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The difference between optimality and

universality

Kenshi Miyabe

Abstract

We discuss the difference between optimality and universality. The

sequence of measures of a universal test is well studied. To analyze the

sequence of measures of an optimal Martin-Löf test, we introduce uni-

form Solovay reducibility. Solovay reducibility is a measure of relative

randomness between two reals. In contrast uniform Solovay reducibility

is a measure of relative randomness between two sequences of reals. Fi-

nally we prove that a sequence is uniform Solovay complete iff it is the

sequence of measures of an optimal Martin-Löf test.

keywords: Martin-Löf randomness, randomness deficiency, sequence of mea-
sures, universal Martin-Löf test, Solovay reducibility

1 Introduction

Martin-Löf randomness [11] is regarded as the most natural randomness notion.
A universal Martin-Löf test can be a collection of open sets {Un : n ∈ ω} with
Un ⊃ Un+1 and µ(Un) ≤ 2−n. A sequence X is random if it passes the test,
meaning that X 6∈

⋂
n Un. Thus a non-random sequence A will leave the test

at some point. It is natural to associate a measure of non-randomness to be
the least n where A 6∈ Un. This was called the critical level by Martin-Löf and
the randomness deficiency by Levin [8]. From a statistical point of view we are
interested in the size of the set of sequences whose randomness deficiency are
larger than a constant. Note that it is the sequence of measures of the test.

There is a notion of universal ML-test meaning that if X passes the test then
it will be random, and a notion of optimal test, meaning that the randomness
deficiency of the test is within a constant of any other test. For example, the
standard universal is constructed by Un =

⋃
n U

e
n+e+1 where {Ue

n : n ∈ ω} is
an effective enumeration of all ML-tests. This will be universal. It is not clear
what the difference (if any) is between universality and optimality, and the main
idea of the present paper is to explore the difference between these two notions.

The sequence of measures of a universal ML-test is studied by Kučera and
Slaman [7] and Merkle, Mihailović and Slaman [12], which use Solovay reducibil-
ity. To give a version of an optimal ML-test, we introduce uniform Solovay
reducibility. Solovay reducibility is a measure of relative randomness between
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two reals. In contrast uniform Solovay reducibility is a measure of relative ran-
domness between two sequences of reals. We shall show that there is a uniform
Solovay complete sequence. Finally we prove that the sequence of measures of an
optimal ML-test can be characterized by a uniform Solovay complete sequence,
which is the main result of this paper.

In Section 2 we give some definitions and results related with ML-randomness.
In Section 3 we prove some results on randomness deficiency and an optimal
ML-test. In Section 4 we characterize the sequence of measures of an optimal
ML-test by introducing uniform Solovay reducibility.

2 Preliminaries

2.1 Notations

We fix notations used in this paper and recall some basic definitions and results.
For a more complete introduction, see Downey and Hirschfeldt [4] or Nies [13].

A set of natural numbers is computable if its characteristic function is com-
putable. A set of natural numbers is c.e. if it is the domain of a partial com-
putable function. A sequence of sets An ⊆ N is uniformly c.e. if {〈n,m〉 : m ∈
An} is c.e.

Let 2<ω be the set of all finite binary strings. A natural number n is identified
with a string σ such that 1σ is the binary representation of n + 1. Let 2ω be
Cantor space of binary sequences of {0, 1}. We identify a set of natural numbers
with a binary sequence. We use λ to denote the empty string. For σ ∈ 2<ω,
|σ| denotes the length of σ. We write σρ to mean the concatenation of σ and ρ.
We write σ ≺ τ to mean that σ is a prefix of τ , that is (∃ρ)σρ = τ . Here τ can
be infinite. Let [[σ]] = {Z ∈ 2ω : σ ≺ Z} be the class of infinite binary sequences
extending σ. We assume that 2ω is equipped with the topology generated by
the base {[[σ]] : σ ∈ 2<ω}. For A ⊆ 2<ω we let [[A]] =

⋃
σ∈A[[σ]]. An open set A

is c.e. if the corresponding set of strings {σ : [[σ]] ⊆ A} is a c.e. set.
We also identify real numbers with their inifinite binary expansion. Then

elements of Cantor space 2ω are sometimes called reals. We say that a real α is
left-c.e. or c.e. if {q ∈ Q : q < α} is c.e. A function f : 2<ω → R is c.e. if the
sequence {〈q, σ〉 : q < f(σ)} is c.e. We denote the uniform or Lebesgue measure
by µ, that is generated by µ([[σ]]) = 2−|σ|.

