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The diet-derived short chain fatty acid propionate improves beta-cell function 

in humans and stimulates insulin secretion from human islets in vitro. 
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Abstract 

Aims: Diet-derived short chain fatty acids (SCFAs) improve glucose homeostasis in 

vivo, but the role of individual SCFAs and their mechanisms of action have not been 

defined. This study evaluated the effects of increasing colonic delivery of the SCFA 

propionate on β-cell function in humans and the direct effects of propionate on 

isolated human islets in vitro. 

Materials and Methods: For 24 weeks human subjects ingested an inulin-

propionate ester that delivers propionate to the colon. Acute insulin, GLP-1 and non-

esterified fatty acid (NEFA) levels were quantified pre- and post-supplementation in 

response to a mixed meal test. Expression of the SCFA receptor FFAR2 in human 

islets was determined by western blotting and immunohistochemistry. Dynamic 

insulin secretion from perifused human islets was quantified by radioimmunoassay 

and islet apoptosis was determined by quantification of caspase 3/7 activities.  

Results: Colonic propionate delivery in vivo was associated with improved β-cell 

function with increased insulin secretion that was independent of changes in GLP-1 

levels. Human islet β-cells expressed FFAR2 and propionate potentiated dynamic 

glucose-stimulated insulin secretion in vitro, an effect that was dependent on 

signalling via protein kinase C. Propionate also protected human islets from 

apoptosis induced by the NEFA sodium palmitate and inflammatory cytokines. 

Conclusions: Our results indicate that propionate has beneficial effects on β-cell 

function in vivo, and in vitro analyses demonstrated that it has direct effects to 

potentiate glucose-stimulated insulin release and maintain β-cell mass through 
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inhibition of apoptosis. These observations support ingestion of propiogenic dietary 

fibres to maintain healthy glucose homeostasis.  

This article is protected by copyright. All rights reserved.
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Introduction 

Diets containing high amounts of indigestible components such as complex 

carbohydrates and fibre increase satiety, promote weight loss and improve glucose 

homeostasis in both animals and humans (1,2). It is thought that the key event in 

transducing the beneficial effects of these indigestible foods is through their 

fermentation by colonic anaerobic bacteria to generate the short chain fatty acids 

(SCFAs) acetate, propionate and butyrate. The colon contributes substantially to 

circulating acetate levels in man, with peak concentrations of ~200μM observed after 

caecal delivery of the fermentable disaccharide lactulose (3) or oral delivery of 

SCFAs (4). In contrast, circulating levels of propionate and butyrate are reported to 

be approximately 10-fold lower (2). It is now apparent that these SCFAs can exert 

their effects through activation of the G-protein coupled receptors (GPCRs) FFAR2 

and FFAR3 (1,2,5), either locally in the colon and/or following their absorption into 

the systemic circulation. FFAR3 is coupled intracellularly to inhibitory pathways via 

Gαi whilst FFAR2 is coupled to both Gαi and stimulatory signalling via Gαq (6). 

FFAR2 is expressed by colonic L-cells and SCFAs can stimulate GLP-1 release from 

these cells (9). We have shown that propionate stimulation of GLP-1 and PYY 

secretion is dependent on FFAR2 activation (10) and it has been demonstrated that 

FFAR2 deletion in mice impairs glucose tolerance and reduces glucose-stimulated 

GLP-1 release (9). These observations fit with a model in which dietary fibre 

improves glycaemic control through production of SCFAs in the colon, activation of 

L-cell FFAR2 and the consequent increased GLP-1 release promotes insulin 

secretion from β-cells.  
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However, signalling of SCFAs in tissues distinct from L-cells can also contribute to 

improved glucose homeostasis. For example, FFAR2 is expressed by adipocytes 

and the pancreas (2), implying important roles in lipid and glucose regulation. 

