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Abstract. Given a harmonic measure m of a hyperbolic lamination L on a compact

metric space M, a positive harmonic function h on the universal cover of a typical leaf is

defined in such a way that the measure m is described in terms of these functions h on various

leaves. We discuss some properties of the function h. We show that if m is ergodic and not

completely invariant, then h is typically unbounded and is induced by a probability µ of the

sphere at infinity which is singular to the Lebesgue measure. A harmonic measure is called

Type I (resp. Type II) if for any typical leaf, the measure µ is a point mass (resp. of full

support). We show that any ergodic harmonic measure is either of type I or type II.

1. Introduction. We call (M,L, g) a compact C2 lamination if L is an n dimensional

lamination of class C2 on a compact metric space M and if g is a leafwise Riemannian metric

of class C2. (For the precise definition, see Section 2.) Then the leafwise Laplacian �f is

defined for any continuous leafwise C2 function f , on M . A probability measure m on M is

called harmonic if for any such f , we have m(�f ) = 0. A harmonic measure always exists

for any compact C2 lamination.

Given a harmonic measure m, there is a saturated conull set M∗ such that a positive

harmonic function h, called the characteristic harmonic function, is defined on the universal

cover of each leaf in M∗ up to a constant multiple. This function is obtained in the way of de-

scribing the measure m on each local chart. We first show (Theorem 3.13) that if m is ergodic

and not completely invariant, then for any leaf in a saturated conull set, the characteristic

harmonic function h is unbounded.

A compact C2 lamination (M,L, g) of dimension d+1 is called hyperbolic if the metric

g has curvature −1 on each leaf. The universal cover of each leaf is isometric to the hyperbolic

space Dd+1, and the characteristic harmonic function h corresponds to a probability measure

µ on the boundary at infinity Sd
∞. It depends upon the choice of a base point in Dd+1, but

its equivalence class is uniquely determined by the leaf. We show (Theorem 4.1) that if m is

ergodic harmonic and not completely invariant, then for any leaf in a saturated conull set, the

measure µ is singular to the Lebesgue measure of Sd
∞.
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DEFINITION 1.1. A harmonic measure m is called of Type I if the measure µ of Sd
∞

is a point mass for any leaf in a saturated conull set, and of Type II if the support of µ is the

whole Sd
∞.

The main theorem of this paper is the following.

THEOREM 1.2. An ergodic harmonic measure is either of Type I or of Type II.

In Section 2, we prepare some prerequisites about harmonic measures. Especially the

characteristic harmonic function h is defined. In Section 3, after a brief description of the

leafwise Brownian motion, we study its reverse process. The reverse process plays a crucial

role in the proof of the unboundedness of h (Section 3) and the singularity of µ (Section 4).

In Section 5, we study the leafwise unit tangent bundle N of a compact hyperbolic lamination

L. There is a naturally defined lamination H on N of the same dimension as F . Generalizing

a result in [BM], we discuss one to one correspondance between harmonic measures on L and

pointed harmonic measures on H, the latter being defined in Section 5. Finally the proof of

Theorem 1.2, as well as some examples, is given in Section 6.

The author is grateful to Masahiko Kanai for supplying him necessary knowledge about

positive harmonic functions, and to the referee for valuable comments which are helpful for

the improvement of the paper.

2. Harmonic measure. Let M be a compact metric space, covered by a finite number

of open sets Ei . Assume there is a homeomorphism ϕi : Ei → Ui × Zi , where Ui is an open

ball in Rn and Zi is a locally compact metric space. If Ei ∩ Ej �= ∅, then the transition

function ψji = ϕj ◦ϕ−1
i is defined as a homeomorphism from ϕi(Ei ∩Ej ) onto ϕj (Ei ∩Ej ).

Assume that the transition function is of the form

ψji(u, z) = (α(u, z), β(z)) ,

where α and β are continuous, and α is of class C2 with respect to the first coordinate u and

its first and second derivatives are continuous in z. A subset of M is called a plaque if it is

of the form ϕ−1
i (Ui × z), and a transversal if ϕ−1

i (u × Zi). A maximal pathwise connected

countable union of plaques is called a leaf. This gives birth to a decompositon L of M into

leaves, which is called a lamination of class C2.

A leaf naturally has a structure of n-dimensional C2 manifold. A field of leafwise metric

tensors is called a leafwise Riemannian metric of class C2 if its leafwise derivatives up to

order 2 (including order 0) are continuous on M . In this paper the triplet (M,L, g) is simply

refered to as a compact C2 lamination. By the compactness of M , each leaf of L is complete

and of bounded geometry. The leafwise volume defined by g is denoted by vol.

Henceforce we depress the homeomorphism ϕi and consider Ui × Zi as an open subset

of M , which is called a local chart.

A function f : M → R is said to be continuous leafwise C2 if it is of class C2 in each

leaf and its derivative up to order 2 is continuous on M . Then the leafwise Laplacian �f with

respect to g is defined, and is a continuous function on M .
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DEFINITION 2.1. A probability measure m on M is called harmonic if m(�f ) = 0

for any continuous leafwise C2 function.

REMARK 2.2. A harmonic measure always exits for any compact C2 lamination

(M,L, g).

See [C, Theorem 3.5] for a simple proof using the Hahn-Banach theorem.

Here is a structure theorem of a harmonic measure on a local chart.

THEOREM 2.3. Assume m is a harmonic measure on a compact C2 lamination. For

any local chart U × Z, there are a measure ν on Z and a function h : U × Z → R with the

following properties.

(1) h is positive and m-measurable.

(2) For ν-a.a. z, the restriction of h to the plaque U × z is harmonic and hvol is a

probablity measure of the plaque.

(3) For any continuous function with support in U × Z, we have

m(f ) =

∫

Z

∫

U×z

f (u, z)h(u, z)dvol(u)dν(z) .

Furthermore, if a probability measure m on M is represented in this way in any local

chart, then m is harmonic.

NOTATION 2.4. The theorem says that the measure m restricted to U × Z is disinte-

grated in such a way that the conditional probability measure on each fiber U × z is h(·, z)vol

and the push forward measure on the base Z is ν. Henceforth this is denoted as

(2.1) m|U×Z =

∫

Z

hvol dν .

PROOF. By the disintegration theorem, we have

m|U×Z =

∫

Z

mz dν(z) ,

where mz is a probability measure on U × z and the assignment z �→ mz is measurable. The

measure ν is the push forward of m by the projection p2 : U ×Z → Z, and is not necessarily

a probability measure.

Denote the other projection by p1 : U × Z → U . The leafwise Riemannian metric on

each plaque U×z is transfered to a Riemannian metric on U , and the corresponding Laplacian

on U is denoted by �z. Consider any function f from the space C2
c (U) of the C2 functions

with compact support, and any continuous function g on Z with compact support. Then the

product f ◦ p1 g ◦ p2 is a continuous leafwise C2 function whose support is contained in

U × Z, and we have

�(g ◦ p2 f ◦ p1) = g ◦ p2 �(f ◦ p1) and mz(�(f ◦ p1)) = mz(�zf ) .

Since m(�(g ◦ p2 f ◦ p1)) = 0, we have
∫

Z

mz(�zf )g(z)dν(z) = 0 .
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By the measurablility of the assignment z �→ mz and the boundedness of �zf , mz(�zf )

is an integrable function on Z and thus mz(�zf )ν is a signed measure on Z, for which an

arbitrary compactly supported continuous function g integrates to 0. This implies that for

ν-a.a. z, mz(�zf ) = 0.

Since C2
c (U) has a countable dense subset S, there is a ν-conull set Z∗ of Z such that

mz(�zf ) = 0 for any z ∈ Z∗ and f ∈ S, and therefore for any f ∈ C2
c (U). But as is well

known [N], mz(�zf ) = 0 for any f ∈ C2
c (U) if and only if mz = hz vol for a harmonic

function hz on U with respect to the Laplacian �z. Setting h(u, z) = hz(u), we obtain (2.1).