2.2 ML-randomness

First we recall the definition of Martin-Löf randomness and related results.

Definition 2.1 (Martin-Löf [11]). A Martin-Löf test (or ML-test) is a sequence
of uniformly c.e. open sets {Un} such that µ(Un) ≤ 2−n. A real α passes a ML-
test {Un} if α 6∈

⋂
n Un. A real α is ML-random or 1-random if α passes all

ML-tests.

Martin-Löf randomness is also characterized by complexity. A machine is a
partial computable function. There is a universal machine, i.e., a machine V
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such that for each M there is a string τ ∈ 2<ω for which (∀σ)V (τσ) = M(σ) or
both V (τσ) and M(τ) diverge. The plain Kolmogorov complexity C of a string
is defined as C(σ) = min{τ : V (τ) = σ} where V is a universal machine. A
set X is prefix-free if whenever σ, τ ∈ X , then σ is not a proper prefix of τ . A
machine M : 2<ω → 2<ω is called a prefix-free machine if dom(M) is prefix-
free. There is a universal prefix-free machine U . Then prefix-free Kolmogorov
complexity K of a string σ is defined as K(σ) = min{τ : U(τ) = σ}.

Proposition 2.2. A real α is ML-random iff (∃d)(∀n)K(α↾n) > n− d.

Another characterization is given by martingales. A function d : 2<ω → R≥0

is a martingale if for all σ, 2d(σ) = d(σ0) + d(σ1). It is a supermartingale if for
all σ, 2d(σ) ≥ d(σ0) + d(σ1). A (super)martingale d succeeds on a sequence α
if lim supn d(α ↾ n) = ∞.

Proposition 2.3 (Schnorr [14]). A real α is ML-random iff no c.e. martingale
succeeds on alpha iff no c.e. supermartingale succeeds on α.

By these equivalences Martin-Löf randomness is regarded as a natural notion
of randomness.

2.3 Universality and Optimality

In most recent papers in algorithmic randomness, we usually use the following
definition for universality.

Definition 2.4. A ML-test {Un} is universal if, for any Martin-Löf test {Vn},⋂
n Vn ⊆

⋂
n Un.

In the original Martin-Löf’s paper, however, he defined a “universal” ML-
test in a different way. To distinguish them we change the terminology.

Definition 2.5 (Martin-Löf [11]). A ML-test {Un} is optimal if, for any ML-
test {Vn}, there exists c such that Vn+c ⊆ Un for all n.

The terminology “optimal” comes from the tradition for martingales. Op-
timality is a stronger notion than universality. As is well-known, such a test
exists.

Proposition 2.6 (Martin-Löf [11]). There exists an optimal Martin-Löf test.
Hence there exists an universal Martin-Löf test.

2.4 Randomness deficiency

Martin-Löf also introduced the critical level, the smallest level of significance on
which the hypothesis is rejected. Levin [8] called it randomness deficiency.

Definition 2.7 (Martin-Löf [11]). Let U = {Un} be a ML-test. We define

tU (σ) = sup{n : [[σ]] ⊆ Un}
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for σ ∈ 2<ω and
tU (α) = sup{n : α ∈ Un}

for α ∈ 2ω.

Intuitively randomness deficiency indicates how much regularity it contains.
For simplicity let U0 = [[λ]] = 2ω. Then the following are immediate.

Proposition 2.8 (Martin-Löf [11]). (i) 0 ≤ tU (σ) ≤ |σ|.

(ii) tU (σ) ≤ tU (τ) for all σ � τ .

(iii) tU (A) = supn tU (A ↾ n).

(iv) If A is ML-random, then tU (A) < ∞.

(v) If{Un} is an optimal ML-test then, for any ML-test V = {Vn}, there
exists c such that tU (σ) ≥ tV (σ)− c for all σ ∈ 2<ω.

As usual we let t = tU for an optimal ML-test U .
Ten years after [8], Levin [9] called another quantity randomness deficiency.

In most articles the terminology of randomness deficiency is used for this quan-
tity.