Consistent with this, SCFAs act directly at adipocytes to inhibit lipolysis (10) thus 

reducing levels of adipocyte-derived long chain non-esterified fatty acids (NEFA) 

such as palmitate that contribute to glycaemic deterioration (2,11). In addition, 

SCFAs can act directly at islet β-cells to regulate insulin secretion. However, the 

studies reported to date have largely been performed using mouse islets, which may 

not appropriately reflect the human situation (12-14). They have focused on the 

direct effects of acetate on β-cells and there is currently no consensus from these 

studies on whether insulin release is stimulated or inhibited by this SCFA (12-14), 

nor on the role of the other circulating SCFA, propionate. We have recently 

demonstrated that targeted administration of propionate to the colon, in the form of 

inulin-propionate ester (IPE), acutely reduces energy intake and ameliorates long-

term weight gain in overweight adults (15).  

 

We have now extended our studies to investigate the effects of increasing colonic 

propionate for 24 weeks on glucose homeostasis in humans, with a focus on acute 

circulating NEFA and insulin levels following a mixed calorie meal test. We have also 

analysed the effects of propionate on β-cell function in vivo using the oral disposition 

index. We have complemented the assessment of in vivo delivery of propionate with 

characterisation of its direct effects in vitro to regulate insulin secretion from human 

islets and protect them against apoptosis. Our data demonstrate that long-term 

colonic propionate delivery significantly improves β-cell function, as evidenced by 

increased circulating insulin without any changes in insulin sensitivity, an effect that 
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is not secondary to increased GLP-1 levels. In vitro experiments with human islets 

indicate that propionate acts directly to reversibly stimulate insulin secretion through 

a protein kinase C-dependent pathway and protect islets from apoptosis induced by 

cytokines and the NEFA palmitate. 

 

Materials and Methods 

Materials 

Culture media and supplements, general laboratory chemicals: Sigma-Aldrich 

(Dorset, UK). Alexa-fluor secondary antibodies: GE Healthcare Life Sciences (Little 

Chalfont, UK). Tissue culture flasks, cover slips, BCA protein assay, 10% 

polyacrylamide gels, NuPAGE® sample buffer, transfer buffer: Thermo Fisher 

Scientific (Paisley, UK). FFAR2 antibodies, X-ray film: Santa Cruz Biotechnologies 

(Middlesex, UK). Insulin antibody: DAKO (Cambridge, UK). HRP-conjugated 

secondary antibody, ECL western blotting reagents, Cell Titer-Glo 3D assay, 

Caspase3/7 Glo assay: Promega (Hampshire, UK). Rainbow molecular weight 

markers and nitrocellulose membrane: Millipore (Watford, UK). Cyclic AMP HiRange 

cell-based assay: Cisbio assays (Codolet, France). TNFα, IL-1β and IFNγ: 

PeproTech (London, UK). Plasma glucose assay: Abbot Diagnostics (IL, USA). 

Insulin radioimmunoassay for in vivo samples: Millipore (MA, USA). NEFA assay: 

Randox Laboratories (WV, USA).    

 

Colonic propionate delivery in vivo 

We have developed inulin-propionate ester (IPE) as a vehicle to efficiently deliver 

propionate to the colon (15). We have previously reported the impact of IPE on 

appetite regulation and body weight maintenance (16), and here we analyse its 
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effect on glucose homeostasis. Recruited subjects (age: 40-65; BMI: 25-40 kg/m2; 19 

male, 30 female) provided informed, written consent prior to participation. 

Participants were randomised to receive a daily dietary supplement (sachet) of 10g 

inulin as a control (n=24) or 10g IPE (n=25) over 24 weeks. Overnight fasting and 

postprandial blood samples (-10 min, 0 min, 15 min, 30 min, 60 min, 90 min and 120 

min) were collected before dietary supplementation (week 0) and at the end of the 

study (week 24) after ingestion of a mixed calorie meal test (398 kcal; 71.2g 

carbohydrate, 7.9g fat, 10.3g protein), which also contained 10g inulin or 10g IPE at 

week 24, as appropriate. Levels of glucose, insulin and GLP-1 in blood samples 

were quantified as previously described (13). Total NEFA levels were analysed on 

an ILAB 650 Clinical Chemistry Analyser (Diamond Diagnostics, MA, USA). The 

clinical trial (NCT00750438) was approved by the Hammersmith and Queen 

Charlotte’s Research Ethics Committee (08/H0707/99). 