Next we are going to show that the function h is measurable. Consider another measure

m0 on U × Z, given by
∫
Z vol/vol(U × z)dν(z). Clearly m and m0 are mutually equivalent

and thus we have

m = km0

for some m0-measurable (equivalently m-measurable) function k. But the uniqueness of the

disintegration implies that for ν-a.a. z,

h(u, z) = k(u, z)/vol(U × z) ,

showing that h is measurable.

Finally the converse statement is easy to show. ✷

As an immediate consequence, we have the following corollary.

COROLLARY 2.5. If a function f on M is C2 on each leaf and �f is m-integrable,

then m(�f ) = 0.

REMARK 2.6. In [G], harmonic measures are defined by the property in Corollary 2.5,

and the structure theorem is obtained. Our proof of Theorem 2.3 shows the equivalence of the

two definitions.

Suppose two local charts U × Z and U ′ × Z′ intersect and the harmonic measure m is

decomposed on each local chart as

m|U×Z =

∫

Z

h vol dν and m|U ′×Z′ =

∫

Z′
h′ vol dν′ ,

then in the intersection of ν-a.a. plaque U × z and ν′-a.a. plaque U ′ × z′, we have

(2.2) h′/h = dν/dβν′ ,

where β is the holonomy map from (a part of) Z′ to Z. On one hand this shows that ν and ν′

are equivalent via the holonomy map. More generally we have the following proposition.

PROPOSITION 2.7. A harmonic measure m is leafwise smooth, i.e.,

(1) if a Borel set B ⊂ M satisfies vol(B ∩ L) = 0 for any leaf L, then m(B) = 0.

(2) if a Borel set B is m-null, then the set B̂ is also m-null, where B̂ is the union of the

leaves L such that vol(B ∩ L) > 0.
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On the other hand, the equality (2.2) shows that on the intersection of two plaques, the

function h′ is a positive constant multiple of h. Dividing h′ by that constant, one can continu-

ate h along a chain of plaques. Of course, this does not yield a function on a leaf since there

will be a monodromy for h. However we will get a function on the holonomy cover of a leaf.

In what follows, when we say “an m-a.a. leaf L”, this means “there exists a saturated

conull set M∗ and L is a leaf in M∗”.

PROPOSITION 2.8. (1) For an m-a.a. leaf L, the function h has a well-defined pro-

longation as a positive harmonic function on the holonomy cover L̂. On L̂ two such functions

which start from different plaques are unique up to a positive constant multiple.

(2) Given a path in L, the ratio of h at the initial point and the terminal point of any

lift of the path to L̂ is constant.

PROOF. To see (1), cover M with a finite number of local charts Ui × Zi . Then there

is a ν-conull set Z∗
i of each Zi such that the harmonic function h is defined on Ui × Z∗

i .

The saturation of the union of Zi \ Z∗
i is m-null by Proposition 2.7, and for any leaf L in the

complement M∗, the function h has a prolongation on its holonomy cover L̂.

The uniqueness part in (1), as well as (2), follows immediately from the construction. ✷

Of course, the harmonic function h has a lift to the universal covering space L̃ of an

m-a.a. leaf L, which will be denoted by the same letter h. The above statement (2) holds also

for lifts of paths to the universal covering space. Let Γ be the deck transformation group of

the covering map L̃ → L. Then we have the following corollary.

COROLLARY 2.9. For any γ ∈ Γ , h ◦ γ is a constant multiple of h.

PROOF. Join two points x ∈ L̃ and y ∈ L̃ by an arc c. Then γ x and γy are joined by

γ c. Two arcs c and γ c are lifts of the same arc in L. Therefore, we have

h(y)/h(x) = h(γ x)/h(γy) .

Since x and y are arbitrary, this shows that the function h(γ x)/h(x) is independent of x. ✷

DEFINITION 2.10. The function h in Proposition 2.8 is called the characteristic har-

monic function of m.

Notice that the characteristic harmonic function is defined only up to a positive constant

multiple.

A harmonic measure m is called completely invariant if the characteristic harmonic func-

tions are constant on (the holonomy covers of) m-a.a. leaves. In this case, m corresponds to a

transverse invariant measure, i.e., an assignment of a finite measure to each transversal which

is invariant by the holonomy maps. Conversely, a transverse invariant measure gives rise to

a harmonic measure m whose characteristic harmonic function is constant on an m-a.a. leaf.

Only a special class of laminations admit completely invariant measures.

3. Brownian motion and its reverse process. Let (M,L, g) be a compact C2 lam-

ination. Denote by Ω the space of all the continuous leafwise paths ω : [0,∞) → M , and
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for t ≥ 0, define a map Xt : Ω → M by Xt (ω) = ω(t). Let B be the σ -algebra of the Borel

subsets of Ω with respect to the compact open topology. It is well known, easy to show, that

B coincides with the minimal σ -algebra for which Xt (t ≥ 0) is Borel. In other words, B is

generated by the cylinder sets {Xt1 ∈ B1, . . . , Xtr ∈ Br } (0 ≤ t1 < · · · < tr , Bi ; a Borel

subset of M).

The leafwise Riemannian metric g gives the heat kernel pt (x, y) (t > 0) on each leaf.

Define pt (x, y) for any two points x, y ∈ M by setting pt (x, y) = 0 unless x and y lie on the

same leaf. The heat kernel defines the Wiener probability measure W x on Ω (x ∈ M). For a

cylinder set {Xt1 ∈ B1, . . . , Xtr ∈ Br } (t1 > 0), we define

(3.1) W x {Xt1 ∈ B1, . . . , Xtr ∈ Br }

=

∫

B1

· · ·

∫

Br

pt1(x, y1)pt2−t1(y1, y2) · · · ptr−tr−1(yr−1, yr ) dvol(yr) · · · dvol(y1) .

Then W x satisfies the dropping condition, and therefore it is defined not only for a cylinder

set but also for any set in B. That is, W x is a probability measure on (Ω,B). It is concentrated

on the subset Ωx = X−1
0 (x) since the probability measure pt (x, ·)vol tends to the Dirac mass

at x as t → 0.

LEMMA 3.1. The system of measures {W x}x∈M is Borel in the sense that for any S ∈

B, the assignment x �→ W x(S) is Borel.

PROOF. Let C be the family of the subsets S in Ω for which M ∋ x �→ W x(S) is Borel,

and let A0 be the finite algebra formed by finite disjoint unions of cylinder sets. Then A0 is

contained in C. For {Xt1 ∈ Bt1} ∈ A0, see [CC, Lemma 2.3.1]. General case follows easily

from this.

For an isolated ordinal α > 0, define Aα to be the family of a subset which is obtained

from subsets of Aα−1, by a finite sequence of two operations; one, taking a countable increas-

ing union and the other, countable decreasing intersection. Then it is easy to show that Aα

forms a finite algebra. Moreover Aα is contained in C since a pointwise limit of Borel func-

tions is Borel. For a limit ordinal α, let Aα =
⋃

β<α Aβ . Then again Aα is a finite algebra

contained in C.

The increasing sequence {Aα} stabilizes. Define A = Aα0 , where Aβ = Aα0 for any

ordinal β ≥ α0. Then A is contained in C. On the other hand, A is clearly a σ -algebra.

Therefore, any Borel set, an element of the minimal σ -algebra which contains A0, belongs to

A, and hence to C. ✷

The expectation of W x is denoted by Ex . Applying Lemma 3.1, one can show that for

any bounded Borel function f : M → R, its diffusion Dtf is bounded Borel, where

(Dtf )(x) = Ex[f (Xt )] =

∫

M

pt (x, y)f (y)dvol(y) .

More generally, the diffusion operator Dt defines a semigroup of contractions on the space

Lp(M,m) (1 ≤ p < ∞) for a harmonic measure m and on C(M), the space of continuous

functions [C].
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Since {W x} is a Borel system of measures, by integrating W x over any probability mea-

sure m on M , we get a probability measure Pm on Ω , i.e.,

Pm =

∫

M

W xdm(x) .