Definition 2.9 (Levin [9]; see [10]). Randomness deficiency δ is defined as
δ(σ) = |σ| −K(σ).

2.5 From a statistical point of view

Randomness deficiency is closely related to probability theory. The strong law of
large numbers (SLLN) in probability theory says that the average of a sequence
of i.i.d. converges to the expectation [6, 5]. For a coin-tossing game, the relative
frequency of a random binary sequence converges to 1/2 almost surely. For
an effective version of SLLN, the relative frequency of a Martin-Löf random
sequence “always” converges to 1/2, not almost surely [16, 10]. For a more
precise version, Davie [2] proved the following result. Let Sn(A) =

∑n

i=1 A(i).
Then there exists a computable function n(c, ǫ) such that if supn δ(A ↾ n) ≤ c
then for all n > n(c, ǫ), we have |Sn(A)/n − 1/2| < ǫ. This result says that we
can discuss the rate of the convergence of SLLN from randomness deficiency δ.
Davie [2] also showed a version of the law of the iterated logarithm.

We reconsider an optimal ML-test from a statistical point of view. Let H
be the hypothesis that A ∈ 2ω is a result of a fair coin-tossing game. Suppose
that all we know is S20(A) = 15. Then can we accept H or should we reject H?
Since the probability of S20 ≥ 15 is 0.0207 · · · and is small, probably we should
reject it.

Next suppose that we know A itself. Then the probability of A is clearly
0 for each A. So we can not use the same approach. Recall that an optimal
ML-test {Un} is one of the best effective statistical tests. Intuitively the larger
t(A) is, the more unnatural A is. Then we can reject H if t(A) is too large.
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Then the following question arises. Can we regard the ordering of naturalness
as probability? We wish the probability of t(A) ≥ n were equal to 2−n. We say
that a ML-test V = {Vn} is decreasing if Vn ⊇ Vn+1 for all n. Note that the
measure of tV (A) ≥ n for a decreasing optimal ML-test V = {Vn} is

µ({A : tV (A) ≥ n}) = µ({A : A ∈ Vn}) = µ(Vn).

We are very interested in the sequence µ(Vn) for an optimal ML-test. Then the
question is where there is an optimal ML-test such that µ(Un) = 2−n.

Such a test is called Schnorr test [14]. Formally a Schnorr test is a ML-test
{Un} with µ(Un) = 2−n. A Schnorr test {Un} is universal if, for any Schnorr
test {Vn},

⋂
n Vn ⊆

⋂
n Un. It is known that no Schnorr test is universal. Hence

there is no universal ML-test such that µ(Un) is computable uniformly in n. So
µ(Un) 6= 2−n for infinitely many n.

Furthermore the following characterization is known. The sequence µ(Un)
for a universal ML-test {Un} is characterized by the following two theorems.

Theorem 2.10 (Kučera and Slaman [7]). The measure of each component of
a universal ML-test is ML-random.

Theorem 2.11 (Merkle, Mihailović and Slaman [12]). For any uniformly c.e.
ML-random reals rn ≤ 2−n there is a universal ML-test {Un} such that µ(Un) =
rn.

Since optimality implies universality, µ(Vn) is ML-random for an optimal
ML-test V and each n.

Then we ask whether there is a universal or optimal ML-test {Un} such that
µ(Un) = 2−nα for a c.e. ML-random real α. Finally we show that for each c.e.
ML-random real there exists a universal ML-test satisfying the equation but
no optimal ML-test satisfies the equation. To prove this we introduce uniform
Solovay reducibility.

3 Randomness deficiency by an optimal test

In this section we give basic results related to t in Definition 2.7 and an optimal
ML-test. We will use some of them later.

3.1 Difference between universality and optimality

We prove the difference between optimality and universality. The following
results say that the measures µ(Un) of an optimal ML-test is approximately
equal to 2−n but the measures µ(Un) of a universal ML-test may be far from it.

Proposition 3.1. Let {Un} be an optimal ML-test. Then µ(Un) ≥ 2−n−O(1).

Proof. Let Vn = [0n]. Then V = {Vn} is a ML-test. Note that tV (0
n) = n. By

optimality of U there exists c such that tU (0
n) ≥ tV (0

n) − c = n − c. By the
definition of t we have [0n] ⊆ Un−c for n ≥ c. It follows that 2−n = µ([[0n]]) ≤
µ(Un−c).
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Proposition 3.2. There exists a ML-test such that it is universal but not op-
timal.