 

Human Islets 

Human islets were isolated from 22 non-diabetic donors (age: 43±2; BMI: 29.7±1.2 

kg/m2; 7 male, 15 female) at the King’s College Hospital Islet Transplantation Unit, 

with appropriate ethical approval (LREC 01-082) (15). Islets were maintained in 

CMRL medium supplemented with 2% human albumin, 4mM glutamine, 2mM 

HEPES (pH 7.2-7.4), and 10mM nicotinamide at 37°C, 5% CO2 prior to functional 

analyses. 

 

Insulin secretion in vitro 

For static incubation assessment of insulin secretion groups of 5 human islets were 

incubated for 30 minutes at 37°C in buffer (18) supplemented with agents of interest, 
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after which insulin release was quantified by radioimmunoassay (19). For perifusion 

experiments groups of 50 human islets were perifused with a physiological salt 

solution (18) and perifusate samples were collected at 2 minute intervals for 

quantification of secreted insulin (19-21). Islet PKC can be selectively down-

regulated by maintenance for 20 hours in the presence of 4β phorbol 12-myristate 

13-acetate (PMA) (20), so in some experiments the role of PKC was investigated by 

perifusing islets that had been treated with PMA to deplete PKC. Sodium propionate 

was dissolved in the physiological salt solution (18) immediately before experimental 

use.  

 

Western Blotting  

Groups of 200 human islets were lysed and protein was quantified by the BCA 

method. 50μg of islet protein extracts were fractionated by denaturing SDS 

polyacrylamide gel electrophoresis (10% gel, 45 minutes, 200V), transferred onto 

0.2µm nitrocellulose and probed overnight at room temperature with rabbit anti-

FFAR2 antibody (1:500). The membrane was then incubated for 1h at room 

temperature with anti-rabbit HRP-conjugated secondary antibody (1:10,000) and 

exposed to X-ray film after addition of ECL substrate. 

 

Fluorescence Immunohistochemistry  

Non-pathological human pancreas 5μm sections were boiled in 0.01M citric acid 

buffer (pH 6.0) for 2.5 minutes for antigen retrieval, blocked (0.1% donkey serum in 

PBS with 0.02% triton X-100, 1h, room temperature), then incubated at 4°C 

overnight with goat anti-FFAR2 (1:50) and guinea pig anti-insulin (1:250) antibodies. 

Sections were then exposed to Alexa-fluor secondary antibodies (1:250) for 1h at 
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room temperature, nuclei were stained with DAPI and images were acquired using a 

Nikon Eclipse TE2000-U microscope. 

 

Calcium Microfluorimetry 

Groups of 100,000 dispersed human islet cells on glass coverlips were incubated for 

15 minutes with 5μM Fura-2 AM. The coverslips were placed in a steel chamber that 

was mounted onto a heating platform of an Axiovert 135 inverted microscope. Cells 

were perifused (1 ml/min) with a physiological salt solution (18) containing test 

agents. Real-time changes in [Ca2+]i were determined by illuminating cells alternately 

at 340nm and 380nm, with the emitted light being filtered at 510nm and recorded 

with a CCD camera. Data were collected every 3 seconds from multiple cells in a 

field of view (23). 

 

Cyclic AMP 

Groups of 5 human islets were incubated for one hour at 37°C in physiological salt 

solution containing 20mM glucose and supplemented with 2mM IBMX to inhibit 

phosphodiesterases. Islets were then lysed and cAMP levels were quantified using a 

cAMP fluorescence assay, according to the manufacturer’s instructions. Data were 

acquired using a PHERAstar FS microplate reader (100μs delay time, 100μs 

integration time, 50 flash read time). 

 

ATP 

Groups of 3 islets human islets were incubated for one hour at 37°C, lysed and ATP 

levels were determined by chemiluminescence with the Cell Titer-Glo assay, 

according to the manufacturer’s instructions (21). 
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Apoptosis 

Human islets were pre-cultured in complete CMRL medium in the absence or 

presence of propionate for 24h, then groups of 5 islets were exposed to CMRL with 

0.2% albumin supplemented either with 500μM sodium palmitate or a cytokine 

cocktail (5U/μl TNFα , 0.5U/μl IL-1β, 5U/μl IFNγ) in the continued absence or 

presence of propionate for a further 20h. Islet cell apoptosis was determined using 

the Caspase3/7 Glo assay according to the manufacturer’s instructions (21). Mean 

luminescence data of each group of islets were normalised to the basal apoptosis 

levels obtained in the absence of cytokines or sodium palmitate.      

