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THE DIAMETER OF RANDOM GRAPHS

BY

BÉLA BOLLOBÁS

Abstract. Extending some recent theorems of Klee and Larman, we prove rather

sharp results about the diameter of a random graph. Among others we show that if

d = d(n) > 3 and m = m(n) satisfy (log n)/d - 3 log log n -> oo, 2rf_Imd'/'nd+x

- log n -» oo and dd~2md~l/nd — log n -» -oo then almost every graph with n

labelled vertices and m edges has diameter d.

About twenty years ago Erdös [7], [8] used random graphs to tackle problems

concerning Ramsey numbers and the relationship between the girth and the

chromatic number of a graph. Erdös and Rényi [9], [10] initiated the study of

random graphs for their own sake, and proved many beautiful and striking results.

The graph invariants investigated in recent years include the clique number [5],

[13], [17], the chromatic number [5], [13], the edge chromatic number [11], the

circumference [16], [19], and the degree sequence [4]. The aim of this paper is to

give rather precise results concerning the diameter. Recall that the diameter diam G

of a connected graph is the maximum of the distances between vertices, and a

disconnected graph has infinite diameter. The diameter of a random graph has

hardly been studied, apart from the case diam G = 2 by Moon and Moser [18], the

case diam G < oo by Erdös and Rényi [9], and the diameter of components of

sparse graphs by Korshunov [15]. When I was writing this paper, I learned that

Klee and Larman [14] proved some results concerning the case diam G = d for

fixed values of d. The main result of Klee and Larman [14] is that if d > 3 is a

fixed natural number and m = m(n) satisfies

md/nd+x - log« -» oo    and   md~l/nd^>0   as n -> oo,

then almost every labelled graph with n vertices and m edges has diameter d. As a

special case of our results we prove that the conditions above can be weakened to

2d~lmd/nd+l - log «^oo    and    2d~2md-x/nd - log n -* -oo.

However, our main aim is to give precise bounds onm = m(n) ensuring that

almost every labelled graph with n vertices and m edges has diameter d, where

d = d(n) is a function of n which may tend to oo as n -^ oo but which does not

increase too fast, say d <\(\ - e)log n/log log n.

As in our calculations below we are forced to sum estimates d(n) times and

d(n) -> oo, we cannot use estimates of the form 0(n~K), o(\), and so on. This is the

reason why the paper is so inconveniently full of concrete constants rather than
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42 BÉLA BOLLOBÁS

constants c,, c2, .... To compensate for this, our estimates tend to be very crude,

we always use constants following from generous calculations, so the reader should

not be surprised if he can see the inequalities with better constants.

We shall use the notation and terminology of [1]. We shall denote by Tk(x) the

set of vertices at distance k from x:

Tk(x)= {y(EG:d(x,y) = k}

and write Nk(x) for the set of vertices within distance k:

k

Nk(x) = U r,(x).
1 = 0

Thus diam G = d if Nd(x) = V(G) for every vertex x and Nd_x(y) =£ V(G) for

some vertex y. As in [3] we write % (n, /'(edge) = p) for the discrete probability

space consisting of the 2® labelled graphs of order n in which the probability of a

fixed graph with m edges ispm(l - p)®~m. Equivalently, in §(n, P(edge) = p) the

edges are chosen independently and with probability/?. A related model is §(n, m)

consisting of all graphs with n labelled vertices and m edges, in which any two

graphs have the same probability.

Throughout the paper n is assumed to tend to infinity. Thus f(n) -* oo and

(/>(«) = o(l) mean that f(n) -> oo as n —> oo and <f>(/i) -» 0 as n -» oo. Furthermore,

we say that almost every (a.e.) graph in § (n, P(edge) = p) has property P if the

probability that a graph does not have P tends to 0 as n -» oo.

We start with a simple and rather crude lemma which we shall use instead of the

de Moivre-Laplace theorem. The strength of the lemma is that the estimates are in

terms of concrete functions.

Lemma 1. Let S„ have binomial distribution with parameters n andp, that is

P(Sn = k) = b(k;n,p) = [nk)pkq'-k,

where 0 < p < 1 and q = \ — p.