Proof. Let {Un} be a universal Martin-Löf test. Then V = {Vn} = {U2n} is
also a universal Martin-Löf test and we have µ(Vn) = µ(U2n) ≤ 2−2n. By
proposition 3.1, V is not optimal.

3.2 Decreasing optimal test

Another possible randomness deficiency is

t̃U (σ) = min{n : [[σ]] ⊆ Un does not hold. } − 1.

The degree is infinity if such an n does not exist. We will prove t and t̃ are
essentially the same. The following is a well-known result but we restate it in
our terminology.

Proposition 3.3. For a ML-test U = {Un}, let Vn =
⋃∞

k=1 Un+k for n ≥ 1 and
V0 = [[λ]]. Then V = {Vn} is a decreasing ML-test such that tU (σ) ≤ tV (σ) + 1.

Proof. We have µ(Vn) ≤
∑∞

k=1 µ(Un+k) ≤
∑∞

k=1 2
−n−k ≤ 2−n. Since {Un} is

uniformly c.e., so is {Vn}. Hence V = {Vn} is a ML-test. Note that for all
n, we have Un+1 ⊆ Vn. For each σ ∈ 2<ω, [[σ]] ⊆ Un ⇒ [[σ]] ⊆ Vn−1. Hence
tU (σ) ≤ tV (σ) + 1. Finally Vn =

⋃∞
k=1 Un+k ⊇

⋃∞
k=2 Un+k =

⋃∞
k=1 Un+1+k =

Vn+1. Hence V is decreasing.

Proposition 3.4. There exists a decreasing optimal Martin-Löf test.

If V is decreasing, then tV = t̃V . Even if it is not, Wn =
⋃∞

k=1 Vn+k is a
decreasing ML-test. Hence a decreasing optimal ML-test U is also optimal for
t̃. By letting t̃ = t̃U we have t̃ = t+O(1). Thus these are essentially the same.

3.3 Relation with another randomness deficiency

We give easy relations between t and δ to use it the next section.
It is easy to see that there exists c such that

δ(σ) ≤ t(σ) + c

for all σ.
Let δ(α) = supn δ(α↾n).

Theorem 3.5. There exists c such that

t(α) ≤ δ(α) + 2 log(δ(α)) + c

for all α ∈ 2ω

Before the proof, recall KC Theorem.
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Theorem 3.6 (KC Theorem, see [4]). Let (di, τi) be a computable sequence of
pairs (which we call requests), with di ∈ N and τi ∈ 2<ω, such that

∑
i 2

−di ≤ 1.
Then there is a prefix-free machine M and strings σi of length di such that
M(σi) = τi for all i and domM = {σi}

The weight of a request (d, τ) is 2−d. The weight of a computable sequence
of requests (di, τi) is the sum of the weights of the requests, i.e.,

∑
i 2

−di. If this
weight is less than or equal to 1, then we say that this sequence is a KC set.

Proof of Theorem 3.5. Let U = {Un} be a decreasing optimal ML-test. Then
there exists a uniformly c.e. prefix-free set Rn such that [[Rn]] = Un+2 logn. Let
Lc = {〈|xn

i | − n+ c, xn
i 〉 : xn

i ∈ Rn}. Then the weight of Lc is

∑

n

∑

i

2−|xn
i |+n−c ≤

∑

n

2−n−2 logn+n−c = 2−c
∑

n

n−2.

Hence L = Lc is a KC-set for some c. By KC Theorem we obtain K(xn
i ) ≤

|xn
i | − n+ c′ and δ(xn

i ) ≥ n− c′ for some c′.
Suppose that t(α) ≥ m + 2 logm. Then α ∈ Um+2 logm = [[Rm]]. It follows

that there exists i such that xm
i ∈ Rm and xm

i � α. Then m ≤ δ(α)+ c′. Hence
we have t(α) ≤ δ(α) + c′ + 2 log(δ(α) + c′) ≤ δ(α) + 2 log(δ(α)) + c′′.

Corollary 3.7. Let {αk} be a sequence of reals. Then

sup
k

t(αk) < ∞ ⇐⇒ sup
k

δ(αk) < ∞.

