - kel
where y = ek/amc is the Bohr magneton and

Z = [ef(%-x),
The sign of < (Greek Zeta) is chosen so that the eigenvalues, Ay ,
can be expressed in terms of the varisbles
Z = f(x-%) | 3= JE (s )

vhich are proportional to the distance of the center of the electron
orbit, X9, from the respective boundaries, + 2 s and ~ l;:' » After

maeking the required transformation, the resulting equation is

d*ul?y)
o ¥

The boundary conditions usually applied to the harmonic oscillator

+ (A =-2Z2*)u(%) =0 .

equation require that the solutions, U,(%¥), approach zero as Z
approaches plus or minus infinity. This is equivalent to requiring
that |
gz —— - O > Z , —» + o0
that is, that the center of the electron orbit be far from both
voundaries., These solubions are obtained by transforming to a new
dependent variable
L 2%
V(Z) = ul®) e*
The derivatives are
) 2
W = (V'—= 2Zv) e~ =%

and



U’ = (V” - 2€V'+ 2>V - v)e-3%

u”+ (a- 2*)u =0
transforms to

v’ - 2%V’  + (A-1) V=0
among whose solutions are the Hermite polynomials, Hu(®), with
eigenvalues, A= 2n+1. Thus for a box which is infinitely large in
the x-direction (such that Iy approaches infinity and x, approaches
zero, because Xp must be far from either boundary), the proper
orthonormal electron wave functions aré _

UALZ) = (2"nwivE] T e 2% HalZ).

For a box that is large but finite in the x-direction, the set of
zero-order eigenvelues {sz(} approximate the actual eigenvalues ,30
Ay » extremely well, as long as the distance from the center of the
electron orbit, xg, to either boundary, x=*% , is much greater than

2,

the classical radius of the electron orbit, v = ¥, Since the

electron wave function has en inflection point;, (“= 0 , at the radius
of the electron orbit, it is sufficient to require that the inflection
point lie well inside the boundasry. This is equivalent to the
conditions

A= T >> o A-%>>0 .
The solutions proportionsl to the Hermite polynomials are also the
correct ones whenever the boundary of the box happens to fall exactly

on a zero of a Hermite polynomial, since the condition that



‘ Ur(%) =0
at the boundary is sa.tisi‘ied. A graph of the behavior of the

eigenvalues, 2,(1’0) , 88 a functlon of “the bounda.ry parameter, Z’ (the
position of ‘the center relative to the 'boundary) may be constructed
from & table of the zeros of the Hermite polynomials,3l which are
circled in the greph (Figure I). Only within the greph of the
classical turning points, A= z,*, is there any great deviation from
the zero-ordér 453:lgkgerma,:!.t:!:es.32 | ‘ o

Further solutions of the equa.tien

U’+ (a- >y u= 0

are obtained by transforming to the independent variable

The derivatives are
dv _ dvdE Ldy
dz T dyaz = 2¥igy
and.
d*V _ dMVdEy . dy dPh d*V oV
A = olr(d—;')"' df oI = ¥y T L4y
Thus

d:‘~22‘°lv+ (a-1)V=0

transforms o
§d§-z -+ (.—%" ?)% - (L'i‘)\/‘—‘o
The confluent hypergeometric equation33
z &°F
dz?*
is satisfied by the functions

+ (X-Z)&E-— o F = O

=4 o (4) 2%
.Y = + Z 4 =X)L,
F‘1 (e¢; ¥; Z) 1 3 T TR
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and
21V (Fy (- ¥at52-352)
Thus the general solution of
u” + (A~ U =0
maey be written as
Ua (%) = e-{za{ AR 45 2%) + 2 B4R (332, 3.:2‘1)}.

The two constants A and B permit the function to satisfy two
independent boundary conditions.34

For simplicity, the box is treated as If it were a
potential well in the x~direction with the potential growing to
infinity outside the bounderies st X =* 3 , 80 that the electron
vave function, U,(7), must be zero outside the box. Thus the
boundery conditions are

Un(ZN=0 , ux(F=0

that is, S

Ay Fy T»z»Z’)"‘zBR 22 4,20) =0
and

AR (SR 5,2 « 2B FR (2,88 =0
two homogeneous algebraic equations in the two constents A and B.
The negative of the ratio of the coefficients ylelds |
2R (G335 2:80) _ nRCGE1:4)

1R (2255 30) 1R 1:80)

& transendentel equation for the eigenvalues, X, (%.,%.), in terms of

A
B

the two voundary parameters Z. and %, .
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A further simplification results if the assumption3d is
mede that the length, I.l, of the box in the x-direetion and the
ma.gnetic field, H, are large enough so 'bha.t e.ny electron :E‘eels -bhe
influence of only one boundary at a time, tha.t is

L, > Y‘ max = 'e_‘ﬁ T’-_W"T’['
where 7 is the Ferml energy, about 10 eV. This is eq,uivalent to 'bhe
'box being larger than 'bhe diameter cf the biggest electron orbit, or
(Z-%) = P‘”L. > A max