(i) Suppose the integer t satisfies 1 < t < s/2, where s = npq. Then

¿,1/12"

P(S„ >pn + t) < (q + s/t)-— exp{-i2/2-s + t3/s2 + 4t/s}.
(2-rrs) '

(ii) Suppose 0</><},0<e<yr and epn > 40. Then

P(\Sn - pn\ > epn) <        \x/2e~''pn/\
e(pn)

(iii) If u > e then

P(Sn > upn) = P(\Sn - pn\ >(u- \)pn) < -^(e/u)1*"1.

If v > e4 and vpn > 1 then

P(s^w-vpn)<e^n- D
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THE DIAMETER OF RANDOM GRAPHS 43

As the routine proof is similar to the proof of the de Moivre-Laplace theorem in

[12, Chapter VII, §3], we omit it.

In the next four lemmas we shall suppose that c is a positive constant, 0 <p =

p(n) < 1, d = d(n) is a natural number, d > 2, pdnd~x = log(n2/c) and pn/log n

—> oo as n -> oo. As we are interested in large values of n, we may and shall assume

that n > 100,/>« > 100 log n, (pn)d~2 < n/10 andp(pn)d-2 < 1/10. Note that

= nw"   '(log n2/cY/d

and

d = (log n + log log n + log 2 + 0(l/log n))/\og(pn),

so the maximum of d is (1 + o(l))log «/log log n. Clearly

,        yi-1 l0g(«2/c) .    .
(pn)       =-n = o(n)

pn

and p(pn)d-2= o(l).

Lemma 2. Lei x be a fixed vertex, let I < k < d — I, and suppose K satisfies

9 <K < (pn/\ogn)l/2/21.

Denote by Qk c §(P(edge) = p) the set of graphs for which a = |rÄ_j(jc)| and

b — \Nk_x(x)\ satisfy

\{pn)k-' <a<^(pn)k-x

and

b < 2(pn)k~l.

Set

ak = K{\og n/ (pn)k)i/2,

o i     \*-i 2(/>n)
ßk = Pipn)     ,       yk = -^-•

Then

P(\ \Tk(x)\ - apn\ > (ak + ßk + yk)apn\Ük) < n'^9.

Proof. In order to determine the sets Tk_x(x) and Nk_x(x), we have to test

which vertices are adjacent to x, then which vertices are adjacent to Tx(x), and so

on, up to Tk_2(x). At each stage we have to test pairs of vertices, at least one of

which belongs to Nk_2(x). Hence the probability of a given vertex >> £ Nk_l(x)

being joined to some vertices in Tk_x(x), conditional on ilk, is exactly pa = 1 —

(1 - p)a. Clearly

■('-¥)pa[i - -j) ^ Pa <> pa.

Conditional on Q,k, the random variable ^^(x)! has binomial distribution with

parameters nk — n - b and pa. Since An/5 < nk < n, ap(n — nk) < ykapn and
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44 BÉLA BOLLOBÁS

(ap - pa)nk < ß,j>ank, by Lemma l(ii) we have

P(\ \Tk(x)\ - apn\ > (ak + ßk + yk)apn\Ük)

< P(\ \Yk(x)\ - apnk\ > (ak + ßk)apnk\ük)

< HI \Tk(x)\ - Pank\ > ofcft.ifclBJ

< —;-~üi Q*v{-a2kPank/l} < exp{-a¿pa/iA/3}

<Xk(Pank)

« exp{-a2(/>«)79} = n~K"'\

Lemma l(ii) could be applied since

0 <Pa < pa < !/>(/>«)*"' < f/Kz™)*-2 <\,

0<ak = K(log «/ (/>«)*)'/2 < K(\og n/ (pn))x/1 < ¿,

and

«*/>„«* > K(log n/ (pn)k)l/2—(pn)k > 3K log n > 40.    □

Lemma 3. Lei AT > 11 be a constant and define ak, ßk, yk as in Lemma 2. Set

1.°\ = expÍ2 2(«/+ ßi + y,)\

If n is sufficiently large then with probability at least 1 — n   K  2 for every vertex x

and every natural number k, 1 < k < d — 1, we have

| |rfc(*)| - (pnf\ < 8k(pn)k.

Proof. The conditions imply that 8d_x-+0 as n -» oo. In particular, we may

assume that 8d_x <^. Furthermore, if n is sufficiently large, the conditions of

Lemma 2 are satisfied for every k, 1 < k < d — 1. We assume that this is the case.

