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THE DIAMETER OF THE RUBIK’S CUBE GROUP IS TWENTY∗
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Abstract. We give an expository account of our computational proof that every position of
Rubik’s Cube can be solved in 20 moves or less, where a move is defined as any twist of any face.
The roughly 4.3 × 1019 positions are partitioned into about two billion cosets of a specially chosen
subgroup, and the count of cosets required to be treated is reduced by considering symmetry. The
reduced space is searched with a program capable of solving one billion positions per second, using
about one billion seconds of CPU time donated by Google. As a byproduct of determining that the
diameter is 20, we also find the exact count of cube positions at distance 15.
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1. Introduction. In this paper we give an expository account of our proof that
every position of Rubik’s Cube1 can be solved in 20 moves or less, where a move
is defined as any twist of any face. This manner of counting moves, known as the
half-turn metric (HTM), is by far the most popular move-count metric for the cube
and is understood to be the underlying metric when discussions around this problem,
also known as finding “God’s number” for the puzzle, arise in various online forums
devoted to the cube. The problem has been of keen interest ever since the cube
appeared on shelves three decades ago. In group theory language, the problem we
solve is to determine the diameter, i.e., maximum edge-distance between vertices, of
the HTM-associated Cayley graph of the Rubik’s Cube group. As summarized in the
next section, many researchers have found increasingly tight upper and lower bounds
for the HTM diameter of the cube. The present work explains the computational
aspects of our proof that it equals 20.

While the technological improvements of increased memory capacity and greater
CPU power were necessary for this result, it was primarily a series of mathematical
and algorithmic improvements that allowed us to settle the question in the current
time frame. Our decomposition of the problem, along with certain insights, let us
solve it with a program capable of doing about 65 billion group operations per second
on a single common desktop CPU, which works out to be about 23 Rubik’s Cube
group operations per CPU cycle.

The decomposition is based on a subgroup H of the Cube group. Following
the section on the problem’s history, our paper recommences with a description of
this subgroup and its properties, including the notion of an H-wise relabeling of the
cube for illustration purposes. We then introduce the notion of canonical sequences,
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relate them to the count of positions at a given distance from the solved position,
and describe how we can use these ideas to simultaneously and quickly solve many
positions at a time. We discuss the ideas and implementation of our solving program
itself, first giving an overview of the two main phases of the coset solving program:
search and prepass. We then present some empirically derived heuristic improvements
that were key to the success of the final runs. Next we describe how we set up the
actual final runs and give some statistics and details from those runs, followed by
some ideas for future work.

In particular, the diameter question can be posed relative to move-count metrics
other than the HTM. Both the quarter-turn metric (where a half-twist of a face
constitutes two moves) and the slice-turn metric (where a middle slice may be rotated
in a single move) are of significant popular interest and can be approached with
techniques like the ones we use.

Our new and essential code optimizations were rather intricate and so are merely
summarized, using short code excerpts, in the search and prepass sections. Our critical
inner loop as compiled by the GNU compiler collection is given as an appendix. The
source code includes multiple implementations of its key algorithms at increasing
levels of sophistication; this was critical to verify the correct operation of the code.
In addition, a completely independent (sharing no code) high-performance version
of the solver was created by one of the authors, and many comparisons were made
between the results of the two for verification. Annotated source code and many
further optimization details are available at http://cube20.org/src/.

It is worth mentioning one improvement not detailed here since it would take
us too far afield, namely, our treatment of a set cover problem which allowed us
to further reduce, beyond what standard combinatorial arguments give, the number
of cosets of H that had to be processed. This gave an additional speedup factor
of about 2.5, incremental in relative terms and of interest here only in being our
last major improvement prior to seeking a computing sponsor. The mathematical
and computational derivation of our set cover solution will be treated in a separate
publication, but the actual solution is posted with our source code and may be easily
verified, as three of us did independently from scratch. Despite all of our efforts to
keep the total runtime low, the need for substantial computing resources was inevitable
using the current approach on current machinery.

2. Previous work. Despite widespread interest in the mathematics of Rubik’s
Cube, not only among mathematicians and computer scientists but also in the popular
press, the basic question of finding the diameter of the group, in the half-turn or any
other nontrivial metric, has remained unsolved for more than 30 years.

By 1980 it was understood from a very simple counting argument (see [26]) that
at least 18 moves were required for some positions, but no positions were yet proved
to require more moves. Thistlethwaite [27] proved in July 1981 that 52 moves suffice.
For most of the next decade, these two results were all that were published.

In 1990, Kloosterman lowered the upper bound to 42 [5]. In 1992, this bound was
lowered to 39 by Reid [13], and then to 37 by Winter [28]. Also in 1992, Kociemba
[3] introduced his two-phase algorithm, surprising the cube world with an algorithm
that found near-optimal solutions rapidly, on consumer hardware (the Atari ST) with
only a megabyte of memory.

In 1995, Reid lowered the upper bound to 29 [14] and also increased the lower
bound to 20 [15] by proving that the “superflip” position (all corners solved, all edges
flipped in their home positions) requires 20 moves to solve. Two years later, Korf
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Table 2.1

The solution rate, in positions per second, for four different algorithms for solving the cube.
The first row shows existing position-at-a-time techniques, and the second row shows the rate when
solving an entire coset at a time using our coset solver.

Optimal Near-optimal
Individual position 2.0 3900

Coset of H 2× 106 109

[7] introduced the first practical computer program for optimally solving arbitrary
positions in the Rubik’s Cube group with a typical run time of about a day.

The next seven years were relatively quiet, but the 2004 reincarnation of the
“cube-lovers” mailing list as an internet forum by Mark Longridge unleashed a flurry
of activity. In 2005 Radu [11] lowered the upper bound to 28 and then in 2006 lowered
it again to 27 [12], both times using only a small amount of computer time. In 2007,
Kunkle and Cooperman lowered the bound to 26 using a computer cluster; see [9] and
[10].

It was during this period that we began the work presented in this paper [17]. In
2008, as our technique matured, we were able to lower the bound to 25 [18] (using
only a few home machines) and then 23 [19] and 22 [22] (with John Welborn using
idle time at Sony Pictures Imageworks). Further improvements in efficiency led to
the present work.

To give an idea of the size of the problem, there are about 4.3×1019 (43 quintillion)
positions in the cube group. We can immediately reduce this number by about a factor
of 48 by considering the spatial symmetries of the cube: 24 rotational symmetries
about various axes (e.g., the line through the centers of the up and down faces), 12
reflectional symmetries about various planes (e.g., the up-down “equatorial” plane),
and 12 additional composite symmetries (e.g., up-down reflection followed by a 90-
degree rotation about the up-down axis). Further reduction by about a factor of
2 is realized by group inversion, noting that when a solution sequence is inverted
(i.e., the moves applied in reverse order with each move individually reversed), one
generally obtains a solution sequence to a different scrambling. The fastest optimal
solver we know of, based on Korf’s ideas and requiring 33GB of RAM for tables,
can solve positions on our Nehalem baseline processor at a rate of 2.0 positions per
second. Applying this optimal solver to each position after the reductions above
would require seven billion CPU years. The fastest existing algorithm for finding
near-optimal solutions, Kociemba’s two-phase algorithm, when optimized carefully
for batch speed, can find length-20 solutions for random positions at a rate of 3900
per second. The time required to solve all positions near-optimally this way would be
about 3.7 million CPU years. These two solvers are listed in the first row of Table 2.1.
The second row gives our contribution. When solving an entire coset of positions at
once, we can solve about two million per second optimally and about a billion per
second near-optimally. One revealing aspect of our proof that the HTM diameter
equals 20 is that it used fewer core-cycles (about 1.2 × 1019) than there are cube
positions.

