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THE DIFFERENCE BETWEEN THE WEIL HEIGHT
AND THE CANONICAL HEIGHT ON ELLIPTIC CURVES

JOSEPH H. SILVERMAN

Abstract. Estimates for the difference of the Weil height and the canonical
height of points on elliptic curves are used for many purposes, both theoretical
and computational. In this note we give an explicit estimate for this difference
in terms of the y'-invariant and discriminant of the elliptic curve. The method
of proof, suggested by Serge Lang, is to use the decomposition of the canonical
height into a sum of local heights. We illustrate one use for our estimate by
computing generators for the Mordell-Weil group in three examples.

Let E be an elliptic curve defined over a number field K, say given by a
Weierstrass equation

(1) y2 = xi + Ax + B

with A and B in the ring of integers of K. The canonical height on F is a
quadratic form

h:E(K)-+R.
(For the definition and basic properties of h, see [10, Chapter VIII, §9 or 6,
Chapter VI].) The canonical height is determined by this property together with
the fact that the difference

(2) h(P) - \h(x(P))

is bounded as P ranges over E(K), where h is the Weil height on K. In
this paper we will give explicit upper and lower bounds for the difference (2)
in terms of the coefficients of the Weierstrass equation (1). For example, an
immediate consequence of Theorem 1.1 will be the estimate

(3) -\hU) - A*(A) - °-97* < HP) - \h(x(P))
<^h(j) + ^h(A) + l.07.

Here A = -16(4A* + 21B2) and j = -172S(4A)3/A are the discriminant of
( 1 ) and the ./-invariant of E, respectively.
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724 J. H. SILVERMAN

Estimates of this sort have been given by other authors. Dem'janenko [4]
and Zimmer [13] give general, explicit bounds for the Weierstrass equation (1).
However, our estimates are somewhat more precise, and since these are loga-
rithmic heights, a small improvement in the bounds may translate into large
savings for numerical applications. For the family of curves y = x + px,
Bremner and Cassels [1] give an estimate for (2), and for the particular curve
y = 4x -2 8.x+ 25, Buhler, Gross, and Zagier [3] give essentially best possi-
ble bounds. We will compare our results with these earlier estimates and give
examples in §2.

Except for [3], all of the earlier results depend on first giving an explicit
estimate for the difference h(2P) - 4h(P). Lang [8] has pointed out that one
can also obtain an estimate for (2) by adding up estimates for the difference of
the local heights

(4) kv(P)-\\ogmax{\x(P)\v,\}.

He gives such estimates in [6, Chapter I, Theorem 8.4, and Chapter III, Theorem
4.5], making explicit the dependence on j and A, but leaving undetermined
various absolute constants. This makes his results useful for theoretical pur-
poses, but unsuited to actual computations.

In this paper we will follow (with some modifications) the program described
by Lang in [6] to give completely explicit estimates for (2) and (4). We begin in
§1 by stating our main results. After some examples (§2) and preliminaries on
local heights (§3), we give our principal local estimates in §4 (non-Archimedean)
and §5 (Archimedean). It is worth noting that the absolute constants in (3)
arise only from the Archimedean places; we have taken some care to keep these
constants small, which will help explain the length of §5. In §6 we add up the
local results to prove our main theorems.

One practical application of an estimate such as (3) is related to the problem
of finding generators for the Mordell-Weil group E(K). A standard descent will
often (if one is lucky) produce generators for the quotient group E(K)/mE(K)
for some small integer m > 2. (See, e.g., [2 or 10, Chapter X].) The usual
proof of the Mordell-Weil theorem then shows how, in principle, one can find
generators for E(K). However, in order to carry this out in practice, one needs
an explicit estimate for the difference (2). In the last section, we will illustrate
this procedure with three examples.