Since ’bcth boundaries influence the eigenvalues, 225 (%,%); in the

same way,; it is sufficient to consa.der the electron center, Xpy @8
| being close to only one bmmﬁary, B8y, x—+"'; Thus &, mey 'be
'trea:ted as if it were very large vhile 2. 1is small in comparison.
The asmtotzc expanaion of the confluent hypergeometric function
gives

(Fo(59;2) ~ rr—:%—)) e* z* [ 1+ O(Va)l z—=e=,

thus as Z\*—co0,

- Y A+
VPO ke~ T o T

. T (22)
Z R(32,2,20) ~ TCA) 27 ey
1\ T F(%}) e 7:|
s0 that

~ 8~ TR TR/ TR T2,
This choice o ——AB makes the electron wave function go to zero as
gpproaches negative infinity, that is

u?\(z)_’o) Z‘—'—‘-M.
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The eigenvalue eguation then becomes

F52) (R (254 22) - 28 TER)R(R2:3,20) =0

il

and the electron wave functlons may bhe written as

2 3/.) £ - 2
u?\(z) =ce—-|£z rr(g—/’\) 1F1 TQ— J 3-0 g‘) Z(':(A/))"H (3-‘?; -E_.)' Z) }

which is proportional to the Weber function3®

Delz) = e"""rz‘{r*(_r)tﬁ( ?.‘,"iséi) - ,,zﬁ;) F1(1; ;%;g)}w

vhere A=2p+1 and Z2=%Vx, which satisfies the Weber equation

& Delx) + (prd — k=) Dp() =
The eigenvalue equation sbove is equivalent to finding the zeros of
the Weber funetion, Dp(2z)=0, vhich may be done numericelly in a
aunber of different ways.

This is the crux of the problem because there is no knmm37
explicit expression for the eigenvalues, Xy(%,), as a function of the
boumdary parameter, 7., or for thezeros, Z, of the Weber fumction
in terms of the parameter, p. In this paper, an approximation is
vsed which is comparatively close to the actual eigenvalues, The
elgenvalues may be calculated numerically from the eigenvalue equation
above, or the asymptotic expansions38 of the Weber functions may be
used to obtain approximate results., For the electron orbit center,
Xos oubside the box, that is, for positive velues of 7., the
asymptotic expansion is

Un(%e) ~v @ 2% 2 { { ~ Q03 (A1) (A-3)(a-5) (A7)

(4%.)* 2L (45)F ’ } .
The implicit equation for the eigenvalues in terms of the boundary

parameter,
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1 - =) (2-3) | (A=A (ASHUAD | = O
CENE TS '

is asymptotic in the sense that if a finite number of ‘texrms are

retained, the roots. of the resulting polynomial spproximate the
required eigenvalues to & certain accuracy which increases as the
boundary pavameter, J., ‘goes to infinity or ds the eigenvelues
approach an odd integer (corresponding_ to the Hermite polynomiel
eigenvalues) bub decreases.as more teims are. used in the polynomial.39
If the eigenvalus iz an odd integér, tﬁe implicit equation terminates
to a polynomial vhich is equivalent to a Hermite polynomial of the.
seme eigenvalue.  The implicit equation gives good resulis for. -
A<dt-1" when the spproximation is terminated after the t~th term.
The (t+1)-th term then gives an estimaté of the error while the sun
of the following terms diverges. .

© For large negative values of ., -that is, for the center
of the electron orbit Wwell inside thé bowmdary, the asymptotic
expansion of the Weber fimetion is.

Lt ot — 2-1)(a-3) A-D(A-DI (A=) (A-T)
Ua(%) ~ e =3 3.7 [ 1 CESEE EIRTE S L

_ YR TR et -2 £a41)(ae3)
F(L;-:*)e 2 exse P73 {11- ET +‘...}.

Using the faet that 28=2-2v-1 will be small in comparison to wity,

set U,(%%)=0 and approximate.

N (=1)” 2 (-pP*!
FI2) = M(-v-8) ~ - 575 = Sy

Using only the first term in each of the brackets, an approximationl*o

t0 the eizenvalues
v+

~ . 2 LV+19 _f:‘
Ap (%) 2v+1 + w_ﬁ\z:l e
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is obtained vwhich 18 good for 7.< -ViverT. This approximstion is

dsymptotic in the ssme sense as the précedingi -
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CAICULATION OF THE NUMBER OF STATES, Z(E,H)

Now calculate the mxzﬁber of states, Z(E,H), below an
energy, E, by counting the number of points in quantum number space,
(2v,KysKz), contained in the volume bounded by the constant energy
surface

E = 2(Z)ul + B k2

aw

(an inverted parabolic eylinder with its axis parallel to Ky), and
the Ky,Kz-plane. The quantum states will lie on the eigenvalue

surfaces, Ay (%), and are wmiformly distributed when projected on
the Ky,Kz-plane., Since Ip and L3 are relatively large, the sums over Ky
and Ky may be approximated by integrals.l‘l Therefore, a good approx=
imation to the required total number of states, Z(E,H), is obtained
by summing over the index, ¥, all the areas (projected on the
Ky,Kz-plane) enclosed by the intersection of the eigenvalue surfaces
with the constant energy cylinders, as illustrated in Figure II. I
the sum over VY were replaced by an integral, then there would be no
magnetic effect vhatsoever,42 because it 1s conmtained entirely in
the terms which give the difference between the sum and the integral
over guantum numbers.