3. Overview. Our determination of just how scrambled a cube can get is based
on a single key idea: partition the space of cube positions into subsets such that
each subset can be solved quickly and independently. In order to set the stage for
the details of the actual program given in later sections, in this overview section we
consider how our overall approach would apply to a much simpler and more familiar
decomposition of the space.
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Given a cube to play with, most people will attempt to solve the top layer first and
proceed with the rest of the cube only after they have solved that layer. This subgoal
is reasonably achievable by most people with a little bit of effort. It is also quite simple
for a computer. There are only about 26 billion different “top-layer positions,” i.e.,
configurations of the top eight cubies (or movable pieces) when distributed throughout
the entire cube, so a table can be constructed in memory giving how many moves each
of these positions is from having the top layer solved. To find a solution to the top
layer, we look up this top-layer distance for the current position, and then try each
move one by one on the current position to see which of them bring us closer to having
the top layer solved. Such a table, called a pattern database [1], allows us to generate
solution sequences, often including several “optimal” (i.e., shortest-length) solution
sequences for any top-layer position very rapidly.

The vast majority of those who solve the top layer for the first time will still have
much work to do, with the remaining cubies in a state of disarray. But every so often
one lucky person may find that their solution to the top layer also fortuitously solved
all the remaining cubies as well. Each solution to the top layer is also a solution to
some full-cube position, and different solution sequences to the top layer are typically
full-cube solutions to different initial positions. Indeed, it is easy to compute which
full-cube position is solved by a given solution to the top layer: simply start with a
solved cube and “undo” the given solution, reversing each individual move and the
order of the move sequence.

Since we can use a pattern database to generate many solutions to a given top-
layer position, and since each such solution solves some full-cube position, it follows
that we can keep track of which full-cube positions we have seen and therefore quickly
find solutions to many different positions. This is the key idea behind our effort.

Given a set of move sequences that solve some particular top-layer position, the
full-cube positions that they solve are related in that they all have the same initial
position of the top cubies. Thus, we can use the position of the top-layer cubies to
partition the cube space into subsets, and then separately solve each subset, i.e., solve
all positions in the subset. The number of subsets in the partition is the count of
top-layer positions, or about 26 billion, and the number of positions in each subset
is the count of reachable positions of the remaining cubies, or about 1.7 billion; the
product of these two counts is the total number of reachable cube positions.

To generate nonoptimal solutions to the top layer using the pattern database,
we need something slightly more complicated than we described above, since not all
moves in such sequences will necessarily take us closer to the solution. But we do
know that at any point with, say, only n moves left, if our current position is more
than n moves from start according to the pattern database, we cannot find a solution
from that position and should backtrack. This leads to a straightforward depth-first
search with pruning:

function search(position p, sequence sofar, int togo) {

if (dist[p] > togo)

return ;

if (togo == 0)

record(sofar) ;

else

for (move m in moves)

search(p.move(m), sofar.append(m), togo-1) ;

}
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Because the average distance returned in our pattern database is about ten, this
depth-first search can handle very deep searches quickly. Indeed, it takes only O(d)
time per solution, where d is the number of moves in the solution.

In order to solve an entire subset in our partition, we need to keep track of which
positions in the subset have been solved and those that remain unsolved. For all
solutions generated, the above algorithm performs a record() operation, which is
responsible for keeping track of the positions solved by the sequences generated by
the search. We assign an index to each position in the subset and then use a Boolean
array (stored densely as a bitmap) to track which positions we have seen. If we
generate solution sequences ordered by length, then the first time we see a solution
for a particular position, we know it is an optimal solution to that position. This is
the principle behind the Iterated Deepening A* algorithm (IDA*) [6], except, instead
of searching for the solution to a single position, we search for solutions to all the
sequences in a large set. Once all the bits in the Boolean array are set, we have found
a solution to all positions in the subset, and we know precisely how many were of each
length. In one run of this algorithm, for a given partition, searching out to whatever
depth is needed, we solve 1.7 billion distinct cube positions.

The problem with this approach is that one might see millions of solutions to
an easy position before seeing the first solution to one of the more difficult (deeper)
positions. One fix is to just run the algorithm for a certain amount of time, or until
a certain relatively small number of positions are left, and then solve all remaining
positions using a different technique. For instance, one might enumerate all solutions
in the subset through length 19 and then solve the very few remaining positions with
another program.

But there is another fix that is even more effective. Once the top layer is solved, no
twist of the bottom layer will change the top layer. Therefore, any solution to the top
layer can be extended by a move of the bottom layer to create a new, different solution
to the top layer. With some careful indexing and layout of the bitmap, we can extend
an entire set of already-solved positions by one of these bottom layer moves using fast
table lookups and logical bit operations. (How this can be done will be described in
a later section.) For example, if we have explored all solutions through length 13, we
can then extend this to all solutions of length 14 that end in a bottom-layer move in a
single fast pass over the bitmap, with no need for additional search. For each original
position in the bitmap, there are three possible bottom-layer moves to extend them,
essentially multiplying the effectiveness of our search. We call this operation a prepass
because we run it before our search, which then generates all sequences at each level:

for (int depth=0; ; depth++) {

prepass() ; // extend position[a] set at depth d-1 to depth d

search(inputpos, empty-sequence, depth) ;

// search for new positions at distance d

}

With this structure we can also change our search routine to never generate solu-
tion sequences that end in a bottom layer move; this is a somewhat subtle optimization
but improves the search speed. In practice, the prepass eliminates a level of search;
a full depth-18 search followed by the fast prepass operation solves a very large frac-
tion of distance-19 positions. Without the prepass operation we would need a good
fraction of a depth-19 search to solve an equivalent number of positions.

4. The subgroup H and its cosets. The partitioning described above is a
partitioning of a group into the cosets of a subgroup. The group is the full space
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of cube positions; the subgroup is the subset of positions that solve the subgoal (for
instance, with the top layer solved). If the move sequence m solves the subgoal for an
initial position p, then it also solves the subgoal for all positions that are in the same
coset as p.

The primary difficulty with exploring any state space this large is keeping track
of which states have been seen so far and which have not. By partitioning the space
into subsets small enough to fit in memory and solving each subset independently, we
can explore much larger state spaces.

Let us consider some subgroup H . To examine a specific right coset C of this
subgroup we take an arbitrary representative p of C, so C = H · p. With a search
at depth d we find all move sequences m of length d that take the initial position p
into the subgroup, that is, p · m ∈ H . For each of these move sequences m there is
exactly one cube position of C which is solved by this move sequence, namely, m′,
where m′ is the inverse of m. The sequence m′ is in C because p ·m is some h ∈ H
with p = h ·m′, and therefore h′ · p = m′ so m′ ∈ H · p.

We keep track of solved cube positions with a bitmap. When the search at depth
d is complete, we know which cube positions of C are solvable within d moves. When
we use the term search in the following text we mean this procedure. A carefully
chosen subgroup H has the property that there are some single moves that, when
applied to a position in H , result in a position still in H . We use these moves to
extend the bitmap obtained from the depth-d search to find all cube positions in C
which are solved by sequences of length d+1 which end in such a move. We call this
a prepass because we apply it before the search at depth d+ 1.

When we talk about the subgroup H from now on, we refer to that well-known
subgroup that is the second goal state of Thistlethwaite’s four-stage algorithm [27],
and the first goal state of Kociemba’s two-phase algorithm [3]. As we shall see in this
section, this subgroup choice provides unique advantages to our prepass technique,
so much so that the bulk of the computational work of our proof was done with the
prepass, and not with search. Furthermore, this subgroup is small enough that the
bitmap used in the search fits into memory.

