

# Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/57090/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Clare, Elizabeth L., Symondson, William Oliver Christian, Broders, Hugh, Fabianek, François, Fraser, Erin E., MacKenzie, Alistair, Boughen, Andrew, Hamilton, Rachel, Willis, Craig K. R., Martinez-Nuñez, Felix, Menzies, Allyson K., Norquay, Kaleigh J. O., Brigham, Mark, Poissant, Joseph, Rintoul, Jody, Barclay, Robert M. R. and Reimer, Jesika P. 2014. The diet of Myotis lucifugus across Canada: assessing foraging quality and diet variability. Molecular Ecology 23 (15), pp. 3618-3632. 10.1111/mec.12542 file

Publishers page: http://dx.doi.org/10.1111/mec.12542 <a href="http://dx.doi.org/10.1111/mec.12542">http://dx.doi.org/10.1111/mec.12542</a>

#### Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See <a href="http://orca.cf.ac.uk/policies.html">http://orca.cf.ac.uk/policies.html</a> for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.



information services gwasanaethau gwybodaeth

| 1        | The diet of Myotis lucifugus across Canada: assessing foraging quality and diet                                                                         |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | variability                                                                                                                                             |
| 3        | Elizabeth L. Clare <sup>1</sup> , William O.C. Symondson <sup>2</sup> , Hugh Broders <sup>3</sup> , François Fabianek <sup>4</sup> , Erin               |
| 4        | E. Fraser <sup>5</sup> , Alistair MacKenzie <sup>6</sup> , Andrew Boughen <sup>7</sup> , Rachel Hamilton <sup>8</sup> , Craig K.R.                      |
| 5        | Willis <sup>9</sup> , Felix Martinez-Nuñez <sup>9</sup> , Allyson K. Menzies <sup>9</sup> , Kaleigh J.O. Norquay <sup>9</sup> , Mark                    |
| 6        | Brigham <sup>10</sup> , Joseph Poissant <sup>10</sup> , Jody Rintoul <sup>10</sup> , Robert M.R. Barclay <sup>11</sup> , Jesika P. Reimer <sup>11</sup> |
| 7        |                                                                                                                                                         |
| 8        | <sup>1</sup> School of Biological and Chemical Sciences, Queen Mary University of London, Mile                                                          |
| 9        | End Road, London E1 4NS, UK                                                                                                                             |
| 10<br>11 | <sup>2</sup> Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue,                                                               |
| 12       | Cardiff, CF10 3AX, UK                                                                                                                                   |
| 13       | Caldill, CF10 3AA, OK                                                                                                                                   |
| 14       | <sup>3</sup> Department of Biology, Saint Mary's University, Robie Street, Halifax, NS B3H 3C3,                                                         |
| 15       | Canada                                                                                                                                                  |
| 16       |                                                                                                                                                         |
| 17       | <sup>4</sup> Faculty of Forestry, Faculty of Geography and Geomatics, Laval University 2405 rue de                                                      |
| 18       | la Terrasse, Quebec G1V 0A6, Canada                                                                                                                     |
| 19       |                                                                                                                                                         |
| 20       | <sup>5</sup> Environmental Science (Biology), Memorial University of Newfoundland, Grenfell                                                             |
| 21       | Campus, 20 University Dr., Corner Brook, Newfoundland and Labrador, A2H 5G4,                                                                            |
| 22       | Canada                                                                                                                                                  |
| 23       |                                                                                                                                                         |
| 24       | <sup>6</sup> Pinery Provincial Park, Ontario Parks, 9526 Lakeshore Road, R.R. #2 Grand Bend,                                                            |
| 25       | Ontario N0M 1T0, Canada                                                                                                                                 |
| 26       | 71 1 0 C C C C C C C C C C C C C C C C C                                                                                                                |
| 27       | <sup>7</sup> Lake St. George Conservation Field Centre, Toronto and Region Conservation, 950                                                            |
| 28<br>29 | Bethesda Sd. Rd., Richmond Hill, Ontario, L4E 3G2, Canada                                                                                               |
| 30       | <sup>8</sup> Department of Biology, Biological and Geological Sciences Building, University of                                                          |
| 31       | Western Ontario, London Ontario, N6A 5B7, Canada                                                                                                        |
| 32       | Western Ontario, London Ontario, NoA 3D7, Canada                                                                                                        |
| 33       | <sup>9</sup> Department of Biology, Lockhard Hall, University of Winnipeg, Portage Avenue,                                                              |
| 34       | Winnipeg Manitoba, R3B 2E9, Canada                                                                                                                      |
| 35       |                                                                                                                                                         |
| 36       | <sup>10</sup> Department of Biology, Laboratory Building, University of Regina, Wascana Parkway,                                                        |
| 37       | Regina Saskatchewan, S4S 0A2, Canada                                                                                                                    |
| 38       |                                                                                                                                                         |
| 39       | <sup>11</sup> Department of Biological Sciences, University of Calgary, University Drive N.W.,                                                          |
| 40       | Calgary Alberta, T2N 1N4, Canada                                                                                                                        |
| 41       |                                                                                                                                                         |
| 42       | Corresponding Author: E.L. Clare. School of Biological and Chemical Sciences, Queen                                                                     |
| 43       | Mary University of London, Mile End Road, London E1 4NS, UK, e.clare@qmul.ac.uk,                                                                        |
| 44       | Fax: +44 (0)20 7882 7732                                                                                                                                |
| 45       |                                                                                                                                                         |

- 47 **Key words:** molecular diet analysis, species' interactions, spatial-temporal variation,
- 48 resource use
- 49 **Running Head:** Diet of little brown bats across Canada



52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

#### **Abstract**

Variation in prey resources influences the diet and behaviour of predators. When prey become limiting, predators may travel farther to find preferred food or adjust to existing local resources. When predators are habitat limited, local resource abundance impacts foraging success. We analyzed the diet of *Myotis lucifugus* (little brown bats) from Nova Scotia (eastern Canada) to the Northwest Territories (north western Canada). This distribution includes extremes of season length and temperature and encompasses colonies on rural monoculture farms, and in urban and unmodified areas. We identified recognized nearly 600 distinct species of prey, of which ≈30% could be identified using reference sequence libraries. We found a higher-than-expected use of lepidopterans, which comprised a range of dietary richness from  $\approx 35\%$  early in the summer to  $\approx$ 55% by late summer. Diptera were the second largest prey group consumed, representing ≈45% of dietary diversity early in the summer. We observed extreme local dietary variability and variation among seasons and years. Based on the species of insects that we recorded in the dietconsumed, we suggest that two locations support prey species with extremely low pollution and acidification tolerances, suggesting that these are areas without environmental contamination. We conclude there is significant local population variability in little brown bat diet which is likely driven by seasonal changes in insect diversity and may be a good indicator of environment quality.

Page 4 of 40

## Introduction

| Molecular techniques are increasingly used to identify species, particularly                 |
|----------------------------------------------------------------------------------------------|
| morphology morphologically cryptic taxa. This has generated databases of taxonomically       |
| validated reference sequences (e.g. BOLD, Ratnasingham & Hebert 2007) to quantify            |
| biodiversity (e.g. Hebert et al. 2003), detect food market substitutions (e.g. Wong &        |
| Hanner 2008; Hanner et al. 2011) and improperly labelled food (e.g. Cohen et al. 2009).      |
| Characterizing ecological connections is more complicated than indexing species'             |
| presence (McCann 2007) and the use of reference databases to document interactions           |
| (e.g. Smith et al. 2006, 2007) has expanded greatly. Molecular techniques provide a          |
| powerful means to unravel food webs (Symondson 2002; King et al. 2008; Pompanon et           |
| al. 2012) which cannot be observed. These techniques developed from monoclonal               |
| antibody methods (e.g. Symondson & Liddell 1993) to cloning (e.g. Zeale et al. 2011;         |
| Alberdi et al. 2012), and next generation sequencing (NGS) (Pompanon et al. 2012).           |
| NGS now dominates these analyses and has been applied to marine systems (Deagle et al.       |
| 2009, 2010), herbivores (Soininen et al. 2009; Valentini et al. 2009) and terrestrial        |
| insectivores (Bohmann et al. 2011; Brown et al. 2013). Next generation sequencing is         |
| particularly effective when applied to generalists.                                          |
| One hypothesis to explain food web stability is that increased species richness is           |
| related to food-web complexity (the number of interactions). When richness is coupled        |
| with functional redundancy and behavioural flexibility, food webs become more stable         |
| (Solé & Montoya 2001; Kondoh 2003; Dunne et al. 2004). Generalism provides the               |
| opportunity for flexibility in prey choice and its importance is documented e.g. stabilizing |
| both predator and prey population demography (Singer & Bernays 2003) or indirectly           |

| controlling lower food web links (Rosenheim & Corbett 2003). The main prediction of          |
|----------------------------------------------------------------------------------------------|
| this hypothesis is that, when resources become limited, flexible consumers become more       |
| general in resource use. Dietary flexibility can be driven by limited high quality food, and |
| the necessity to diversify to achieve nutrition, to avoid toxins, to follow resources, or    |
| minimize foraging risks (Singer & Bernays 2003). Some generalists switch between             |
| specialized resources (e.g. omnivory, Clare et al. 2013) while others consume food in        |
| ratios based on abundance (Rosenheim & Corbett 2003; Bastille-Rousseau et al. 2011).         |
| Bats are an ideal group to study dietary flexibility as they occupy multiple trophic         |
| levels (carnivores, sanguivores, frugivores, nectarivores, insectivores) and niches (e.g.,   |
| active hunting, passive listening for prey, fishing, trawling). They are frequently top      |
| predators and may consume resources at different trophic levels (e.g. Clare et al. 2013).    |
| However, they consume resources cryptically (. They are active at night, using high-         |
| frequency echolocation) and are thus difficult to observe. Molecular methods provide a       |
| solution and are particularly useful in insectivores where thorough mastication of prey      |
| limits traditional morphological analyses of faeces (guano) (Kunz & Whitaker 1983) or        |
| culled prey remains (e.g. Nycteris grandis Fenton et al. 1981, 1990). In both cases          |
| identification of prey is limited to order or family and small, soft bodied prey may be      |
| overlooked (Clare et al. 2009). Molecular analysis permits us to identify prey to species    |
| (Clare et al. 2009) particularly when coupled with reference libraries (Hebert et al. 2003;  |
| Ratnasingham & Hebert 2007) increasing precision.                                            |
| Carter et al. (2006) showed a proof of the concept by amplifying chicken DNA                 |
| from the faeces of white-winged vampire bats (Diaemus youngi). The first full molecular      |
| analysis of bat diet assessed predator-prey relationships between Lasiurus borealis and      |

| Lepidoptera (Clare et al. 2009) by sequencing DNA directly from residual prey                    |
|--------------------------------------------------------------------------------------------------|
| fragments. Cloning and prey-specific primers were developed (Zeale et al. 2011) and              |
| used to uncover a novel hunting strategy of Barbastella barbastellus (Goerlitz et al.            |
| 2010) and the diet of <i>Plecotus macrobullaris</i> (Alberdi et al. 2012). These methods have    |
| rapidly been replaced by NGS (Bohmann et al. 2011; Razgour et al. 2011; Clare,                   |
| Symondson, et al. 2013; Emrich et al. 2013) which are faster and more cost effective.            |
| Myotis lucifugus, the little brown bat, was one of the most common and                           |
| widespread bats in North America, though populations are in decline due to white nose            |
| syndrome (Frick et al. 2010). They have a distribution from Alaska, through southern             |
| Northwest Territories, the prairies, Ontario, Quebec and the Maritime provinces in               |
| Canada, and south through the continental United States and northern Mexico (Fenton &            |
| Barclay 1980). Arthropod consumption by bats (including Myotis lucifugus) varies by              |
| species and season (tied to <u>lack of many prey early and late in the year and</u> reproductive |
| cycle) (Kunz et al. 2011), and by age (Fraser & Fenton 2007). At peak metabolic demand           |
| during lactation, little brown bats may consume more than their body mass in prey each           |
| night (Kurta et al. 1989) and thus potentially provide a significant ecosystem service           |
| through insect consumption (Boyles et al. 2011). They are generalists consuming insects          |
| of low prey hardness (Freeman 1981) mostly emerging from aquatic systems e.g. Diptera            |
| and Trichoptera (Belwood & Fenton 1976; Freeman 1981; Ober & Hayes 2008), although               |
| adult females consume more Lepidoptera and Trichoptera (Belwood & Fenton 1976).                  |
| Myotis lucifugus' tendency to forage over water provides a means to assess                       |
| foraging location quality. In this context, our reference to foraging habitat/location           |
| quality refers to both type of habitat (such as moving or still water) and also to the           |

potential acid and pollution content of the aquatic system. Benthic macro-invertebrates are frequently used as environmental indicators. Their pollution tolerance (e.g. organic pollutants, acidification) and habitat requirements have been documented (Hilsenhoff 1988). If we consider bats as a sampling mechanisms, species-level diet analysis provides data for assessing the quality of foraging areas without complicated, potentially invasive methods such as radio tracking bats to locate foraging followed by mass insect sampling. Thus, while bats may not be used as a method of general habitat assessment (their sampling is biased by perceptual characters and preferences etc.), their diet can provide us which information on specific areas they have visited.