Precisely, for any bounded Borel function F : Ω → R,

Pm(F ) =

∫

M

Ex[F ]dm(x) .

For t ≥ 0 let θt : Ω → Ω denote the shift map by t , i.e., (θtω)(t ′) = ω(t + t ′).

THEOREM 3.2. The probability measure m is harmonic if and only if the probability

measure Pm is θt -invariant for any t ≥ 0.

For the proof, see [CC, Theorem 2.3.7].

A harmonic measure m is called ergodic if whenever it is written as a nontrivial linear

combination of two harmonic measures m1 and m2, we have m = m1 = m2.

THEOREM 3.3. Let m be a harmonic measure. Then the following conditions are

equivalent.

(1) m is ergodic.

(2) For any saturated Borel set M ′ in M , we have either m(M ′) = 0 or m(M ′) = 1.

(3) If f ∈ L1(M,m) satisfies Dtf = f for any t ≥ 0, then f is a constant.

(4) Pm is ergodic with respect to the semiflow defined by the shift map θt , i.e., if a Borel

subset S satisfies θ−1
t (S) = S for any t ≥ 0, then either Pm(S) = 0 or Pm(S) = 1.

PROOF. (1) ⇒ (2) follows from Corollary 2.5, and (4) ⇒ (1) is immediate. The other

implications (2) ⇒ (3) ⇒ (4) can be shown in exacly the same way as the proof of [F, Theorem

3.1]. ✷

The diffusion operator Dt : L2(M,m) → L2(M,m) (m a harmonic measure) is not

self-adjoint unless m is completely invariant. Its adjoint D∗
t is first considered in [K]. Let h

be the characteristic harmonic function defined on the holonomy cover L̂ of an m-a.a. leaf L.

Denote by p̂t the heat kernel on L̂. We have

pt (x, y) =
∑

ŷ

p̂t (x̂, ŷ) ,

where the sum is taken for all the points ŷ over y, and is independent of the choice of x̂ over

x.

We shall summerize well-known properties of the heat kernel p̂t on L̂ which follows

from the bounded geometry of L̂.

LEMMA 3.4. For any harmonic function g : L̂ → R, we have

g(x̂) =
∫
L̂

g(ŷ)p̂t (x̂, ŷ)dvol(ŷ) and

p̂t+t ′(x̂, ẑ) =
∫
L̂

p̂t (x̂, ŷ)p̂t ′(ŷ, ẑ)dvol(ŷ) .
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Now define a new heat kernel on L̂ by

q̂t(x̂, ŷ) =
h(ŷ)

h(x̂)
p̂t (x̂, ŷ) .

The following lemma follows immediately from Lemma 3.4.

LEMMA 3.5. We have

∫
L̂

q̂t (x̂, ŷ) dvol(ŷ) = 1 and(3.2)

q̂t+t ′(x̂, ẑ) =
∫
L̂

q̂t (x̂, ŷ)q̂t ′(ŷ, ẑ) dvol(ŷ) .(3.3)

Define a heat kernel qt on the leaf L by

qt (x, y) =
∑

ŷ

q̂t (x̂, ŷ) .

THEOREM 3.6. The dual operator D∗
t is expressed for any f ∈ L2(M,m) as

(D∗
t f )(x) =

∫

L

qt (x, y)f (y) dvol(y) ,

where L is the leaf through x.

Although this theorem is known to Vadim Kaimanovich, we shall include a proof, since

there seems to be none in the literature.

Let G denote the holonomy groupoid associated to the lamination L, i.e., G is the space

of leafwise paths modulo same end points and identical holonomy germs. Denote by r, s :

G → M the range and the source maps. The fiber s−1(x) is homeomorphic to the holonomy

cover of the leaf through x, and the corresponding volume form of s−1(x) is denoted by volx .

Integrating these forms (seen as measures) over the harmonic measure m of M , we get a

measure mG on G. That is,

mG =

∫

M

volxdm(x) .

Likewise we define a measure voly on r−1(y). Define a function ϕ : G → R by ϕ([γ ]) =

h(γ (1))/h(γ (0)), where h is the characteristic harmonic function which is defined on the

holonomy cover of an m-a.a. leaf. The function ϕ is well defined by Proposition 2.8 (2).

Denote by J : G → G the inverse map.

LEMMA 3.7. We have JmG = ϕ · mG.

PROOF. For an arbitrary [γ ] ∈ G, choose a neighbourhood U × V × Z of [γ ] in G,

where U × Z is a local chart containing γ (0) so that the holonomy along γ is defined on Z

and V is a leafwise neighbourhood of γ (1). Changing the notations slightly, we consider U

(resp. V ) to be a neighbourhood of γ̃ (0) (resp. γ̃ (1)) in the universal cover L̃ of the leaf L,

where γ̃ is a lift of γ to L̃. Choosing Z smaller if necessary, we may assume that there is a

precompact simply connected open set W of L̃ such that U ∪ V ∪ γ̃ ⊂ W and that there is a

lamination preserving embedding of W × Z into M .
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Then by Theorem 2.3,

m|W×Z =

∫

Z

h vol dν

for a leafwise harmonic function h and a measure ν on Z. For (u, v, z) ∈ U × V × Z ⊂ G,

denote s(u, v, z) = (u, z) = x and r(u, v, z) = (v, z) = y. Restricted to U × V × Z, volx is

the volume form on u × V × z and voly on U × v × z.

On U × V × Z we have

mG =

∫

Z

volx · h(x)voly dν .

On the other hand on V × U × Z,

JmG =

∫

Z

voly · h(y)volx dν =

∫

Z

ϕ · voly · h(x)volx dν = ϕ · mG ,

showing the lemma. ✷

REMARK 3.8. The measure mG is defined not only for a harmonic measure, but also

for any probability measure m on M . It is interesting to remark that the leafwise smoothness

(Proposition 2.7) of m is equivalent to a basic notion in measured groupoids, the equivalence

of JmG with mG [AR].

PROOF OF THEOREM 3.6. The Riemannian heat kernel on the holonomy cover of the

leaf yields a function p̌t on G by

p̌t ([γ ]) = p̂t (γ (0), γ (1)) .

Notice that p̌t ◦ J = p̌t . Likewise, a function q̌t is defined from q̂t . They satisfy q̌t = ϕp̌t .

Clearly we have

(Dtf )(x) =

∫

s−1(x)

p̌t f ◦ r dvolx .

Thus

〈Dtf, g〉 =

∫

M

( ∫

s−1(x)

p̌t f ◦ r dvolx

)
g(x)dm(x)

=

∫

G

p̌t f ◦ r g ◦ s dmG =

∫

G

p̌t f ◦ s g ◦ r ϕ dmG

=

∫

G

q̌t g ◦ r f ◦ s dmG =

∫

M

( ∫

s−1(x)

q̌t g ◦ r dvolx

)
f (x)dm(x) = 〈f,D∗

t g〉 .

Therefore we have

(D∗
t g)(x) =

∫

s−1(x)

q̌t g ◦ r dvolx =

∫

L

qt (x, y)g(y) dvol(y) ,

completing the proof. ✷

Now let us define the reverse process. First of all extend the new heat kernel qt to M ×M

by putting qt (x, y) = 0 unless x and y lie on the same leaf. Let Ω− be the space of continuous

leafwise paths ω from (−∞, 0] to M , with the random variable X−t : Ω− → M defined by
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X−t (ω) = ω(−t) (t ≥ 0). For x ∈ M , define the Wiener measure W x
− on Ω− using the kernel

qt , that is, for example for 0 < t1 < t2 and for any Borel sets B1 and B2 of M ,

W x
−{X−t2 ∈ B2,X−t1 ∈ B1} =

∫

B2

∫

B1

qt1(x, y)qt2−t1(y, z) dvol(y) dvol(z) .