The intersection of the constant energy surface

E= ulap(R) + 2 i

with the elgenvalue surfaces, A, (%.), is obtained by solving for

the variable

Kz = ——-J"_;’:" VE — wH (Y,

The boundary parameter
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il
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Fi"i uvre 11
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-— H ks : ke L.
Z o= Be-b) = Ex- L
depends on Ky, as does the eigenvalue curves
Ap () — v K*j)
and
Ka( %) —= K‘Z(K‘j) .
The area enclosed by the intersection when projected on the KysKgz=plane
is obtained by taking the real part of the iuntegral of the function

Ke (Ky) = B VE - uF0 (ke
with respect to Ky from zero to infinity,
A= Re f Kz (Ky) diy
The number of states function, v
L > * .
ZiEH = 4 BE Re{=, [ BEVEZTRGY diy )
is then obtained by multiplying the area, A, by the density of

states in the Ky- and Ky-directions, ;E-';’,‘. and -;—; » and suming over

the index, V , with a factor of 4 because the area, A, refers to
only one quadrant. Only the real part,(Xe , of the complex quantity
_in the brackets is of physical intevest since this represents possible
states in quantum number space. Elimination of the imaginary
contribution is mccomplished by sunming V and integrating Ky over

such ranges as the radical VE - ulA,(Kky) remains real, that is,

{E—.MH v (k)] = o,
The notation and computation is simplified by choosing

dimensionless variebles as follows:

€= E/2uH | ng\}%;f_%

Ml
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The number of states function may then be written as

Z(EHW) = RR2ep [ = [T R Y, 1.
Three approximations to the eigenvalue curves, Ay (),
will be considered. In order to obtain the major terms in each of
these approximations, the sum over the index, V , will be replaced
by the Euler expansionhﬁ as follows:
gaﬂwf*) = f:”gcxx dx - 2% {00 |oet .
vhere a and b are not necessarily integexs.

In the first approximstion, Iandeu assumed only that
the center of the electron orbit, xp, must remain inside the
boundaries at x=tk, that is, ZZwax=0, and that the eigenvelues
are constant A,(%)= 2v+1 , independent of the boundary parameter,

This gives for the number of states

Z(EH) = LabrsH @, [ = e ff:m.d?l}
E TR

Y=o
3 v‘$~y;
= hpb (i—t)/* = ViE-eT .
The sum may be approximeted as follm\rsz
VeeE-Y E+ i €=V
go Yig-av-i = f; YTJe-xX dx — %i‘;(& X) ...
3 )
= Le)” — g ey

The contribution at the upper limit in the approximation is pure
imaginary and is therefore neglected. Thus the Landau approximation

to the nunber of states may be written as

)
Z (Ew) = B3 (eWPAriagi e e},

The second approximationw* suggests that since the

elgenvalues incyrease as the orbit center approaches the boundary,
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the electron states are, in effect, pushed away from the boundery.
This situation may be represented by allowing the eigenvalues o
remain constant, as in the Iandau approximetion, but reguiring
that no electron state shall be alloved within same fraction of the
classical radius from the boundary, that is, 22 wax = - Vavel . The
electrdn states vhich would have been in the boundery region are
replaced at the top of the electrbn sea effectively ralsing the
Feri level. This type of approximetion yields a number of states
funetion as follows:
Vet
Z,(En) = trael R0 [ éwf LA ]

T RKe
3 B T ey,
- LleLB eH /2 { Z\r—g_;_;v--(' —_ é 2 2E-av-1Vavs }
211’" Y=o ) Y=o

The first sum is identical to the Landsu approximation, while the

second sum ls approximated as follows:
peE-y, €+ 'y

VZE=ZV-Uvx? = 2 VE-xNx % & ...

VY=o L]

Only the integral epproximation to the stm is retained in this case

since only the major correction term is desired, which is then multiplied
by a factor 2 /ES which is of the order of 10 “vhen Ij~1 cm and
H ~10'gauss. If the transformation x=eY is made and the

imaginary contribution neglected, then the integral becomes

{ \ R(3/2)T(34)
R fo (1-—3)/" Hv‘ol-\& = 2&* ——W;)_; = % g .
Therefore the second approximation to the number of states function is
L 3 [
Z,(E,H) = Ll,l:;ra.s (.e.h}:)’/:. { ’%(15) “_ —;—4 ().E)'V" - :{:‘ Be g‘ }

in the third approximation, an attempt is made %o
represent the actual eigenvalue curves, A, (2%), by assuming that



the eigenvalues are essentially constant, Ay (%)= 2v+{ , wp to the
point Zo=-V2V+{ and are close tb the fumetion

7\\)(3‘;) = 2v+1 + (.f, +\/7-.m)1
for £.Z-Yav¥{'., The mumber of states function is then given by

the following - . - i L TaT - VIR -
_ Lala - d2 + 2E—2V -t = (2 4 Vare ) A T,
Zy(EH) = bR deRe[ 2 [ VeSS T
3 ™ [ Jg-—-‘l- —Na VP+q ] .