The top-layer-solved subgroup we used in the prior section is easy to visualize; we
just ignore cubies not originally from the top layer. An informal way to understand
the H subgroup is to change a few of the stickers on the solved cube and remove
some others, as shown in Figure 4.1(b). First, we give opposite faces of the cube the
same color stickers, and second, we remove the stickers with a vertical orientation
from the first and third layers of the cube. In this restickering, all the corner cubies
are identical, and there are only two distinguishable types of edges: middle edges and
top/bottom edges. This relabeled puzzle is much simpler to solve than the full cube
puzzle, much like solving only the top layer is much easier than solving the whole cube.

We are relabeling cubies, and not positions; another description of the same
relabeling that applies to any scrambled position goes as follows. Let us assume that
the colors of opposite faces of the solved cube are yellow and white, blue and green,
and red and orange and that yellow and white are oriented so they are the top and
bottom faces, respectively. We relabel all yellow stickers to white, all blue stickers to
green, and all orange stickers to red. Next, any sticker that is adjacent to a white
sticker on the same cubie, we remove.

The unique solved position of this relabeled cube is just the relabeled full cube:
top and bottom faces are solid white, and the four other faces have a single horizontal
stripe of a single color. The reason the prepass is so effective when this subgroup is
used is that so few moves affect this solved position; no twist of the top or bottom
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(a) (b)

(c) (d)

Fig. 4.1. (a) The normal coloring of a solved cube, (b) H-wise relabeling of the solved position,
(c) the position generated by R1L3U2L1R3, and (d) the coset H ·R1.

face, nor any half-twist of any of the other four faces, changes the appearance of the
relabeled cube. This means our prepass can use ten of the 18 moves to extend the set
of found positions, rather than just three when using the top-layer subgroup. If our
search phase examined n sequences to determine the found positions, then a single
prepass operation on those positions is essentially generating 10n additional sequences,
and possibly many additional positions, all in a single pass over the bitmap.

It is convenient to provide short names to the faces and moves. Viewing the
puzzle’s surface from its exterior as usual, a clockwise quarter-twist of the “up face”
(U) is denoted here by U1, a half-twist by U2, and a counterclockwise quarter-twist
by U3. We do likewise for the remaining faces: down (D), right (R), left (L), front
(F), and back (B). This defines 18 moves; we refer to this set of moves as S. The
cube group G can then be viewed as the action of the free group 〈S〉 on the set of
cubie (individual block) stickers, also known as facelets, and the state of the puzzle is
determined by the placement and orientation of the noncenter cubies (8 corners and
12 edges). The subgroup H is defined as being generated by all moves of the U and
D faces and half-turns of the remaining faces. We define this subset of ten moves as

(4.1) A = {U1,U2,U3,D1,D2,D3,F2,B2,L2,R2}
and the subgroup so generated as H = 〈A〉. We divide the 43,252,003,274,489,856,000
distinct cube positions of the cube group G into 2,217,093,120 cosets of H in G.
We will simply call them cosets of H since, as with all later coset spaces introduced
in this paper, the parent subgroup will always be G. Each coset of H is composed
of 19,508,428,800 cube positions, which is small enough that a check-off table can
comfortably fit in the RAM on a good modern desktop system. We chose this approach
because we are able to solve every element of a coset of H with at most 20 moves and,
crucially, at an extremely rapid speed, by a method closely related to Kociemba’s
two-phase algorithm.

If we relabel a solved cube as described earlier, the moves fromA—which generate
H—do not change the relabeled cube. So all cube positions in H show this color
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Fig. 4.2. Three positions in the coset H ·R1.

pattern after relabeling. But can we also be sure that all cube positions that show
this color pattern after relabeling are elements of H? For example, the position
generated by R1L3U2L1R3, shown in Figure 4.1(c), shows the color pattern of the
solved cube after relabeling, but since its generator uses moves not in A it is not
clear that it is an element of H . In fact, this position can also be generated by
F2U2R2F2R2U2R2F2R2, so it is an element of H . The fact that any position with
H-wise relabeling identical to that of the solved cube can be generated using only
moves defining H is not obvious but can be verified either by a brute force calculation
or by using stabilizer subgroup algorithms (e.g., as built-in to the computer algebra
system GAP). It can also be proved with pen and paper alone by adapting well known
group-theoretic arguments, e.g., as presented in sections 11.2 and 12.1 of [2].

There are 8! ways to permute the corner (cubies) without changing the color pat-
tern of the relabeled cube, while the 4 red/green edges of the middle slice can be
permuted in 4! ways, and the remaining 8 edges with the white facelets can be per-
muted in 8! ways. So H would have 8!8!4! elements if we were allowed to scramble the
puzzle by disassembling and then reassembling the cubies. Since we are constrained
to only turning the faces, and since each face turn is an even permutation on the
cubies, we find that |H | = 8!8!4!/2 = 19,508,428,800. As it is impossible to twist a
corner or flip an edge on the relabeled cube without destroying the color pattern, flips
and twists do not contribute to enumerating the elements of H.

The cosets of H can be visualized in a similar way, by a specific color pattern of
the H-wise relabeled cube, such as in Figure 4.1(d). The three positions depicted in
Figure 4.2 belong to the same coset because their H-wise relabelings are identical. In
fact, they are identical to the same pattern shown in Figure 4.1(d), which depicts the
right coset

H ·R1 = {h · R1 : h ∈ H}.
We now calculate the number of possible color patterns (i.e., the number of cosets

of H) for an H-wise relabeled cube. First note that there are
(
12
4

)
ways to assign the

location of the 4 red-green edges. Flipping an edge or twisting a corner always gives a
different pattern, as we noted above, so if disassembling the cube were permitted, we
would get 21238 possibilities for flips and twists. But as before, the move constraints
allow only 21137 ways, since the flip/twist states of the final edge and corner are
forced. As a result, there are

(
12
4

)
21137 = 2,217,093,120 different cosets of H .

The subgroup H exhibits 16-way symmetry. When we define an equivalence
relation on the cosets of H by this symmetry, we find there are only 138,639,780 such
equivalence classes, so we only need to solve a single representative of each. Careful
consideration of a decomposition of the cosets of H into cosets of a smaller subgroup
permits us to take advantage of more of the natural 48-way symmetry of the cube and
reduce the number of cosets to be solved down to 55,882,296. Details of this reduction
will be published separately.
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5. Sequences of moves. This section explains the relationship between move
sequences and positions, defines the notion of canonical sequences from which an effi-
cient search method is devised, and extends this notion to sequences ending in moves
from A. Our coset solver exploits the fact that the set A of generators of the subgroup
H is a relatively large subset of the set S of all moves. For a set of positions inH, right-
multiplication by moves in A results in positions in H . We can perform this operation
(called a prepass) in bulk extremely efficiently, and this is the key to our overall result.

The performance of the coset solver is driven by practical considerations, so we
must specify a hardware baseline. All performance numbers in this paper are measured
on a Nehalem X3460 CPU running at 2.8GHz with four cores and hyperthreading
enabled. We distinguish core seconds (execution on one core) and CPU seconds
(execution on the entire CPU). Our primary metric throughout is CPU seconds.