1. Statement of the main theorems

We set the following notation, which will remain fixed throughout this paper:

K, a field;
E/K, an elliptic curve defined over K ;
h , the absolute logarithmic height on Q ;
h , the canonical height on E(K), when K is a number field.
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DIFFERENCE BETWEEN WEIL AND CANONICAL HEIGHTS 725

If K is a number field, we also let h^ be the Archimedean contribution to
the height. Thus, with the usual notation (cf. [10, Chapter VIII, §5]),

*«(/) = [k\q]   S  b«1o8X   fori€*-

The following result gives our main global estimate for the difference of the
Weil height and the canonical height.
Theorem 1.1. Let K be a number field, and let E/K be given by a Weierstrass
equation

2 3 2(5) E:y + axxy + a^y = x + a2x + a4x + a6

whose coefficients are in the ring of integers of K. Let A be the discriminant of
(5) and let j be the j-invariant of E. Further let

b2 = ax+4a2   and   2=^
1   ifb2 = 0.

Define a "height of F" (really of the Weierstrass equation (5)) by

p(E) = ¿A(A) + MM + ïhJb./U) + I log2*.
Then for all P G E(K),

-¿A(/') - ME) - 0.973 < h(P) - \h(x(P)) < p(E) + 1.07.
Remark 1.2. If E is given by a Weierstrass equation

2 3y  = x  + Ax + B,

then A = -16(4/i3 + 27F2) and ; = -(48^)3/A. If we replace hœ(j) by the
larger quantity h(j), then in this case Theorem 1.1 gives the estimate

(6) -\h(j) - ¿A(A) - 0.973 < h(P) - \h(x(P))
<j\h(j) + ^2h(A)+\m.

This is the version we stated in the introduction. Of course, it is often possible
to do better. For example, if K = Q and A > 0, then l/l^ < 1728, so
nooU) ^ log(1728). This gives a substantial improvement over (6) if A and B
are large.

In special cases it is possible to improve the estimates of Theorem 1.1, espe-
cially the more important lower bound. Rather than try to give the most general
such improvements, we will illustrate the techniques for a particular class of
curves, and leave it to the reader to adapt these ideas to other examples.

Theorem 1.3. Let E/Q be given by a Weierstrass equation

(7) y2 = xi + Ax + B,

and suppose that A, B G Z satisfy the conditions 4A + 21B is square-free and
%cd(A, 3B) = gcd(2, B) = 1. Then \h(x(P)) < h(P) + |log+ |;| + 1.205. If in
addition A> 0, then

2-h(x(P))<h(P) + 2.137.
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726 J. H. SILVERMAN

2. Examples and comparison with earlier estimates
Example 2.1. An often-studied family of elliptic curves is given by the equation

y2 = x3 + B.

This family of curves has j = 0, A = -2433F2 = -432B2, b2 = 0, and
2* = 1, so Theorem 1.1 gives the estimate

(8) -\h(B) - 1.48 < h(P) - x2h(x(P)) < \h(B) + 1.576.
By way of comparison, Zimmer's estimate [13] gives in this case

(9) IMF) - \h([x(P), y(P), 1])| < \h(B) + 1.3863.
We see that the constants in (8) are not as good as those in (9), but the depen-
dence on B is much better. Of course, for computational purposes it is also
preferable to have a bound for h(x), rather than for h([x, y, 1]), since the
latter will generally be | as large as the former, requiring a much larger search
region.

Let us show that the dependence on B in (8) is best possible. For each
integer t gZ, consider the curve and point

Et:y2 = xi + t\        P, = (-t,0).

Since F( is a two-torsion point, we have h(Pt) = 0. On the other hand,

A(x(F()) = log|f|   and   h(Bt) = log|r3|,

so
h(Pt)-\h(x(Pt)) = -\h(Bt).

Since also h(Bt) —> oo as t —» oo, this shows that the lower bound (8) has best
possible dependence on B .

In order to show the same for the upper bound, we cannot look at torsion
points, since we want h(P) to be large. Again for t G Z, we consider the elliptic
curves and points

El:y2 = xi + (t2 + l),        Pt = (-l,t).

Using [11], one finds that the canonical height of F( over the function field
C(i) is equal to \ . It then follows from [9] that

Urn *© -I./-»oo h(t)      3

On the other hand, for the given equation we have

h(Bt) = h(t2 + \)~2h(t)   asi^oo.