Let x be fixed and denote by ß* the set of graphs for which

| |r,(x)| - (pn)'\ < S^pn)',       0<Kk.

Clearly ß£ cfi?_, c Slk.

We shall prove by induction that

1 - P(U*) < 3kn-K2/a

for every k, 0 <, k < d - I. This does hold for k = 0. Assume that 1 < k < d — 1

and the inequality holds for smaller values of k. Then

1 - P(Sl*k) = 1 - P(S2_,) + P(Si*k_x)P(\ \Yk(x)\ - (pn)k\ > 8k(pnYK-ù-
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THE DIAMETER OF RANDOM GRAPHS 45

Now if G G ñ£_, then a = |rA_,(x)| satisfies \(pri)k - apn\ < 8k_x(pri)k. There-

P(\\Tk(x)\-ipn)k\>Sk(pn)kM_l)

< P(Q*_,)">(! \Tk(x)\ - apn\ > (8k - 8k_x)(pn)k\Qk)

< P(Q*_xylP{\ \Tk(x)\ - apn\ > 2(ak + ßk + yk)(pn)k\ük)

< P(Q*k_,)"'PO \Tk(x)\ - apn\ > (ak + ßk + Y*)<?H«*)

< (1 - 3(* - l)«-^/9)"1«-^/9 < 2n-*/\

The next to last inequality holds because of Lemma 2, and the last inequality holds

since 6dn ~ K /9 < 1. Consequently

1 - P(Q*) < 3kn~K2/9,

as required. Lemma 3 is an immediate consequence of this inequality.    □

Before stating the next lemma we introduce some more notation. Given distinct

vertices x and.y, and a natural number k, define

T*k(x,y) = {z e Tk(x) n r*i>): T(z) n (Tk.x(x) - Tk_x(y)) * 0

and T(z) n (Tk_x(y) - Tk_x(x)) * 0}.

Denote by Ak the event that |rfc_,(jc)| < 2(pn)k~l and |rfc_,(.y)| < 2(pri)k~x. In

our next lemma we shall give a bound on the probability of rj(x, y) being rather

large, conditional on àk. Pick a constant K > e1. For 1 < k < d/2 define ck =

ck(n, p, K) by

ck4p2kn2k-1 = (K+4)logn,

and put

, 2(* + 4)log «
™* = mk(n,p,K) = —

loge, *

Finally, for d/2 < k < d put m¿ = mk(n,p) = 2p2kn2k   '.

Lemma 4. If n is sufficiently large then for every k, I < k < d — I, we have

P(\T*k(x,y)\>mk\Ak)<n-«-4.

Proof. In order to determine i\_,(;c) and Tk_x(y), we have to test which

vertices are adjacent to x and/, then which vertices are adjacent to Tx(x) u Tx(y),

and so on, which vertices are adjacent to Tk_2(x) \J Tk_2(y). Thus we have to test

the pairs of vertices at least one of which belongs to Nk_x(x) u Nk_x(y). The

choice of these edges determines whether or not our final graph belongs to A¿.

Suppose it does. The probability of a vertex z £ Nk_x(x) being joined to some

vertex in Tk_x(x) - Tk_ x(y) is

1 - (1 - p)b < bp < 2pknk~x,   where 6 =|rt_,(x) - I\_,(>>)|-
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46 BÊLA BOLLOBÁS

The probability of z being joined to some vertex in Tk_x(y) — Tk_x(z) is also at

most 2pknk~x. Since Tk_x(x) - Tk_x(y) and Tk_x(y) - Tk_x(x) are disjoint, the

probability that z belongs to T^(x,y) is at most (2pknk~x)2. Hence, conditional on

the choice of the edges joining vertices in Nk_x(x) u Nk_x(y), with |rfc_,(x)| <

2(pn)k~x and |I\_,(.y)| < 2(pri)k~x, the probability of |rj(jc,>>)| > mk is at most

P(S* > mk), where S* has binomial distribution with parameters n and p% =

4p2kn2k~2. Consequently

P(\Tt(x,y)\>mk\Ak)<P(S:>mk).

Now if n > 3 is sufficiently large,

p*n < p*n < ■ ■ •  < p*ld/2jn < 4pdnd~x = 4 log(n2/c) < e"4ATlog n,

so c, > c2 > • ■ • > C|y/2j > e*- Consequently Lemma l(iii) can be applied with

v = ck, so for every k,\ < k < rf/2, we have

P{\Y*k(x,y)\ > mk\Ak) < e^^4»0*" = «"*.