The first integral is identical to that of the second approximation.
By transforming to the variable

Y = (For@v47)’/ (a€-2v-1) d7 = £ Vaz-wv-r 4 dy

)
the second integral becomes

1 (%)
-i-(-a.:-:.v~1) J'; (1-«1)'/‘ y- dy= L (re-av- 1)2‘_/3%%"_)- .'.E(:.:—zv-ﬂ_

The sum of this term may then be epproximated by an integral as

follows:® Co
V<E-H €+
(rg~2v-1) = 2f (E-%X) dx = E€*- 1 -
v=0 o
Thus the nunber of states fumetion is _
[ /N -h _ 1
23(EJH) = L:;—E.z (eH { 3(15) l“ (2¢€) : 2L Eﬁ + ... .}

where the s"contri'butions from the two integrals have cancelled
identically, . leaving only a very small contribution which is
independent of €. This result indicates that the Landau approximation
is remarkably good considering its simplicity.

The magnetization 1s

= (ez 1 E
M = £ (a\-a TV M 1+e(E-»p/kf"l y

Substituting £=E/2uH, the number of states functions become




Z (E¥)

t

e (2 sl

Zi(EW) = bk (eh [ LB (BP0 (R e )
(

£
A
L\ 2 b % B \%% _ L _E_ %
2,50 = Ll s [ HE) - RS- EEu ],
The three approximations are taken tpgqthgr tg: ghqw :bhe parallel

f

development. The pa.rpia;). yd;ffege;;tia;s, cpif ,th‘? ;gwn}qer of states. .

bfunc'tions with respec'b to the magnetic field are therefore S

(_?%)TN.N =T S—”‘FH * . R
o - e (LE - AR R
(SGZ* )'r.v. == '—_——“'a.l:r::- 1:«_ %{ JE R~ ’:1-'7-\ T ‘;“\-4",.‘.'} v

The temperature-independent contribubion ‘bo the ‘boundary effec'b 3.s

indicated by the zero-temperature approximat:.on,lﬁ g0 that the Fermi

function,

1
3 -;(E) = 1+ e(E-q)/KT

may be represented by a step function, that is

fE)=1 FE2y | flE)=0 E>p._
Therefore the magnetizations are written as

Lkl 3/, 1
My = - S (E [ B dE = - bkl (m)z"\/_“H
o b 3y (_,/——t - -
M"-'_‘i—"\;-'f-t??} _:T')/ g. H. :.-H.F'Z (mH)~*
=
Ma = = blaie (e e {90 H + SR s v,
Therefore, the susceptibilities per unit volume are
L M. — e.\3
AR R ) L2 »
- N e L
Yom 4 (804 07— L VE (R
- 1 - ¥ J.f“’ he
X;‘V%‘*:ﬂr*(ﬁg)ti"’u J—I %
Therefore, the first term is the Landau diamagnetic term
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er 7 , M> Ya  y,
X = - mwee v = - e )Y
or if the first approximation to
- B [LmNY
1% am ('_v—')
1s substituted, the result is
2 T N\
X == M Ll‘:—:( v )3
The correction terms in the latter approximations have the correct

qualitative dependence on. the size of the box and on."!'ihe magnetic

field that one would expect, that is, the correction terms get

larger as the box gets smaller and also as the magpetic field

decreases becsuse of the.dependénce on 1/1_ and 1/H « These

approximations are valid only in the case of very high fields.

lendau's work is rigorously correct in the case of infinite magnetic field
while "i;he correction terms derived here are attempts to evaluate the
deviations for finite fields. It is questionable vwhether the

correction terms have any physical signii‘icance% since 1t appeérs
tha'b'they are results of the approximations used and not of any 'reel,

observable effect,

*%*%%&*%**%**%%%**************%****

I would like to acknowledge the help and encouragement
that Dr. W, V. Houston has given to me by suggesting this problem and

‘assisting me in all pheses of its development.
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Appendix I & Comments .-

o The‘majbrity of the papers listed in the notes.are on .
deposite in Physics Deparfsm;m‘b Héapé I.ibrary &t Rice University under
the title, "Photocopies of pepers related to the boundary effect on
the diamagnetism of free electrons," |

Papers of historical interest are recorded in Hotes 6 -
and 47. Since these papers are rarely referred to in the literature,
it is felt advisable o note 'bhemv here so that they may not be .
overlookeds =~ = L |