Our coset solver maintains a bitmap indicating which of the 19,508,428,800 el-
ements of the coset have been solved at every point. Two primary techniques are
used in the coset solver to check off positions in the bitmap. The first technique is
an extremely fast search that enumerates canonical sequences of a particular length
and marks the resulting positions in the bitmap. This search runs at about 25 million
positions per second. At small lengths, when there are few canonical sequences (as
described below), this completes quickly, while at larger lengths, with exponentially
more positions, it can take much longer. The second technique is the prepass; it takes
the set of positions already found and extends that set by all moves in A using a quick
scan over memory and some logical operations. It is called a prepass because we use
it for a particular depth before a search at that depth. The prepass is much faster
than search on a per-position basis because it processes 24 positions and ten moves at
a time in a short inner loop composed of just 61 machine instructions; this executes
group operations at a rate of 65 billion per CPU second. It forms the heart of our
program, where most of the time is spent and where the most positions are found.
Combined judiciously, these two techniques process a coset in, on average, about 20
seconds, or about a billion positions per second.

When searching for solutions to positions, it is important to minimize redundancy
in the search tree. Separately searching sequences such as U1D2 and D2U1 that
reach the same position in the same number of moves can slow down the search
dramatically. In addition, sequences such as U1U2 are clearly suboptimal and should
also be avoided. We define a canonical sequence as a sequence that obeys a specific
order for adjacent individual moves that commute and is free of consecutive moves of
the same face. These two restrictions alone are surprisingly effective.

We begin with a standard technique from linear algebra to determine the number,
denoted here qn(S), of canonical sequences of length n from the set S of all 18 moves.
(We could use a simpler approach here, but explicit matrix arithmetic makes it easier
to extend these ideas to other sets of sequences, as we do later.) Ordering this set as

S = {U1, U2, U3, F1, F2, F3, R1, R2, R3, D1, D2, D3, B1, B2, B3, L1, L2, L3},
we decree that a two-move sequence sisj of elements from S is canonical if and only
if the (i, j)th entry of the following 18× 18 incidence matrix C is 1:

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

Z W W W W W
W Z W W W W
W W Z W W W
Z W W Z W W
W Z W W Z W
W W Z W W Z

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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where

W =

⎛
⎝ 1 1 1

1 1 1
1 1 1

⎞
⎠ and Z =

⎛
⎝ 0 0 0

0 0 0
0 0 0

⎞
⎠ .

Any move is permitted as the first move in a canonical sequence and serves as the
base case for the following inductive procedure to specify and enumerate the canonical
sequences of a given length. To initialize the process, we let a be the 18-entry column
vector composed solely of 1’s, and denote its transpose by

a� = (1, . . . , 1︸ ︷︷ ︸
18 1’s

).

The product a�C is then a row vector which encodes, for each of the 18 possible
moves, the number of canonical two-move sequences ending with that move:

a�C = (12, . . . , 12︸ ︷︷ ︸
nine 12’s

, 18, . . . , 18︸ ︷︷ ︸
nine 18’s

).

For example, the first entry in this row vector indicates that there are 12 canonical
two-move sequences that have U1 as the second move. To be canonical, their first
move must be one of the 12 possible moves of F, R, B, or L, because consecutive moves
of the same (U) face must be avoided and we require twists of the U face before twists
of the D face whenever these faces occur consecutively. To get the total number q2(S)
of two-move canonical sequences, we multiply a�C by the column vector a, giving
the 1× 1 matrix a�Ca = (243). Extending this and dropping the matrix parentheses
as is usual for 1× 1 matrices, we have

qn(S) = a�Cn−1a.

Since all of our restrictions can be categorized according to faces, we can collapse rows
and columns together and instead redefine the matrices

a� = (1, . . . , 1︸ ︷︷ ︸
six 1’s

), C =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 3 3 3 3 3
3 0 3 3 3 3
3 3 0 3 3 3
0 3 3 0 3 3
3 0 3 3 0 3
3 3 0 3 3 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

in which case we get

qn(S) = 3a�Cn−1a.

Using this formula one can readily derive the recurrence relation

qn(S) = 12qn−1(S) + 18qn−2(S) (n ≥ 3),

which can also be seen combinatorially (see p. 34 of [26]). The matrix approach allows
easy adaptation to further restrictions on allowed moves, which we use when analyzing
the prepass.

When we compare the count of canonical sequences of length d to the known
count of Rubik’s Cube distance-d positions in Table 5.1, we find the values are close
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Table 5.1

The count of canonical sequences of length d and positions at distance d. Note how close the
values are through d = 16. The count of cube positions at distance 15 is a new result from this work.
The approximate values are from [21] and [20].

d Canonical sequences Positions
0 1 1
1 18 18
2 243 243
3 3,240 3,240
4 43,254 43,239
5 577,368 574,908
6 7,706,988 7,618,438
7 102,876,480 100,803,036
8 1,373,243,544 1,332,343,288
9 18,330,699,168 17,596,479,795

10 244,686,773,808 232,248,063,316
11 3,266,193,870,720 3,063,288,809,012
12 43,598,688,377,184 40,374,425,656,248
13 581,975,750,199,168 531,653,418,284,628
14 7,768,485,393,179,328 6,989,320,578,825,358
15 103,697,388,221,736,960 91,365,146,187,124,313
16 1,384,201,395,738,071,424 ≈1,100,000,000,000,000,000
17 18,476,969,736,848,122,368 ≈12,000,000,000,000,000,000
18 246,639,261,965,462,754,048 ≈29,000,000,000,000,000,000
19 3,292,256,598,848,819,251,200 ≈1,500,000,000,000,000,000
20 43,946,585,901,564,160,587,264 ≈300,000,000

Table 5.2

Search time for one coset of H up to a given depth, count of sequences with n moves from S
followed by m moves from A, time for m prepass operations, and total time (prepass plus search).
Note how the total time increases much more rapidly than the sequence count as n increases past 15.

n Search time m qn,m(S,A) Prepass time Total time

14 0.14 seconds 6 8.10× 1020 18.6 seconds 18.7 seconds
15 1.9 seconds 5 1.59× 1021 15.5 seconds 17.4 seconds
16 25 seconds 4 3.13× 1021 12.4 seconds 37.4 seconds
17 5.6 minutes 3 6.18× 1021 9.3 seconds 5.8 minutes
18 1.2 hours 2 1.21× 1022 6.2 seconds 1.2 hours
19 16 hours 1 2.44× 1022 3.1 seconds 16 hours
20 9 days 0 4.39× 1022 0 9 days

through distance 16; this indicates that basing a search on canonical sequences is
sufficient to nearly eliminate any inefficient repeated search of the same position.

The count of canonical sequences allows us to estimate the runtime of a search
through a particular depth. Empirically, our search implementation can visit about
25 million sequences per second. There are 21137

(
12
4

)
= 2,217,093,120 cosets of H, and

the canonical sequences are split among these cosets. Our time required to process
a single coset by canonical sequences at depth n, in seconds, is therefore on average
about qn(S)/(2,217,093,120× 25,000,000).

Below depth 14, the time is dominated by the setup time. For depths d ≥ 14, we
get the search times per coset given in the first two columns of Table 5.2 by summing
the above for n from 1 to d.

One technique to prove a diameter of 20 for a given coset, then, would be to do a
full search to depth 19 within the coset, thus finding all distance-19 positions in the
coset. Any remaining positions must be of distance 20 or more. We then execute a
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single prepass, which will almost certainly prove that all remaining positions in the
coset are of distance 20. But if it does not, and there are remaining positions, we can
solve them separately using Kociemba’s two-phase solver. This technique for a single
coset would take about 16 CPU hours. All 138,639,780 distinct cosets of H would
require about 280,000 CPU years, a substantial improvement over the 3.6 million CPU
years calculated earlier, but clearly still not feasible.