Furthermore, if n is sufficiently large, we have

Pt<PÎ<-< PZ-i = 4^2d-2«^-4 = 4(log(n2/c))2(/m)-2 <I

and

J»*rw+i)/21« > 4/»¿+,«¿ = 4(^)log(«2/c) > 1010(log nf.

Therefore by applying Lemma l(ii) with e=¿ we see that if n is sufficiently large

then for every k, d/2 < k < d — 1, we have

P(\rf(x,y)\ > mk\Ak) < e-oW = w-'°8" < n~K-\

completing the proof of the lemma.    □

Lemma 5. Let K > e1 be an arbitrary constant. Then if n is sufficiently large, with

probability at least 1 — n ~K the following assertions hold,

(i) For every vertex x

\Nd_2(x)\<2(pn)d-2   and    \\Td_x(x)\-(pn)d~l\< 8d_x(pn)"-\

where 8d_, has the value defined in Lemma 3.

(ii) For every two vertices x and y

\Nd.x(x)nNd_x(y)\<%p2d-2n2d-3

and

\T(Nd_x(x) n Nd_x(y))\ < I6p"-xn2d~2.

Proof. Since ó\ < 52 < • • • < 8d_x ->0 and SfloO"»)' <\(pn)d~1 if « is suffi-

ciently large, Lemma 3 implies that assertion (i) holds with probability at least

1 - n~K~2.

In what follows we shall assume that n is sufficiently large. Lemma 3 implies that

(if n is sufficiently large then) P(Ak) > 1 - n~K~2 for every k,\ < k < d - 1, so
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THE DIAMETER OF RANDOM GRAPHS 47

with probability at least 1 - n~K~x, Lemma 4 gives that every pair of vertices x,y

satisfies

\T*(x,y)\<mk. (1)

Note that

*d-.<*) n Nd_x(y) C Nd_2(x) u Nd_2(y) C (Td_x(x) n Td_x(y))        (2)

and

rf-i

Td_x(x) n r^.o-) c U Tä.l.k(Xt(x,y)). (3)
* = 1

From Lemma 3 and inequality (3) we find that with probability at least 1 —

2« ~K~ ' for every pair of vertices x,y we have

\Nd_2(x) u Nd_2(y)\ < 4Í»*-2, (4)

|r,_,(*) n Td_x(y)\ < "i" «,2o«)"-1-* < IpV-W-i (5)
* = i

and

|W,_,(*) n ^-,00)1 < 2pn\Nd_x(x) n ivrf_,(^)|. (6)

To justify (5) note that

|//2j

2   2   m,(/-«)¿-|-'<3»),W'í"2<A2n2J-3>
*=i

for

and c, —» oo as n —* oo. Furthermore,

2        2 ^(/m)rf-1-*<3w(/_1 = 6>2''-2n2<'-3,

*-[(«/+1)/2-]

so (5) does hold. Relations (2)-(6) imply

|^_,(x) u Nd_2(x)\ < 4(^«)'/-2 + Ip^V^ < 8^2rf-2«w"3

and

|r(^-,W n Nd_x(y))\< \(>p2d-xn2d-2.

Consequently assertions (i) and (ii) of the lemma hold with probability at least

1 - 4n~K~x > 1 - n~K.    □

Armed with these lemmas, we are ready to prove the main result of the paper.

Theorem 6. Let c be a positive constant, d = d(n) > 2 a natural number, and

definep = p(n, c, d),0 <p < I, by

pdn"-x =\og(n2/c).

Suppose that (pn)/(log nf —> oo. Then in § (P(edge) = p) we have

lim   P(diam G = d) = e~c/2   and     lim  P(diam G = d+l)=l- e~c/2.
n-»oo n—»oo
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48 BÊLA BOLLOBÁS