4 Uniform Solovay reducibility

In this section we generalize Solovay reducibility to analyze the sequence µ(Un)
where {Un} is an optimal ML-test. Solovay reducibility is a measure of rela-
tive randomness between two reals. We introduce uniform Solovay reducibility,
which is a measure of relative randomness between two sequences of reals. Most
proofs in the next subsection are just a generalization of the proof of corre-
sponding results of Solovay reducibility. But in some points we need a little
modification. So we concentrate on the difference and give a proof sketch in
other points (see [4] for the detail).

A real α is Solovay reducible to a real β (written α ≤s β) if there are a
constant c and a partial computable function f : Q → Q such that if q ∈ Q and
q < β, then f(q) ↓< α and α− f(q) < c(β − q).

Let ΩU =
∑

U(σ)↓ 2
−|σ|. This is called halting probability. A left-c.e. real α

is Solovay complete or Ω-like if β ≤s α for all left-c.e. reals β.

Theorem 4.1 (Solovay [15], Calude, Hertling, Khoussainov, and Wang [1],
Kučera and Slaman [7], see 9.1 and 9.2 in [4]). For left-c.e. reals α, the following
are equivalent.

(i) α is 1-random.
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(ii) α is Solovay complete.

(iii) Ω ≤s α.

(iv) α = µ(Un) for a universal ML-test {Un} and some n.

Lemma 4.2 (Solovay [15]). For each k there is a constant ck such that for
all n and all σ, τ ∈ 2n, if |0.σ − 0.τ | < 2k−n, then C(σ) = C(τ) ± ck and
K(σ) = K(τ)± ck.

4.1 Definition and some properties

In the following we consider a sequence of reals in [0, 1].

Definition 4.3. A sequence {αk} of reals is uniformly Solovay reducible, or
US-reducible, to a sequence {βk} of reals (written {αk} ≤us {βk}) if there are
a constant c and uniformly partial computable functions fk : Q → Q such that
fk(0) = 0 and if q ∈ Q and q < βk, then fk(q) ↓< αk and αk−fk(q) < c(βk−q).

Note that the condition fk(0) = 0 is equivalent to αk < cβk for some c.
Hence {αk} ≤us {βk} requires αk/βk is bounded. Solovay reducibility which
considers only two reals does not need such a condition.

The definition of uniformly Solovay reducibility is not restricted to a sequence
of uniformly left-c.e. reals. But here we consider only the uniformly left-c.e.
reals.

Note also that us-reducibility is reflexive and transitive.

Proposition 4.4. Let {αk} and {βk} be sequences of uniformly left-c.e. reals,
and let 0 = qk0 < qk1 < · · · → αk and 0 = rk0 < rk1 < · · · → βk be uniformly
computable sequences of rationals. Then {αk} ≤us {βk} iff there are a constant
c and uniformly computable functions gk such that αk − qk

gk(n)
< c(βk − rkn) for

all k and n.

Note that we require qk0 = rk0 = 0, which does not appear in a version of
Solovay reducibility.

Proof. For the only if direction, given n, we have fk(r
k
n) ↓< αk and let gk(n) =

m such that fk(q
k
n) < qkm. For the if direction, given s ∈ Q, search for an n such

that s < rkn and let fk(s) = qkgk(n).

Theorem 4.5. If {αk} ≤us {βk} then (∃d)(∀k)(∀n)C(αk ↾ n) ≤ C(βk ↾ n) + d
and (∃d)(∀k)(∀n)K(αk ↾ n) ≤ K(βk ↾ n) + d.

Proof. Here we see βk ↾ n as rationals. Since βk − βk ↾ n ≤ 2−n, we have
αk− fk(βk ↾ n) < c2−n. Let τnk ∈ 2n be such that |τnk − f(βk ↾ n)| < 2−n. Then
for all k,

|αk ↾n− τnk | ≤ |αk − αk ↾n|+ αk − fk(βk ↾n) + |τnk − fk(βk ↾n)| < (c+ 2)2−n.