Severe.:l.v of the latter reviews on the sﬁbﬁeﬁt of the
clectron theory of metals are recorded in Note 48,

- Only o sample of the extensive russian literaturé on this
subject is recorded in Notes 21 and k9.
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- Appendix II : WKB Approximation

It is the purpose of the appendix to point out a possible
discrepancy in the ususl appliéatidns of the WKB approximation to the
calculetion of the boundary effect on free electron diemagnetism. - The
eigez;value curves caleulated from the WKB approximation, shown in
Figure III, give an excellent epproximation to the actusl eigenvalue
curves on the right-hand side of the‘ graph. But the WKB approximation
gets worse and worse as one goes +to the left-hand side} of the gx_'aph,
until the WKB curves temina’be at fhe inner classicai_ turning point
with zero slope and infinite higher derivitives, All the workers who
use the WKB approximation (see p.,U) then asume that the eigenvalues
are constant to the left of the inmer glassical turning polnt end
essentially ignore the gap in the eige.nvalue curves vhich gives rise
to & correction to the magnetization proportional to H™*3the
reciprocal of the cube root of the magnetic field. Dingle (Note 19,
paper VI, 15,2&68) uses the curves as shown and obtains a positive
contribution to the magnetization, that is, a paramagnetic correction
to the susceptibility. Steele23 essentially moves the eigenvalue curves -
down bodity wntil they Join onto the constant eigenvalue curves at
the inner classicel turaing point and obtains a negative contribution
to the magnetizetion or a diamagnetic correction to the susceptibility.
Ham?0 includes & factor, ®2, which essentislly maves the curves up

or down at will. Dingle’s results are obtained when X = 54 and
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Steel's vhen o= Y% . - Hem shows a graph of the eigenvalues (Note 20,

F:!.g‘urc; I, p.1115) equivalent to those used by Steele in his

caleulations. - Lifshitz and Kosyvich®l use othér varisble parameters besides
the ohe equivalént to' Ham's: o, but using'a’ different approach they '
obtain results identical %o those of Ham when the proper values of

the' poremeters ‘are useds - - - S

pos
P S
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1. Niels Bohr, Dissertation (Copenhagen, 1911). A similar proof
is given by J.H.van Vlieck, Theory of Electric and Magnetic

Susceptibilities (London:Oxford University Press,1932),pp.97-100.

26 f{;H.van Ieeuwen, Dissertation (I.éi&en;,- 1919). A summary is

given in Journal de FHysique, IT,No.6(1921)361. Proofs are also given

by ven Vieck,op.cite,pp.94=97, and by R.E.Pelerls, Quantum Theory of
Solide (London:Oxford at the Clarendon Press,1955),pp.l45-146.

3+ A simple, physically» intuitive picture is presented by van

Vleck, OE. Cito ,ppﬁloO'loao

L, This seems to have been first suggested by F,Hund,"Rechnungen
iber das magnetische Verhalten von kleinen Metallstlcken bel teifen
Temperaturen,” Annslen der Physik,XXXII(Msy 1938)102-11k. There is

a boundary condition error in A.Papapetrou,“Diemagnetism of electron
gas," Zeitschrift fUr Physik,CVI(1937)9-16; corrected in ibid.,CVII
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ein elektronentheoretisches modell des supraleiters,” Sitzungsberichte

der Bayerischen Akademie der Wissenschaften,XIV(1938)115-138;

sumarized in Physikalische Zeitschrift,XXXIX(1938)920-925. The

application to superconductivity is considered by William Band,"The
ocourrence of superconductivity in a collective eiectron assembly, "

Physical Review,IXIX(Jdan.1946)41;"Superconductivity and magnetic energy

between currents,” Physical Review,IXIX(March 1946)2kl; "Diamagnetism

and superconductivity," loc.cit.; "Diamagnetism and superconductivity
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of a ccllective electron assembly,”™ Proceedings of the Cambridge = .

Philosophical Society,XLIT(0¢t,1946)311-327, = Some mmerical

caleulations to this effect were done by DiJ.Besdin,"The magnetic
mmnent of' i‘ree electrcns," Ph D. Thesis (chston, '.I’exas-Riee _
Ins‘citute, Hay 1950, unpublished), Physical Review,m(.my 1950)

Cxevmr ‘
hl'{-hlB' also with J.H.Robimon,z:cx, Physical Review,xefvt(w%)a?e. \

There is an erroneous conclusion in H" F.M. OS'borne, "Per.t’ect
diamagnetism of :E‘ree electrons m.'bh applice.tian to superconductivity "
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and M.C.uteele,“Size effects and dmmagnetism in finite systems s

Physical Rev'iew,I.X}D{VI(April 1952)21+7. There is a boundaz:y‘ condition
approximation exrror in W.Band, "I.ow temperature diamagnetn.am of
electrons in a cylinder, " Physical Review,XCI(Jiﬂy 1953)21;9-255,

corrected in i‘bid. ,xcxII(Ja,n.1951+)35o. o

‘5. LLandau,"Dismagnetismus der metalle," Zeitschrift fir Physik,
IXIV(1930)629<637. - |
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to one of his students, P.Y.Ghou, "Diamametism of free electrons in
metals ," Science Reporbs of 'bhe National Tsing Hua. University,l(l’eiping,

Ghina,April 1931) Because all smnnations were replaced by integrations §
a zero result was o‘btained a:ad erroneously 1nterpreted as due 'bo

collisions of electrons with the waJ.ls. l

st

7. B.Teller,"Der diamagnetismus von freien elektronen;™
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Zeitschrift fiir Physik,IXVII(1931)311-319.