 

Statistical analyses 

Changes in postprandial glucose, insulin, NEFA and GLP-1 levels at week 24 were 

calculated as differences from pre-supplementation values. Between group 

differences were analysed by repeated measures ANOVA. To determine changes in 

acute postprandial responses, areas under the curve (AUC) were calculated from 0-

30min using the trapezoid method. Postprandial insulin sensitivity (IS) was estimated 

from the meal test using the Matsuda Index (24) and an oral disposition index, which 

provides a measure of insulin release adjusted for IS, was calculated as Insulin 

AUC0–30min/Glucose AUC0–30min x IS (25). The change from pre-supplementation 

values at week 24 was calculated and differences between supplementation groups 

compared using unpaired t-tests. In vitro data are expressed as mean±SEM for the 

numbers of experiments and replicates indicated in the Figure legends and statistical 

analyses were performed by Student’s t-tests or one way ANOVA, as appropriate. 
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Results 

Colonic propionate delivery improves β-cell function in vivo 

Analysis of AUC0-30min after the meal test indicated that there was a significant 

reduction in plasma NEFA levels in subjects that had received the IPE supplement 

for 24 weeks (Figure 1a) and significant reductions in NEFA were also evident over 

the 120 minute postprandial period (Supplementary Figure 1a). Long-term colonic 

propionate delivery was also associated with a significant increase in circulating 

insulin levels in the first thirty minutes following the meal (Figure 1b) independent of 

elevations in the early postprandial glucose levels (Figure 1c). There was also a 

trend for long-term propionate delivery to increase insulin secretion over 120 minutes 

(p=0.08), again without any change in glucose levels (Supplementary Figure 1b-1c). 

Calculation of the Matsuda Index (24) indicated that the change in IS at week 24 was 

not different between groups (Figure 1d), but the oral disposition index demonstrated 

that those subjects taking the IPE supplement had improved β-cell function (Figure 

1e), which was not associated with increases in circulating GLP-1 levels (Figure 1f, 

Supplementary Figure 1d). We have previously reported that IPE supplementation 

increases propionate concentrations in the peripheral circulation (16), suggesting 

that the observed increase in acute insulin secretion could be a consequence of 

circulating propionate acting directly at islet β-cells.  

 

Propionate potentiates dynamic insulin secretion from human islets in vitro. 

Static incubation experiments in which human islets were incubated in the presence 

of 1mM sodium propionate for thirty minutes indicated that it did not significantly 

affect insulin secretion, despite the islets showing an appropriate secretory response 

when glucose levels were increased from 2mM to 20mM and when they were 
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challenged with the muscarinic agonist carbachol, which acts via a Gq-coupled 

GPCR (Figure 2a). Further experiments were performed by carrying out perifusions, 

which provide a sensitive dynamic profile of insulin secretion where secretory 

products are constantly removed to minimise paracrine interactions. Human islets 

responded to an elevation in glucose from a basal concentration of 2mM to a 

supraphysiological stimulus of 20mM with a short-lived first phase of insulin secretion 

that was followed by a sustained plateau (Figure 2b). Exposure of the islets to 1mM 

propionate in the continued presence of 20mM glucose resulted in a rapid 

potentiation of insulin secretion that was fully reversible, such that secretion returned 

to the plateau phase upon removal of propionate. Quantification of AUC data during 

exposure to propionate indicated that the increase was statistically significant (AUC, 

20mM glucose: 324.9±35.5 pg insulin/20min; +1mM propionate: 633.3±95.5, n=4, 

p<0.01). Having established that propionate directly potentiates insulin secretion in 

vitro, the effects of lower concentrations were also investigated in perifusion 

experiments. These indicated that propionate concentrations as low as 10μM 

induced a significant elevation in insulin release at 20mM glucose that was as 

effective as the stimulation induced by 100μM propionate (Figure 2c). 