Proof. If for some vertices x,y e G we have/ £ A^(x) then we say that x is

remote from/ and (x,_y) is a remote pair. Let A1 = A'(G) be the number of remote

pairs of G and write Xr = Xr(G) = (*) for the number of unordered /--tuples of

remote pairs. Our aim is to show that the distribution of X tends to the Poisson

distribution with parameter c/2, so P(X = k) ~ e~c/2(c/2)k/k\. We shall do this by

estimating E(Xr) for every r > 1. Since /■ disjoint pairs of vertices contain 2r /--sets

of vertices meeting each pair, it is easily seen that

E(X,)-("r)2-'Fr(l + o(l)),

where Fr is the probability that a fixed /--tuple t = (xx, . . . , xr) of vertices consists

of vertices remote from some other vertices. Write

A = IV,(*,)-   U Nd_x(Xj),
j¥-i

T =  PI (Nd_x(x,) n Nd_x(Xj)),

S= V(G)- U Nd_x(Xj),
1=1

5' = 5 - r(r),

a,=|^,|,    s =\S\,   s'=\S'\    and    i=|7].

Pick a constant AT > max{r + 1, e1}. Then by Lemma 5 with probability at least

1 — n~K we have

\a, - (pn)"-'\ < 8d_x(pn)d-1 + S/p2*-2«2*-3

= {pn)d~X{8d_x + Sr(log(n2/c))/(Pn)} = 8i»"-\      (7)

n>s>sf >n- ZrY4-^-2 = (1 - e)/i. (8)

We claim that

8 log n -> 0   and   e -» 0. (9)

Indeed, the first relation holds since if n is large,

k

Vi < 3 2 («/ + ßi + Y,) < 4(a, + &_, + Yrf_,)
/=i

2 + ^<,-1/td-2 + 2^''-2/I''-3

./ log n \

\~Jn~)
M1/2 + 31og« + 61og/I

/»« (pnY  J

and (/»/i)/(log «)3 -> oo. Furthermore, e -» 0 since

p2d-xn2d-i = (^¿-i)2/ (^„) < (3 log n)2/ (pn) -» 0.

Denote by /*'(-) the probability conditional on a particular choice of the sets A¡, S

and S', satisfying (7) and (8). In order to estimate Fr we shall estimate the
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THE DIAMETER OF RANDOM GRAPHS 49

conditional probability Qr = P' (t consists of remote vertices). Put

Rr = P'(3y¡ e S not joined to Ait /' = 1, . . . , r)

and

R; = P'(3y¡ G S' not joined to A„ i = 1, . . . , r).

Then clearly R¡. < Qr < Rr. Furthermore,

k= ñ{i-(i-(i-i»rr},i=i
and /?/ is given by an analogous expression.

In order to estimate Rr from above, note that

(1 - p)a> < e-™ < e-p^-\l -8)=-2(l+ o(l)),
n

(1 - (1 - pY'Y > 1 - i|(l + o(l)) - 1 - -£ + 0(1/1,),

so /L < (c//i)r(l + o(l)). Similarly R¡. can be estimated from below as follows:

(1 -p)"> > e-pa¿x+p) > e-pV^+p)0+S) m ±(x + o(1))>
n2

(1 - (1 - pY'Y < 1 - ¿£(1 + 0(1)) = 1 - - + o(\/n).
n2 n

Consequently Qr = (c/«Y~(l + o(l)). Since (7) and (8) hold with probability at

least 1 - n~K,

(1 - n~K)Qr <Fr<{\- n'K)Qr + n~K,

so Fr = (c/n)r(l + o(l)), giving

E(Xr) = 7i(l)2"r(1 + o(1)) = "^(1 + o(1))-

This relation shows that if r is fixed and n —> oo then the rth moment of X tends

to the rth moment of the Poisson distribution with mean c/2. Consequently the

distribution of X tends to the Poisson distribution with mean c/2 (see Chung [6, p.

99]), as claimed. In particular, P(diam G < d) = P(X = 0) ~ e~c/2.

Now it is easy to deduce the assertions of the theorem. If d = 2 then clearly

/'(diam G < 1) = P(G = K") = p® _» 0.

Suppose now that d > 3. Given L > 0, choose//, so that

^-'»"-2 = log^-.

Then// <//, and

^(diam G < rf - 1) < P,(diam G < </ - 1) ~ e~L/2,

where Px  denotes the probability in the space S (/'(edge) = //,). Since L was

arbitrary, />(diam G < ¿/ — 1) ~ 0. Hence for every d > 2 we have

lim   P(diam G <d - 1) = 0.
rt—»OO
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50 BÊLA BOLLOBÁS

An analogous argument implies limn_>00 P(diam G < d + 1) = 1, completing the

proof.    □

As an immediate consequence of Theorem 6 we find the range of p for which

almost every graph in % (P(edge) = p) has diameter d, provided d does not increase

too fast with n.