Since h(x(Pt)) = A(-l) = 0, we find

»-oo h(Bt) 6 '
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DIFFERENCE BETWEEN WEIL AND CANONICAL HEIGHTS 727

which shows that the dependence on B in the upper bound of (8) is also best
possible.
Example 2.2. Similarly, the elliptic curves

(10) E:y2 = x3 + Ax

with complex multiplication by Z[i] are frequently studied. These curves have
j = 1728, A = -2 A , b2 = 0, and 2* = 1, so Theorem 1.1 reads

(11) -\h(A) - 2.252 < h(P) - \h(x(P)) < \h(A) + 2.038.
Just as in Example 2.1, it is possible to show that the dependence on A is best
possible. (For example, for the lower bound, look at the torsion point (t, 0) on

2 3 2the curve y = x - t x ; and for the upper bound, look at (1, t) on the curve
y2 = x3 + (t2 - 1)X .)

We compare (11) with an estimate of Bremner and Cassels [1]. They work
over Q and consider equation (10) with A = p > 3 prime. They deal only
with points F = (x, y) satisfying x = r/s, gcd(r, p) = 1. In this situation
they obtain the estimate

(12) -\h(p) - 0.232 < h(P) - {-h(x(P)) < \h(p).
Notice that the lower bound in (12) has a better dependence on A = p than

(11), although we observed above that (11) is best possible. The reason that
Bremner and Cassels do better is their restriction to points with gcd(r, p) = 1.
Geometrically, this ensures that F is on the identity component of the Néron
model for the prime p . By using this additional fact, we can improve on (12)
as follows: For the equation (10) with A = p > 3 prime, we have

(13) -2.252 <h(P)-\h(x(P))   if x(P) = r/s, gcd(r, p) = 1.
This is better than (12) as soon as p > 183506. So for practical purposes, (12)
will often be preferable. We briefly indicate the proof of (13).

For the Archimedean place of Q we use Theorem 5.5, obtaining

-^ log(64/>3) - i log(1728) - 0.973 < k^P) - \ log+ \x(P)\x .
For all primes q ^ p , we use Theorem 4.1(a), which gives

0<^(F)-ilog+|x(F)|9.

Finally, for the local height at p we use the condition that gcd(r, p) = 1 to
observe that P reduces to a nonsingular point modulo p . This means that the
local height at p is given by the exact formula

i2lOè(p3)=kp(P)-1rlOg+\x(P)\p.

Summing all of the local heights, the dependence on p vanishes, yielding the
estimate given in (13).

Example 2.3. Consider the curve
2 3E: y + y = x  -Ix + 6

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



728 J. H. SILVERMAN

of conductor 5077 and rank 3 over Q. For this curve, Buhler, Gross, and
Zagier [3] give the estimate

(14) 0<h(P)-^h(x(P))< 0.60254...    for all F g E(Q).

(Note that their h is twice ours.) This curve has A = 5077, ; = 2123373/5077,
b2 = 0, and 2* = 1, so applying Theorem 1.1 directly gives

-2.1 <h(P) - \h(x(P)) < 2.46.
Of course, this can be substantially improved by using the fact that there is only
one component on the fiber of the Néron model at p = 5077, so

¿5077(F)-I/J(x(F)) = ilog(5077).

However, this will still yield something much worse than (14). The reason is
that \j\ is quite large. To get an estimate close to (14), one would need to
redo the Archimedean bound in Theorem 5.5, using the fact that q = e nn is
extremely small. In fact, Buhler, Gross, and Zagier use a series for kx due to
Täte to obtain a very accurate estimate for the local height at the Archimedean
place.

Example 2.4. Consider the curve with equation

E: y  = x - x + 1

with j = 6912/23 . Since 4(-l) + 27(1) = 23 is square-free, we see that this
equation satisfies the conditions of Theorem 1.3. Hence we obtain the estimate

(15) \h(x(P)) < h(P) + ±log^ + 1.205 < h(P) + 1.92.

Example 2.5. Similarly, the curve given by
2 3E: y  = x  -x+15

3 2has 4(-l) + 27(15) = 6071 = 13 • 467, so again we can apply Theorem 1.3.
This gives

(16) \h(x(P)) < h(P) + ¿ log 6»^ + 1.205 < h(P) + 1.222.