Lemma 3.5 implies that W x
− is a probability measure, a probability because of (3.2), the

dropping condition guaranteed by (3.3). The kernel qt clearly satisfies the normal estimate of

Cheng, Li and Yau [CLY] since the ratio to the Riemannian heat kernel is controlled by the

Harnack inequality; the logarithm of any positive harmonic function defined on the holonomy

cover of any leaf of L is uniformly Lipschitz (due to the uniform boundedness of geometry of

leaves). Therefore the reverse Wiener measure W x
− is concentrated on the set of continuous

paths. Moreover it is concentrated on the subspace Ω−,x = X−1
0 (x).

Now let Ω̄ be the space of biinfinite continuous leafwise paths ω : R → M . Denote

the like defined random variable by the same letter Xt : Ω̄ → M for t ∈ R. Also denote

Ω̄x = X−1
0 (x). Then by the natural identification of Ω−,x ×Ωx with Ω̄x , the product measure

W x
− × W x is considered to be a measure on Ω̄x , or on Ω̄ .

Define a probability measure P̄m on Ω̄ by

P̄m =

∫

M

W x
− × W x dm(x) .

Denote its expectation by Ēm. Let θt : Ω̄ → Ω̄ be the shift map.

PROPOSITION 3.9. The shift map θt : Ω̄ → Ω̄ preserves the measure P̄m.

PROOF. We shall raise one example of computation.

P̄m{X−t ∈ B,Xt ′ ∈ B ′} =

∫

M

dm(x)

∫

B

qt (x, y)dy

∫

B ′
pt ′(x, z)dz

= 〈D∗
t χB,Dt ′χB ′〉m = 〈χB,DtDt ′χB ′〉 = P̄m{X0 ∈ B,Xt+t ′ ∈ B ′} . ✷

THEOREM 3.10. If m is an ergodic harmonic measure, then P̄m is ergodic with respect

to the flow {θt }.

Before starting the proof, we recall the definition of conditional expectations. Denote

by F̄ the σ -algebra formed by the P̄m-measurable subsets. For t ∈ R, let F̄t be the minimal

complete σ -algebra for which the map Xs is measurable for any s ≥ t .

For example, in order to understand F̄0, consider the measurable partition of Ω̄ defined

by the natural projection π : Ω̄ → Ω . Then F̄0 consists of measurable subsets saturated by

this partition. A function F is F̄0-measurable if and only if there is a measurable function H

on Ω such that F = H ◦ π .

For any integrable function F : Ω̄ → R, denote by Ēm [F | F̄t ] the conditional expec-

tation with respect to F̄t . This is a unique F̄t -measurable function on Ω̄ such that for any

bounded F̄t -measurable function G,

Ēm [G Ēm [F | F̄t ] ] = Ēm [GF ] .
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Let us explain it briefly for the convenience of the geometer readers. F̄t defines a mea-

surable partition of Ω̄ : almost all classes of the partition admit the conditional probability

measure. Integrating F by the conditional probability measure, we obtain a measurable func-

tion on the quotient space. But it is customary, more convenient, to consider it to be a F̄t -

measurable function Ēm [F | F̄t ] defined on the total space Ω̄ .

PROOF OF THEOREM 3.10. For an integrable function F on Ω̄ , define the Birkhoff

average BF by

BF = lim
t→∞

1

t

∫ t

0
F ◦ θsds .

By the ergodic theorem, the operator B is a well-defined contraction on L1(Ω̄, P̄m), which is

θt -invariant.

Since by Theorem 3.3, θt is ergodic in (Ω, Pm), the Birkhoff average BF is constant if

F is F̄0-measurable. Moreover, this holds for any F̄−t -measurable function F for any t , since

then F ◦ θt is F̄0-measurable and BF = B(F ◦ θt ).

For any bounded F̄ -measurable function F , the F̄−n-measurable function F−n = Ēm

[F | F̄−n] converges to F pointwise, by the martingale convergence theorem [O, Appendix

C]. Thus we have BF−n → BF , and since BF−n is constant, the function BF is also constant,

showing the ergodicity. ✷

Applying the Birkhoff theorem to f ◦ X0 : Ω̄ → R for a continuous function f : M →

R, by virtue of Theorem 3.10, we have P̄m-almost surely

lim
t→∞

1

t

∫ t

0
f (Xs)ds = lim

t→∞

1

t

∫ 0

−t

f (Xs)ds = m(f ) .

Equivalently, denoting the Dirac mass by δ., we have P̄m-almost surely

(3.4) lim
t→∞

1

t

∫ t

0
δXsds = lim

t→∞

1

t

∫ 0

−t

δXs ds = m ,

where the limit is taken in the space of the probability measures on M with the weak-∗ topol-

ogy.

Finally let us define an exponent for the biinfinite Brownian motion. Assume m is an

ergodic harmonic measure of (M,L, g) and h the characteristic harmonic function of m.

Given ω ∈ Ω̄ and a positive number t , the ratio h(Xt (ω))/h(X0(ω)) is well defined by

Proposition 2.8 since a path from X0(ω) to Xt (ω) is specified by ω. Define a random variable

At : Ω̄ → R by

At = log h(Xt ) − log h(X0) .

Let us show that At ∈ L1(Ω̄, P̄m). Denote the expectation of W x × W x
− by Ēx . Since

At is F0-measurable, we have Ēx [At ] = Ex[At ], where Ex is the expectation of W x defined

before. By the Harnack inequality we have

Ex [|At |] ≤ C1E
x [d(X0,Xt )] ≤ C2t ,
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where d is the leafwise distance on the universal cover of the leaf induced from g . The last

inequality follows from the bounded geometry of the leaf. Thus we have

Ēm [|At |] =

∫

M

Ex [|At |]dm(x) ≤ C2t ,

showing that At ∈ L1(Ω̄, P̄m).

Now At satisfies

(3.5) At+t ′ = At + At ′ ◦ θt .

This shows that Ēm [At ] is additive in t . Moreover, it is continuous in t at t = 0 since

Ex [d(X0,Xt )] → 0 as t → 0. That is, Ēm[At ] = −λt for some number λ.

PROPOSITION 3.11. We have limt→∞(1/t)At = −λ almost surely, and λ ≥ 0. Fur-

thermore, λ is positive unless m is completely invariant.

PROOF. The first statement follows from (3.5) by the Birkhoff ergodic theorem.

To show λ ≥ 0 notice that∫

M

Ex [At ]dm(x) = Ēm [At ] = −λt .

The expectation Ex [At ] can be computed upstairs on the holonomy cover. Let x̂ be a lift of x

and X̂t (ω) the lift of Xt (ω) starting at x̂ for ω ∈ Ωx . Then

Ex[At ] = Ex[log h(X̂t )] − log h(x̂)

≤ log Ex[h(X̂t )] − log h(x̂) = log(D̂th)(x̂) − log h(x̂) = 0 ,

where D̂t is the diffusion operator on the holonomy cover. The inequality follows from the

concavity of log, and the last equality from the harmonicity of h, showing λ ≥ 0.

For the last statement, notice that λ = 0 implies that for fixed t , h(X̂t ) is constant

W x -almost surely. This shows that h is constant for the holonomy cover of an m-a.a. leaf,

completing the proof. ✷

For −t < 0 define a random variable A−t : Ω̄ → R by

A−t = log h(X−t ) − log h(X0) .

It satisfies

(3.6) A−t−t ′ = A−t + A−t ′ ◦ θ−t .

Clearly Ēm[A−t ] = λ, and again by the Birkhoff ergodic theorem we have from (3.6) the

following proposition.

PROPOSITION 3.12. P̄m-almost surely, limt→∞(1/t)A−t = λ.

Propositions 3.11 and 3.12 imply that for an m-a.a. point x, we have W x × W x
−-almost

surely

lim
t→∞

(1/t)At = −λ and lim
t→∞

(1/t)A−t = λ ,

showing the following theorem.
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THEOREM 3.13. For a non completely invariant ergodic harmonic measure, the char-

acteristic harmonic function is unbounded on the holonomy cover of an m-a.a. leaf.