Clare *et al.* (2011) performed the first molecular analysis of little brown bat diet in three locations in Southern Ontario. They identified 66 prey species and noted a shift from consumption of Diptera early in the summer to Ephemeroptera in mid and late summer. There was evidence of local diet variation which allowed inferences about foraging-location quality. There is evidence that diet diversity is a function of location; populations in northern Ontario have greater dietary variability than those in southern areas (Belwood & Fenton 1976). The range of little brown bats in Canada includes areas of high and low insect species richness. If prey themselves are a limited (and limiting) resource, as prey richness decreases, the null hypothesis is that predators should similarly consume a lower species richness; however, if abundance is high, diet may change little or predators may adopt a more general strategy and consume a wider variety of prey (higher values of Simpson's diversity index, Simpson 1949).

Our study had two objectives. First, we assessed variability of little brown bat diets across Canada, over the summer and between years, and tested the hypothesis that

1 .1

| they have high degree of dietary variability across location and time. Second, we used the    |
|-----------------------------------------------------------------------------------------------|
| identity of prey to make inferences about habitat, based on known habitat requirements        |
| and pollution tolerances of the prey. We tested four predictions about diet: 1) latitude has  |
| an effect on diet, 2) temporal patterns of prey exploitation across the summer are stable     |
| from year to year, 3) there is a significant shift from the consumption of species of         |
| Diptera to Ephemeroptera associated with phases of the reproductive cycle and 4)              |
| species-level analysis of prey provides criteria for assessing foraging <u>location</u> -area |
| quality and yields quantitatively different insights than ordinal level analysis.             |

#### **Methods:**

Sample Collection:

We collected guano under maternity roosts of *M. lucifugus* across Canada (Figure 1) during three periods, including pregnancy (early summer = May to mid-June), lactation (middle summer = mid-June to mid-July) and post lactation (late summer = mid-July to September). Collections in Ontario were performed in 2009 (at Clinton, the Pinery), 2009 and 2011 (Lake St. George) and in 2011 for all other locations. Sampling was performed weekly in Ontario throughout the summer (fine grained analysis), and during the three established periods in other locations (see Figure 1 for details).

Additional material was collected at two locations in Quebec but due to sampling differences and difficulties with molecular analysis we include this only as a supplement (see details in Supplemental Files 1 and 2) for comparison. We adopted the definitions of seasons from Clare *et al.* (2011) (see Supplemental File 3 for collection dates and locations). We froze samples or preserved them in high-percentage ethanol (70-100%).

Because we collected samples from colonies rather than individuals, the volume of material was substantial (exceeding half a liter per week by volume in some cases) and reflected deposition by many individuals (potentially exceeding a thousand in some locations), we analyzed a random subset of the pellets from each collection (volume c.1.5ml of guano or c.50 pellets, hereafter a "sample").

DNA Extraction, Amplification and Sequencing:

We extracted DNA from homogenized samples using the QIAmp DNA Stool Mini Kit (Qiagen, UK) following manufacturer's instructions with modifications from Zeale *et al.* (2011), further modified as follows: 1) to encompass more individuals and thus greater prey diversity we used approximately 50x more starting material and 2) we extended the first centrifuge step (Zeal step 4) to 3 minutes to aid in pelleting the particulate material. Extracted DNA was stored at -20 °C prior to amplifications.

We tested DNA extractions success using the primers ZBJ-ARTF1c and ZBJ-ArtR2c (Zeale *et al.* 2011). We then amplified each sample using a modified fusion-primer version for the Roche FLX sequencer (Bohmann *et al.* 2011) consisting of a Lib-L adaptor, the key sequence, a unique 10 bp DNA sequence (MID) and the original primer sequence (ZBJ-ARTF1c or ZBJ-ArtR2c). In our design (Brown *et al.* 2013; Clare *et al.* 2013), MID sequences were used on both forward and reverse primers allowing fewer primers to be used to resolve the same number of samples (i.e. rather than 100 unique forward MID tagged primers for 100 samples, 10 unique forward and 10 unique reverse MIDsd can yield the same resolution power) while reducing primer costs. We assigned

| 208 | each sample a unique primer combination so all sequences could be identified to original |
|-----|------------------------------------------------------------------------------------------|
| 209 | samples.                                                                                 |
| 210 | We performed PCR reactions as described by Bohmann et al. (2011) in a 20 $\mu$ l         |
| 211 | reaction containing 1µl of template DNA using Qiagen multiplex PCR kits (Qiagen, UK)     |
| 212 | with the following modifications. We did not use Q solution (from the kit) or BSA (as    |
| 213 | suggested by Bohmann et al. 2011). We visualized PCR products on a 1.5% agarose gel      |
| 214 | and quantified them following Brown et al. (2013) and mixed approximately equal molar    |
| 215 | quantities of each sample. We size-selected and samplesproducts using a QIAquick Gel     |
| 216 | Extraction kit (Qiagen, UK) and quantified the final PCR mix using a Qubit dsDNA BR      |
| 217 | Assay Kit (low sensitivity with a Qubit Fluorometer, Invitrogen life technologies).      |
| 218 | We concentrated the final product to $10\mu g/1\mu l$ in molecular grade water.          |
| 219 | Sequencing was conducted at the Liverpool Center for Genomic Research (University of     |
| 220 | Liverpool) using a 1/4 plate, Lib-L chemistry on a Roche 454 GS FLX+ sequencing          |
| 221 | system (Roche Applied Sciences).                                                         |
| 222 |                                                                                          |
| 223 | Sequence Analysis:                                                                       |
| 224 | We analyzed sequences using Galaxy (https://main.g2.bx.psu.edu/root, Giardine            |
| 225 | et al. 2005; Blankenberg et al. 2010; Goecks et al. 2010). We screened all recovered     |
| 226 | sequences for those longer (>180 bp) or shorter (<100 bp) than expected, collapsed all   |
| 227 | sequences to unique haplotypes, split the file by forward and reverse MIDs, removed      |
| 228 | primers, MIDs and adaptors and excluded rare haplotypes (<2 copies).                     |
| 229 | We clustered the sequences into molecular operational taxonomic units (MOTU)             |
| 230 | in jMOTU (Jones et al. 2011) and tested thresholds from 1-10 bp. A graph of recovered    |

| 231 | MOTU vs. threshold (not shown) suggests a 4 bp cut-off was most appropriate (Razgour         |
|-----|----------------------------------------------------------------------------------------------|
| 232 | et al. 2011).                                                                                |
| 233 | We compared representative sequences for each MOTU to the BOLD database                      |
| 234 | (www.barcodinglife.org) following criteria modified from Razgour et al. (2011):              |
| 235 | 1a=match to one species or several species in a genus (100% similarity), most                |
| 236 | conservative taxonomy kept; 1b=good match (>98% similarity), but could belong to a           |
| 237 | congener showing a higher sequence match; 2=match to more than one species (>98%),           |
| 238 | only one of which is present in the sampling range (that taxonomy kept); and 3=close         |
| 239 | match (as above) to several species from different genera, or to a reference sequence        |
| 240 | which lacks a full taxonomic record. In these cases, the most conservative taxonomy          |
| 241 | (normally family) was kept (note this is not an identification to higher level taxonomy,     |
| 242 | but a match meeting criteria 1b but retaining ambiguity in the assignment due to multiple    |
| 243 | similar matches or incomplete data in the reference collection).                             |
| 244 | In addition, we estimated the identity of all MOTU (including unidentified                   |
| 245 | MOTU) using the methods of Emrich et al. (2013) and the programme MEGAN (Huson               |
| 246 | et al. 2011). See Emrich et al. (2013) for details of that procedure and a brief discussion. |
| 247 |                                                                                              |
| 248 | Ecological Analysis:                                                                         |
| 249 | We divided our collections into the three time periods. We conducted ecological              |
| 250 | analyses in PAST (Hammer et al. 2001) on species and order-level data with p-values          |
| 251 | estimated by permutation. We compared the Simpson's diversity indices for identified         |
| 252 | prey among locations (sequential Bonferroni correction) and among summer sampling            |
| 253 | periods, and estimated the magnitude of the effect (effective number of species), where      |

| differences were statistically significant, following Jost (2006). We compared species       |
|----------------------------------------------------------------------------------------------|
| richness from paired weekly samples from the high-density sampling sites at Clinton          |
| (rural monoculture farming area) and Lake St. George in 2009 (environmentally variable       |
| conservation area). We computed rarefaction curves for all data.                             |
| We compared the proportion of each order in the diet (proportion = frequency of              |
| occurrence of that order / total occurrences, where an occurrence is an identified MOTU      |
| in a sample) among locations and among sampling periods using a $\chi^2$ frequency test with |
| p-values computed using a Monte Carlo simulation with 2000 replicates in R 2.15.1 ("R        |
| Development Core Team: R: A language and environment for statistical computing"              |
| 2008).                                                                                       |
| We use the recovered species to evaluate the foraging area location of the                   |
| populations using the Hilsenhoff Biotic Index for organic pollutants developed for the       |
| western Great Lakes (Hilsenhoff 1988) and the Fjellheim & Raddum (1990) index for            |
| acid tolerance.                                                                              |
|                                                                                              |

#### **Results**

270 Sequence Processing:

We recovered 167,562 sequences. After filtering, these were resolved into 10,792 unique haplotypes that could be assigned to an original sample. We clustered these into molecular operational taxonomic units (MOTU) and examined a representative sequence from each cluster. We removed 6 MOTU as contaminants (nearest BLAST similarity was identified as a non-prey item e.g. bacteria). The remaining 566 MOTU were used in further analysis and represent a mean of ≈9 species per sample.

Diet of Little Brown Bats:

| Through comparison to the reference library, we identified 211 MOTU to species               |
|----------------------------------------------------------------------------------------------|
| using criteria 1a, 1b and 2 (Supplemental File 1), hereafter referred to as species. We also |
| identified of an additional group of MOTU using criteria 3 but consider them as              |
| provisional identifications. Of the identified occurrences (defined above), ≈45% were        |
| Lepidoptera, ≈34% Diptera, ≈11% Ephemeroptera, ≈6% Trichoptera and ≈4% Coleoptera            |
| (Figure 2). An additional 9 species represented Araneae (four species), Hemiptera (one       |
| species), Hymenoptera (one species), Megaloptera (two species) and Neuroptera (one           |
| species). The most common prey were two species of Chironomids (Diptera):                    |
| Dicrotendipes tritomus and Paracladopelma winnelli found in 29% and 22% of samples,          |
| respectively, and two species of Ephemeroptera: Caenis youngi and Caenis amica found         |
| in 28% and 22% of samples respectively (note that Caenis are difficult to separate           |
| morphologically or genetically and multiple cryptic species are suspected, thus the actual   |
| identity of species within this genus should be considered an estimate due to taxonomic      |
| limitations). A single species was identified as prey in all sampled locations, a moth,      |
| Hydriomena (Lepidoptera, Geometridae). However, Hydriomena contains species with             |
| overlapping DNA barcodes (shared haplotypes at COI), and thus this identification may        |
| correspond to more than one species. We recovered a similar analysis of prey diversity       |
| from MEGAN (Figure 8) which suggest that unidentified prey are relatively dispersed          |
| among the consumed insect groups.                                                            |
| Many of the prey consumed provide specific information on the type and quality               |

of the aquatic system; the most sensitive taxa, including families Glososomatidae,

|   | Ephemerellidae and Corydalidae and genera Lemnephilus, Agrypnia and Phryganea,                    |
|---|---------------------------------------------------------------------------------------------------|
|   | were consumed in both the Northwest Territories and Lake St. George (for a site-by-site           |
|   | analysis see Table 1).                                                                            |
|   |                                                                                                   |
|   | Spatial-Temporal Variation in Resource Use:                                                       |
|   | Considering species from the five main prey groups (Ephemeroptera, Coleoptera,                    |
|   | Lepidoptera, Diptera and Trichoptera) with all data pooled, the proportion of                     |
|   | consumption varied significantly among periods ( $\chi^2 = 26.89$ , p=0.0005, Figure 2). In early |
| ĺ | summer, the diet was dominated by Diptera (45% of occurrences) though the bats'their              |
| į | presence decreased throughout the summer (30% in mid summer, 29% in late summer).                 |
|   | In contrast, Lepidoptera increased from 35% of occurrences in early summer, to 46% in             |
|   | mid summer and 55% in late summer. The frequency of occurrence of Ephemeroptera,                  |
|   | Coleoptera and Trichoptera remained stable. We did not observe a switch from                      |
|   | consumption of Diptera to Ephemeroptera as previously reported (Clare et al. 2011).               |
|   | Prey use varied significantly among locations ( $\chi^2 = 119.69$ , p=0.0005, Figure 3).          |
|   | In some locations (Northwest Territories, Lake St. George 2009), the main prey were               |
|   | Lepidoptera and Diptera, while in other locations (e.g. Lake St. George 2011) prey                |
|   | consumption was dominated by Lepidoptera. These differences do not appear to reflect              |
|   | sampling intensity; the three most heavily sampled locations (Clinton, Lake St. George            |
|   | 2009 and 2011) showed different patterns of prey use.                                             |
|   | Despite difference in prey consumption, Simpson Index measures did not indicate                   |
|   | a significant difference in dietary diversity among locations (Figure 4) except at Pinery         |
| I | Provincial Park (Pinery) in Ontario. When considered at the ordinal level, diversity of           |