 

Human islet β-cells express FFAR2  

SCFAs signal through binding to the GPCRs FFAR2 and FFAR3, which show 

widespread distribution. We have previously detected mRNAs encoding these 

receptors in human islets (26), but since FFAR3 is coupled to Gαi it is most likely 

that propionate potentiates insulin secretion through activation of FFAR2, which 

signals through both Gαq and Gαi. Western blotting with an anti-FFAR2 antibody 

indicated that an immunoreactive protein of 43kDa was detected in human islets 
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isolated from two separate donors (Figure 3a). The subcellular localisation of FFAR2 

was investigated by fluorescence immunohistochemistry in human pancreas 

sections. It can be seen from Figure 3b that FFAR2 (red) was readily detected in the 

endocrine pancreas, where it was co-expressed with insulin (green) in islet β-cells. 

There was very little FFAR2 immunoreactivity evident in the exocrine pancreas 

(Figure 3b).  

 

The stimulatory effects of propionate on insulin secretion from human islets 

are dependent on protein kinase C activation. 

GPCRs that are coupled to Gq signal via elevations in inositol trisphosphate (IP3) 

and diacylglycerol (DAG), with IP3 increasing intracellular Ca2+ levels ([Ca2+]i) and 

DAG activating protein kinase C (PKC). Propionate increased [Ca2+]i in Fura-2-

loaded human islet cells, with an effect that was visible within 30 seconds of 

exposure (Figure 4a). The potentiation of insulin secretion by propionate was 

abolished in islets that had been exposed to the phorbol ester 4β-phorbol 12-

myristate 13-acetate (PMA) for 24 hours to down-regulate PKC, while islets that had 

been treated with the inactive phorbol ester 4α-phorbol 12,13-didecanoate (PDD) 

responded appropriately to propionate (Figure 4b). Potential signalling of propionate 

through Gi was also investigated by quantification of cAMP generation in human 

islets. These experiments indicated that forskolin caused a substantial increase in 

islet cAMP production, which was significantly reduced by the α2 adrenergic agonist 

clonidine, but not by propionate (Figure 4c). SCFAs can diffuse through the plasma 

membrane due to their short carbon skeletons, and it is possible that they potentiate 

insulin secretion by acting as mitochondrial metabolic substrates. However, 

measurements of intracellular ATP levels indicated that while increasing the glucose 
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concentration from 2mM to 20mM resulted in increased ATP, as expected, co-

incubation of islets with 100μM or 1mM propionate at 20mM glucose did not result in 

further increases in ATP production (Figure 4d).  

 

Propionate protects human islets from cytokine- and palmitate-induced 

apoptosis 

In vivo, islets are susceptible to damage by lipolysis-generated fatty acids such as 

palmitate, and by cytokines that are secreted following islet infiltration by immune 

cells. The ability of propionate to protect human islets from apoptosis induced by 

cytotoxic and lipotoxic environments was evaluated by measurement of caspase 3/7 

activities in vitro. Human islets exposed for 20 hours to a cytokine cocktail showed 

elevations in apoptosis, and a significant increase in human islet caspase 3/7 

activities was also observed following exposure to 500μM sodium palmitate (Figure 

5a, 5b). Maintenance of islets in the presence of 1mM propionate did not affect basal 

apoptosis, but significantly reduced the pro-apoptotic signalling induced by cytokines 

(Figure 5a) and palmitate (Figure 5b).  

 

Discussion 

There is compelling evidence that diet-derived SCFAs have beneficial effects on fuel 

homeostasis, but the focus to date has largely been on SCFA-mediated 

improvements in insulin sensitivity (2) or on indirect effects of SCFAs to increase β-

cell function via elevations in GLP-1 release from L-cells (1). In the current study we 

have demonstrated that subjects undergoing mixed calorie meal tests containing 10g 

inulin-propionate ester, after 24 week daily supplementation with 10g inulin-

propionate ester, show significant improvements in acute insulin secretion and β-cell 
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function compared to control subjects receiving inulin alone. The lack of effect on 

GLP-1 levels in the acute meal tests in the propionate subjects at 24 weeks points to 

the enhanced β-cell function being a direct effect of propionate, rather than 

secondary to propionate-induced elevations in GLP-1. The limited availability of 

human islets for research means that the studies to date on the role of SCFAs to 

directly regulate islet function have largely been carried out using mouse models 

and/or isolated mouse islets (12-14, 27).   