By Lemma 4.2,K(αk ↾ n) ≤ K(τnk )+O(1). Here τnk can be obtained computably
from βk ↾ n, so K(τnk ) ≤ K(βk ↾ n) + O(1). The proof for plain complexity is
the same.
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Lemma 4.6. Let {αk} and {βk} be sequences of uniformly left-c.e. reals, and
let 0 = rk0 < rk1 < · · · → βk be uniformly computable sequences of rationals.
Then {αk} ≤us {βk} iff there are uniformly computable sequences of rationals
0 = pk0 < pk1 < · · · → αk such that for some constant c we have pks − pks−1 <
c(rks − rks−1) for all k and s.

Again note that we require pk0 = rk0 = 0 for all k.

Proof. If there is a sequence pks as in the lemma, then αk − pkn =
∑

s>n(p
k
s −

pks−1) < d
∑

s>n(r
k
s − rks−1) = d(βk − rkn), so by Proposition 4.4, {αk} ≤us {βk}.

We now prove the converse.
Let 0 = qk0 < qk1 < · · · → αk be uniformly computable sequences of rationals,

let c and gk be as in Proposition 4.4. We may assume without loss of generality
that g is increasing. Note that qk

gk(0)
= rk0 = 0.

There must be an s0 > 0 such that qk
gk(s0)

− qk
gk(0)

< c(rks0 − rk0 ), since

otherwise we would have αk − qk
gk(0)

= lims(q
k
gk(s0)

− qk
gk(0)

) ≥ lims c(r
k
s − rk0 ) =

c(rk − rk0 ), contradicting our choice of c and g. We can now define pk1 , . . . , p
k
s0

so that pk0 < · · · < pks0 = αk,gk(s0) and pks − pks−1 ≤ c(rks − rks−1) for all s ≤ s0.
See [4] for the detail.

We can repeat the procedure in the previous paragraph with s0 in place of 0
to obtain a computable sequence of rationals 0 = pk0 < pk1 < . . . with the desired
properties.

Theorem 4.7. Let {αk} and {βk} be sequences of uniformly left-c.e. reals, The
following are equivalent.

(i) {αk} ≤us {βk}.

(ii) For any uniformly computable sequences bk1 , b
k
2 , · · · of non-negative ra-

tionals such that βk =
∑

n b
k
n, there are a constant c and uniformly

computable sequences of rationals ǫk,n ∈ [0, c] for all n such that αk =∑
n ǫk,nbk,n for all k.

(iii) There are a constant c and uniformly left-c.e. reals γk such that cβk =
αk + γk for all k.

Note that the sequence bkn starts from n = 1. We may think that bk0 = 0 for
all k.

Proof. (i)⇒(ii) Let bk1 , b
k
2 , · · · be computable sequences of non-negative rationals

such that βk =
∑

i b
k
i and let rkn =

∑
i≤n b

k
i . Note that rk0 = 0. Apply Lemma

4.6 to obtain c and pk0 , p
k
1 , · · · as in that lemma. Let ǫkn =

pk
n−pk

n−1

bkn
. Then

∑
n ǫ

k
nb

k
n =

∑
n(p

k
n − pkn−1) = α, and ǫn = pn−pn−1

rn−rn−1
∈ [0, c] for all n ≥ 1.

(ii)⇒(iii) Let bk1 , b
k
2 , · · · be computable sequences of non-negative rationals

such that βk =
∑

n b
k
n. Let ǫ

k
n be as in (ii), and let γk =

∑
n(c− ǫkn)b

k
n.

(iii)⇒(i) Let 0 = rk0 < rk1 < · · · → αk and 0 = sk0 < sk1 < · · · → γk be

computable sequences. Let pkn =
rkn+skn

d
. Then 0 = pk0 < pk1 < · · · → βk and
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αk − rkn = αk + skn − cpkn < αk + γk − cpkn = c(βk − pkn), so by Proposition 4.4,
{αk} ≤us {βk}.

4.2 Existence of a us-complete sequence

We say αk is uniform Solovay complete (us-complete) if {βk} ≤us {αk} for all
uniformly left-c.e. sequences {βk} of reals. We prove existence of a us-complete
sequence.

Let Mi be an effective enumeration of all prefix-free machines.

Definition 4.8. Let

Ωk =

∞∑

i=0

∑

Mi(0k1σ)↓

2−i−1−k−|σ|.

Although the definition is very artificial, this sequence of Omegas has very
natural properties as follows. The notation Ωk comes from (ii) in the proposition
below.