| prey at Pinery was particularly low. This pattern was different when considering species     |
|----------------------------------------------------------------------------------------------|
| (MOTU) level resolution; diversity estimates were more even, and bats at Pinery had          |
| high diversity. Saturation of rarefaction curves (Figure 5) indicates sampling reached a     |
| plateau in ordinal level identifications, while species-level identifications were still     |
| increasing almost linearly (Figure 5c and 5d). Diversity estimates at ordinal and species    |
| level were not correlated (r=0.27, p=0.18). Latitude did not correlate with diversity at the |
| ordinal (r=0.43, p=0.15) or species (r=-0.11, p=0.4) levels.                                 |
| Diversity estimates varied significantly among seasons (early = $0.66$ , mid = $0.67$ ,      |
| late = 0.60) with a nearly significant reduction in dietary diversity observed between       |
| early and late season (p=0.05) and a significant reduction between mid and late season       |
| (p=0.031) (Figure 6), reflecting reductions in the effective numbers of species of 14% and   |
| 20%, respectively.                                                                           |
| We sampled the same colony at Lake St. George in 2009 and 2011. In 2009 we                   |
| estimated that this colony consisted of several thousand individuals, although this number   |
| declined slightly in 2011 likely due to white nose syndrome (Frick et al. 2010). Sampling    |
| at this location was done during matched weeks between the two years, but we observed        |
| remarkable difference in the spatial-temporal pattern of prey use. In 2009, prey use         |
| mirrored that observed across all locations (Figure 2), while in 2011, Diptera represented   |
| a minority of prey, Lepidoptera dominated all seasons (91% in late season), and no           |
| Coleoptera or Trichoptera were consumed.                                                     |
| The most heavily sampled locations were Clinton (n=14 weeks) and Lake St.                    |
| George in 2009 (n=18 weeks). Of these, 13 sampling weeks were common and could be            |
| directly compared (difference reflects differential colony establishment). Although not      |

| significant, there is a trend towards higher species richness at Lake St. George in 2009; |
|-------------------------------------------------------------------------------------------|
| mean prey species richness was 20 species/sample compared to a mean of 17 in Clinton      |
| (Figure 7), although the number of species was higher in only 8 of 13 weeks.              |

#### **Discussion**

Our goal was to examine variation in resource use by bats across Canada and to use these data to infer foraging area-location quality. Our analysis suggests that prey use by little brown bats at the most northern sampling location (NWT) consumed prey evenly between orders, although there was no consistent pattern of consumption among locations. Intensive sampling of populations in different locations in Ontario across two years indicated that there was spatial-temporal variation in prey use. We did not observe a seasonal shift between the consumption of Diptera and Ephemeroptera. Analyses at species level showed different patterns than at ordinal level, indicating that species-level resolution provides novel insights in dietary analysis.

#### Spatial Variation in Diet Across Canada

When we combined data from all locations, Diptera dominated the diet in the early season but was replaced by Lepidoptera in the mid and late seasons. This pattern was prominent at Lake St. George (2009) and the NWT, but variable at other locations. The reliance on Diptera in the early season agrees with previous morphological (Belwood & Fenton 1976; Freeman 1981; Ober & Hayes 2008) and molecular (Clare *et al.* 2011) analyses. Diptera are an important prey group in both species richness and dietary abundance. We found no evidence to support the reported heavy reliance on Trichoptera,

| but found more species of Lepidoptera than expected. This may reflect the                   |
|---------------------------------------------------------------------------------------------|
| overabundance of Lepidoptera within the reference collection, biasing the number of         |
| taxonomic identities reported. It is possible that Trichoptera represent a large number of  |
| the "unknowns" within our sample however our estimations using MEGAN indicate that          |
| unknowns are relatively dispersed among taxonomic groups                                    |
| Traditional morphological analyses are based on estimating abundance of prey                |
| groups in any given sample. Lepidoptera are frequently identified from scales and small     |
| morphologically cryptic species may be lumped into a single unit or overlooked. One         |
| advantage of molecular analysis is the routine detection of rare prey (Clare et al. 2009).  |
| However, as molecular analyses cannot estimate abundance, biomass or volume (e.g.           |
| haplotype number $\neq$ abundance, MID tags, primers and adaptors influence sequencing,     |
| sequencing direction produces different results and biases in sequencing are not            |
| consistent between runs even using the same PCR products, (Pompanon et al. 2012;            |
| Deagle et al. 2013; Piñol et al. 2013) within a sample, rare and common items are both      |
| "present". A large sample size may control for overrepresentation of rare prey (or          |
| underrepresentation of common prey) however there is a trade-off between increasing the     |
| volume of material analysed (the pooling method here) to increase our assessment of         |
| biodiversity and the potential for skew with presence and absence records, though it is not |
| a correction that can be empirically assessed.                                              |
| While we cannot estimate sample-based abundance, molecular analysis allows us               |
| to measures species richness and frequency across samples. While richness within an         |
| order can be related to abundance, there are important exceptions. Mass emerging prey       |
|                                                                                             |

like mayflies (Ephemeroptera) may be extraordinarily abundant but low in species

| richness. In our analysis, Lepidoptera may appear as the most important food source   |
|---------------------------------------------------------------------------------------|
| because they are more speciose, while mayflies may be underrepresented. The abundance |
| of Lepidoptera may also reflect previous observations that females consume more       |
| Lepidoptera than males (Belwood & Fenton 1976); all of the colonies we sampled were   |
| maternity groups dominated by females and their offspring. The results from Quebec    |
| based on males (Supplemental File 2) recovered more Diptera which may support this    |
| conclusion.                                                                           |

We observed significant spatial variation in diet. We use Simpson's Index which is less sensitive to rare events that frequently occur in species-level analysis (Bohmann *et al.* 2011; Razgour *et al.* 2011). Our estimates of diversity were not correlated with latitude and not related to sample size. The Saskatchewan and Pinery colonies had the lowest sample sizes (and could not be sampled in late season at all) but differ in patterns of prey use. Both were low in diversity at the ordinal level, but so was Lake St. George (2011) which had one of the largest sample sizes. Significant spatial variation in resource use is unsurprising across such a wide geographical area, however, it was also similarly variable within southern Ontario and between years. This matches previous observations (Clare *et al.* 2011) supporting the view that these bats responded to local variation in environment and prey. As such, predicted declines in the populations of little brown bats (Frick *et al.* 2010) may have locally-specific effects on insect populations.

The main assumption of the correspondence between insect diversity and diet is that resources themselves are limiting. Although little brown bat <u>coloniess</u> may <u>each</u> consume <u>hundreds or</u> thousands of insects in a night, it is not clear whether their populations are large enough to <u>significantly</u> reduce local populations of insects.

We observed a significant decrease in dietary diversity in late season when the

## Temporal Variation in Diet

| effective reduction in species richness was 20%. This contrasts with a matching analysis      |
|-----------------------------------------------------------------------------------------------|
| of big brown bats (Eptesicus fuscus) (Clare et al. 2013) for which dietary diversity rose     |
| sharply in late season. These inverse patterns may reflect non-overlapping resource use       |
| by these predators. Big brown bats are a flexible hunter that appears to forage in most       |
| habitat types (Geggie & Fenton 1985; Furlonger et al. 1987) and consumess large               |
| numbers of beetles, moths, and flies (Clare et al. 2013). Insect diversity falls in late      |
| season just as both species must store fat for hibernation. While big brown bats may          |
| compensate by exploiting a wider variety of habitats (and thus prey), increasing their        |
| dietary diversity, little brown bats may simply consume a greater volume of more limited      |
| prey. Habitat selection by bats strongly influences insect availability and thus diet and     |
| may explain apparent resource partitioning among many species (Emrich et al. 2013).           |
| Current or historical competition for resources is also possible, but makes the assumption    |
| that resources are limiting. There is little direct evidence that competition drives patterns |
| of resource use because this cannot be assessed without controlled removal experiments,       |
| which are exceedingly difficult with bats.                                                    |
| Clare et al. (2011) observed a significant shift from consumption of Diptera in               |
| early season to Ephemeroptera in middle and late season. The same pattern was not             |
| observed here in any location, including in the same samples originally analyzed by Clare     |

sequenced DNA directly from fragments of prey removed from guano under microscopic

et al. (2011). This likely reflects a difference in methodology. Clare et al. (2011)

| dissection. The advantage of this technique is that the user can preferentially attempt to  |
|---------------------------------------------------------------------------------------------|
| maximize the taxonomic richness of the sample but it is likely biased towards the           |
| detection of less-digestible prey (Razgour et al. 2011). Because Clare et al. (2011) took   |
| efforts to sample a large number of guano pellets, they also assumed that each fragment     |
| represented a different capture, and thus frequency was calculated directly from the        |
| recovered sequences. NGS provides an automated method to maximize the diversity of          |
| prey recovered, but does not allow for the same assumption of independence of each          |
| haplotype. The fragment and sampling method employed by Clare et al. (2011) is a            |
| hybrid between traditional morphological analysis and NGS and may be more similar to        |
| abundance-based methods. This is only likely to cause significant difference when the       |
| taxa are mass-emerging species found in high abundance but low species richness, such       |
| as Ephemeroptera. NGS may underestimate the importance of this prey group, while the        |
| fragment method may overestimate them if the assumption of independence between             |
| fragments is not met. In addition, our methods used short amplified regions (157 bp)        |
| compared to Clare <i>et al.</i> (2011) who used full DNA barcodes of ≈657 bp. Short primers |
| may provide lowerlimit taxonomic resolution in some cases but increases the likelihood      |
| that degraded DNA will be amplified. Different primers will always have different           |
| binding affinities and this may partially explain specific prey differences between these   |
| two analyses.                                                                               |
|                                                                                             |

Methodological Advances and Species vs Ordinal Level Data

We used two specific methodological advances in our analysis. To separate samples after sequencing, NGS uses incorporated tags in primers. These tags are often

| called MIDs or 'barcodes' (although we do not use this term to avoid confusion with          |
|----------------------------------------------------------------------------------------------|
| DNA barcodes as per Hebert et al. (2003)). Using MIDs on forward primers, each sample        |
| can be amplified with a unique forward primer and subsequently separated. However, for       |
| very large sample sizes, this becomes costly. As introduced (Brown et al. 2013), we          |
| incorporated MIDs in both forward and reverse primers so that each sample can be             |
| assigned a unique combination of MIDs (e.g. 10 forwards and 10 reverses = 100 unique         |
| combinations). This technique significantly reduces primer costs without impacting           |
| sequencing performance. Second, rather than extracting DNA from a single guano pellet        |
| (or even half a pellet as in some publications) we extracted DNA from a pool of pellets      |
| totalling 1-1.5 ml by volume. This roughly translated into 20-50 pellets per sample          |
| (depending on size). Previous analyses have estimated a mean of 5 taxa per pellet            |
| (Bohmann et al. 2011) while we recovered a mean of 9 per sample. In this study, each         |
| "sample" is, in effect, an assay of diet in what is likely dozens of individuals. The        |
| disadvantage of this method is that larger volume extractions lead to more PCR inhibitors    |
| that may complicate reactions. However, this also provides two specific advantages. In       |
| general it leads to greater taxonomic richness in the resulting sequencing run. More         |
| specifically, insectivorous bats have a very fast gut transit time with prey passing as fast |
| as 35 minutes after ingestion (Buchler 1975). As such, any single pellet may be low in       |
| prey richness. Morphological analyses normally examine many dozens of pellets to             |
| estimate diet and we have incorporated this method. As discussed earlier, large sample       |
| sizes may control for the potential for overrepresentation of rare prey though this may      |
| explain our lower than expected measures of Ephemeroptera.                                   |

Molecular methods allow us to go beyond traditional ordinal-level assessments, available from morphological analysis, to establish species-level taxonomic assignments of prey. It is particularly interesting that when we remove these data, some dramatic changes (e.g. estimates of diversity in Pinery) can be observed. This is largely due to saturation of ordinal level collections, while species-level data have not reached a plateau.

### Environmental Indicators and Foraging Assessment

Benthic macro-invertebrates are frequently used as environmental indicators of the quality of a water system (Hilsenhoff 1988; Fjellheim & Raddum 1990; Lenat 1993). The analysis of diet from bats foraging over these areas-locations provides a direct (non-invasive) method to infer the quality of their foraging areas-location. This method is more specific than a general insect survey as it assesses where the bat has been rather than where it may have been. Insect tolerance estimates vary by season and area (see a comparison of Wisconsin and North Carolina, Lenat (1993)), but we can make a number of observations from our data using the Hilsenhoff Biotic Index for organic pollutants developed for the western Great Lakes (Hilsenhoff 1988) and the Fjellheim & Raddum (1990) index for acid tolerance (extrapolating from related species) and inferences about other Canadian regions (Table 1).