Example 2.6. The curve with equation

F: y2 = x3 - 28x - 48 = (jc + 4)(x + 2)(x - 6)

was considered in [10, Chapter X, Example 1.5]. (Actually, the equation in [10]
is Y2 = X3 - \2X2 + 2QX. We have made the substitution X = x + 4 to
eliminate the x   term.) This curve has

a     .ino^n     W .     .      148176      243373A = 409600 = 25     and   j = —^— =-2— .¿* 5
Applying Theorem 1.1, we find that every point F G E(Q) satisfies

(17) -3.27 < h(P) - %h(x(P)) < 2.871.
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By comparison, Zimmer's estimate [13] gives

-3.053 < h(P) - $h([x{P), y(P), 1]) < 3.053.

In §7 we will use these estimates to compute generators for the Mordell-Weil
group over Q of the curves in Examples 2.4, 2.5, and 2.6.

3. Preliminaries on local heights

In this section we set notation and briefly review the basic facts about local
heights that we will need in the sequel. For further explanation and proofs, see
[6, Chapters I, III; 10, Appendix C, §18].

Let K be a field complete with respect to an absolute value v , and let E/K
be an elliptic curve given by a Weierstrass equation

2 3 2y +axxy + a3y = x + a2x + a4x + a6
with discriminant A and 7-invariant /'. The local height function

k = kv:E(K)\{0}^R
is a continuous function, with a logarithmic pole at O, which satisfies the du-
plication formula

k(2P) = 4k(P) + v((2y + axx + a3)(P)) - \v(A)
for all F G E(K) with 2F ± O. As usual, we will let

v(t) =-\o%\t\v   and    \o%~ \t\v=\o%max{\t\v,Y).

The local height is independent of the choice of a Weierstrass equation, and
does not change for finite extensions of K .

In case v is non-Archimedean, if all of the a¡ coefficients are v-integral and
if F € E(K) reduces modulo v to a smooth point, the local height is given by
the formula

A(F) = ilog+|x(F)|,)-1Llog|A|u.
Again, if v is non-Archimedean and if \j\v > 1, then (possibly after a

quadratic extension of K) the curve E has a Täte parametrization E(K) =
K*/qz for some q G K* with |r7|î; = |/'|~ < 1. If u G K*/qz is normalized
by |i|„<|w|t;<l, then the local height is given by

k(u) = log+ 1
+ -B2(a)v(q),

1 - u\v

where a = a(u) = v(u)/v(q)  and B2  is the second Bernoulli polynomial

B2(T) = T2 -T+Xz.
In case v is Archimedean, we can assume that K = C ; then F(C) s C*¡q

for some q G C*, |<?| < 1. In this case the local height of « € C* /qz is given
by

k(u) = \B2(a)v(q) + v(\ - u) + Y V(V ~ A)(l - <A   ')),

where a and B2 are as above.
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Finally, if K is a number field, then the canonical height h on E(K) can
be computed locally as

kP) = Tkrö\ £ nvxv(p)   for all P G E(K), P¿0.

We conclude this section with an elementary inequality which will prove
useful.

Lemma 3.1. For all real numbers a, b > 0,

-log+(o_1) <log+(a/¿>)-log>) + log(¿) <log+(¿>).
Proof. Note that

log+(a/¿>) -log+(a) + log(Z>) = log(max{a, b}/max{a, 1}).

Now one need merely check the six possible size orderings of {1, a, b} .   G

4. Non-Archimedean local heights

Theorem 4.1 (Täte). Let K be complete with respect to a non-Archimedean ab-
solute value v , and let E/K be an elliptic curve with Weierstrass equation

2 3 2(18) E : y + axxy + a3y = x + a2x + a4x + a6

such that all of the aSs are v-integral. Let A be the discriminant 0/(18), and
let j be the j-invariant of E.

(a) For all P G E(K),

-¿log+ \j\v < k(P) - ilog+ |x(P)|„ < t^(A).