 

The earlier islet studies have focused on the effects of acetate, and there are reports 

that this SCFA inhibits (12), stimulates (13) or has no effect (14) on glucose-induced 

insulin secretion. The reason for the discrepancies between these three studies, all 

using static incubations with 1mM acetate is not clear, but the dual stimulatory (Gαq) 

and inhibitory (Gαi) activity downstream of FFAR2 activation may explain, at least in 

part, different observations on the roles played by these receptors in islet function. In 

addition, in static incubation experiments paracrine signalling via accumulated 

products such as somatostatin and GABA, secreted from islet endocrine cells, may 

affect total insulin release, and static experiments do not provide information on the 

rate of onset or duration of changes in insulin secretion, nor the reversibility of these 

effects. Our own studies indicated that static incubation experiments using isolated 

human islets are not a sufficiently robust experimental model to define the effects of 

propionate on insulin secretion in vitro. Thus, quantification of insulin secretion after 

a 30 minute incubation indicated that 1mM propionate did not significantly affect 

glucose-stimulated insulin secretion, whereas dynamic perifusion experiments 

revealed that concentrations as low as 10μM were sufficient to reversibly potentiate 

insulin secretion. Circulating propionate concentrations are approximately 1-13μM 
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(2) and we have recently reported that IPE supplementation results in elevation of 

plasma propionate levels above 20μM (16), so these observations of direct 

stimulatory effects of propionate on insulin secretion from isolated human islets are 

physiologically relevant.    

 

We have investigated the mechanisms by which propionate potentiates insulin 

secretion. Numerous studies have indicated that SCFAs, including propionate, 

activate the fatty acid receptors FFAR2 and FFAR3 (reviewed in 2). Both receptors 

couple via Gi to inhibit cAMP generation, while FFAR2 also signals via Gq to 

stimulate PIP2 hydrolysis. The stimulatory effects of propionate on insulin secretion 

implicate signalling distinct from Gi coupling in human islets. This was confirmed by 

the lack of inhibition of cAMP production by propionate, indicating that it does not 

mediate its effects via Gi-coupled FFAR3 in human islets. Propionate may also enter 

the TCA cycle, and could potentially increase insulin secretion through enhancing 

ATP synthesis. However, quantification of ATP production indicated that it did not 

enhance the ATP generation stimulated by glucose in human islets. Thus, the most 

likely mechanism through which propionate potentiates insulin secretion is via Gq-

mediated signalling consequent to FFAR2 activation. This is supported by our data 

indicating that FFAR2 is expressed by β-cells in human pancreas, as it is in mouse 

pancreas (12,14) and by our observations that propionate elevated [Ca2+]i in human 

islets and that PKC down-regulation prevented the stimulatory effects of propionate 

on insulin secretion from human islets. 

 

Recent studies in mice have indicated direct signalling via FFAR2 in islets to regulate 

β-cell mass. Thus, it has been reported that a phenylacetamide derivative agonist of 
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FFAR2 enhances β-cell proliferation (14), FFAR2 knockout mice show reduced β-cell 

expansion during pregnancy (27), and a FFAR2 agonist that preferentially couples 

via Gq promotes mouse islet β-cell proliferation (28). Consistent with SCFAs playing 

an important role in maintaining β-cell mass, we have demonstrated, for the first 

time, that propionate significantly reduced human islet apoptosis induced by sodium 

palmitate and by cytokines. This suggests that propionate can play a key protective 

role in the context of obesity where β-cells are required to hypersecrete insulin to 

compensate for insulin resistance, but are compromised by increased apoptosis 

driven by elevations in circulating NEFA and locally produced cytokines.  

 

In summary, we have demonstrated that increasing colonic propionate improves β-

cell function in vivo, and our in vitro observations in human islets indicate that this 

may occur both via short-term acute effects of propionate to directly stimulate insulin 

secretion and through its longer term effects to protect β-cells from apoptotic stimuli. 