Corollary 7. (i) Suppose p2n — 2 log n —> oo and n2(l —//)—>oo. Then a.e.

graph in §(P(edge) = p) has diameter 2.

(ii) Suppose the function m = m(n) < (£) satisfies

m2/n3 — \ log n -» oo.

Then a.e. graph in §(n, m) has diameter 2.

Both assertions are best possible.

Corollary 8. (i) Suppose the functions d = d(n) > 3 and 0 <// = p(n) < 1

satisfy

(log n)/d — 3 log log n —> oo,

pdnd~x - 2 log /i->oo    and   pd~xnd~2 - 2 log n-*-oo.

Then a.e. graph in §(P(edge) = p) has diameter d.

(ii) Suppose the functions d = d(n) > 3 and m = m(n) satisfy

(log n)/d — 3 log log n —> oo,

2d-xmdn-d-x - log/i^oo    a/i¿   2d~2m''-l/rí' - log n -* -oo.

77iev2 a.e. graph in 3 (n, m) has diameter d.

Both assertions are best possible.

Proofs. The first condition in Corollary 7(i) ensures that /'(diam G < 2) ~ 1. As

/>(diam G < 1) = P(G = Kn) = p®,

P(diam G > 2) -> 1 iff n2log(l//z) -> oo.

Corollary 8(i) is an immediate consequence of Theorem 6 since if (log n)/d —

3 log log n —> oo and pfnd~x = log(/i2/c) then we have (//,n)/(log n)3 -» oo. The

property of having diameter d is a convex property, so the second assertions follow

from Theorem 8(ii) [3, p. 133].    □

We conclude the paper by discussing a question concerning a property closely

related to the diameter of a graph. In what range of p is it true that almost every

graph G G S (P(edge) = p) has diameter d and for every vertex x there is a vertex/

at distance d from x.

Theorem 9. (i) Suppose 0 < q < 1, nq - log n -» oo, a/ii/// «■ 1 — q. Then a.e.

graph in § (P(edge) = p) is such that no vertex is joined to every other vertex.

(ii) Suppose d = d(n) > 2 and 0 < p = p(n) < 1 satisfy (pn)/(log n) —> oo and

(log n)(pdnd~x - log n + log log «) -* -oo.

Then a.e. graph in §(P(edge) = p) is such that Td(x) ^ V(G) holds for every vertex

x.
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Proof, (i) The expected number of vertices of degree n - 1 is np"~x =

n(l — q)"~x ~ ne'9" —>0. Consequently the assertion follows from Chebyshev's

inequality.

(ii) Suppose (pcn)/log n -* oo and

pdnd~x = log n - log log(n/c),

where c is a positive constant. Then by Lemma 3 (more precisely, by a trivial

variant of it since pc and d satisfy slightly different conditions) with probability

1 - n~2 we have

a=\Td_x(x)\<(l + 8)(Pcn)d-1

and

b=\Nd_x(x)\<2(pcn)d-1

for every vertex x, where Ô —> 0. Given Td_ x(x) and Nd_ x(x), the probability of

Nd(x) = V(G) is

(i-(i-p)y~b.

Consesquently the expected number of vertices x satisfying Nd(x) = V(G) is

asymptotic to

w(l _ (1 _ Pc)^y _ B(1 _ e-Py-y . „(, _ log(^£l)" _ c.

Hence by Chebyshev's inequality if n is sufficiently large, the probability that there

is a vertex x with Nd(x) = V(G) is at most 2c, say. Since

log c
log log(n/c) = log log n - -^—— (1 + o(l)),

our second condition implies that p <pc if n is sufficiently large. As c can be

chosen arbitrarily small, the assertion follows.    □

Putting together Theorems 6 and 9 we obtain the following result concerning

graphs of diameter d in which every vertex shows that the diameter is at least d.

Corollary 10. Suppose d = d(n) > 2 and 0 <p = p(n) < 1 satisfy (log n)/d -

3 log log n —> cc,pdnd~x — 2 log n —» oo and

(log /j)(//d"1/id"2 - log n + log log)// —> -oo.

Then in Q (P(edge) = p) a.e. graph has diameter d and no vertex x satisfies

Nd_x(x)= V(G).    □
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