There is a better approach than this for finding optimal solutions for every position
in a coset. A full depth-18 search followed by a prepass finds all distance-18 positions
and the majority of distance-19 positions in that coset. Any leftover positions are
distance-19 or deeper, and they are thought to be very few [20]. On these leftover
positions, we first use Kociemba’s two-phase algorithm, limited to a few seconds per
position. This succeeds a majority of the time. For the remaining positions, we apply
an optimal solver, which runs at about 2×106 solutions per second. This combination
of techniques reduces the search time for finding the overall diameter of the group to
21,000 CPU years.

For the purposes of proving that the diameter is 20, positions need only be solved
in at most 20 moves each, that is, we do not need to find optimal solutions for every
position. We do this by searching to a lesser depth (say, n) and then performing 20−n
prepasses to find distance-20 solutions. Choosing the right value for n is critical; a
smaller n will run more quickly but increases the chance of having many remaining
positions without solutions of 20 moves or less.

We know that a depth-19 search eliminates almost all positions, and fewer than
one in a billion positions have distance 20. We also know that the number of length-19
canonical sequences is about 3.29× 1021. If we do not search past depth n, but only
use prepasses, this restricts the canonical sequences to those where all moves past
the nth move must come from A. We can use our matrix representation to compute
how many such canonical sequences there are and compare this with q19(S) to find
out how deep we need to search to likely cover the space adequately. To this end we
create a modified transition matrix CA from C by removing those moves not in A,
i.e., the quarter-twists of F, R, B, and L. The resulting matrix, corresponding to the
element ordering in equation 4.1, is

CA =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 3 1 1
3 0 1 3 1 1
3 1 0 3 1 1
0 1 1 0 1 1
3 0 1 3 0 1
3 1 0 3 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

As before, we see that the number of canonical sequences with the first n moves from
S and the next m moves from A, denoted qn,m(S,A), is given by

qn,m(S,A) = 3a�Cn−1Cm
A a.

The results of this calculation are shown in Table 5.2. Since we are proving a diameter
of 20, we have n +m = 20. A complete search at depth 16, extended by four moves
from A, may generate about as many positions as a complete search to depth 19.
So we only need do a search to depth 16, requiring about 27 seconds total, followed
by four prepasses, requiring about 3 seconds each, to solve the vast majority of the
positions in each coset.
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Empirically, we have found that doing a full search to depth 15 followed by five
prepasses usually eliminates all but a few dozen positions. The canonical sequences
are not distributed evenly over the cosets, so for some cosets there are significantly
fewer length-15 canonical sequences; for these cosets, we do a partial depth-16 search.
In sum, we average about 3s per coset on the search, and 15s for the five prepasses,
plus about 1.5s of overhead, for a total of about 19.5s per coset. On average we find
345 positions left per coset, which we can then quickly solve in 20 or fewer moves using
Kociemba’s two-phase algorithm. Using this technique, our CPU time requirements
are reduced to about 87 CPU years. We were able to further reduce this to 35 CPU
years by reducing the count of cosets needed. We plan to describe this improvement
in a separate publication.

6. The coset solver.

6.1. Search phase. Our coset solver relies on a fast IDA* search routine to
seed the prepass. This search routine must enumerate canonical sequences of a given
length that bring a particular coset representative p into the group H , calculate which
element of H the representative p brings it to, and check and set bits in the subgroup
bitmap corresponding to that element. We use a large exact pattern database to guide
the search. The pattern database is indexed by the coset of H represented by the
current position, and it gives the number of moves required to reach the subgroup H .

6.2. Search optimizations. The set of canonical sequences can be thought of
as a tree, with the empty sequence at the root, the sequences of length 1 at the
next level down, and so on. Every node represents a particular sequence. Iterated
depth-first search walks this tree at increasingly deeper levels. For our coset search
with representative position p, we associate with each node the position reached by
executing the sequence for that node from the position p. Each of these positions has
a distance from the group H . Our pattern database is used to look up that distance.
For a given search depth, we consider all the nodes in the search tree at that depth
as leaves, because we do not visit deeper nodes in that iteration of the search.

The pattern database is indexed by cosets of H . There are 2,217,093,120 such
cosets, but we exploit the 16-way symmetry of the H group and its cosets to reduce
the size of the table to about 170 million entries. For fast move execution and fast
indexing, we use a coordinate representation for the coset position, much as Kociemba
does with his Cube Explorer program [4].

For a search to a particular depth, there are only certain canonical sequences of
that length that take a coset representative p to the group H . If we enumerate all of
these sequences, we must visit all of the corresponding nodes and their ancestors in
the search tree. Any time we visit a node that is not one of those solving sequences
or a prefix of a solving sequence, we waste execution time. We want to minimize the
number of false nodes, whose sequences are neither solving sequences nor prefixes of
solving sequences.

Normal IDA* search, using a pattern database to provide the heuristic function,
will usually explore many more false nodes than useful ones. Every useful node must
be visited, and normal IDA* search visits all immediate successors of every useful
node, most of which are not useful.

The dominant cost of visiting a node in our type of IDA* search is querying the
pattern database for the value of the heuristic function; the table is relatively large,
and thus accesses will likely miss the processor cache and perhaps the translation
lookaside buffer (TLB) as well. Every main memory access fetches 64 bytes on our
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Nehalem processor, so we might as well make use of a few more bytes. We do this by
including information on the distance of all neighboring nodes, as well as the node it-
self; we use this distance information to decide which neighbors are useful even before
we calculate their position.

Unlike a normal IDA* search where the first successful sequence terminates the
search, we want to enumerate all successful sequences. Using the information about
the neighbors allows us to only visit useful nodes, walking down the tree to precisely
those leaves that correspond to sequences that bring positions p into H. For the leaves,
we do not perform a heuristic function lookup as we know all useful leaves correspond
to positions in H.

One advantage of using H as the subgroup from which to compute cosets is the
useful subtree of the search tree has a much higher ratio of leaves to nonleaf nodes than
other subgroups. This means the ratio of successful sequences (one per leaf node, each
of which is a new candidate solution) to useful nodes (a basic unit of work in our tree
search) is much higher. Consider, by comparison, the subgroup E that fixes edges, so
the cosets are defined by the edge positions. The shortest canonical sequence between
any two different positions in the subgroup E is quite large, because every move from
a position in E messes up the edges, which then need to be put back into place.

In the useful subtree of the search tree for any coset of H , any ancestor node that
has useful leaves has at least two useful leaves. The sequence for a given leaf must
either end in a move in A or a move not in A. If the sequence ends in a move in A,
that means the position associated with the ancestor node is also in H , and thus, it
has several children in H , one for each move in A that is permitted after the move
that precedes that move. If the predecessor move is a move of the U face, it will have
seven useful leaves from moves in A of F2, R2, D2, B2, L1, L2, and L3. If it is a move
of the D face, it will have four useful leaves from the moves in A of F2, R2, B2, and
L2. If it is a move of F or R, it will have eight useful leaves from any move of U or of
D, or a half twist of the opposite face. If it is a move of B or L, it will have six useful
leaves from any move of U or D.

If the sequence for a given leaf does not end in a move in A, there are only eight
possible moves (those not in A) it could end with: quarter twists of the faces F, R, B,
and L. Let us assume without loss of generality (by symmetry) that the last move from
the ancestor node to this leaf is F1. Then the move F3 from the ancestor node is also a
position in H and hence is a leaf. This is because F1 and F3 differ by F2 which leaves
an H position in H . Thus, if the sequence does not end in a move in A, but there
are useful leaves (that is, child nodes in H), then there must be exactly two of them.