8. van Vleck,@«,cii:.,353-359. '

- 9. A.Papapetron,”Dismagnetisn of electron Gas," Zeitschrift fir
Physik,CXI1(1939)587-60k.

10. J.Lindhard,"on a free electron gas in static megnetic and

electric fields,” Arkiv foer Matematic, Astronomi och Fysik,XXXIII
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11. R.Peierls s"Zur Theorie des dismagnetismus von Ieitungse

electronen,” Zeitschrift fiir Physik,IX¥X(1933)763-791; part 2,

", .. Starke Magnetfelder," ibid.,LoI(1933)186-194.

12, A.W.Sdenz and R.C.0'Rourke,"Number of states and the magnetic

properties of an electron gaé," Reviews of Modexn Fhysies,XXVII,No.l4
(1),{0ct.2955)381-398. There are several serious typographical. errors
in this paper. A corrected reprint méy be secured directly from

Dr.Saenz; in care of the Radiation Division, Né.val’Research Lsboratory

Washington 25, D,.C.

13. E.H.Sondheimer and A.H.Wilson,"The diasmagnetism of free

electrons,™ Proceedings of the Royal Society of Iondon,CCX-A{195L)

173"169 »

1%, Ven Vlieck,0p.cits,p.358. E.C.Stoner,"The temperature

dependence of free electron susceptibility,"Proceedings of the Royal
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15, WePauli,Jr., "Gas degeneration and pa.ramagnetism, " geitschrift
111_11511&,)(1.1(1927)81-102, ibicl., Quantw; mechsnics of the magne'bic

'''''

electron, "XLIII(1927)601-623.

16' See appen&:x.x of the f‘ollowing paper for a. pz‘ivate communi
catz.on o:t' Ia.ndau, prepa.red for publigzation ‘by Pe:.erls. D.Shoenberg,
"The magnetic properties of ’bismuth, III, further measurements on the
de Haas-van Alphen effect; " Proceedings of the Royal Society of London,

CIXX=-A9M2{April 1939 )341~364:

17. L.J .Mordell,Poisson's smation fomula a.nd 'bhe niemann
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properties of metals T. CGeneral introduction, and properties of large
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of the Cambridge Philosophical Soéiety;i{i.n:(ls;ss)los-uh{ LB.’L_&_.,

"ow-temperature diamagngtism of ‘electrbns in s cylinder,“ Physical
Review,XCII{Dec,1953)1320.

20. F.S.Ham,"Effect of %he‘, surface on the magnetic properties of
an electron gas," Physical Review,XCIX,No.5(Dec.1953)1113-1119.

21, A.M.Koseirich and I.M.Lifshits,"The de Hoas-ven Alphen effect

in thin metal layers," Soviet Fhysics JEPT, 1I,No.k(July 1956)646-6L49,

22, M.JF.M.Osborne,"Number theory and the magnetic properties
of an electron ges," Physicel Review,IXXXVIII,No.3(Nov.1952)438-451;

Summary in "Energy states for a finite cylindrical container in a
magnetic field," Proceedings of the Intermational Conference on low

Temperature Physics, (Oxford,Aug.1951)138-139.

LB E
23, M.0.5tecla,"Application of the theory of numbers to the
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magnetic properties of a free electron gas," Physical‘ Review, IXXXVIIT,
Noe3(Nov.1952)451~46k; summary in Proceedings of the International

Conference on Low Temperature Fhysies, (Oxford,Aug.1951)137-138.

20 N.Minnaaa;, “Solution of.‘ the Schroedinger equation in a consta.nt
ma@eﬁic field and diamagne-bn.sm, " ﬁ;mzsica(ﬂe‘cherlands) ,XXVI,NO.J.O
(Oct.1960)827-833. '

25. ‘l‘hroughout this vork, ‘bhe spin of the electrons will be
neglec-bea since i'l; does not contribu’ce to the first order terms con-
sidered in this problem. To 'conside:: the spin, the number of states
- function, Z(E,H), is merely multiplied by a factor of twe, imn every

case. See reference 45 for higher order terms.

. 26, Q.Klein and J.Lindhard,"Some remarks on the quantum theory
of the superconductive sitate," Reviews of Modern Fhysics,XVII
(Apri1l 1945)305~309.

27. O.K}.ein, "On the magnetic behaviour of electrons in crystals "
Arkiv foer Matematm, Astromm och Fysik,MI—A,No.E(wlﬁ) , paper 12,

15pp.