Proposition 4.9. (i) The sequence {Ωk} consists of uniformly left-c.e. reals.

(ii) Ωk ≤ 2−k.

(iii)
∑∞

k=0 Ωk = ΩU for a universal prefix-free machine U .

Proof. Note that Ωk ≤
∑

i 2
−i−1−k = 2−k. Furthermore

∞∑

k=0

Ωk =
∑

i

∑

Mi(σ)↓,σ 6=0n

2−i−1−|σ| = ΩU

where U(0i1σ) = Mi(σ) for all σ such that σ 6= 0n. Note that there is an i such
that Mi(0

n) ↑ for all n and Mi is universal. Then U is also universal.

Theorem 4.10. supk t(2
kΩk) < ∞.

Remark 4.11. Since Ωk ≤ 2−k, the first n-bits of Ωk ∈ 2ω are 0. Then 2kΩk ∈ 2ω

is the result of n-times left-shifts for Ωk.

Proof. For each k there is an i such that V (σ) = Mi(0
k1σ) is universal. Then

ΩV =
∑

Mi(0k1σ)↓
2−k−|σ| is 1-random and so is Ωk. It follows that Ωk is not

dyadic rational. Hence we can assume that there is an s with Ωk,s ↾n = Ωk ↾n
for each k. Let U be a universal prefix-free machine defined in the proof of
Proposition 4.9. We define Ωk,s =

∑∞
i=0

∑
U [s](0i10k1σ)↓ 2

−i−1−k−|σ|.
We build a prefix-free machine M = Mc. By the recursion theorem, we

can assume we know its coding constant c in U . At a stage s the construction
proceeds as follows. Search τ such that U(τ)[s] = 2kΩk,s ↾n and |τ | < n− c for
some k and n. Note that this means that K(2kΩk,s ↾ n) < n − c. If such τ is
found, we choose a string µ 6∈ rngU [s] and declare M(0k1τ) = µ. If such τ is
not found, go to the next stage.
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We see that this construction is valid. Let ν = 0c10k1τ . By the definition
of U , we have U(ν) = M(0k1τ) = µ. Since µ 6∈ rngU [s], it follows that ν 6∈
domU [s]. Thus Ωk − Ωk,s ≥ 2−c−1−k−|τ | ≥ 2−n−k and 2kΩk − 2kΩk,s ≥ 2−n.
Hence 2kΩk ↾ n 6= 2kΩk,s ↾ n. This procedure ensures that if |τ | < n − c then
U(τ) 6= 2kΩk ↾n, whence K(2kΩk ↾n) ≥ n− c for all k and n. By Corollary 3.7,
supk t(2

kΩk) < ∞.

Theorem 4.12. The sequence {2kΩk} is us-complete.

Proof. Let αk be uniformly left-c.e. reals. Then there exists an j such that
αk =

∑
Mj(0k1σ)↓

2−|σ|. Then

2j+12kΩk = αk +
∑

i6=j

∑

Mi(0k1σ)↓

2−i−1−|σ|+j+1,

so {αk} ≤us 2
k{Ωk} by Theorem 4.7.

4.3 Measures of an optimal ML-test

We will show here a version of an optimal ML-test of Theorem 2.11 and 2.10.
Note that our proof is much simpler than those of versions of universality. This
means that optimality is a more natural concept than universality.

Theorem 4.13. Let rn be uniformly left-c.e. reals such that rn ≤ 2−n. Then
the followings are equivalent.

(i) {2nrn} is us-complete.

(ii) There exists an optimal ML-test Un such that µ(Un) = rn.

Proof. (i)⇒(ii). Let {Ωn} be the one defined above. Suppose that {2nΩn} ≤us

{2nrn}. Let un = µ(Un) where {Un} is an optimal ML-test. Then there exists
another optimal ML-test {Vn} such that µ(Vn) = vn =

∑∞
m=1 m · un+2m by

adding extra strings. Note that vn ≤ 2−n
∑∞

m=1 m · 2−2m ≤ 2−n. By Theorem
4.12 we have {2nvn} ≤us {2nΩn} ≤us {2nrn}. Hence {2nvn} ≤us {2nrn} and
{vn} ≤us {rn}. Then by Theorem 4.7 we have drn = vn + γn for some d and
uniformly left-c.e. reals γn.