For depth-16 searches or deeper, we use the prepass to handle all those canonical
sequences that end in moves in A, rather than explicitly enumerating them. At
the beginning of a search at depth d, the coset bitmap represents all those elements
of H that can be reached by move sequences of length d − 1 applied to the coset
representative p, so the prepass calculates exactly the same set of positions as a
normal search phase at depth d restricted to sequences that end in moves from H . As
a consequence, at depth d, we only need to explore sequences that end in a move not
in H . This typically saves about 10/18 or 56% of the sequences (since there are ten
moves in A but 18 in S). It does not save quite this much execution time because
the search nodes it eliminates are exactly those that have more than two useful leaves
per ancestor node. Despite this, it is a useful optimization for the deeper searches.

In order to confine our search to sequences not ending in a move from H , we
observe that the shortest canonical sequences that take a position that is in H out
of H and then back into H have length 5 (such a sequence is R1L3U2L1R3). Any
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sequence that ends with a move not in A, but ends with a position in H , must enter
it on the last move. Thus, any time we enter H early in the search, we must have
at least five moves remaining for us to exit H and reenter it; further, we must exit
H with at least four moves remaining or we will not be able to get back into H in
time.

There are two technical details worthy of mention. First, the use of 2MB TLB
pages rather than the default 4K TLB pages can significantly reduce the cost of
TLB misses; the libhugetblfs library can enable this easily on modern Linux kernels.
Second, search required to find the next position can be overlapped with the memory
access for the previous bit. Normally our search-driven bitmap updating might look
like something like

void checkpos(position p) {

unsigned char *addr = calcaddr(p) ;

unsigned char b = calcbit(p) ;

if (0 == (*addr & b)) { // new position found!

count++ ;

*addr |= b ;

}

}

Modern processors include prefetching instructions that tell the memory system
that the processor intends to use a particular memory location in the near future, so
it should be loaded into the cache, but without stalling the execution pipeline to do
so. We can take advantage of this by issuing such an instruction when we have found
a new address to check, but not actually performing the check until we have found
another position:

unsigned char *addr = 0 ;

unsigned char b = 0 ;

void checkpos(position p) {

if (addr != 0 && 0 == (*addr & b)) { // new position found!

count++ ;

*addr |= b ;

}

addr = calcaddr(p) ;

b = calcbit(p) ;

prefetch(addr) ;

}

This idea can be extended to enable good scalability when multithreading the
search. The pattern database itself does not need any sort of locking because it is
read-only during the search, but updating the coset bitmap must be carefully managed
so threads do not obliterate bits set by other threads. To do this, each thread builds a
local queue of addresses and bits to check in the table. As it calculates each address,
it prefetches the memory address to get the data into the cache. After a thread has
accumulated, say, 64 such addresses, it then obtains a global lock, checks and sets
all those 64 addresses, and releases the global lock. This eliminates any possibility
of concurrent access to the coset bitmap, which guarantees correctness, yet permits
the actual search for those addresses to occur in parallel, yielding high scalability.
By making the queue reasonably short, no thread is held up too long waiting for the
global lock, but by making it as long as we do, we amortize the cost of getting the
global lock. In our testing, we see almost perfect scalability in the search phase up to
eight threads.
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6.3. Prepass phase. Our coset solver maintains a large bitmap that represents
the set of positions in that coset for which a solution has already been found. Every
position in the coset is assigned an ordinal number, and we use an indexing algorithm
to convert the position to that assigned ordinal number, and another algorithm to
convert an ordinal number to that position.

The coset positions that are being solved are elements of the coset H · p, where p
is a coset representative. Our search constructs sequences m such that p ·m is in H
(i.e., the sequence m brings the position p back into the coset H). It is much easier
to index the elements of the group H than it is to index an arbitrary coset of H ,
because all positions in H share some common properties that are not shared by the
positions of a coset of H . So instead of indexing the position solved by the sequence
m, we index the position reached by p ·m, which is in H .

Positions in H all have the solved orientation on both edges and corners, so we do
not need to consider orientation in our indexing operation. Further, all positions in H
have the middle edges always in the middle slots. Thus, we can separate the state of
a position in H into three portions: the permutation of the corners, the permutation
of the up/down edges, and the permutation of the middle edges. These have sizes 8!,
8!, and 4!, respectively. The overall parities of the three of these must have an even
sum, so the total size of the group is 8!8!4!/2; a bitmap of this size requires 2.3GB of
memory. We index each of these components separately and combine the results into
a single index.

Overall, our prepass simply iterates over the range of the ordinals for the positions
in H , and for each bit set in the bitmap, computes all neighbors to that position (by
moves in H) and marks them in a new copy of the bitmap. The code essentially does
the following:

newbitmap = oldbitmap ;

for (i : ordinals of H) {

if (oldbitmap[i])

for (move m : A) {

cubepos p = unindex(i) ;

p.move(m) ;

newbitmap[index(p)] = 1 ;

}

}

With careful organization of the bitmaps and a handful of lookup tables, we can
optimize this routine to execute at a rate of about 65 billion potentially new positions
per second on a single CPU. The next section describes how this is done.

6.4. Prepass optimizations. Making the prepass fast primarily involves orga-
nizing the bitmap in such a way that group operations can be performed in parallel
with bitwise logical operations and relatively small lookup tables. To enable this, we
split the overall ordinal indexing of the bitmap into three coordinates: the permuta-
tion of the corners, the permutation of the up and down edges, and the permutation
of the middle edges (from most significant to least significant).

Because 8! = 40, 320 is so small, for the corners we simply construct an array
nextcorner[i][m] that gives the ordinal value for the position of the corners after
taking the position for ordinal i and making move m. We do the same thing for
the eight up/down edges if we restrict moves to H , and the same thing for the four
middle edges via arrays nextudedge[i][m] and nextmedge[i][m]. To reflect parity
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considerations, where the corner permutation parity must match the edge permutation
parity, we do not distinguish the permutation of two of the up/down edges (chosen
arbitrarily), since these are forced by the parity of the permutation.

With these three arrays in place, our prepass now looks like
for (c : ordinals of corners) {

for (eud: ordinals of up/down edges) {

for (em: ordinals of middle edges) {

int i = (c * 8!/2 + eud) * 4! + em ;

if (oldbitmap[i])

for (move m : A)

newbitmap[

(nextcorner[c][m] * 8!/2 + nextudedge[eud][m]) * 4! +

nextmedge[em][m]] = 1 ;

}

}

}

If we premultiply the nextcorner array by 8!/2 ∗ 4! and the nextudedge array by 4!,
the inner expression simplifies to

newbitmap[nextcorner[c][m] + nextudedge[eud][m] +

nextmedge[em][m]] = 1 ;

We can hoist the indexing of newbitmap and nextcorner using a temporary array
that holds the following sums:

for (c : ordinals of corners) {

char *cptrs[] ;

for (move m : A)

cptrs[m] = newbitmap + nextcorner[c][m] ;

for (eud: ordinals of up/down edges) {

for (em: ordinals of middle edges) {

int i = (c * 8!/2 + eud) * 4! + em ;

if (oldbitmap[i])

for (move m : A)

cptrs[m][nextudedge[eud][m]+nextmedge[em][m]] = 1 ;