4. Hyperbolic laminations. Henceforth in this paper, we only consider a compact

hyperbolic C2 lamination (M,L, g), i.e., we assume throughout that the leafwise metric g

has constant curvature −1, and denote the dimension of leaves by d+1. Let m be an ergodic

harmonic measure for L. The universal cover of an m-a.a. leaf L is identified with the simply

connected complete hyperbolic space Dd+1, and the characteristic harmonic function h of m

is defined on Dd+1. Choose a base point x̃ ∈ Dd+1 and assume h(x̃) = 1. For any point

ξ of the ideal boundary Sd
∞, let kξ denote the minimal positive harmonic function on Dd+1

corresponding to ξ normalized to take value 1 at x̃. In other words, we set kξ = exp(−dBξ ),

where Bξ is the Buseman function corresponding to ξ such that Bξ (x̃) = 0. Then there is a

unique probability measure µx̃ on Sd
∞ such that

(4.1) h =

∫

Sd
∞

kξdµx̃(ξ) .

See [AS] for details and related topics. Although the measure µx̃ depends on the choice

of the point x̃, its equivalence class [µL] is an invariant of the leaf L. Here two measures µ1

and µ2 on Sd
∞ are said to be equivalent if for any Borel subset B of Sd

∞, µ1(B) = 0 if and

only if µ2(B) = 0. In fact, for another point ỹ ∈ Dd+1, we have

(4.2) h/h(ỹ) =

∫

Sd
∞

kξ/kξ (ỹ)dµỹ(ξ) .

The uniqueness of the measure µx̃ implies by (4.1) and (4.2) that

µx̃ = (h(ỹ)/kξ (ỹ))µỹ ,

showing that µx̃ and µỹ differ by a multiple of a bounded positive function, that is, they are

equivalent.

THEOREM 4.1. For a non completely invariant ergodic harmonic measure m on a

compact hyperbolic lamination (M,L, g) and for an m-a.a. leaf L, the measure class [µL] is

singular to the Lebesgue measure of Sd
∞.

Before starting the proof, we need to study connections among the probability measures

on Sd
∞, positive harmonic functions on Dd+1 and the Wiener measures.

Denote byP(Sd
∞) the space of probability measures on Sd

∞, a compact metrizable convex

space by the weak-∗ topology. Denote by PH the space of the positive harmonic function

on Dd+1 taking value 1 at x̃, also a compact metrizable convex space by the compact open

topology, (compact thanks to the Harnack inequality). The map ϕ1 : P(Sd
∞) → PH defined

by

ϕ1(µ) =

∫

Sd
∞

kξ dµ(ξ)

is an affine homeomorphism.
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For any f ∈ PH, define a heat kernel qt on Dd+1 by

qt (u, v) =
f (v)

f (u)
pt (u, v) ,

where pt is the Riemannian heat kernel and u and v are points of Dd+1. The heat kernel

defines a Wiener measure Wu
f for each point u ∈ Dd+1. Denote by Ωx̃ the space of continuous

paths ω : [0,∞) → Dd+1 such that ω(0) = x̃ and by P(Ωx̃) the space of probability

measures on Ωx̃ . Then easy calculation shows that the map ϕ2 : PH → P(Ωx̃) defined by

ϕ2(f ) = W x̃
f

is affine. (This is just for the base point x̃ where PH is normalized.)

Now let Ω∞
x̃

denote the subspace of Ωx̃ consisting of those paths ω in Ωx̃ such that

limt→∞ ω(t) exists in Sd
∞. Let us show that for any f ∈ PH, the set Ω∞

x̃
is W x̃

f -conull. As

is well known, this is true for f = kξ for any ξ ∈ Sd
∞, but any measure W x̃

f is written as the

convex integration

W x̃
f =

∫

Sd
∞

W x̃
kξ

dµ(ξ)

for some µ ∈ P(Sd
∞) since ϕ1 and ϕ2 are affine, showing the claim in the general case.

Denoting by X∞ : Ω∞
x̃

→ Sd
∞ the hitting map, we define an affine map ϕ3 : ϕ2(PH) →

P(Sd
∞) by ϕ3(W

x̃
f ) = X∞W x̃

f .

Then the composite ϕ3 ◦ ϕ2 ◦ ϕ1 is the identity on P(Sd
∞), since this is true for the point

masses, the map ϕ3 ◦ ϕ2 ◦ ϕ1 is affine, and any measure in P(Sd
∞) is a convex integral of the

point masses.

PROOF OF THEOREM 4.1. Let m be a non completely invariant ergodic harmonic mea-

sure of a compact hyperbolic lamination (M,L, g), and let Dd+1 be the universal cover of an

m-a.a. leaf L. A base point x̃ ∈ Dd+1 is chosen and the characteristic harmonic function h

normalized at x̃ is written as (4.1) using a probability measure µx̃ . The Wiener measure W x̃
h

defined by the characteristic harmonic function h corresponds to the measure W x̃
− of the re-

verse process in Section 3. As before, denote by W x̃ the usual Riemannian Wiener measure.

Then by Propositions 3.11 and 3.12, for an appropriate choice of x̃ we have W x̃ -almost surely

(4.3) lim
t→∞

(1/t) log(h(Xt )) = −λ ,

while W x̃
h -almost surely

(4.4) lim
t→∞

(1/t) log(h(Xt )) = λ ,

where λ is the characteristic exponent, positive in our case.

On one hand, the hitting measure X∞W x̃ of the Riemannian Wiener measure W x̃ coin-

cides with the visible measure µ0 at x̃, which is equivalent to the Lebesgue measure. On the
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other hand, the other hitting measure X∞W x̃
h is the measure µx̃ . Thus we have

W x̃ =

∫

Sd
∞

W x̃
kξ

dµ0(ξ) and W x̃
h =

∫

Sd
∞

W x̃
kξ

dµx̃(ξ) .

That is, for a µ0-a.a. point ξ , a W x̃
kξ

-a.a. path satisfies (4.3), while for a µx̃ -a.a. point ξ , a W x̃
kξ

-

a.a. path satisfies (4.4), showing that the two measures µ0 and µx̃ are mutually

singular. ✷

5. The leafwise unit tangent bundle of a hyperbolic lamination. Associated with

a compact hyperbolic lamination (M,L, g), there is defined the leafwise unit tangent bundle

N of L and the stable foliation H on N . The space M is covered by open sets Ei on which the

local charts ϕi : Ei → Ui × Zi are defined. For a hyperbolic lamination, we can assume that

each Ui is an open (precompact) ball in the hyperbolic space Dd+1 and the transition function

ψji = ϕj ◦ ϕ−1
i wherever defined is of the form

(5.1) ψji(u, z) = (g(z)u, β(z)) ,

where g(z) is an element of the Lie group G of the orientation preserving isometries of Dd+1.

The leafwise unit tangent bunde N of L is defined from the collection of spaces T 1(Ui) × Zi

by glueing them using the transition function ψji defined by the same expression as (5.1),

where T 1(Ui) is the unit tangent bundle of Ui .

Notice that the tangent bundle T 1(Dd+1) is G-equivariantly identified with Dd+1 × Sd
∞

by assigning to a unit tangent vector v the couple (π(v), v∞), where π : T 1(Dd+1) → Dd+1

is the bundle projection and v∞ ∈ Sd
∞ is the hitting point of the geodesic ray whose initial

vector is v.

Thus a local chart T 1(Ui) × Zi is identified with Ui × Sd
∞ × Zi . Then the transition

function becomes

ψji(u, ξ, z) = (g(z)u, g(z)ξ, β(z)) .

The plaques of the form Ui × ξ × z are incorporated to a lamination H of N , called the stable

foliation of L.

The canonical projection p : N → M yields a submersion of a leaf of H onto a leaf of

L, and thus the leafwise Riemannian metric g of L can be pulled up to a leafwise Riemannian

metric ǧ of H, the triplet (N,H, ǧ) being a compact hyperbolic lamination. The leafwise

volume form of H is again denoted by vol.