Among the Trichoptera, Hydropsychidae, Leptoceridae and Phryganeidae have moderate pollution tolerances of 4 while Helicopsychidae have a tolerance of 3 and Glossosomatidae a tolerance of 0. Glossosomatidae also have a low tolerance for acidification. Leptoceridae and Phryganeidae were eaten by bats in the Northwest

| Territories, Nova Scotia, Long Point and Lake St. George (2009), while Helicopsychidae      |
|---------------------------------------------------------------------------------------------|
| occurred in the diet at -Clinton. The pollution intolerant gGlososomatides ae-were eaten    |
| in the Northwest Territories and Lake St George (2009). Diptera in the family Tipulidae     |
| have a tolerance of 3 and were also found at Clinton. The Ephemeroptera family              |
| Ephemerellidae has a pollution tolerance of 1. These were detected in the Northwest         |
| Territories and Lake St. George (2011); the Megaloptera family Corydalidae has a            |
| pollution tolerance of 0 and was detected in Lake St. George (2009). Species of Molanna     |
| may be acid intolerant and were detected in Nova Scotia.                                    |
| While habitat specificity of many macro-invertebrate species declines (or                   |
| becomes more variable) at higher latitudes (Lenat 1993), these observations suggest that    |
| bats at Clinton forage in good quality habitat (Helicopsychidae and Tipulidae both have     |
| tolerance =3). However, there is convincing evidence that the sites in the Northwest        |
| Territories and Lake St. George have an excellent quality habitat with little apparent      |
| organic pollution (species with tolerance of 0 and 1 detected frequently) or acidification. |
| This might be expected for the remote Northwest Territories locations (which are far        |
| from major human modification), but is less expected for Lake St. George, which lies on     |
| the edge of the greater Toronto area. The continued presence of prey with low pollution     |
| tolerances at Lake St. George in 2011 demonstrates the stability of this site and may be an |
| indication of the effectiveness of small-scale conservation efforts even in areas near      |
| intensive urban modification.                                                               |
| Some macro-invertebrates are relatively good indicators of habitat type. Species            |
| in the Trichoptera genera Agrypnia and Traenoides were identified in Northwest              |
| Territories, Long Point and Lake St. George. They are associated with pond or lake-like     |

| habitats in northern parts of their range. We have previously confirmed that the Lake St.     |
|-----------------------------------------------------------------------------------------------|
| George bats hunt in the vicinity of Lake St. George (a very small water body) less than       |
| 300 m from the roost site. It is likely that the Long Point bats are hunting along the shores |
| of Lake Erie, and the Northwest Territories population may be using any of hundreds of        |
| variously sized water bodies.                                                                 |

#### Summary

In response to resource fluctuations, species may move to track prey or adapt to match local variability. The little brown bat, *M. lucifugus*, occupies a broad niche, foraging over aquatic systems. Species-level identifications of benthic macro-invertebrate prey serve as environmental indicators and allow us to use information about diet to directly measure the quality of the foraging habitat. In total, we recorded nearly 600 species of prey consumed by this predator and present one of the largest and most geographically diverse molecular dietary analyses to date. With these data, we demonstrate seasonal, regional and inter-annual variation in little brown bat diets across Canada which is independent of latitude. We identify two locations where the prey consumed are particularly intolerant to organic pollution or acidification and thus locations where foraging area habitat is of high quality, even when in the vicinity of high-density urban development.

#### **Acknowledgements:**

| 551               | We thank all participating landowners for their co-operation with sample collection.                                                                                                                                                                     |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 552               | Professor Gareth Jones and Colin Lazarus provided laboratory support. This study was                                                                                                                                                                     |
| 553               | made possible by funding from K.M. Molson foundation and the Natural Sciences and                                                                                                                                                                        |
| 554               | Engineering Research Council of Canada (NSERC) through grants to ELC. RMRB and                                                                                                                                                                           |
| 555               | JPR were funded by NSERC, Bat Conservation International, the Yukon Government,                                                                                                                                                                          |
| 556               | and the Alberta Conservation Association. Bat capture in Quebec were made possible by                                                                                                                                                                    |
| 557               | support from the Fonds Québécois de la Recherche sur la Nature et les Technologies                                                                                                                                                                       |
| 558               | (FQRNT) and the Ministère du Développement Durable, de l'Environement, de la Faune                                                                                                                                                                       |
| 559               | et des Parcs. We thank many colleagues for advice and suggestions on analysis and                                                                                                                                                                        |
| 560               | manuscript content.                                                                                                                                                                                                                                      |
| 561               |                                                                                                                                                                                                                                                          |
| 562               | References                                                                                                                                                                                                                                               |
| 563<br>564<br>565 | Alberdi A, Garin I, Aizpurua O, Aihartza J (2012) The foraging ecology of the mountain long-eared bat <i>Plecotus macrobullaris</i> revealed with DNA mini-barcodes. <i>PLoS ONE</i> , 7, e35692.                                                        |
| 566<br>567<br>568 | Bastille-Rousseau G, Fortin D, Dussault C, Courtois R, Ouellet J-P (2011) Foraging strategies by omnivores: are black bears actively searching for ungulate neonates or are they simply opportunistic predators? <i>Ecography</i> , <b>34</b> , 588–596. |
| 569<br>570        | Belwood JJ, Fenton MB (1976) Variation in the diet of <i>Myotis lucifugus</i> (Chiroptera-Vespertilionidae). <i>Canadian Journal of Zoology</i> , <b>54</b> , 1674–1678.                                                                                 |
| 571<br>572<br>573 | Blankenberg D, Von Kuster G, Coraor N <i>et al.</i> (2010) Galaxy: a web-based genome analysis tool for experimentalists. <i>Current protocols in molecular biology</i> , <b>Supplement</b> , 19.10.1–19.10.21.                                          |
| 574<br>575<br>576 | Bohmann K, Monadjem A, Lehmkuhl Noer C <i>et al.</i> (2011) Molecular diet analysis of two african free-tailed bats (molossidae) using high throughput sequencing. <i>PloS ONE</i> , <b>6</b> , e21441.                                                  |
| 577<br>578        | Boyles JG, Cryan PM, McCracken GF, Kunz TH (2011) Economic importance of bats in agriculture. <i>Science</i> , <b>332</b> , 41–42.                                                                                                                       |

| 579<br>580<br>581<br>582 | Brown DS, Symondson WOC, Burger R <i>et al.</i> (2013 THIS ISSUE) Dietary competition between the alien Asian Musk Shrew ( <i>Suncus murinus</i> ) and a reintroduced population of Telfair's Skink ( <i>Leiolopisma telfairii</i> ). <i>Molecular Ecology</i> , (XXX-XXX)In press. |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 583<br>584               | Buchler ER (1975) Food transit time in <i>Myotis lucifugus</i> Chiroptera: Vespertilionidae. <i>Journal of Mammalogy</i> , <b>56</b> , 252–255.                                                                                                                                     |
| 585<br>586<br>587        | Carter GG, Coen CE, Stenzler LM, Lovette IJ (2006) Avian host DNA isolated from the feces of white-winged vampire bats (Diaemus youngi). <i>Acta Chiropterologica</i> , <b>8</b> , 255–274.                                                                                         |
| 588<br>589<br>590        | Clare EL, Barber BR, Sweeney BW, Hebert PDN, Fenton MB (2011) Eating local: influences of habitat on the diet of little brown bats ( <i>Myotis lucifugus</i> ). <i>Molecular Ecology</i> , <b>20</b> , 1772–1780.                                                                   |
| 591<br>592<br>593        | Clare EL, Fraser EE, Braid HE, Fenton MB, Hebert PDN (2009) Species on the menu of a generalist predator, the eastern red bat ( <i>Lasiurus borealis</i> ): using a molecular approach to detect arthropod prey. <i>Molecular Ecology</i> , <b>18</b> , 2532–2542.                  |
| 594<br>595<br>596        | Clare EL, Goerlitz HR, Drapeau VA <i>et al.</i> (2013) Trophic niche flexibility in <i>Glossophaga soricina</i> : how a nectar seeker sneaks an insect snack. <i>Functional Ecology</i> , <b>In press</b> .                                                                         |
| 597<br>598<br>599        | Clare E, Symondson WOC, Fenton MB (2013 THIS ISSUE) An inordinate fondness for beetles? Variation in seasonal dietary preferences of night roosting big brown bats (Eptesicus fuscus). <i>Molecular Ecology</i> , In review(XXX-XXX).                                               |
| 600<br>601<br>602        | Cohen NJ, Deeds JR, Wong ES <i>et al.</i> (2009) Public health response to puffer fish (Tetrodotoxin) poisoning from mislabeled product. <i>Journal of Food Protectionrot</i> , <b>72</b> , 810–817.                                                                                |
| 603<br>604<br>605        | Deagle BE, Chiaradia A, McInnes J, Jarman SN (2010) Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out? <i>Conservation Genetics</i> , <b>11</b> , 2039–2048.                                                                           |
| 606<br>607               | Deagle BE, Kirkwood R, Jarman SN (2009) Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. <i>Molecular Ecology</i> , <b>18</b> , 2022–2038.                                                                                                                |
| 608<br>609<br>610        | Deagle BE, Thomas AC, Shaffer AK, Trites AW, Jarman SN (2013) Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: which counts count? <i>Molecular Ecology Resources</i> , <b>13</b> , 620–633.                                       |
| 611<br>612               | Dunne JA, Williams RJ, Martinez ND (2004) Network structure and robustness of marine food webs. <i>Marine Ecology Progress Series</i> , <b>273</b> , 291–302.                                                                                                                       |

| 613<br>614<br>615 | Emrich MA, Clare EL, Symondson WOC, Koenig SE, Fenton MB (2013 THIS ISSUE) Resource partitioning by insectivorous bats. <i>Molecular Ecology</i> , (XXX-XXX)In review.                                                   |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 616               | Fenton MB, Barclay RMR (1980) <i>Myotis lucifugus. Mammal Species</i> , <b>142</b> , 1–8.                                                                                                                                |
| 617<br>618<br>619 | Fenton MB, Swanepoel CM, Brigham RM, Cebek J, Hickey MBC (1990) Foraging behaviour and prey selection by large slit-faced bats ( <i>Nycteris grandis</i> ; Chiroptera: Nycteridae). <i>Biotropica</i> , <b>22</b> , 2–8. |
| 620<br>621        | Fenton MB, Thomas DW, Sasseen R (1981) <i>Nycteris grandis</i> (Nycteridae): an African carnivorous bat. <i>Journal of Zoology (London)</i> , <b>194</b> , 461–465.                                                      |
| 622<br>623        | Fjellheim A, Raddum G. (1990) Acid precipitation: biological monitoring of streams and lakes. <i>Science of the Total Environment</i> , <b>96</b> , 57–66.                                                               |
| 624<br>625        | Fraser EE, Fenton MB (2007) Age and food hardness affect food handling by insectivorous bats. <i>Canadian Journal of Zoology</i> , <b>85</b> , 985–993.                                                                  |
| 626<br>627        | Freeman PW (1981) Correspondence of food habits and morphology in insectivorous bats. <i>Mammalogy Papers: Univeristy of Nebraska State Museum</i> , <b>62</b> , 166–173.                                                |
| 628<br>629<br>630 | Frick WF, Pollock JF, Hicks AC <i>et al.</i> (2010) An emerging disease causes regional population collapse of a common North American bat species. <i>Science</i> , <b>329</b> , 679–682.                               |
| 631<br>632        | Furlonger CL, Dewar HJ, Fenton MB (1987) Habitat use by foraging insectivorous bats.<br>Canadian Journal of Zoology, <b>65</b> , 284–288.                                                                                |
| 633<br>634<br>635 | Geggie JF, Fenton MB (1985) A comparison of foraging by <i>Eptesicus fuscus</i> (Chiroptera Vespertilionidae) in urban and rural environments. <i>Canadian Journal of Zoology</i> , <b>63</b> , 263–267.                 |
| 636<br>637        | Giardine B, Riemer C, Hardison RC <i>et al.</i> (2005) Galaxy: a platform for interactive large scale genome analysis. <i>Genome Research</i> , <b>15</b> , 1451–1455.                                                   |
| 638<br>639<br>640 | Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. <i>Genome biology</i> , <b>11</b> , R86.  |
| 641<br>642<br>643 | Goerlitz HR, Ter Hofstede HM, Zeale MRK, Jones G, Holderied MW (2010) An aerial-hawking bat uses stealth echolocation to counter moth hearing. <i>Current Biology</i> , <b>20</b> , 1568–1572.                           |
| 644<br>645        | Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleotological statistics software package for education and data analysis. <i>Palaeontologia Electronica</i> <b>4</b> 1–9                                                    |