(b) If in addition we have

ord,, (;') = -1   and   ord^ (c4) = 0,

then the lower bound in (a) can be replaced by

±loè+\j\v<k(P)-^loë+\x(P)\v.
Proof. The inequality in (a) is proven in [6, Chapter III, Theorem 4.5]. During
the course of the proof it is shown that if F is a Täte curve (i.e., if it has split
multiplicative reduction), then the lower bound is

1      fordv(u)\        ,
¿Murder0 }-

Here we have chosen a u-analytic parametrization

E(K) = K*/qZ

for a certain q G K* with ordv(q) = - ordv(j), and u G K* is chosen normal-
ized to satisfy 0 < ord);(w) < ordv(q).
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Now under the hypothesis in (b), namely ordv(j) = -1, we must have
ordv(u) = 0, which gives the required lower bound of j¿ log+ \j\v.

Suppose now the E is not a Täte curve. Since \j\v > 1, it becomes isomor-
phic to a Täte curve after a quadratic extension L/K. Further, the condition
ord);(c4) = 0 means that L/K is unramified. In this case, F has nonsplit
multiplicative reduction and is isomorphic to a Täte curve in the unramified
quadratic extension over which it attains split multiplicative reduction. Now
the above argument works for points in E(L), so a fortiori it is valid for points
in E(K). [N.B. It is vital that L/K be unramified; otherwise the valuation w
in L would give ord (j) = 2, vitiating the entire argument.]   D

5. Archimedean local heights
In this section we estimate the difference between local heights for Archi-

medean absolute values. This will involve using ^-expansions to estimate vari-
ous functions. Throughout this section, we use the following notation:

T,zeC, Imt > 0,
luit 2n, u = e
Imz log | « |

27Tít 2nizq = e     ,    u = e

a = Imr     log |^| '

We will sometimes also impose one or both of the following conditions:

(*) Im(T) > iv^   (équivalents, \q\ < e nsñ = 0.00433342... ),
-TTV^

r"
(**) 0 < q < j    (equivalently, 1 > \u\ > \q\    ).

Lemma 5.1. Let t G C satisfy \qt\ < 1. Then

<5>g|i-*"*!<(i-M)(i-l9í|)-^    '        '- i-kl'
Proof. For any w G C with |u;| < 1 we have the elementary bounds

\w\
l-\w\

< log j 1 — it» I < I it; I

Substituting w = q"t and summing over n > 1 immediately gives the desired
upper bound; for the lower bound we need merely note that

n>\ n>\ ™     ' '*   ' n>\

Next we prove some estimates relating the modular /'-function j(r), the
modular discriminant A(t) , and the parameter q .
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Lemma 5.2. Assume that (*) is true. Then

(a)

(b)

(c)

-5.7538 <log+|/(T)| + log
1

(2n 12A(T) <2.2;

-5.6795 < log+ \j(x)\ + log\q\ < 2.304;
1     A(t)|-0.105 < log

(2tt)12   Q
< 0.1045.

Proof, (a) To avoid powers of n in our calculations, we let

12r(*) = -¿V2(T)=l+240£-!
(2n> «>1 l

3   nn q

D(T) = -—nA(T) = qH(l-qT.
(271) n>\

Then j(x) = (12^2(t))3/A(t) = Y(t)3/D(t) , so

lQg|;(T)2)(T)| = 31og|r(T)|.

As in [5, Lemma 2.2], it is easy to get an upper bound for T(x) :

ir(T)| < i + 240 y „3 n = j   240|g,i + 4|g| + |g|2 < 2 0813

The last inequality uses (*). Hence,

log+U(T)| + 10g|F)(T)|<10gU(t)Z)(T)|
= 31og|r(r)| < 31og(2.0813) < 2.2.