28, This situation may be realized physically by means of a thine
valled toroid with an exial magnetic field, vwhere the x-direction is
taken to be everyvhere perpendicular to the walls, The toroid must be
large enough so that the curvature may be neglected. This case is

discussed by J.M.Zimsn, Electrons and Phonons,(0xford at the
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Clarendon Press,1960)pp.18-19,

29, ‘Another simple boundary ¢an1:!.i:idi1' requires the derivative of
the fimction %o be zero at the boundary, It is suggested that a linear
combination bi‘ thé e‘igez:ivalue‘,s' of these. ‘c.vr:x typas of bmmdaz'y ‘c.dn-,-.
ditioﬂs may be ﬁs,e_d to £i% general experimental reslﬂ.ts, . |

30, The' éigenv’alues,t EAT arbe'_,classi‘f‘iea by the mm‘belr,,“ Py

of zeros or nodes of the function, (), (£) , which Pall inside the box,
31. The zeros of the -I{emi‘“oe“-polymzﬁiais may be obtained from

T A Alken, Tables of the Error Function and of its Fivsi Twenty

Derivatives, (Cambridge,Mass,:Harvard University P‘z:e»;a_? 1952},
pexxvii, (Zeros of the derivatives of the error fumction), by

mltiplying 'by the square root of two. . ”

132, For the most part, the curves were dravn in by eye after
several points were checked to be certain of the form of the curves.
The lower parts of the curves, just outside the A= 22 graph, were
calculated from thé exponenﬁial appmximatioh to the eigenvalues

discussed later in this work.

33« L.J.Slater, Confluent Hypergeometric Functions,(Cambridge,
, :

England:University Press, 1960). Herbert Buchholz, Die Konfluente
Hypergeametrische Function, (BerliniSpringer-Verlag,1953). U.d.

Knottnerus, Approximation formulase for generaliged hyperseometric

functions for large values of the perameters, (Groningen:J.B.Wolters,
1960).
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34 If some boundary condition other than
o Ua(?) ek Z= %, gan G .
be chosen, then in genera:l. some i‘mction, W(-g) r will sa-bisfy an,
| b'equation of the form |
B w? o+ (A= V(’f))W=‘,O_‘
lfor Z’ outside the box, such that

W) — o ";cis» T — 0.
'.['he boundary condit:lons then require 'bhat the two :E’unctions have

eg_w.l values ana equal slc:pes at the bomdaries. ‘I‘his yields an
impl:tcit equation for the eigenvalues s 7\v( z‘:,‘é’) a function of the
two 'bom:dary parameters, 7. and Z’ ’ tha.t is, as a function of the

position of the orbit center, xo, relajbive to the two bmmde.ries.

35: This assumption is not necessary. For small magnetic fields
and small containers, the eigenvelues must be found in terms of both
boundary parameters. The only alteration is that the lover limit on
the sum of states function must be taken as minus infinity and
maltiplied by a factor of two instead of four.

36 P.S .Epstein,ﬂber die Beugtmgan einem ebenem Schim, Unter

Berucksichtigxmg des Materialeinflvsses : (Ieipzig*.fohann Anbrosius

:Baxfth,193.h) 3 may be obtained from the University of Illinois Library.
L.Fox, "Ta‘bles of We’ber parabolic: cylinder functions and other |

functions for large arg\menta »" Mpthematical Tables,IV, (Iondcn.Her

Majesty's Stationery Office,1960). I.Ye.Kreyeva and K.A.Kerpov,
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Tables of We’ber functions, I, (Tew York'Pergamon Press ,1961) J.C .P.

-Miller, Ta.bles of We'ber Pa.ra‘bolic Cylin&er Functions,(rpndon'ﬁer )

Majesty's Stationery Office ,1955) This reference has an excellezxt

theomtzcal introduction -bo the Weber fmzctions. |
37, Einar Hille,"On the 'zez"os=0f‘the' ﬂinetions of the parabolic

eylinder," Arkiv for Matematic, Astronomi och Fysik XVIII(1921L) R

paper 26, 56pp. .Erdelyi, et.a.l. » Higher Transcendente.l chtions,

11, (New York.McGraw-Hill,1953),p.l26 Miller, g,a_.gi_t. ,p.27, states
:‘hhat he will publish solutions for the zeros of 'bhe We‘ber f\mctions.
IWhen he does so, place his expression in the equation far the mxnber. -
y of states funct:ton on page 17, and grina e.way This should give the
best approxima.tion tc the bo‘umdary ef‘fect ye’o calculated. :

(3

} 38. Ki::eyeva,and Igaz:pov, op.cit‘,p.ixegii, and Knottnerus, -
OE.Ci'bn ’Ptsg,o s

39. One advantdge of this approach is that the error obtained -
in the approximation using & certain mumber of texins is of oppoéite
sign to that obtained when one more term is included in the
approxima.tioﬁ, 50 that 'good accuracy may be' &rtained by baiancing off

the errors in the various approxhnﬁtidns.