It follows that drn =
∑∞

m=1 m · un+2m + γn and rn = un+2d +
∑

m 6=d
m
d
·

un+2m + γn. Hence we can construct a ML-test {Wn} such that Wn ⊇ Un+2d

and µ(Wn) = rn by adding extra strings. Furthermore {Wn} is optimal by
Wn ⊇ Un+2d.

(ii)⇒(i). Let {Un} be an optimal ML-test and rn = µ(Un). Let αn be a
uniformly left-c.e. sequence of reals with αn ≤ 2−n. We will show {αn} ≤us

{rn}.
For each m < n, we shall construct a c.e. open set Am

n in stages s. At stage
s act as follows. If Am

n [s] 6⊆ Um[s] then do nothing. Otherwise let t be the last
stage at which we put anything into Am

n (or t = 0 if there is no such stage).
Enumerate into Am

n a set of strings {σi} such that the set is prefix-incomparable
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(so that [[σi]] are pairwise disjoint),
∑

i 2
−|σi| = 22(m−n)(αm,s − αm,t) and σi 6∈

domUm[s] ∪ Am
n [s]. We have µ(Am

n ) ≤ 22(m−n)αm.
Let An =

⋃
m<n A

m
n then µ(An) ≤

∑
m<n 2

2(m−n)αm ≤
∑

m<n 2
m−2n =

2−n. Hence {An} is a ML-test. By optimality of Un there exists d such that
An+d ⊆ Un for some d independent on n. It follows that Un ⊇ An+d =⋃

m<n A
m
n+d ⊇ An

n+d. Hence we enumerate something into An
n+d infinitely

many times and µ(An
n+d) = αn. Let s0 = 0 and let s1, s2, · · · be the stages

at which we put something into An
n+d. Then for i > 0 we have rn,si+1

− rn,si >

2−2d(αn,si − αn,si−1
), so {αn} ≤us {rn}.

4.4 The difference between optimality and universality

Theorem 4.13 gives us another difference between optimality and universality.

Theorem 4.14. For a c.e. ML-random real α < 1, there exists a universal ML-
test {Un} such that µ(Un) = 2−nα. However no optimal ML-test {Vn} satisfies
µ(Un) = 2−nα for a real α.

The former statement is immediate from Theorem 2.11. The latter one
follows from Theorem 4.13 and the following theorem.

Theorem 4.15. The sequence {αk} such that αk = α for all k is not us-
complete.

Proof. Suppose that {α} is us-complete. Let K be the halting set and βk =
K(k) ∈ {0, 1}. Note that βk are uniformly left-c.e. Since {βk} ≤us {α}, we can
approximate βk within 1/2 by using the first finite bits of α. It follows that the
finite bits solve the halting problem, which is a contradiction.

A similar difference can be seen for c.e. martingales. The collection of all
sequences on which d succeeds is called the success set of d, and is denoted by
S[d]. A c.e. (super)martingale d is universal if for any c.e. (super)martingale
f , we have S[f ] ⊆ S[d]. A c.e. (super)martingale d is optimal if, for each
(super)martingale f , there is a constant c such that c · d(σ) ≥ f(σ) for all σ.

Proposition 4.16 (Schnorr [14]). There is a universal c.e. martingale.

Proposition 4.17 (Downey, Griffiths, and LaForte [3]). There is no optimal
c.e. martingale.

The author believes that there is some relation and we need further study.

Discussion

As is seen in Theorem 4.1, α is Solovay complete iff α is 1-random. Then does
us-reducibility have a similar characterization? One may conjecture that {αk}
is us-complete iff {αk} is 1-random. The natural definition of 1-randomness of
a sequence would be

⊕
k αk = {〈k, n〉 : n ∈ αk} is 1-random. Unfortunately
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this is false because a us-complete sequence satisfy αk ≥ ǫ for some ǫ > 0 by
Theorem 4.13 and by Proposition 3.1 but, for such a sequence,

⊕
k αk can not

be 1-random.
The main theorem of this paper is Theorem 4.13. Notice that the proof is

much simpler and more direct than a version of universality. This means that
optimality is a more natural notion.

The characterization of µ(Vn) for an optimal ML-test {Vn} implied another
difference between universality and optimality. A difference between universality
and optimality is known for martingales. We need to study further relation
between tests and martingales.
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