To prove the other inequality, we must bound T(x) away from 0. As above,
we have

(19) ™ ,.-^1:-vi-.-2 <om^™
n>\

t\/3Notice if we use the trivial estimate \q\ < e~ , then the lower bound (19)
is negative. This reflects the fact that j((\ + \/-3)/2) = 0. We also need the
following estimate for D(x), which follows immediately from Lemma 5.1 with
t= 1:

(20) log|Z)(T)|>log|g|-24     |g|
(i -kl)

Using (19) and (20), we find

log+U(T)|+10g|Z)(t)|
(21) =max{log|/(T)D(T)|,log|Z)(T)|} = max{31og|r(T)|,log|Z)(T)|}

> max |31og (l - 240\q\l + 4'", + f) , logM - 24-^1 .
[l-\Q a-kir
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To find a lower bound for this maximum, we equate the two quantities in
the right-hand side of (21) and solve numerically for \q\. This gives \q\ =
0.003446... and a lower bound of -5.75377... , which completes the proof
of (a).

(b) The upper bound is [5, Lemma 2.2a]; the proof of the lower bound is
similar to (a), so we only briefly sketch it. In place of (21) we find, after some
calculation,

(22)
log+|/'(T)|-l-log|<7|

> max i 3 log (l - 240\q\1 +4\q\ + \q\
(1-M)5

24-1 ,log|<?|

Now one can verify numerically that the minimum of the right-hand side of
(22) occurs at \q\ = 0.0034153... , giving a lower bound of -5.67948....

(c) Using Lemma 5.1 with t = 1 gives

-24-
(1-I<7l

<log 1       A(T)
(27r)12   Q

= 24^1og|l-#"| <24-
n>\ \qV

-Jly/3Since \q\ < e        , we obtain the stated bounds.   D

Next we estimate the Weierstrass p-function and the local height k in terms
of the parameters u and q .

Lemma 5.3. Assume that (*) and (**) are valid. Then

1
(a)

(b)

u
jp(z, x) -

(2ni)2 (I-«)2

1.0506 < log+ 71—72-P(z><
(2*i)

< 0.1682;

-+- 2 log 11 - u\

<21og(l + |</|°);

(c) -0.0665 <A(z) + ±F2(a)log|</| + log|l-w| < 0.0711
Proof, (a) The Weierstrass p-function has the (/-expansion

1
(2te/

rrP(z' t) =
(1-K)

i
2+12

nq u

n>X  .vl-<7"")2
+

n   -1q u
qnu~')2 }-q

n^2

(Cf. [7, Chapter 4, §2 or 10, Appendix C, Proposition 12.6].)
For any t G C with \qt\ < 1 we have the elementary estimate

(23)
n>\ V1

q t

qnt)2
<

1

:i-i9'ir£ Li^i = \Qt\
:i-iii)(i-kfi) 2 '
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Using (23) three times, with t = u, t = u    , and t = 1, we find

:x2(2ni)
p(z, x)-

'l-u)
|1+Q ,1-a

<^ + + +
2|«|

12 * 1 - \q\ \ (1 - l^l1-)2 " (1 - \q\^)2 T (1 - fol)' / •

In the range 0 < a < \ allowed by (**), the quantity in braces has a maximum
at q = j . Combined with (*), this gives the desired bound

(¿?P(Z'^ÏT^?
(b) Letting

we have

F = F(z,t)
(2ni)

< — + 0.08482... < 0.1682

• p(z, x)
[1-uY

(24)
log+ 2P(^> t) + 21og|l -u\

(2ni)
2 2= logmax{|w + (I - u) F\, |1 - u\ }.

From (a), \F\ < 0.1682, so

\u + (1 - w)2F| < |u| + 0.1682(1 + \u\)2 < (1 + \u\)2.

Since also 11 - u\2 < (1 + |w|)2, we immediately obtain the desired upper bound.
(Remember that |w| = \q\a .)

For the lower bound we use the estimate

|m + (1-«)2F| > l-|l-w|-|l -w|2F

> 1 -|1 -m|-0.1682|1 -u\

to obtain

max{|w + (l-M)2F|, |l-w|2}

> max{l - |1 - u\ -0.168211 - u\2, |1 - u\2} > 0.34976.

The minimum value of the middle expression occurs at |1 - u\ = 0.5914..
Substituting into (24) completes the proof of (b).