}

}

}

We now focus on moves of the U and D faces, which are six of the ten moves in
A. These moves do not affect the middle layer, so nextmedge[em][m] == em. There
are 24 values of em, and we want one bit per value, so we recast our bitmap as an
array of 24-bit integers, one integer per (c, eud) combination, with one bit of each
integer corresponding to a value of em. We use the bitwise logical “or” operation to
perform the test of the source and conditional setting of the destination. We modify
the constant multiplications we have done in nextudedge and nextcorner to take
this into account, and for the up/down moves only, we end up with

for (c : ordinals of corners) {

int24 *cptrs[] ;

for (move m : A)

cptrs[m] = newbitmap + nextcorner[c][m] ;

for (eud: ordinals of up/down edges) {

int emset = oldbitmap[c*8!/2 + eud] ;
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for (move m : {U1, U2, U3, D1, D2, D3})

cptrs[m][nextudedge[eud][m]] |= emset ;

}

}

For the remaining moves in A, which are F2, R2, B2, and L2, the middle edge
position is modified, so we need to compute this modification. This modification to
the middle edges, when a subset of 24 permutations is represented as a bitmask, is just
a permutation of those bits. In practice, one must consider that modern commodity
CPUs do not include instructions for arbitrary bit permutations. We could use a large
lookup table (224 entries for each of these four moves with each entry three bytes,
requiring a total of 200MB) to perform the permutation of bits, but the resulting
cache misses would destroy the performance we hope to attain. So instead we split
the source value into two, 12-bit subwords and use several lookup tables, each much
smaller, to perform the bit permutation.

Our mapping of permutations to bits is arbitrary, so we put all the even permu-
tations in the low 12 bits of the 24-bit word, and the odd permutations in the high 12
bits. Since all of F2, R2, B2, and L2 are odd permutations on the middle edges, this
means low 12 bits from the source will all map to high 12 bits from the destination,
and vice versa. We use eight arrays to perform this operation—an odd array and an
even array for each of the four moves we handle.

We need additional code to extract the high and low word from the source, do
the array lookups, and then combine the result. The code then for just these four
moves looks like

int evenempermute[4][1<<12], oddempermute[4][1<<12] ;

for (c : ordinals of corners) {

int24 *cptrs[] ;

for (move m : A)

cptrs[m] = newbitmap + nextcorner[c][m] ;

for (eud: ordinals of up/down edges) {

int emset = oldbitmap[c*8!/2 + eud] ;

int emodd = emset >> 12 ;

int emeven = (emset & 0xfff) ;

for (move m : {F2, R2, B2, L2})

cptrs[m][nextudedge[eud][m]] |=

(evenpermute[m][emeven] << 12) |

oddpermute[m][emodd] ;

}

}

With tiny innermost loop bodies like this, it is advantageous to combine the two
loops and unroll the inner bodies. This inner loop is reading the source bitmap,
calculating from it 10 different parts of the destination bitmap, and modifying them
in the process. This generates a lot of memory bus traffic to write the updated values
back to memory, so we instead turn the loop around and compute the new value for
the destination bitmap based on ten different portions of the source bitmap it reaches.
We can do this transformation because A is closed under inversion. This significantly
reduces the write traffic. We integrate this operation with the bitmap copy, yielding
the following code:

int evenempermute[4][1<<12], oddempermute[4][1<<12] ;

for (c : ordinals of corners) {
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int24 *cptrs[] ;

for (move m : A)

cptrs[m] = oldbitmap + nextcorner[c][m] ;

for (eud: ordinals of up/down edges) {

int F2set = cptrs[F2][nextudedge[eud][F2]] ;

int R2set = cptrs[R2][nextudedge[eud][R2]] ;

int B2set = cptrs[B2][nextudedge[eud][B2]] ;

int L2set = cptrs[L2][nextudedge[eud][L2]] ;

newbitmap[c * 8! / 2 + eud] =

oldbitmap[c * 8! / 2 + eud] |

cptrs[U1][nextedge[eud][U1]] |

cptrs[U2][nextedge[eud][U2]] |

cptrs[U3][nextedge[eud][U3]] |

cptrs[D1][nextedge[eud][D1]] |

cptrs[D2][nextedge[eud][D2]] |

cptrs[D3][nextedge[eud][D3]] |

((evenpermute[F2][F2set & 0xfff] |

evenpermute[R2][R2set & 0xfff] |

evenpermute[B2][B2set & 0xfff] |

evenpermute[L2][L2set & 0xfff]) << 12) |

oddpermute[F2][F2set >> 12] |

oddpermute[R2][R2set >> 12] |

oddpermute[B2][B2set >> 12] |

oddpermute[L2][L2set >> 12] ;

}

}

The straight-line code in the inner loop above seems lengthy, but it performs ten
moves on 24 different positions, and it does so with very simple instructions that
execute quickly, using small lookup arrays that fit either in the cache or are accessed
sequentially.

There are two more improvements we have made to the above code. First, since
our arrangement of the mapping of middle edge permutation to bit position is arbi-
trary, except that the even positions must be in the lower 12 bits, we arrange it so that
the evenpermute and oddpermute arrays for a single one of the moves represent the
identity operation. This allows us to remove two of the eight arrays and their lookups.
Further, we do not need to include the oldbitmap[] lookup (the first element of the
large disjunction), because at any depth greater than 0, whenever a bit is set in the
array, so is a different bit that is related to this bit by a move in H . This is due to the
shape of the search trees (as discussed in the previous section), where all leaf nodes
always have immediate siblings related by moves in A.

Modern CPU architectures do not have a native 24-bit integer value, but a 32-bit
int works fairly well as its replacement. This yields a bitmap that is too large, as
eight of the 32 bits are wasted. In our testing on modern Intel and AMD processors,
unaligned 32-bit accesses on an array, with the 24-bit integers packed densely, actually
performs somewhat better than using the sparser layout.

Our final prepass consists of an inner loop containing 61 instructions including the
test and branch at the end. For each three-second prepass operation, this inner loop
is executed 8!∗ 8!/2 or 812,851,200 times. On our Nehalem processor, this is executed
across eight logical threads in four physical cores, giving an approximate execution
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rate of 1.5 instructions per cycle per core, which is fairly good, especially considering
how much memory traffic is generated. This inner loop handles 240 group operations
each execution, so our operation rate is 65 billion group operations per second on this
single CPU. The GNU compiled code for this crucially fast loop is provided as an
appendix.

There are a few additional but minor optimizations we have performed. We
allocate portions of the new bitmap only as they are needed, and we free portions of
the old bitmap upon their last use, so the overall memory impact is significantly lower
than twice the size of a single bitmap. We evaluate the corner positions not in ordinal
order, but in a different order that enhances the cache hit rate and also minimizes the
maximum amount of memory allocated at once.

7. Heuristics. Much of the speed of our approach comes from using only the
prepass at greater depths, but the prepass only considers moves in A. Thus, not
finding solutions of length 20 or less for some positions does not mean those positions
require more than 20 moves to solve. We can call these positions that remain after a
coset search leftover positions; we must consider these separately.

Luckily, the Kociemba two-phase search algorithm, especially when extended to
six-axis search [22], can find length-20 or shorter solutions quickly, at an average rate
of about 3900 positions per second. Thus, we want to balance the amount of time
spent doing search in the coset solver against the expected count of leftover positions.
In this section we discuss empirically derived heuristics that gave us a reasonable
balance.

So far we have done our analysis based on the count of canonical sequences of a
particular length divided by the count of cosets, that is, based on averages. In reality,
some cosets have many more sequences of a particular length, while some have many
fewer. For most cosets, a full search to depth 15, followed by five prepasses, finds
solutions of length 20 or less to all positions except a few.

For some cosets this strategy leaves an impractical number of positions remaining
to solve with the two-phase algorithm. So for about a third of the cosets we do a
partial depth-16 search. We performed a full search to at least depth 15 to compute,
as a secondary and corroborating result, the total number of positions at a distance
of exactly 15.