ko, Th:ts type of approximation may be done in a nunbar of
difPerent ways, examples of which are given in the following work.
A.Michels, J. de Boer, and A.Bijl,"Remarks concerning molecular
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interaction and their influence on the polarisability," Physice,IV,
No.li(Wov.1937)981-994, H.Froehlich, "Solu'bion of Schrodinger equation
by pertuba.tion of boundary condi-bions, Physical Review,LIV,(Dec.1938)

gh5-9k'7,. A.Sommerfeld and H.Welker,"i{unstliche Grenzbedingungen bein
Kepler problem" Annalen der Physik,mn(l938)56-65. A.Sommerfeld

and Hartmamn,"Kunstliche Grenzbedingungen in der Wellemmechanick der
beschrankte Rotator," Annalen der Physik,XXXVII{1940)333~343. . A.C.

Auluck and D,S.Kothari,"Quantum mechsnics of & bownded Linear harmonic
oscillator,"” Proceedirigs of the Cambr:ldge Philosophical Socliety,XLY

(June 1945)175-179. N.F.Mott and I.N.Sneddon, Wave Mechanics and its
Applications, (Oxford:Clarendon Press,1948),p.53. T.T.Kou,"Discussion
on the behavior on an electron enclosed in a sphere," Chinese

Journal of Physics,VII(April,l9h9)2hl—2h8. C.A.ten Seldam and S.R.de

Groot,"On the ground state of s model for campressed helium," Physics,
XVIII,No.11(Nov.1952)891-91h. J.S.Baijel end K.K.Singh,"The energy
levels and transition probabilities for a bounded linear harmonic
oseillator," Progress in Theoretical Physics, XIV,No.3(Sept.1955)

214-22%, T.E.Hull and R.S.Julius,"Enclosed quantum mechenical systems,"
Cenadien Journal of Physies,XXXIV,No.9(Sept.1956)914-919.

k1. If the sum over XK, is not treated as an integral, an oscilatory
contribution to the susceptibility, similar to the de Heas-van Alphan effect,
is found; whose period depends on the size of the container instead of the

magnetie field, although it is doubtiul whether this effect can be obsevved

experimentally.



Notes to Pages 16 to 22

k2. A.Sommerfeld end H.Bethe,"Elektronentheorie der Metalle,”
Handbuch der Thysik,XXIVS -(;933)473:;f., o

| 1;3. .F.Niessen, ”Rela-bion oi‘ Dia- and Paramagnei;ism i:t’ an
elec'bron gas as a. function of *bhe field strengh't N &,Ysica, I(J‘uly,"
193&)783-796' ibm.,"cnange of magnetic susceptibiln.ty o€ an electron
“ ga.s with tmperatme, pp.979-988. v -

- Wly WoV.Houston and E.,T.\zane,‘r'mamagne,. tlsm of free electrons,” .
Presented gt the Southwest secti@il;ﬂf‘ ‘the American FPhysical Society,
Austin, Texas, Feb,196L: . - |

hﬁ ' E c Stoner, "The temperatws &6Dendence of free electron

suscept:.‘oilitj, " Proceedin@;s Oti' *bhe Ro,val Soeietv oe Iandon,GI.II,No.
A87?('ifov.l§i35)672—692. . | | |

T

)

. k6, Very _Littlg recent e@erimem;al work has veen done on the
‘size dependence of -dlamagnetic suseeptibility. The following
‘reference reviews early work along ‘these lines, bub it is felt ;tha‘b
the metal particles must be elec'brically;insala'bed from each other
}‘before an effect is 10 be expected.  This condition ,iav not met in
‘ ‘bhe- work referred to in the following. H.lessheim, "Diamagne‘bism and

'Pa:c“bicle S:Lze," Current Science,v,mo.3(Sept,l936)1l9-127; may b
obtained a‘b 'bhe A.&M. Gollege of Texas In.brary o
B Although, quarbz is definitely not a frPe electron metal, the |

i‘allmd.ng workers have fomd a size dependence of‘ the diamagnet:l.sm
‘which g:an be fitted emperically with a curve which has the proper
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dependence on size, 'f;ha:b' is,; on the reciprocal of the length.'
Y.Shimizu end N.Takatori, "On the. size ae‘zpendéncy of diamagnetic‘
susceptibility of que.rtz, Anniversary Voliume of Prcf.K.Honda, |

Seience Reports of the Toholtu Iu@erial Un:wersitv, (Sendei, Fopan,

0c‘b.l936)306~311.

: A size dependent suscepti‘bilx.ty :ls also foxmd in an:isotropic ‘
crystale 'by the i‘ollowing worL.er, but the size dependence is no'b Qf
'hhe proper :E’om. A.Pacaul'b, “Magnetism of diamagnetic dlsperszons ,"
Comptis Rendus, CC}D{XIV(1952)2169-2171.

7. Historical: D.Iwanenko and L.Ia.ndau;“mheory of the magnetic
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