(c) The local height k(z) is given by the formula

(25)
k(z)= -i£2(a)log|$|-log|l-H|-

-Y^è\(\-Qnu)(\-q"u-{)\
n>\

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DIFFERENCE BETWEEN WEIL AND CANONICAL HEIGHTS 735

(Cf. [6, Chapter I, Theorem 8.1].) Applying Lemma 5.1 twice, once with t = u
and once with t = u~ , gives

l„|l+"1
i-M   l- q l+a +

\Q\
i-k l-a

<Y\oe\(l-q"u)(l-q"u-l)\<T-^-{\q\l+a + \q\l-a}.
n>\

For 0 < a < j , both sides of this inequality are extreme at a = \ , which gives
the estimate
(26) -0.0711 < ^log|(l -^"w)(l - g"«-1)! < 0.0665.

n>\

Combining (25) and (26) gives the desired inequalities and completes the proof
Of (C).     D

We next estimate the difference of the local heights for the classical Weier-
strass equation.

Proposition 5.4.  We have

-0.973-ilog+|/(r)|<A(z)-ilog+  *
A(T)1/6 <1.07 + T^log+|/(T)|.

Proof. Since j(x) and p(z, x) /A(x) are SL2(Z) invariant, we can apply a
linear fractional transformation to x to ensure that it satisfies the condition
(*). We then choose z modulo Zt + Z so that

1 Imz      1
-2^a(z) = ïmT^r

Since k(-z) = k(z) and p(-z, x) = p(z, x), we can replace z by -z, if
necessary, to ensure that 0 < a < \.  Thus we may assume that (**) also
holds.

We begin by applying Lemma 3.1 with

1
a =

[2ni) 12P(Z,T) and   b = 1
(2n) 12A(T)

Note that Lemma 5.2(c) and (*) give the estimate
logo <log|<?| + 0.1045 < -W3 + 0.1045 <0,    i.e., \b\ < 1,

so in this case Lemma 3.1 says that

0 < log+ r - log+ a < - log b.

Multiplying this by -j¿ gives

(27)

T2l0g
(2*)12A(T) <--T2^+ P(z,xf

A(T)

(2*i)
T7P(Z'T) <0.
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Now add (27) to the estimate in Lemma 5.3(c), and then subtract half of the
estimate in Lemma 5.3(b). Many of the terms cancel, and after a little bit of
algebra we are left with

0.0665-log(l + |0f) + 7¿ log 1

<A(z)--log+ p(z, t)
A(T)

(2n)

1
2

12A(T)

+ ^¡B2(a)\og\q\ < 0.5964.

Next subtract the B2 term and, in the lower bound, use Lemma 5.2(c) to replace
^2log\A(x)/q(2n)l2\ by -0.105. This finally gives

a(l —a)-0.1715 + log|(/|-log(l + |</n
(28)

<A(z)-^log+ P(z,xf
A(x) < 0.5964--B2(a)log\q\.

We first deal with the upper bound. Using Lemma 5.2(b) and B2(a) < g ,
valid for 0 < a < 1, we find

0.5964 - \B2(a) log \q\ < 0.5964 - ¿ log \q\
< 1.0697 + 7Llog+|/(T)|.

This and (28) complete the proof of the upper bound in Proposition 5.4.
To prove the lower bound, we use Lemma 5.2(b) and (*), respectively, to

obtain

Q(1~ Q) log M > -2.8898a(l - a) - l- log+ |;(r)|,

-log(l + kr)>-log(l+^"7tN/3Q).

Substituting these into (28) gives the lower bound

(29) -0.1715 - ¿log+ |;(t)| - 2.8898a(l - a) - log(l + e~nV~3a).

Now we reap the reward of keeping track of a in our estimates. Since the
quantities a(\ - a) and log(l + \q\a) cannot both be large, we gain (a bit) on
the final estimate by considering them together. Precisely, one can check that

2.8898a( 1 - a) + log( 1 + e~Ks/3") < 0.8010883.

the supremum occurring at a = 0.407582.
pletes the proof of Proposition 5.4.   D

for all a G R,

Substituting this into (29) corn-

It remains to use the change-of-variable formula to go from a classical Weier-
strass equation to a general equation.
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Theorem 5.5. Let E/C be an elliptic curve given by a Weierstrass equation
2 3 2(30) E:y +axxy + a3y = x +a2x +a4x + a6.