| 646<br>647<br>648 | identification: geographically dispersed case studies reveal systemic market substitution across Canada. <i>Mitochondrial DNA</i> , <b>22</b> , 106–122.                                                                                         |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 649<br>650<br>651 | Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. <i>Proceedings of the Royal Society B-Biological Sciences</i> , <b>270</b> , 313–321.                                                        |
| 652<br>653        | Hilsenhoff WL (1988) Rapid field assessment of organic pollution with a family-level biotic index. <i>Journal of the North American Benthological Society</i> , <b>7</b> , 65–68.                                                                |
| 654<br>655        | Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4. <i>Genome Research</i> , <b>21</b> , 1552–1560.                                                                     |
| 656<br>657        | Jones M, Ghoorah A, Blaxter M (2011) jMOTU and Taxonerator: turning DNA barcode sequences into annotated operational taxonomic units. <i>PloS ONE</i> , <b>6</b> , e19259.                                                                       |
| 658               | Jost L (2006) Entropy and diversity. <i>Oikos</i> , <b>113</b> , 363–375.                                                                                                                                                                        |
| 659<br>660<br>661 | King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. <i>Molecular Ecology</i> , <b>17</b> , 947–963.                                                          |
| 662<br>663        | Kondoh M (2003) Foraging adaptation and the relationship between food-web complexity and stability. <i>Science</i> , <b>299</b> , 1388–1391.                                                                                                     |
| 664<br>665        | Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH (2011) Ecosystem services provided by bats. <i>Annals of the New York Academy of Sciences</i> , <b>1223</b> , 1–38.                                                                    |
| 666<br>667        | Kunz TH, Whitaker JO (1983) An evaluation of fecal analysis for determining food habits of insectivorous bats. <i>Canadian Journal of Zoology</i> , <b>61</b> , 1317–1321.                                                                       |
| 668<br>669<br>670 | Kurta A, Bell GP, Nagy KA, Kunz TH (1989) Energetics of pregnancy and lactation in freeranging little brown bats ( <i>Myotis lucifugus</i> ). <i>Physiologiacl Zoology</i> , <b>62</b> , 804–818.                                                |
| 671<br>672<br>673 | Lenat DR (1993) A biotic index for the doutheastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. <i>Journal of the North American Benthological Society</i> , <b>12</b> , 279–290. |
| 674               | McCann K (2007) Protecting biostructure. Nature, 446, 29.                                                                                                                                                                                        |
| 675<br>676        | Ober HK, Hayes JP (2008) Prey selection by bats in forests of western oregon. <i>Journal of Mammalogy</i> , <b>89</b> , 1191–1200.                                                                                                               |
|                   |                                                                                                                                                                                                                                                  |

| 677<br>678<br>679        | Piñol J, San Andrés V, Clare EL, Mir G, Symondson WOC (2013) A pragmatic approach to the analysis of diets of generalist predators: the use of next-generation sequencing with no blocking probes. <i>Molecular ecology resources</i> .                                                                                     |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 680<br>681               | Pompanon F, Deagle BE, Symondson WOC <i>et al.</i> (2012) Who is eating what: diet assessment using next generation sequencing. <i>Molecular Ecology</i> , <b>21</b> , 1931–1950.                                                                                                                                           |
| 682<br>683               | R Development Core Team: R: A language and environment for statistical computing (2008)                                                                                                                                                                                                                                     |
| 684<br>685               | Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system (www.barcodinglife.org). <i>Molecular Ecology Notes</i> , 7, 355–364.                                                                                                                                                                               |
| 686<br>687<br>688        | Razgour O, Clare EL, Zeale MRK <i>et al.</i> (2011) High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. <i>Ecology and Evolution</i> , <b>1</b> , 556–570.                                                                                                           |
| 689<br>690               | Rosenheim J, Corbett A (2003) Omnivory and the indeterminacy of predator function: can a knowledge of foraging behaviour help? <i>Ecology</i> , <b>84</b> , 2538–2548.                                                                                                                                                      |
| 691                      | Simpson EH (1949) Measurement of Diversity. Nature, 163, 688–688.                                                                                                                                                                                                                                                           |
| 692<br>693               | Singer M, Bernays E (2003) Understanding omnivory needs a behavioural perspective. <i>Ecology</i> , <b>84</b> , 2532–2537.                                                                                                                                                                                                  |
| 694<br>695<br>696<br>697 | Smith MA, Wood DM, Janzen DH, Hallwachs W, Hebert PDN (2007) DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>104</b> , 4967–4972.         |
| 698<br>699<br>700<br>701 | Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN (2006) DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>103</b> , 3657–3662. |
| 702<br>703<br>704        | Soininen EM, Valentini A, Coissac E <i>et al.</i> (2009) Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures. <i>Frontiers in Zoology</i> , <b>6</b> , 16.                                            |
| 705<br>706               | Solé R V, Montoya JM (2001) Complexity and fragility in ecological networks.<br>Proceedings of the Royal Society B-Biological Sciences, <b>268</b> , 2039–2045.                                                                                                                                                             |
| 707<br>708               | Symondson WOC (2002) Molecular identification of prey in predator diets. <i>Molecular Ecology</i> , <b>11</b> , 627–641.                                                                                                                                                                                                    |

Page 30 of 40

| 709<br>710                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 711<br>712<br>713                                                                              | Valentini A, Miquel C, Nawaz MA <i>et al.</i> (2009) New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. <i>Molecular Ecology Resources</i> , <b>9</b> , 51–60.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 714<br>715                                                                                     | Wong EH-K, Hanner RH (2008) DNA barcoding detects market substitution in North American seafood. <i>Food Research International</i> , <b>41</b> , 828–837.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 716<br>717<br>718                                                                              | Zeale MRK, Butlin RK, Barker GLA, Lees DC, Jones G (2011) Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. <i>Molecular Ecology Resources</i> , <b>11</b> , 236–244.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 719                                                                                            | Data Accessibility:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 720<br>721<br>722<br>723                                                                       | All DNA sequencing reads and an explanatory "read me" file along with BLAST scores for figure 8 have been placed in Dryad: http://datadryad.org/submit?journalID=MolEcol&manu=MEC-13-0701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 724<br>725<br>726<br>727                                                                       | <b>Author's contributions:</b> ELC, HB, FF, EF, AM, AB, RH, CW, FM, AM, KN, MB, JP, JR, RMRB, JPR designed and conducted field research. ELC conducted the molecular analysis. WOCS contributed to molecular protocols. All authors contributed to manuscript production.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 728<br>729                                                                                     | Figure Legends:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 730<br>731<br>732<br>733<br>734<br>735<br>736<br>737<br>738<br>739<br>740<br>741<br>742<br>743 | Figure 1: Distribution of sampling sites across Canada. Samples in Northwest Territories (n=5) were collected at sites in Kakisa (1) and Salt River (2) (considered as one unit in statistical analysis). Samples in the prairies (n=3) were collected between Medicine Hat (Alberta) and Swift Current (Saskatchewan) (3). Samples in Ontario were collected in Clinton (4) (n=14), Long Point (5) (n=7), Lake St. George (6) (2009 n=18, 2011 n=7) and Pinery Provincial Park (7) (n=4). Samples in Nova Scotia (n=8) were collected at sites in Martock (8) and Tatamagouche (9) (considered as one unit in statistical analysis).  Samples in Quebec were collected at Jacques-Cartier and Aiguebelle National Parks (10) and Montmorency Forest Station (11).  (Map Modified from: Canada Outline Map. St. Catharines, Ontario: Brock University Map Library. Available: Brock University Map Library Controlled Access http://www.brocku.ca/maplibrary/maps/outline/North_America/canadaNONAMES.pdf (Accessed April 2, 2013)) |  |  |  |  |
| 743<br>744<br>745<br>746<br>747<br>748<br>749<br>750                                           | Figure 2: Seasonal diversity in prey consumed by <i>M. lucifugus</i> . The proportion of each prey group in the diet varied significantly across seasons. Diptera dominated the early season diet while Lepidoptera become more important in the middle and late seasons. Proportion = frequency of occurrence of that order / total occurrences, where an occurrence is an identified MOTU in a sample.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |

Figure 3: Seasonal diversity in prey consumed by *M. lucifugus* at 8 locations across
Canada. The proportion of each prey group composing the diet varied significantly across
seasons and with location. Proportion = frequency of occurrence of that order / total
occurrences, where an occurrence is an identified MOTU in a sample.

Figure 4: Estimates of *M. lucifugus*' dietary diversity with 95% confidence intervals, based on the Simpson diversity index on data restricted to ordinal-level taxonomy (A) and using MOTU as a proxy for species (B).

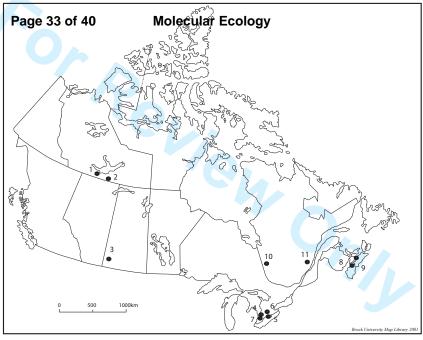
Figure 5: A comparison of rarefaction curves for operational taxonomic units at the order (A, B) and species (C, D) level. Lines are mean estimates (A, B, C) or mean with 95% confidence levels (D) based on permutations.

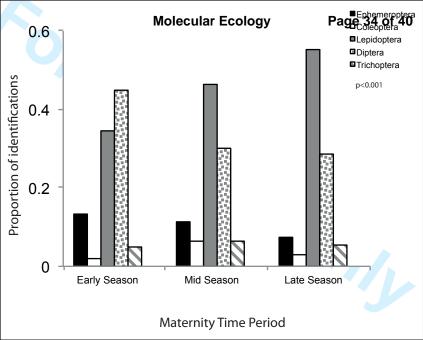
Figure 6: Estimates of *M. lucifugus* 'dietary diversity with 95% confidence intervals based on the Simpson diversity index from three seasons. Early season=females are pregnant, middle season=females are lactating, late season=young are independent.

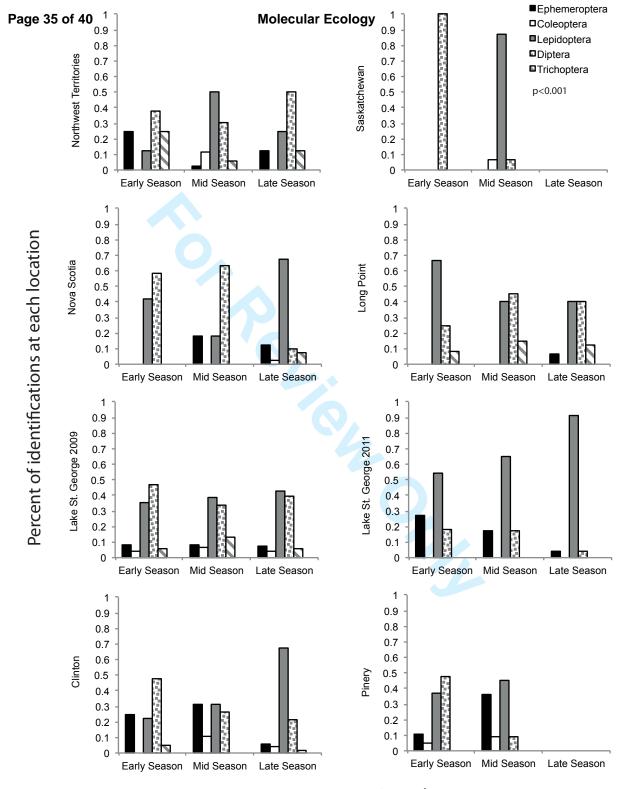
Figure 7: Weekly species richness in the diet of *M. lucifugus* for the two most heavily sampled sites, at Clinton and Lake St. George in 2009, showing a trend of higher mean species richness with 95% confidence intervals in bats at Lake St. George, which is also an area where prey have a lower pollution tolerance suggesting higher quality habitat.

Figure 8: A schematic of prey species consumed including all MOTU (including those that could not be identified using a reference database). Identifications have been made by BLAST score and are limited to hypothesis at the order level. Values at nodes or tips represent the number of MOTU assigned. Node size is scaled to the number of assignments. See Emrich et al. (2013) for additional details.

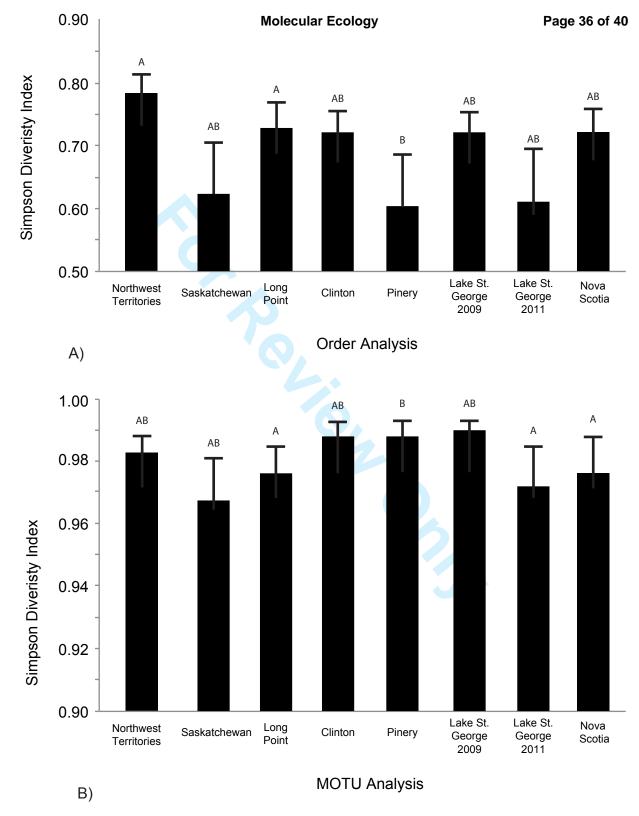
Table 1: Approximate habitat assessments based on the lowest scoring (lease tolerant to pollution or acidification) taxa identified in the diet of bats at each location.