These data support the ingestion of propiogenic dietary fibres to maintain healthy 

glucose homeostasis, both through the established beneficial effects via elevations 

in GLP-1 and PYY (16) and by the novel signalling identified here, of direct 

stimulatory effects of propionate at β-cells.  
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Figure Legends 

Figure 1: Effects of elevating colonic propionate levels for 24 weeks on acute 

postprandial metabolic responses and β-cell function. 

a) NEFA AUC0-30min, b) Insulin AUC0-30min, c) Glucose AUC0-30min, d) Postprandial 

insulin sensitivity, e) Oral disposition index, f) GLP-1 AUC0-30min. Individual and 

mean±SEM change from baseline (week 0); Inulin-control, n=24; Inulin-propionate 

ester, n=25; *p<0.05. 

 

Figure 2: Effect of propionate on insulin secretion from human islets in vitro. 
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a) Static incubation of human islets. Data are expressed as mean+SEM, n=5-7. 

***p<0.001 vs 2mM glucose, ##p<0.01 vs 20mM glucose. 

b) and c) Perifused human islets. Data are representative of 3-5 independent 

experiments with islets from different donors. Each treatment group within individual 

experiments consisted of 4 independent replicates. *p<0.05, 100μM propionate 

versus 20mM glucose; **p<0.01, 10μM and 1mM propionate vs 20mM glucose. 

 

Figure 3: Expression of FFAR2 by human islets and its subcellular localisation. 

a) Western blotting of isolated human islets lysates with an anti-FFAR2 antibody. 

The two lanes represent two separate batches of islets and are representative of two 

independent blots using islets from five donors. 

b) Fluorescence immunohistochemistry of human pancreas probed with antibodies 

directed against FFAR2 (red) and insulin (green). The blue staining indicates nuclei 

and the right hand panel shows merged images. 

 

Figure 4: Propionate-mediated signalling in human islets. 

a) Intracellular Ca2+. Data are expressed as mean±SEM of 5 β-cells and the traces 

are representative of 3 independent experiments. 

b) Insulin secretion from human islets incubated for 20 hours in the presence of 

200nM 4β phorbol 12-myristate 13-acetate (PMA, white circles) to down-regulate 

PKC, 200nM 4α phorbol 12,13-didecanoate (PDD, semi-solid circles), an inactive 

phorbol ester, or under standard tissue culture conditions (control, solid circles). Data 

are representative of 3 independent experiments with islets from different donors. 

Each treatment group within individual experiments consisted of 4 independent 

replicates.  
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c) Cyclic AMP generation. Data are expressed as mean+SEM, n=6, representative 

of 2 independent experiments. ***p<0.001 vs cAMP levels at 20mM glucose, 

#p<0.05 vs cAMP levels at 1μM forskolin. 

d) ATP generation. Data are expressed as mean+SEM, n=4-6, representative of 3 

independent experiments. **p<0.001 vs ATP levels at 2mM glucose. 

 

Figure 5: Effects of propionate on human islet apoptosis. 

Human islets were maintained for 20 hours in the presence of mixed cytokines (a) or 

sodium palmitate (b) in the absence or presence of 1mM sodium propionate (SP) 

and apoptosis was determined by luminescence assay of caspase 3/7 activities. 

Data are expressed as mean+SEM, n=8, representative of 3 independent 

experiments. ##p<0.01, ###p<0.001 vs apoptosis with vehicle control in absence of 

palmitate or cytokines; *p<0.05, ***p<0.001 vs apoptosis induced by palmitate or 

cytokines. 

 

Supplementary Figure 1: Effects of elevating colonic propionate levels for 24 

weeks on postprandial metabolic responses.  

Postprandial a) NEFA, b) insulin, c) glucose and d) GLP-1 responses at baseline and 

following 24 weeks of supplementation with inulin-control and inulin-propionate ester. 

Data are expressed as mean±SEM, Inulin-control, n=24; Inulin-propionate ester, 

n=25.  NEFA levels were significantly reduced over the 120 min postprandial period 

after 24 weeks of dietary supplementation with IPE compared with inulin-control 

(mean difference: -0.09±0.03mM, p=0.009. There were no differences between 

supplementation group on changes in glucose or GLP-1 (mean differences: -

0.06±0.22mM, p=0.781 and 1.8±5.0pM, p=0.722, respectively), with a trend for long-
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term colonic propionate delivery to increase insulin secretion (mean difference: 

7.0±3.9 µU/mL, p=0.081).   
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