On average, a full depth-16 search would require about 27 seconds. Since without
the depth-16 search the time per coset is less than 20 seconds, doing a full depth-16
search would more than double the time for those cosets.

For depth 16, we always first do a prepass. In our initial testing, we tried to find
a particular count of total positions found at which to terminate the depth-16 search.
However, we found that for the same total position count, the number of leftover
positions differed significantly across cosets. Let us explain why.

After the depth-16 search, we only do prepasses. These prepasses only execute
moves from A. Let us determine how many next moves there are for a canonical
sequence for moves in A and moves not in A. For U1, U2, and U3, we have 7 possible
successor moves. For F2 and R2, we have 10 possible successors. For D1, D2, and D3,
we have only 4 possible successors, and for B2 and L2, we have 8 possible successors.
The average over these 10 moves is 6.9 successors.

For moves not in A, we have F1, F3, R1, and R3, each with 9 successors; for
B1, B3, L1, and L3, we have 8 successors. The average here is 8.5 successors. So
moves ending in A have, on average, fewer successors, and are therefore less valuable
towards our goal of solving all positions in at most 20 moves.
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As a solution, we derate positions already found by the depth-16 prepass when
calculating how many positions at which to terminate the search. As a result, almost
all positions found at depth 16 were found by the prepass. We performed a sequence
of experiments to determine how much to derate these positions and at what point
to terminate the search. If x denotes the number of positions found in total after the
depth-16 prepass, we perform a depth-16 search until the total number of positions
found is 167,000,000 + x/3.

8. The big run. Managing nearly 56 million independent coset runs on a large
cluster can be difficult. To amortize the overhead of calculating or loading the required
pattern database, we program the coset solver to iteratively execute a sequence of
cosets in a single execution. By executing enough cosets in sequence in a single
execution, the time to calculate the pattern database was made negligible, and all
considerations of loading, storing, or distributing the large table were eliminated. To
improve the credibility of our results, we calculate a hash of each pattern database a
priori and validate that hash in memory at the beginning and end of each run.

To ease management of which cosets need to be solved, which are pending, and
which are completed, we integrate the list of which cosets were needed directly into
the source of the coset solver, assign each an ordinal, and make each execution be
responsible for a contiguous range in that ordinal.

We also use the integrated coset list to compute the exact count of positions at
each distance from 0 to 15. As Korf’s article [8] indicates, at depth 10 a breadth-first
search approach is already challenging. We include logic that, for the set of positions at
every level, computes which of those positions this particular coset was the canonical
coset (the lowest-indexed coset) for, and which of the positions are duplicated in an
earlier coset.

Since the count of positions through distance 14 is already known [24], verifying
the sums of these counts across all 56 million runs provides a certain amount of
validation of our results. We always perform a depth-15 search to completion, so we
can also compute precisely the number of positions at that distance.

Almost all positions solved in one coset have a corresponding inverse position of
the same distance in a different coset. This additional redundancy also helps validate
our result.

All cosets and leftover positions were run on Google servers during July of 2010.
There were a total of 19,260,301,834 leftover positions (an average of 345 leftover posi-
tions per coset) that were individually solved using our six-axis two-phase algorithm.
Using a simple Perl script to iterate through the logs and sum up the positions at
each depth, we were relieved to find that the counts confirmed the known results for
distances 0 through 14. We announced our new result for the count of positions at
distance 15 (91,365,146,187,124,313) in July, 2010 [23]. This result was independently
confirmed by Scheunemann in August, 2010 [25].

Because performance and specifications of the Google computers are confidential,
and also to partially validate the results, we ran a subset of the run (80,100 of the
cosets, or about one in every 700) on an individual Nehalem machine and compared
the results against those from the Google runs. We used performance numbers from
these local runs to extrapolate the overall runtime had the full run been done on
Nehalem machines. This is the basis for the performance numbers throughout.

Our sample cosets averaged 19.622 seconds each to run, including the time re-
quired to solve the leftover positions, so we extrapolate the total run as 55,882,296
times this or 34.75 CPU years. Of this time, 98.99% was in the coset solver, and
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1.01% was in the two-phase solver for the leftover positions. About 16.0% of the total
time was used for search, with 9.45% of the total time used for just depth-15 search.
Prepasses used 81.14% of the total time, with the average single prepass taking 3.119s.
We note that leftover positions generally took a bit longer than random positions for
the two-phase solver to solve, a rate of only 1660 (vs. 3900) per second.

9. Future work and conclusions. We have computed the diameter of the
Rubik’s Cube group, but there is much still unknown about this group. In particular,
the exact counts of positions at distances 16 through 20 are still unknown. Without
an exact distance distribution, many may consider this puzzle still unsolved.

The diameter of the group in both the quarter turn and the slice turn metric is
still unknown. The best known results on the quarter turn metric are a lower bound
of 26 [16] and an upper bound of 29 [22]; for the slice turn metric we know a lower
bound of 18 and an upper bound of 20 (this paper). We anticipate God’s number for
the quarter turn metric to be 26, and for the slice turn metric to be 18.

Our approach of partitioning a large search space by cosets of a subgroup provides
significant breathing room over standard in-memory breadth-first search, without
introducing the latency or bandwidth limitations of keeping the bitmap in secondary
storage. We plan to use this technique on additional problems.

10. Appendix. The inner loop of the prepass phase as compiled by the Gnu
compiler collection is shown here. By handling 65 billion group operations per second
per CPU, its efficiency was key to our main result.

.L13:

movzwl 6(%r10), %eax

movq -48(%rsp), %rdx

movzwl 2(%r10), %ecx

movl (%rdx,%rax), %r9d

movzwl 8(%r10), %eax

movq -40(%rsp), %rdx

movl (%rdx,%rax), %esi

movzwl 16(%r10), %eax

movq -32(%rsp), %rdx

movl (%rdx,%rax), %edi

movzwl 18(%r10), %eax

movq -24(%rsp), %rdx

movl (%rdx,%rax), %r8d

movzwl 4(%r10), %eax

movl (%r15,%rax), %edx

movq -16(%rsp), %rax

orl (%rax,%rcx), %edx

movzwl (%r10), %eax

orl (%r14,%rax), %edx

movzwl 10(%r10), %eax

orl (%r13,%rax), %edx

movzwl 12(%r10), %eax

orl (%r12,%rax), %edx

movzwl 14(%r10), %eax

addq $20, %r10

orl (%rbp,%rax), %edx

movl %r9d, %eax

andl $4095, %r9d
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sarl $12, %eax

andl $4095, %eax

orl %eax, %edx

movl %esi, %eax

andl $4095, %esi

sarl $12, %eax

andl $4095, %eax

movswl rearrange+24576(%rax,%rax),%eax

orl %eax, %edx

movl %edi, %eax

andl $4095, %edi

sarl $12, %eax

movswl rearrange+8192(%rdi,%rdi),%ecx

andl $4095, %eax

movswl rearrange+8192(%rax,%rax),%eax

orl %eax, %edx

movl %r8d, %eax

andl $4095, %r8d

sarl $12, %eax

andl $4095, %eax

movswl rearrange+40960(%rax,%rax),%eax

orl %eax, %edx

movswl rearrange(%rsi,%rsi),%eax

orl %ecx, %eax

movswl rearrange+16384(%r8,%r8),%ecx

orl %r9d, %eax

orl %ecx, %eax

sall $12, %eax

orl %eax, %edx

movl %edx, (%r11)

addq $3, %r11

cmpq %rbx, %r11

jne .L13
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