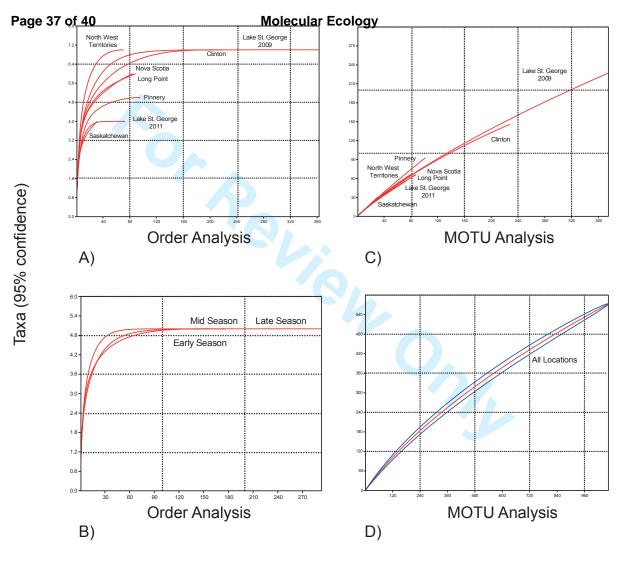

| Location        | Example Taxa    | Pollution Tolerance | Acid Tolerance | Maximum Quality       |
|-----------------|-----------------|---------------------|----------------|-----------------------|
| NWT             | Glososomatidae  | 0                   | low            |                       |
|                 | Ephemerellidae  | 1                   |                | Low organic pollution |
|                 | Heptagenia sp   |                     | Low-med        | No acidification      |
| Lake St. George | Glososomatidae  | 0                   | low            |                       |
| (Ontario)       | Ephemerellidae  | 1                   | high           | Low organic pollution |
|                 | Corydalidae     | 0                   |                | No acidification      |
| Clinton         | Helicopsychidae | 3                   |                |                       |
| (Ontario)       | Tipulidae       | 3                   |                | Trace organic         |
|                 | Isonychia       | 3                   |                | pollution             |
| Long Point      | Leptoceridae    | 4                   |                | Some organic          |
| (Ontario)       | Phryganeidae    | 4                   |                | pollution             |
| Nova Scotia     | Leptoceridae    | 4                   |                |                       |
|                 | Phryganeidae    | 4                   | high           | Some organic          |
|                 | Stenacron       | 4                   |                | pollution             |
|                 | Molanna sp.     |                     | low            | No Acidification      |
| Pinery          | Chironomidae    | 6                   |                | Some organic          |
| (Ontario)       | Psychodidae     | 10                  |                | pollution             |
|                 | Phryganeidae    | 4                   | high           | Possibly acidified    |
| Saskatchewan    | Chironomidae    | 6                   | _              | Likely organic        |
|                 |                 |                     |                | pollution*            |

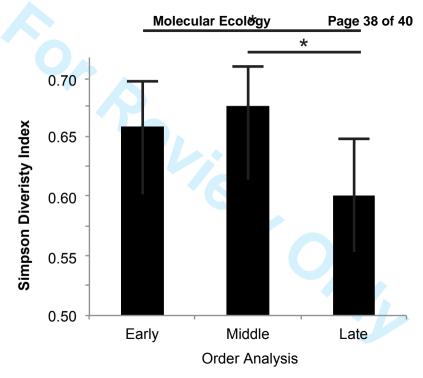

\* Little Data Available

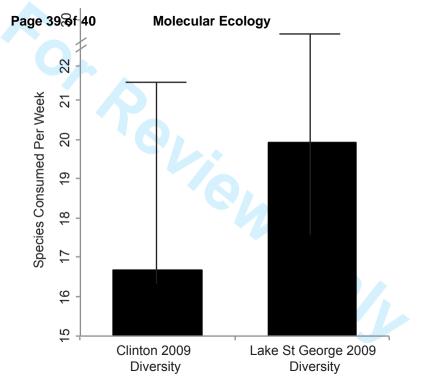

Hilsenhoff index goes from 1(low) to 10 (high) tolerance

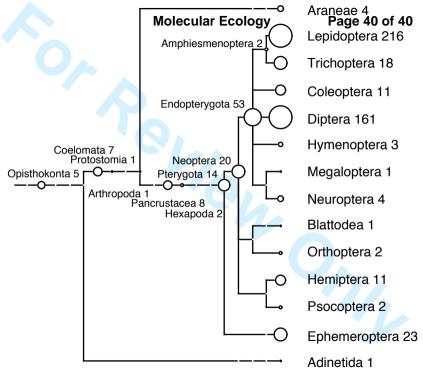
784


782





Maternity Time Period











## All taxonomic matches are 1 or 1a unless indicated with a \*=level 2

| Frequency | Class       | Order      | Family        | Species                      | NWT | Saskatchewan | Nova Scotia | Pinnery | Long Point | Lake St. George 2011 | Clinton Lake S | t. George 2009 |  |
|-----------|-------------|------------|---------------|------------------------------|-----|--------------|-------------|---------|------------|----------------------|----------------|----------------|--|
|           | 1 Arachnida | Araneae    | Araneidae     | Anyphaena pectorosa          |     |              |             |         | 1          |                      |                |                |  |
|           | 1 Arachnida | Araneae    | Araneidae     | Larinioides cornutus         |     |              |             |         |            |                      | 1              |                |  |
|           | 2 Arachnida | Araneae    | Araneidae     | Larinioides patagiatus       | 2   |              |             |         |            |                      |                |                |  |
|           | 1 Arachnida | Araneae    | Araneidae     | Larinioides sclopetarius     |     |              |             |         |            |                      |                | 1              |  |
|           | 2 Insecta   | Coleoptera | Carabidae     | Dromius piceus               |     |              |             |         |            |                      | 2              |                |  |
|           | 1 Insecta   | Coleoptera | Carabidae     | Notiobia terminata           |     |              |             |         |            |                      |                | 1              |  |
|           | 1 Insecta   | Coleoptera | Carabidae     | Selenophorus sp.             |     | 1            |             |         |            |                      |                |                |  |
|           | 1 Insecta   | Coleoptera | Carabidae     | Stenolophus ochropezus       |     |              |             | 1       |            |                      |                |                |  |
|           | 1 Insecta   | Coleoptera | Cleridae      | Cymatodera bicolor           |     |              |             |         |            |                      | 1              |                |  |
|           | 1 Insecta   | Coleoptera | Curculionidae | Hypera sp.                   |     |              |             |         |            |                      | 1              |                |  |
|           | 2 Insecta   | Coleoptera | Curculionidae | Polydrusus sericeus          |     |              |             |         |            |                      |                | 2              |  |
|           | 1 Insecta   | Coleoptera | Dytiscidae    | llybius sp.                  | 1   |              |             |         |            |                      |                |                |  |
|           | 1 Insecta   | Coleoptera | Elateridae    | Denticollis denticornis      |     |              |             |         |            |                      | 1              |                |  |
|           | 1 Insecta   | Coleoptera | Leiodidae     | Catops luridipennis          | 1   |              |             |         |            |                      |                |                |  |
|           | 1 Insecta   | Coleoptera | Scarabaeidae  | Onthophagus sp.              |     |              |             |         |            |                      |                | 1              |  |
|           | 7 Insecta   | Coleoptera | Scirtidae     | Cyphon sp.                   |     |              | 1           | 1       |            |                      |                | 5              |  |
|           | 1 Insecta   | Diptera    | Asilidae      | Dioctria sp.                 |     |              |             |         |            |                      | 1              |                |  |
|           | 3 Insecta   | Diptera    | Chironomidae  | Ablabesmyia americana        |     |              |             |         |            |                      |                | 3              |  |
|           | 1 Insecta   | Diptera    | Chironomidae  | Axarus sp.                   |     |              |             | 1       |            |                      |                |                |  |
|           | 3 Insecta   | Diptera    | Chironomidae  | Chironomus acidophilus       |     |              |             | 1       | 1          |                      |                | 1              |  |
|           | 1 Insecta   | Diptera    | Chironomidae  | Chironomus sp.               |     | 1            |             |         |            |                      |                |                |  |
|           | 1 Insecta   | Diptera    | Chironomidae  | Chironomus sp.               | 1   |              |             |         |            |                      |                |                |  |
|           | 1 Insecta   | Diptera    | Chironomidae  | Cryptochironomus psittacinus |     |              |             |         |            |                      | 1              |                |  |
|           | 7 Insecta   | Diptera    | Chironomidae  | Cladopelma sp.               |     |              |             |         |            |                      |                | 7              |  |
|           | 2 Insecta   | Diptera    | Chironomidae  | Cladopelma sp.               |     |              |             |         |            |                      |                | 2              |  |
|           | 2 Insecta   | Diptera    | Chironomidae  | Cricotopus bicinctus         |     |              |             | 1       |            |                      | 1              |                |  |
|           | 1 Insecta   | Diptera    | Chironomidae  | Diamesa sp.                  |     |              |             |         |            |                      |                | 1              |  |
| 1         | 18 Insecta  | Diptera    | Chironomidae  | Dicrotendipes tritomus       |     |              | 1           | 1       |            |                      |                | 16             |  |
|           | 1 Insecta   | Diptera    | Chironomidae  | Microtendipes pedellus       |     |              |             |         |            |                      |                | 1              |  |
|           | 6 Insecta   | Diptera    | Chironomidae  | Parachironomus tenuicaudatus |     |              |             |         |            |                      |                | 6              |  |
| 1         | 12 Insecta  | Diptera    | Chironomidae  | Paracladopelma winnelli      |     |              |             | 2       |            |                      | 10             |                |  |
|           | 1 Insecta   | Diptera    | Chironomidae  | Procladius sp.               |     |              |             |         |            |                      |                | 1              |  |
|           | 1 Insecta   | Diptera    | Chironomidae  | Psectrotanypus sp.           |     | 1            |             |         |            |                      |                |                |  |
|           | 1 Insecta   | Diptera    | Chironomidae  | Rheopelopia ornata           |     |              |             |         |            |                      | 1              |                |  |
|           | 7 Insecta   | Diptera    | Chironomidae  | Tanytarsus mendax            |     |              |             | 1       |            |                      |                | 6              |  |
|           | 1 Insecta   | Diptera    | Chironomidae  | Unknown                      |     | 1            |             |         |            |                      |                |                |  |
|           | 2 Insecta   | Diptera    | Culicidae     | Aedes implicatus             | 2   |              |             |         |            |                      |                |                |  |