As before, kξ denotes the minimal positive harmonic function associated to the point

ξ ∈ Sd
∞ normalized at the point x̃.

DEFINITION 5.1. A harmonic measure λ on N is called pointed harmonic if for each

local chart U ×Sd
∞ ×Z, λ disintegrates on a plaque U ×ξ ×z to a probabality measure which

is a constant times kξ vol.

The purpose of this section is to establish a one to one correspondence between harmonic

measures of L and pointed harmonic measures of H. We begin with a harmonic measure m of

L, and associate it to a pointed harmonic measure upstairs. Let x be a point on an m-a.a. leaf
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L of L, and let x̃ be a lift of x to the universal cover Dd+1 of L. Then a probability measure

µx̃ on Sd
∞ is defined using the characteristic harmonic function h normalized at x̃ as in (4.1).

On the other hand, the unit tangent space T 1
x L is identified with its lift T 1

x̃
Dd+1, and the

latter with Sd
∞ by the visible map. By these identifications, the measure µx̃ on Sd

∞ corresponds

to a measure µx on T 1
x L, the notation being judtified by the following lemma.

LEMMA 5.2. The measure µx is independent of the choice of a lift x̃ of x.

PROOF. We have only to prove that if γ is a deck transformation of the covering map

Dd+1 → L, then µγ x̃ = γµx̃ . In this proof, we need a refined notation: the minimal positive

harmonic function associated to ξ ∈ Sd
∞ is denoted by kξ,x̃ in order to keep in mind the point

x̃ where it is normalized. Clearly we have

kγ ξ,γ x̃ ◦ γ = kξ,x̃ .

On the other hand, by the definition of µx̃ , the characteristic harmonic function h normalized

at x̃ is given by

h =

∫

Sd
∞

kξ,x̃dµx̃(ξ) .

Therefore,

(5.2) h ◦ γ −1 =

∫

Sd
∞

kγ ξ,γ x̃dµx̃(ξ) =

∫

Sd
∞

kξ,γ x̃d(γµx̃)(ξ) .

Now by Corollary 2.9, h ◦ γ −1 is a constant multiple of h, normalized at the point γ x̃. There-

fore, we have

(5.3) h ◦ γ −1 =

∫

Sd
∞

kξ,γ x̃dµγ x̃(ξ) .

Comparing (5.2) with (5.3), the uniqueness of the probability measure shows that

µγ x̃ = γµx̃ . ✷

The inclusion T 1
x L →֒ N induces a map from P(T 1

x L) to P(N) among the spaces of

the probability measures. The image of µx by this map is also denoted by the same letter, by

abuse of notations.

Recall that if (X,µ) is a measured space and (Z,B) is a Borel space, then a map ψ :

X → Z is called measurable if for any B ∈ B, ψ−1(B) is a measurable set. Of course

this depends only on the equivalence class of the measure µ. If Z = P(Y ), the space of

the probability measures of a compact metric space Y , then ψ : X → P(Y ) is said to be

measurable if it is measurable with respect to the Borel structure of P(Y ) associated with

the weak-∗ topology. This is equivalent to saying that x �→ ψ(x)(f ) is measurable for any

continuous function f on Y .

LEMMA 5.3. The assignment M ∋ x �→ µx ∈ P(N) is measurable with respect to

the harmonic measure m.
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PROOF. Since for any local chart U × Z of L, U is assumed to be a domain in Dd+1,

the inclusion map of U × Z into M can be extended using leafwise geodesics to a lamination

preserving submersion ϕ : Dd+1 × Z → M in such a way that it is a local isometry on each

leaf. The set Dd+1 × Z is called a prolonged local chart of L. Associated to it, we have a

prolonged local chart Dd+1 × Sd
∞ × Z for H.

By Theorem 2.3, the harmonic measure m restricted to a local chart U × Z is given by

m|U×Z =

∫

Z

h vol dν ,

where h is a measurable function defined on U × Z, harmonic on a plaque U × z for ν-a.a.

z. For the prolonged local chart Dd+1 × Z, let m|Dd+1×Z be the lift of m to Dd+1 × Z, i.e.,

the integral of the counting measure on the fiber of the submersion Dd+1 × Z → M over m.

Then we still have

(5.4) m|Dd+1×Z =

∫

Z

h vol dν ,

where h is an obvious extension. Notice that a slight generalization of Theorem 2.3 shows

that h is measurable with respect to m|Dd+1×Z .

Denote by PHu the space of positive harmonic functions taking value 1 at u ∈ Dd+1.

Then there is an affine homeomorphism of PHu with P(Sd
∞). Let (u, z) ∈ Dd+1 × Z cor-

responds to x ∈ M by the submersion. The measure µx = µ(u,z) of Sd
∞ is associated to the

function h(·, z)/h(u, z) ∈ PHu by the above homeomorphism.

SUBLEMMA 5.4. The assignment Dd+1 × Z ∋ (u, z) �→ µ(u,z) ∈ P(Sd
∞) is measur-

able with respect to m|Dd+1×Z .

PROOF. The measure m|Dd+1×Z is equivalent to vol ⊗ ν. Therefore by Fubini, there is

a vol-conull subset Dd+1
∗ such that for any poin u ∈ Dd+1

∗ , the set {z ∈ Z; h(u, z) < α} is

ν-measurable for any α ∈ Q. Then it is routine to show that for any u ∈ Dd+1
∗ and α ∈ R, the

set {z ∈ Z; h(u, z) < α} is ν-measurable.

For any u ∈ Dd+1
∗ , the assignment to z ∈ Z of the harmonic function h(·, z)/h(u, z)

in PHu is ν-measurable with respect to the σ -algebra B(PHu) of the pointwise convergence

topology on Dd+1
∗ . In fact, for any v ∈ Dd+1

∗ and a > 0, the set

{z ∈ Z; h(v, z) > ah(u, z)} =
⋃

α∈Q

({z ∈ Z; h(v, z) ≥ α} ∩ {z ∈ Z; ah(u, z) < α})

is ν-measurable.

The σ -algebra B(PHu) coincides with the σ -algebra of the compact open topology. In

fact, for (a, b) ⊂ R and a compact ball D of Dd+1, the set

PHu(D, (a, b)) = {f ∈ PHu; f (D) ⊂ (a, b)}

belongs to B(PHu) since, for a subset {uj }j∈N ⊂ Dd+1
∗ ∩ D dense in D, we have

PHu(D, (a, b)) =
⋃

n∈N{f ∈ PHu; f (D) ⊂ [a + n−1, b − n−1]}

=
⋃

n∈N

⋂
j {f ∈ PHu; f (uj ) ∈ [a + n−1, b − n−1]} ,
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and this subset belongs to B(PHu). A general compact subset K ⊂ Dd+1 can be written

as the decreasing intersection of finite unions of compact balls Dn, and the like defined set

PHu(K, (a, b)) also belongs to B(PHu), since

PHu(K, (a, b)) =
⋃

n

PHu(Dn, (a, b)) .

The space PHu with the compact open topology is homeomorphic to the space P(Sd
∞)

with the weak-∗ topology. This shows the ν-measurability of µ(u,z) in the variable z for any

u ∈ Dd+1
∗ . On the other hand, the measure µ(u,z) is continuous in the variable u for any z ∈ Z.

Let f : Sd
∞ → R be an arbitrary continuous function and fix it for a while. For any

a ∈ R, define

S(a) = {(u, z) ∈ U × Z; µ(u,z)(f ) ≥ a} .

The proof of the sublemma is complete if we show that S(a) is a measurable set.

For any z ∈ Z, define the z-slice S(a)z ⊂ U by

S(a) ∩ (U × z) = S(a)z × z .