| 1 Insecta  | Diptera       | Culicidae      | Aedes sp.                    | 1 |   |   |   |   |    |    |    |
|------------|---------------|----------------|------------------------------|---|---|---|---|---|----|----|----|
| 1 Insecta  | Diptera       | Culicidae      | Aedes stimulans              |   |   |   |   |   | 1* |    |    |
| 11 Insecta | Diptera       | Culicidae      | Aedes vexans                 | 3 |   |   |   | 1 | 1  | 2  | 4  |
| 1 Insecta  | Diptera       | Culicidae      | Anopheles sp.                |   |   |   |   |   |    |    | 1  |
| 1 Insecta  | Diptera       | Culicidae      | Anopheles sp.                | 1 |   |   |   |   |    |    |    |
| 3 Insecta  | Diptera       | Culicidae      | Coquillettidia perturbans    | 2 |   |   |   |   |    |    | 1  |
| 6 Insecta  | Diptera       | Culicidae      | Culex sp.                    |   |   |   |   | 6 |    |    |    |
| 1 Insecta  | Diptera       | Culicidae      | Culex sp.                    | 1 |   |   |   |   |    |    |    |
| 1 Insecta  | Diptera       | Culicidae      | Culiseta inornata            | 1 |   |   |   |   |    |    |    |
| 1 Insecta  | Diptera       | Culicidae      | Culiseta minnesotae          |   |   |   |   | 1 |    |    |    |
| 1 Insecta  | Diptera       | Culicidae      | Culiseta sp.                 | 1 |   |   |   |   |    |    |    |
| 2 Insecta  | Diptera       | Culicidae      | Ochlerotatus sp.             | 1 |   |   |   |   |    |    | 1  |
| 4 Insecta  | Diptera       | Empididae      | Trichoclinocera pectinifemur |   |   |   |   |   |    | 4  |    |
| 1 Insecta  | Diptera       | Limoniidae     | Elephantomyia westwoodi      |   |   | 1 |   |   |    |    |    |
| 4 Insecta  | Diptera       | Limoniidae     | Erioptera septemtrionis      |   |   | 4 |   |   |    |    |    |
| 2 Insecta  | Diptera       | Limoniidae     | Euphylidorea platyphallus    | 2 |   |   |   |   |    |    |    |
| 1 Insecta  | Diptera       | Limoniidae     | Helius flavipes              |   |   | 1 |   |   |    |    |    |
| 1 Insecta  | Diptera       | Limoniidae     | Idiocera blanda              |   |   |   |   | 1 |    |    |    |
| 9 Insecta  | Diptera       | Limoniidae     | Ormosia affinis              |   |   | 7 | 1 |   |    |    | 1  |
| 1 Insecta  | Diptera       | Limoniidae     | Symplecta sp.                |   |   |   |   |   |    | 1  |    |
| 1 Insecta  | Diptera       | Muscidae       | Musca autumnalis             |   |   |   |   |   |    | 1  |    |
| 1 Insecta  | Diptera       | Muscidae       | Spilogona sp.                | 1 |   |   |   |   |    |    |    |
| 2 Insecta  | Diptera       | Pediciidae     | Pedicia inconstans           |   |   |   |   |   |    | 2  |    |
| 4 Insecta  | Diptera       | Psychodidae    | Phychodid sp.                |   |   |   | 2 |   |    | 1  | 1  |
| 1 Insecta  | Diptera       | Sepsidae       | Sepsis punctum               |   |   |   |   |   |    | 1  |    |
| 1 Insecta  | Diptera       | Tabanidae      | Hybomitra lurida             | 1 |   |   |   |   |    |    |    |
| 1 Insecta  | Diptera       | Tachinidae     | Cryptomeigenia sp.           |   |   |   | 1 |   |    |    |    |
| 1 Insecta  | Diptera       | Tachinidae     | Medina sp.                   |   |   |   |   |   |    | 1* |    |
| 1 Insecta  | Diptera       | Tachinidae     | Unnkown                      |   | 1 |   |   |   |    |    |    |
| 1 Insecta  | Diptera       | Tipulidae      | Tipula caloptera             |   |   |   |   |   |    | 1  |    |
| 1 Insecta  | Diptera       | Tipulidae      | Tipula oleracea              |   |   |   |   |   |    |    | 1  |
| 10 Insecta | Ephemeroptera | Caenidae       | Caenis amica sp.?            | 1 |   |   | 4 | 1 | 4  |    |    |
| 4 Insecta  | Ephemeroptera | Caenidae       | Caenis latipennis ?          |   |   |   |   |   |    | 3  | 1  |
| 1 Insecta  | Ephemeroptera | Caenidae       | Caenis sp.                   |   |   |   | 1 |   |    |    |    |
| 1 Insecta  | Ephemeroptera | Caenidae       | Caenis sp.                   |   |   |   | 1 |   |    |    |    |
| 1 Insecta  | Ephemeroptera | Caenidae       | Caenis sp.                   |   |   |   | 1 |   |    |    |    |
| 2 Insecta  | Ephemeroptera | Caenidae       | Caenis sp.                   |   |   | 2 |   |   |    |    |    |
| 6 Insecta  | Ephemeroptera | Caenidae       | Caenis sp.                   |   |   |   |   |   |    | 6  |    |
| 18 Insecta | Ephemeroptera | Caenidae       | Caenis youngi sp.?           |   |   |   |   | 1 |    | 2  | 15 |
| 1 Insecta  | Ephemeroptera | Ephemerellidae | Ephemerella sp.              | 1 |   |   |   |   |    |    |    |
|            |               |                |                              |   |   |   |   |   |    |    |    |

| 5 I  | nsecta  | Ephemeroptera | Ephemerellidae  | Eurylophella temporalis      |   |   |   |   |    | 3  |   | 2 |
|------|---------|---------------|-----------------|------------------------------|---|---|---|---|----|----|---|---|
| 4 I  | nsecta  | Ephemeroptera | Ephemeridae     | Hexagenia sp.                |   |   | 4 |   |    |    |   |   |
| 2 I  | nsecta  | Ephemeroptera | Heptageniidae   | Heptagenia sp.               | 2 |   |   |   |    |    |   |   |
| 6 I  | Insecta | Ephemeroptera | Heptageniidae   | Maccaffertium mediopunctatum |   |   |   |   |    |    | 6 |   |
| 1 I  | Insecta | Ephemeroptera | Heptageniidae   | Maccaffertium vicarium       |   |   |   |   |    |    | 1 |   |
| 1 I  | Insecta | Ephemeroptera | Heptageniidae   | Stenacron interpunctatum     |   |   | 1 |   |    |    |   |   |
| 2 I  | Insecta | Ephemeroptera | Isonychiidae    | Isonychia bicolor            |   |   |   |   |    |    | 2 |   |
| 4 I  | Insecta | Hemiptera     | Notonectidae    | Notonecta kirbyi             |   |   |   |   |    |    |   | 4 |
| 1 I  | Insecta | Hymenoptera   | Vespidae        | Polistes sp.                 |   |   |   |   |    |    |   | 1 |
| 1 I  | Insecta | Lepidoptera   | Amphisbatidae   | Machimia tentoriferella      |   |   |   |   |    | 1* |   |   |
| 3 I  | Insecta | Lepidoptera   | Amphisbatidae   | Psilocorsis reflexella       |   |   | 3 |   |    |    |   |   |
| 1 I  | Insecta | Lepidoptera   | Argyresthiidae  | Argyresthia alternatella     |   |   |   | 1 |    |    |   |   |
| 1 I  | Insecta | Lepidoptera   | Argyresthiidae  | Argyresthia aureoargentella  |   |   |   |   |    |    |   | 1 |
| 1 I  | Insecta | Lepidoptera   | Argyresthiidae  | Argyresthia canadensis       |   |   |   |   |    |    |   | 1 |
| 1 I  | Insecta | Lepidoptera   | Argyresthiidae  | Argyresthia thuiella         |   |   |   |   |    |    |   | 1 |
| 2 I  | Insecta | Lepidoptera   | Batrachedridae  | Batrachedra praeangusta      | 1 |   |   |   |    |    |   | 1 |
| 1 I  | Insecta | Lepidoptera   | Blastobasidae   | Asaphocrita busckiella       |   |   |   |   |    |    |   | 1 |
| 1 I  | Insecta | Lepidoptera   | Blastobasidae   | Blastobasis floridella       |   |   |   |   |    |    | 1 |   |
| 2 1  | Insecta | Lepidoptera   | Blastobasidae   | Holcocera chalcofrontella    |   |   |   |   |    | 1  |   | 1 |
| 1 I  | Insecta | Lepidoptera   | Blastobasidae   | Holcocera crassicornella*    |   | 1 |   |   |    |    |   |   |
| 1 I  | Insecta | Lepidoptera   | Carmbidae       | Herpetogramma sp.            |   |   |   |   |    |    |   | 1 |
| 1 I  | nsecta  | Lepidoptera   | Carmbidae       | Ostrinia obumbratalis        |   |   |   |   |    | 1  |   |   |
| 1 I  | Insecta | Lepidoptera   | Coleophoridae   | Coleophora limosipennella    |   |   |   |   |    | 1  |   |   |
| 2 I  | nsecta  | Lepidoptera   | Coleophoridae   | Coleophora pruniella         |   |   | 1 |   |    |    |   | 1 |
| 1 I  | Insecta | Lepidoptera   | Coleophoridae   | Coleophora sp.               |   |   |   |   |    |    |   | 1 |
| 1 I  | Insecta | Lepidoptera   | Cosmopterigidae | Limnaecia phragmitella       |   |   |   |   |    |    |   | 1 |
| 1 I  | nsecta  | Lepidoptera   | Crambidae       | Acentria ephemerella         |   |   |   |   |    |    | 1 |   |
| 1 I  | Insecta | Lepidoptera   | Crambidae       | Ostrinia penitalis           |   |   |   |   | 1  |    |   |   |
| 1 I  | nsecta  | Lepidoptera   | Crambidae       | Thopeutis forbesellus        |   |   |   |   | 1  |    |   |   |
| 12 I | nsecta  | Lepidoptera   | Elachistidae    | Agonopterix robiniella       |   | 1 |   |   | 1* |    | 3 | 7 |
| 2 I  | nsecta  | Lepidoptera   | Elachistidae    | Semioscopis packardella      |   |   |   |   |    |    | 1 | 1 |
| 1 I  | nsecta  | Lepidoptera   | Erebidae        | Ctenucha virginica           |   |   |   |   |    |    |   | 1 |
| 1 I  | Insecta | Lepidoptera   | Erebidae        | Idia sp.                     | 1 |   |   |   |    |    |   |   |
| 2 I  | Insecta | Lepidoptera   | Erebidae        | Unknown**                    |   |   |   | 1 |    |    |   | 1 |
| 2 1  | Insecta | Lepidoptera   | Erebidae        | Unknown**                    |   |   |   |   |    |    |   | 2 |
| 3 I  | Insecta | Lepidoptera   | Erebidae        | Unknown**                    | 1 |   |   |   | 1  | 1  |   |   |
| 2 I  | Insecta | Lepidoptera   | Erebidae        | Unknown**                    |   |   |   |   | 1  |    | 1 |   |
| 1 I  | nsecta  | Lepidoptera   | Erebidae        | Unknown**                    |   |   |   |   |    |    | 1 |   |
| 1 I  | Insecta | Lepidoptera   | Gelechiidae     | Carpatolechia sp.            |   |   | 1 |   |    |    |   |   |
| 1 I  | Insecta | Lepidoptera   | Gelechiidae     | Caryocolum cassella          |   | 1 |   |   |    |    |   |   |
|      |         |               |                 |                              |   |   |   |   |    |    |   |   |

| 1 Insecta  | Lepidoptera | Gelechiidae    | Chionodes fuscomaculella        |   |    |   | 1 |    |   |   |   |   |
|------------|-------------|----------------|---------------------------------|---|----|---|---|----|---|---|---|---|
| 1 Insecta  | Lepidoptera | Gelechiidae    | Chionodes mediofuscella         |   |    |   |   |    |   |   | 1 |   |
| 3 Insecta  | Lepidoptera | Gelechiidae    | Coleotechnites sp.              |   |    |   | 1 |    |   |   |   | 2 |
| 2 Insecta  | Lepidoptera | Gelechiidae    | Coleotechnites sp.              |   |    |   | 2 |    |   |   |   |   |
| 1 Insecta  | Lepidoptera | Gelechiidae    | Coleotechnites thujaella        |   |    |   |   |    |   |   |   | 1 |
| 1 Insecta  | Lepidoptera | Gelechiidae    | Filatima sp.                    |   |    |   |   |    | 1 |   |   |   |
| 1 Insecta  | Lepidoptera | Gelechiidae    | Gelechia sp.                    | 1 |    |   |   |    |   |   |   |   |
| 2 Insecta  | Lepidoptera | Gelechiidae    | Metzneria lappella              |   |    |   |   |    |   | 1 |   | 1 |
| 1 Insecta  | Lepidoptera | Gelechiidae    | Pseudotelphusa quercinigracella |   |    |   |   | 1  |   |   |   |   |
| 1 Insecta  | Lepidoptera | Gelechiidae    | Pseudotelphusa querciphaga      |   |    |   |   | 1  |   |   |   |   |
| 1 Insecta  | Lepidoptera | Gelechiidae    | Xenolechia sp.                  |   |    |   |   | 1  |   |   |   |   |
| 2 Insecta  | Lepidoptera | Gelechiidae    | Xenolechia ontariensis          |   |    |   |   | 1  | 1 |   |   |   |
| 1 Insecta  | Lepidoptera | Geometridae    | Blastobasis glandulella         |   |    |   |   | 1* |   |   |   |   |
| 10 Insecta | Lepidoptera | Geometridae    | Hydriomena sp.*                 | 1 | 1  |   | 1 | 2  |   | 3 | 1 | 1 |
| 1 Insecta  | Lepidoptera | Geometridae    | Lycia ursaria                   |   |    |   |   |    |   |   |   | 1 |
| 1 Insecta  | Lepidoptera | Geometridae    | Operophtera bruceata            |   |    |   |   |    |   |   |   | 1 |
| 1 Insecta  | Lepidoptera | Geometridae    | Perizoma alchemillata           |   |    |   | 1 |    |   |   |   |   |
| 1 Insecta  | Lepidoptera | Gracillariidae | Caloptilia negundella           |   |    |   |   |    |   |   |   | 1 |
| 1 Insecta  | Lepidoptera | Gracillariidae | Cameraria caryaefoliella        |   |    |   |   |    |   |   | 1 |   |
| 5 Insecta  | Lepidoptera | Lasiocampidae  | Malacosoma americana            |   |    |   |   |    |   |   | 4 | 1 |
| 1 Insecta  | Lepidoptera | Lasiocampidae  | Malacosoma disstria             |   |    |   |   |    |   |   | 1 |   |
| 3 Insecta  | Lepidoptera | Leptoceridae   | Nectopsyche albida              |   |    |   |   |    |   | 1 | 2 |   |
| 1 Insecta  | Lepidoptera | Leptoceridae   | Oecetis cinerascens             |   |    |   |   |    |   |   |   | 1 |
| 1 Insecta  | Lepidoptera | Limacodidae    | Lithacodes fasciola             |   |    |   | 1 |    |   |   |   |   |
| 1 Insecta  | Lepidoptera | Momphidae      | Mompha epilobiella              |   |    |   |   |    |   | 1 |   |   |
| 1 Insecta  | Lepidoptera | Momphidae      | Mompha brevivittella            |   |    |   |   |    |   |   |   | 1 |
| 1 Insecta  | Lepidoptera | Noctuidae      | Anicla sp.                      |   |    |   |   |    |   |   | 1 |   |
| 1 Insecta  | Lepidoptera | Noctuidae      | Apamea devastator               |   | 1  |   |   |    |   |   |   |   |
| 2 Insecta  | Lepidoptera | Noctuidae      | Apamea sp.                      |   |    |   |   |    |   |   |   | 2 |
| 2 Insecta  | Lepidoptera | Noctuidae      | Condica sp.                     |   |    |   |   |    |   |   | 1 | 1 |
| 1 Insecta  | Lepidoptera | Noctuidae      | Feltia jaculifera               |   | 1, | * |   |    |   |   |   |   |
| 1 Insecta  | Lepidoptera | Noctuidae      | Mythimna unipuncta              |   |    |   |   |    |   |   |   | 1 |
| 2 Insecta  | Lepidoptera | Noctuidae      | Spodoptera sp.                  |   |    |   |   |    |   |   | 1 | 1 |
| 2 Insecta  | Lepidoptera | Noctuidae      | Spodoptera sp.                  |   | 1  |   |   |    |   |   | 1 |   |
| 1 Insecta  | Lepidoptera | Noctuidae      | Unknown**                       |   | 1  |   |   |    |   |   |   |   |
| 1 Insecta  | Lepidoptera | Notonectidae   | Notonecta kirbyi                |   |    |   |   |    |   | 1 |   |   |
| 3 Insecta  | Lepidoptera | Pterophoridae  | ,<br>Geina sheppardi            |   |    |   |   |    |   | 1 | 2 |   |
| 7 Insecta  | Lepidoptera | Pterophoridae  | Geina sp.                       |   |    |   |   |    |   |   | 1 | 6 |
| 1 Insecta  | Lepidoptera | Pterophoridae  | Hellinsia lacteodactylus        |   |    |   |   |    |   |   | 1 |   |
| 1 Insecta  | Lepidoptera | Pyralidae      | Scotomera gielisi               |   |    |   |   | 1  |   |   |   |   |
|            |             | •              | J.                              |   |    |   |   |    |   |   |   |   |