Similarly, define the u-slice S(a)u ⊂ Z for any u ∈ U . Then S(a)u is ν-measurable for any

u ∈ Dd+1
∗ , and S(a)z is closed for any z ∈ Z. Moreover, since µ(u,z)(f ) is a continuous

function of u, {S(ak)z} forms a (closed) neighbourhood system of {S(a)z} for a sequence

ak ↑ a. Choose a compact ball D ⊂ Dd+1 and define

S(a)D = {z ∈ Z; S(a)z ∩ D �= ∅} .

Then S(a)D is ν-measurable. In fact, for a dense subset {uj }j∈N of D ∩ Dd+1
∗ , we have

S(a)D = {z ∈ Z; S(ak)z ∩ {uj } �= ∅ for all k} =
⋂

k

⋃

j

S(ak)uj .

Now let {Di} be a sequence of coverings of Dd+1 by countably many compact balls such

that mesh(Di) → 0 as i → ∞. Define

S(a)i =
⋃

D∈Di

D × S(a)D .

Then S(a)i is measurable. On the other hand, since S(a)z is closed, we have S(a)z =⋂
i S(a)iz. That is, S(a) =

⋂
i S(a)i and S(a) is measurable, completing the proof. ✷

Sublemma 5.4 implies in particular for any local chart U × Z, the assignment

U × Z ∋ (u, z) �→ µ(u,z) ∈ P(Sd
∞)

is measurable. Define a map ι(u,z) : Sd
∞ → U × Sd

∞ × Z by ι(u,z)(ξ) = (u, ξ, z). Consider a

map

ψ : U × Z × P(Sd
∞) → P(U × Sd

∞ × Z)

defined by ψ(u, z, µ) = ι(u,z)µ. Consider also a map φ : P(U × Sd
∞ × Z) → P(N) induced

by the inclusion. If (u, z) ∈ U × Z corresponds to x ∈ M , then

(5.5) µx = (φ ◦ ψ)(u, z, µ(u,z)) .
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The proof of Lemma 5.3 is complete if we show that the RHS of (5.5) is a measurable

function of (u, z). Here we have the following sublemma.

SUBLEMMA 5.5. The map ψ : U × Z × P(Sd
∞) → P(U × Sd

∞ × Z) is continuous.

PROOF. Denote by Cc(U ×Sd
∞×Z) the space of the continuous functions with compact

supports. Consider a product f ◦p1 g ◦p2 (f ∈ Cc(U ×Z), g ∈ C(Sd
∞), p1 : U ×Sd

∞ ×Z →

U × Z, p2 : U × Sd
∞ × Z → Sd

∞, the canonical projections). Then clearly

ψ(u, v, µ)(f ◦ p1g ◦ p2) = f (u, v)µ(g)

is a continuous function of (u, v, µ). On the other hand, finite sums of the products f ◦p1 g◦p2

form a dense subset of Cc(U × Sd
∞ × Z) in the topology of the uniform convergence on

compact sets. Standard argument shows that ψ(u, v, µ)(F ) is continuous for any F ∈ Cc(U×

Sd
∞ × Z), finishing the proof. ✷

On the other hand, φ is obviously continuous. The RHS of (5.5) is now shown to be a

measurable function of (u, z), completing the proof of Lemma 5.3. ✷

Integrating the measurable system of probability measures {µx}x∈M over m, we obtain a

probability measure λ(m) of N , called the canonical lift of m.

THEOREM 5.6. For any harmonic measure m of M , the canonical lift λ(m) is pointed

harmonic.

PROOF. Recall that on a prolonged local chart Dd+1 × Z, the lift of the harmonic mea-

sure m is written as in (5.4), and the canonical lift λ(m) on the associated prolonged local

chart Dd+1 × Sd
∞ × Z disintegrates on Dd+1 × Sd

∞ × z to (a constant multiple of)

(5.6)

∫

Dd+1
h(u)µu dvol(u) ,

where µu is the probability measure in P(Sd
∞) determined by the equality

h(v)

h(u)
=

∫

Sd
∞

kξ (v)

kξ (u)
dµu(ξ) for all v ∈ Dd+1 ,

where kξ is the minimal harmonic function normalized at the base point x̃.

In order to disintegrate further the measure in (5.6) on Dd+1×ξ ×z, we have to transform

the measure µu which depends on u ∈ Dd+1 to a fixed measure µx̃ . First of all, we have

h(v) =

∫

Sd
∞

h(u)
kξ (v)

kξ (u)
dµu(ξ) =

∫

Sd
∞

kξ (v)
h(u)

kξ (u)

dµu

dµx̃

(ξ)dµx̃(ξ) .

Hence by the uniqueness of the probability measure, we have

h(u)

kξ (u)

dµu

dµx̃

(ξ) = 1 ,

showing that ∫

Dd+1
h(u)µu dvol(u) =

∫

Dd+1
kξ (u)µx̃ dvol(u) .
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This implies that the lift of the measure λ(m) disintegrates on Dd+1 × ξ × z to a constant

multiple of kξ vol, completing the proof. ✷

Conversely, given any pointed harmonic measure on the leafwise unit tangent space N ,

its push down is a harmonic measure on M by Theorem 2.3. It is easy to show the following

theorem by analogous computation.

THEOREM 5.7. A harmonic measure on a compact hyperbolic lamination (M,L, g)

corresponds one to one to a pointed harmonic measure on its leafwise unit tangent bundle

(N,H, ǧ), by the operations of taking the canonical lift and pushing down.

EXAMPLE 5.8. If M is a closed oriented hyperbolic surface, considered as a single

leaf lamination, then the unique harmonic measure m is the (normalized) area form. The

canonical lift λ(m) on the unit tangent bundle T 1M is the (normalized) Haar measure.

REMARK 5.9. In case d = 1, the minimal parabolic subgroup P of G acts on the

leafwise tangent bundle N of a compact 2-dimensional hyperbolic lamination from the right

in such a way that the orbit lamination is the stable foliation H, and a probability measure of

N is pointed harmonic if and only if it is invariant by the action of P . Theorem 5.7 in this case

is already obtained in [M] and [BM] by a somewhat different dynamical method. For higher

dimension, we do not have such description of pointed harmonic measures.

6. The dichotomy. Let m be a harmonic measure on a compact hyperbolic lamination

(M,L, g). For an m-a.a. leaf L, we have defined a measure class [µL] on the boundary Sd
∞ of

the universal cover Dd+1 of L. In this section, we shall prove Theorem 1.2, i.e., for an ergodic

harmonic measure m, either the support KL = Supp([µL]), called the characteristic set of L,

is a singleton for any an m-a.a. leaf, or is the total space Sd
∞.

The argument closely follows the proof of [MV, Proposition 1], in which the authors

attribute the original idea to Etienne Ghys.

To begin with, let us notice the following fact. Let Γ be the group of deck transfor-

mations of the covering map Dd+1 → L. In the proof of Lemma 5.2, we have shown that

µγ x̃ = γµx̃ for any γ ∈ Γ . On the other hand, the equivalence class of the measure µx̃ does

not depend on the choice of the particular point x̃ from Dd+1, as is explained in the beginning

of Section 4. This shows that γKL = KL.

Given a closed subset K of Sd
∞ which is not a singleton, the convex hull of K , denoted

by C(K), is the convex hull in Dd+1 of the union of all the geodesics joining two points of K .

It is a closed convex subset of Dd+1, and the assignment K �→ C(K) is G-equivariant, where

G is the group of all the orientation preserving isometries of Dd+1. Therefore, we have the

following lemma.

LEMMA 6.1. Assume KL is not a singleton. Then the convex hull C(KL) of KL, as

well as its closed r-neighbourhood NL(r) (r > 0), is a Γ -invariant subset of Dd+1.
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Choose a prolonged local chart Dd+1 × Z, and denote the characteristic set of the leaf of

L corresponding to Dd+1 × z by Kz. Denote by C(Sd
∞) the space of nonempty closed subsets

of Sd
∞ equipped with the σ -algebra BC of the Hausdorff topology.

LEMMA 6.2. The assignment Z ∋ z �→ Kz ∈ C(Sd
∞) is ν-measurable with respect to

BC .