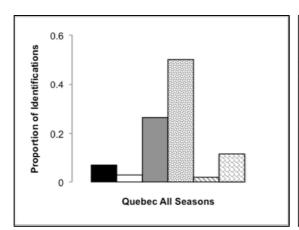
| 1 Insecta | Lepidoptera | Sphingidae   | Amorpha juglandis          |   |   |   |   |    | 1 |   |
|-----------|-------------|--------------|----------------------------|---|---|---|---|----|---|---|
| 1 Insecta | Lepidoptera | Sphingidae   | Deidamia inscriptum        |   |   |   |   | 1  |   |   |
| 2 Insecta | Lepidoptera | Tineidae     | Acrolophus heppneri*       | 1 |   |   |   |    |   | 1 |
| 1 Insecta | Lepidoptera | Tineidae     | Homosetia fasciella        |   |   |   |   |    |   | 1 |
| 2 Insecta | Lepidoptera | Tortricidae  | Acleris chalybeana         |   |   |   |   | 1  | 1 |   |
| 3 Insecta | Lepidoptera | Tortricidae  | Acleris forsskaleana       |   |   |   |   | 1  | 1 | 1 |
| 1 Insecta | Lepidoptera | Tortricidae  | Acleris negundana          |   |   |   |   | 1  |   |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Adoxophyes negundana       |   |   |   |   | 1* |   |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Aethes sp.                 |   |   |   |   |    | 1 |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Ancylis divisana           |   |   |   |   | 1  |   |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Argyrotaenia quercifoliana |   |   | 1 |   |    |   |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Argyrotaenia sp.           |   | 1 |   |   |    |   |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Catastega aceriella        |   |   |   |   |    |   | 1 |
| 1 Insecta | Lepidoptera | Tortricidae  | Choristoneura fumiferana   |   |   |   |   | 1  |   |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Choristoneura sp.          | 1 |   |   |   |    |   |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Clepsis virescana          | 1 |   |   |   |    |   |   |
| 4 Insecta | Lepidoptera | Tortricidae  | Cnephasia sp.              |   | 1 |   |   |    | 3 |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Epinotia transmissana      |   |   |   | 1 |    |   |   |
| 2 Insecta | Lepidoptera | Tortricidae  | Eucosma sp.                |   |   |   | 1 |    |   | 1 |
| 1 Insecta | Lepidoptera | Tortricidae  | Grapholita eclipsana       |   |   |   |   | 1  |   |   |
| 3 Insecta | Lepidoptera | Tortricidae  | Gretchena sp.              |   |   |   |   | 1  | 2 |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Oecetis cinerascens        |   |   |   |   | 1  |   |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Olethreutes glaciana       | 1 |   |   |   |    |   |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Olethreutes sp.            |   |   |   |   |    |   | 1 |
| 2 Insecta | Lepidoptera | Tortricidae  | Pandemis lamprosana        |   |   |   | 2 |    |   |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Pandemis sp.               | 1 |   |   |   |    |   |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Phtheochroa sp.            |   |   |   |   |    |   | 1 |
| 1 Insecta | Lepidoptera | Tortricidae  | Platynota idaeusalis       | 1 |   |   |   |    |   |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Platynota sp.              |   |   |   |   | 1  |   |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Platynota sp.              |   |   |   | 1 |    |   |   |
| 4 Insecta | Lepidoptera | Tortricidae  | Proteoteras crescentana    |   |   |   |   | 1  | 1 | 2 |
| 4 Insecta | Lepidoptera | Tortricidae  | Pseudexentera sp.          |   |   |   |   |    |   | 4 |
| 3 Insecta | Lepidoptera | Tortricidae  | Pseudexentera sp.          |   |   |   |   | 2  | 1 |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Pseudexentera sp.          |   |   |   |   | 1  |   |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Pseudexentera sp.          |   |   |   |   |    | 1 |   |
| 7 Insecta | Lepidoptera | Tortricidae  | Sparganothis pettitana     |   |   |   | 2 | 1  | 4 |   |
| 1 Insecta | Lepidoptera | Tortricidae  | Zeiraphera sp.             |   | 1 |   |   |    |   |   |
| 1 Insecta | Megaloptera | Corydalidae  | Chauliodes sp.             |   |   |   |   |    |   | 1 |
| 1 Insecta | Megaloptera | Sialidae     | Sialis sp.                 |   |   |   |   |    | 1 |   |
| 3 Insecta | Neuroptera  | Hemerobiidae | Hemerobius sp.             |   |   |   |   |    | 1 | 2 |
|           |             |              |                            |   |   |   |   |    |   |   |

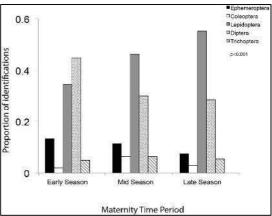
| 3 Insecta | Tricoptera      | Glossosomatidae       | Glossosoma intermedium        | 2  |    |    |    |    |    |    | 1   |
|-----------|-----------------|-----------------------|-------------------------------|----|----|----|----|----|----|----|-----|
| 2 Insecta | Tricoptera      | Helicopsychidae       | Helicopsyche borealis         |    |    |    |    |    | 2  |    |     |
| 1 Insecta | Tricoptera      | Hydropsychidae        | Arctopsyche ladogensis        | 1  |    |    |    |    |    |    |     |
| 1 Insecta | Tricoptera      | Hydropsychidae        | Cheumatopsyche sp.            |    |    |    |    |    | 1  |    |     |
| 2 Insecta | Tricoptera      | Limnephilidae         | Limnephilus sp.               |    |    |    |    |    |    |    | 2   |
| 3 Insecta | Tricoptera      | Leptoceridae          | Triaenodes injustus           |    |    |    |    |    |    |    | 3   |
| 1 Insecta | Tricoptera      | Leptoceridae          | Triaenodes nox                |    |    |    |    |    |    |    | 1   |
| 5 Insecta | Tricoptera      | Leptoceridae          | Triaenodes sp.                |    |    |    | 5  |    |    |    |     |
| 1 Insecta | Tricoptera      | Leptoceridae          | Triaenodes sp.                |    |    |    | 1  |    |    |    |     |
| 2 Insecta | Tricoptera      | Molannidae            | Molanna sp.                   |    | 2  |    |    |    |    |    |     |
| 8 Insecta | Tricoptera      | Nectopsyche           | Nectopsyche albida            |    |    |    |    |    |    |    | 8   |
| 2 Insecta | Tricoptera      | Phryganeidae          | Agrypnia colorata             | 2  |    |    |    |    |    |    |     |
| 1 Insecta | Tricoptera      | Phryganeidae          | Agrypnia deflata              | 1  |    |    |    |    |    |    |     |
| 3 Insecta | Tricoptera      | Phryganeidae          | Phryganea cinerea             |    | 1  |    | 1  |    |    |    | 1   |
|           | Additional unio | dentiifed prey (inclu | udes level 3 identifications) | 33 | 18 | 42 | 64 | 42 | 27 | 88 | 158 |

## **Procedures for Quebec samples:**

Samples from Quebec were not included in regular statistical analyses for three reasons. First, they were collected from individuals rather than from under roosts in large "community" samples. Second, for reasons that are not clear, the DNA was difficult to amplify and so additional steps were taken to recover the data. We include these data then as a supplement to the full analysis. Third, the sample includes males rather than all females and young (as expected in maternity roosts).

**Collection procedures:** The sampling in Quebec was performed from 15<sup>th</sup> of June to 5<sup>th</sup> of August in 2011 (Jacques-Cartier National Park and Montmorency Research Forest) and 2012 (Aiguebelle National Park). A total of 2-5 pellets were collected directly from males.


**Sample preparation:** We extracted DNA as described in the main manuscript. We encountered a high rate of PCR failure for these samples. Thus we treated all as "recalcitrant" and the PCR was conducted using Q-solution (provided by the Qiagen, UK multi-plex PCR kit) and modified hot start PCR programme.


**PCR mixture:** 12µl reactions contains 5µl of Master Mix, 1µl of Q solution, 0.5µl of each primer, 3µl H2O and 2µl template DNA.

**Thermocycler protocols**: An initial denaturation period of 15 min at 95°C followed by 35 cycles of 94°C for 30s, 53°C for 90s and 72°C for 90s, with a final extension period of 10min at 72°C. Using this protocol >90% of samples provided a band on an agarose gel.

**Sequencing:** To maximize sequencing potential and recovery, the reverse primers were modified for the Ion Torrent platform (Clare et al. 2014) and sequencing and informatics was carried out as described in that same publication.

**Results:** We recovered sequences from all samples (Supplemental File 1, worksheet 2)





Supplemental Figure: A comparison of the overall diet of little brown bats at locations in Quebec (across all seasons) with the overall results from Figure 2.

## Location

Long Point Long Point Long Point Long Point Long Point

Long Point

Long Point

Clinton Clinton

Clinton Clinton Clinton Clinton Clinton

Clinton Clinton Clinton

Clinton Clinton

Clinton

Lake St George Lake St George Lake St George

Lake St George Lake St George

Lake St George

Lake St George

Lake St George Lake St George

Lake St George Lake St George Lake St George

Lake St George Lake St George

Lake St George Lake St George

Lake St George

Lake St George Lake St George

Lake St George Lake St George

Lake St George

Lake St George

## **Collection Date**

June 27, 2011 July 5, 2011 July 18, 2011 August 1, 2011 August 17, 2011 June 6, 2011 June 13, 2011

May 20, 2009
May 27, 2009
June 3, 2009
June 11, 2009
June 17, 2009
July 8, 2009
July 15, 2009
July 22, 2009
July 29, 2009
August 5, 2009
August 12, 2009
August 19, 2009
August 26, 2009
September 9, 2009

June 8, 2011 June 21, 2011 July 5, 2011 July 12, 2011 July 18, 2011 Aug 1, 2011 Aug 15, 2011

May 21, 2009
May 27, 2009
May 29, 2009
June 3, 2009
June 10, 2009
June 16, 2009
June 26, 2009
July 2, 2009
July 8, 2009
July 15, 2009
July 29, 2009
July 29, 2009
August 5, 2009
August 12, 2009
August 19, 2009

August 26, 2009

Lake St George Lake St George

Praries Praries Praries

Pinery Provincial Park Pinery Provincial Park Pinery Provincial Park Pinery Provincial Park

Kakisa NWT Salt river NWT Kakisa NWT Salt river NWT Salt river NWT

Martock, Nova Scotia Martock, Nova Scotia Martock, Nova Scotia Martock, Nova Scotia Tatamagouche Nova Scotia Tatamagouche Nova Scotia Tatamagouche Nova Scotia Tatamagouche Nova Scotia September 2, 2009 September 9, 2009

June 22, 2011 July 18, 2011 August 15, 2011

June 14, 2009 Exact Date Not Know Exact Date Not Know

July 13, 2008

June 28, 2011 June 23, 2011 July 27, 2011 July 20, 2011 Sept 1, 2011

June 16, 2011 July 10, 2011 July 24, 2011 August 29, 2011 May 31, 2011 July 5, 2011 July 1, 2011 August 1, 2011