PROOF. For any open subset U of Sd
∞, define C(Sd

∞)U to be the open subset of C(Sd
∞)

consisting of those closed sets which intersects U . It is well known, easy to show, that the

open sets C(Sd
∞)U generate the σ -algebra BC . Therefore, it suffices to show that the set

ZU = {z ∈ Z; Kz ∈ C(Sd
∞)U }

is ν-measurable. Choose a countable family {fi} of nonnegtive continuous functions sup-

ported in U such that the union of their support is U , and take a base point x̃ ∈ Dd+1
∗ , where

Dd+1
∗ is the subset defined in the proof of Sublemma 5.4. Then the set ZU consists of exactly

those points z such that µ(x̃,z)(fi) > 0 for some i. The ν-measurable dependence of µ(x̃,z) in

the variable z established in the proof of Sublemma 5.4 completes the proof. ✷

DEFINITION 6.3. (1) Let MI be the union of m-a.a. leaves L such that the character-

istic set KL is a singleton.

(2) Let MII be the union of m-a.a. leaves L such that KL = Sd
∞.

(3) Let MIII = M \ (MI ∪ MII).

Lemma 6.2 implies that the three subsets are m-measurable. Since they are saturated

and the harmonic measure m is ergodic, only one of them is conull. Henceforth we assume

that MIII is conull and deduce a contradiction, which is sufficient for the proof of Theorem

1.2. For any m-a.a. leaf L and for r > 0, consider the image of NL(r) by the covering map

Dd+1 → L. Taking their union for any m-a.a. leaf L, we get a subset of M , denoted by N(r).

LEMMA 6.4. The subset N(r) is measurable.

PROOF. Denote by C(Dd+1 ∪ Sd
∞) the set of nonempty closed subsets of the compact-

ification Dd+1 ∪ Sd
∞, equipped with the Hausdorff topology. Then the map from C(Sd

∞) to

C(Dd+1 ∪ Sd
∞) which assigns to K the closure of the r-neighbourhood of the convex hull of

K is clearly continuous.

Consider a prolonged local chart Dd+1 ×Z and again let Kz denote the characteristic set

of the leaf in L which corresponds to Dd+1 × z. Also denote by Nz(r) ⊂ Dd+1 the closed

r-neighbourhood of the convex hull of Kz. Then by the above observation and by Lemma 6.2,

the map

Z ∋ z �→ Nz(r) ∪ Kz ∈ C(Dd+1 ∪ Sd
∞)

is measurable. In particular, for any open subset U of Dd+1, the set

{z ∈ Z; Nz(r) ∩ U �= ∅}

is a measurable subset of Z.
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Let us show that the union NZ(r) =
⋃

z Nz(r) × z is a measurable subset of Dd+1 × Z.

Choose a sequence of open coverings of Dd+1, U1 ≺ U2 ≺ · · · , such that mesh(Ui) tends to

0. Define

NZ(r)i =
⋃

U∈Ui

U × {z; Nz(r) ∩ U �= ∅} .

Then the set NZ(r)i is measurable, and hence NZ(r) =
⋂

i NZ(r)i is also measurable.

Now the image of NZ(r) by the submersion of Dd+1 × Z to M is measurable. In fact,

NZ(r) is a union of a null set and a Borel set. The image of a null set is null by the definition

of the lift m|Dd+1×Z of m. On the other hand, the image of a Borel set by a countable to one

Borel map is Borel. This is a well-known fact about standard Borel spaces, and follows for

example from [Ke, Corollary 15.2] and [S, Theorem 1.3]. Now the set N(r) ⊂ M is a finite

union of measurable sets and is measurable. ✷

Let us finish the proof of Theorem 1.2. Recall we are assuming that MIII is conull in

way of contradiction. Since M =
⋃

r N(r) mod 0, we have m(N(r)) > 0 for some r . By

Theorem 3.3, the measure Pm on the space Ω of leafwise paths is ergodic with respect to

the shift semiflow θt . This means that, for Pm-almost any path, the average time of stay in

the set X−1
0 (N(r)) is equal to Pm(X−1

0 (N(r))) = m(N(r)). In other words, for an m-a.a. x,

W x -almost surely we have

(6.1) lim
t→∞

1

t
dt{s ∈ [0, t]; Xs ∈ N(r)} = m(N(r)) > 0 ,

where dt denotes the Lebesgue measure on [0,∞).

But by Lemma 6.1, the inverse image p−1(N(r)) of the universal covering map p :

Dd+1 → L of an m-a.a. leaf L coincides with the set NL(r), the closed r-neighbourhood of

the convex hull of the characteristic set KL. Since KL �= Sd
∞, there is a closed nondegenerate

interval I contained in Sd
∞ \ KL. For any point x on L, the set of paths whose lifts hit I has

positive W x -measure. On the other hand, for those paths the limit of (6.1) must be 0, since

there is a neighbourhood of I in Dd+1 ∪ Sd
∞ which does not intersect N(r). A contraction.

Theorem 1.2 is now proved.

EXAMPLE 6.5. For any harmonic measure m of a compact hyperbolic lamination, the

canonical lift λ(m) of m, a pointed harmonic measure of the leafwise unit tangent bundle, is

of type I. Especially, the unique harmonic measure of the Anosov foliation on the unit tangent

bundle of a closed oriented hyperbolic surface is of type I. See [G], [DK].

Ergodic completely invariant measures are typical examples of harmonic measures of

Type II. But there are some more. An example is in order. Let Σ = Γ \ D2, where Γ <

PSL(2, R) is a purely hyperbolic cocompact Fuchsian group.

Choose any homomorphism ρ : Γ → Homeo(Z) to the group of the homeomorphisms

of a compact metric space Z which satisfies the following conditions.

(1) The homomorphism ρ is not injective.

(2) There is no ρ(Γ )-invariant measure on Z.
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Let M = Γ \ (D2 × Z), where the action of Γ is by deck transformation on the first

factor and by ρ on the second. Then the horizontal lamination {D2 × z} on D2 × Z induces

a lamination L on M , called the suspension of ρ. Let m be any ergodic harmonic measure of

L, and notice that m is not completely invariant by (2).

PROPOSITION 6.6. The above ergodic harmonic measure m is of type II.

PROOF. By Theorem 2.3, the harmonic measure m determines the class of a probability

measure ν on Z. The measure ν is quasi-invariant by the action of ρ(Γ ).

Assume for contradiction that m is of type I. Then for the prolonged local chart D2 × Z,

the charcteristic set Kz (z ∈ Z) is a singleton for ν-a.a. z. This yields a measurable map

k : Z → S1
∞ by Lemma 6.2. The map k is Γ -equivariant with respect to ρ and the Fuchsian

group action on S1
∞, i.e., we have

k(ρ(γ )z) = γ k(z) for all γ ∈ Γ, ν−a.a. z ∈ Z .

The push forward measure kν is kept quasi-invariant by the Fuchsian group, and in par-

ticular its support is an infinite set. Choose a nontrivial γ ∈ Γ from the kernel of ρ, and

let F be a Borel fundamental domain of γ for its action on S1
∞ \ Fix(γ ). Then we have

ν(k−1(F )) > 0. On the other hand, we have

k−1γF = ρ(γ −1)k−1γF = k−1F mod 0 .

Thus we have ν(∅) = ν(k−1F ∩ k−1γF) > 0. A contradiction. ✷

Finally let us pose some problems.

QUESTION 6.7. It is known [K2] that a compact hyperbolic lamination with a type

I ergodic harmonic measure is an amenable measured foliation in the sense of [AR]. Is the

converse true?

QUESTION 6.8. For an ergodic harmonic measure of type I of a compact hyperbolic

lamination of dimension d+1, the characteristic exponent satisfies λ = d2. For type II mea-

sure, is it true that λ is smaller than d2?

QUESTION 6.9. For an injective homomorphism from Γ (as above) to PSL(2, R)

with dense image, is the harmonic measure of the suspension foliation type II?
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