Let A, j, b2, and 2*  be as in the statement of Theorem 1.1.   Then for all
PgE(C),

- i log+ |A| - I log+ |,| - \ log+ | V12| - \ log2* - 0.973
<k(P)-\\og+\x(P)\
< ^log+ |A"'| + ijlog+ \j\ + ^log+ \b2/\2\ + ±log2* + 1.07.

Proof. Choose a x with j(x) = j(E), and let É be given by the equation

É:Y2 = 4X3-g2(x)X-g,(x).
Thus there is an isomorphism

F'(C), zi-+(p(z, x),p(z, x)).

y = \c3Y + sc2X + t

Zt + Z
Choose c g C* and r,i,ieC so that the map

x = c X + r,
gives an isomorphism F'(C) = F(C). Let z e C/(Zt + Z) be the point corre-
sponding to P G E(C). Then

k(P) - \ log+ \x(P)\ = k(z) - \ log+ \c2p(z ,x) + r\.
The usual change-of-variable formulas [10, Chapter III, §1] give b2 + \2r =

— O    onrl     A   —  r.{1\(r\       Hanno.c2b'2 = 0 and A = c12A(t) . Hence,

(31) k(P)-X-\og+\x(P)\=k(z)-l-\og'

It is easy to check that
max{|p(z, t)/A(t)'/6|, 1}

max{|A-1/6|, l}.2*-max{|A2/12|, 1}

i/6p(z,T)     h

i/6 p(z,x)     b2

A(xf6      12

-1/6,

< max

< max

A(T)

P(2, T)

1/6
_2
12 , 1

A(t)"6
Taking logarithms and substituting into (31) gives

,1/6, 1 > • max{|A    |, 1} • 2  • max ÍIAI-'}
— log+|A|- -log2*--log+

JA(F)-ilog+|x(F)|}-i< U(F) A(z)-^log+ p{z, x)
A(x)1/6

< j2 lo8+ lA  ' I + 2 log2* + ? l0g+ 11
12

Now applying Proposition 5.4 gives the desired result.   D
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6. Proof of the main theorems

In this section we add up our local estimates to prove the global theorems
stated in § 1.

Proof of Theorem 1.1. The canonical height h(P) is equal to the weighted sum
of the local heights over all absolute values:

Similarly, for any t g K, the ordinary height is

1
[KTQ]ÄW = fF^öi E ">sX-

In the lower bound in Theorem 5.5, we split the | log+ \j\ as

|log+|/| = ¿log+|7| + ^log+|/|.

Summing the estimates provided by Theorems 4.1(a) and 5.5 then gives

-¿A(./) - p(E) - 0.973 < h(P) - \h(x(P)) < p(E) + 1.07.

In the lower bound, note that A^fA) = h(A), since by assumption A is con-
tained in the ring of integers of K. Likewise, in the upper bound we have used
the identity h (A) = h(A~ ). This completes the proof of Theorem 1.1.   o

Proof of Theorem 1.3. For equation (7) we have

b, = 0,    c. = -2*lA,    A = -24(4^3 + 27F2),    /'= 123—^-T.24 4^3 + 2752

The conditions on A and B ensure that c4 and the denominator of / are
relatively prime; and the denominator of / is square-free. In other words, for

3 2every prime p G Z dividing 4A  + 21B   we have

ordp(/) = -l.

This means that in adding up these non-Archimedean local heights, we can use
part (b) of Theorem 4.1 instead of part (a). We obtain the estimate

log |4^3 + 27F2| < 5>p(F) - \ log+ \x(P)\p).

Next we look at the unique Archimedean place.   We apply Theorem 5.5
directly, which yields

¡L log+ 116(4^J + 27*2)|00 - i log+ \j\x - 0.973

<Aoo(F)-ilog+|x(F)|oo.
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Adding the last two estimates then gives

-|log+U|- 1-205 <h(P)-{h(x(P)).
This completes the proof of the first inequality in Theorem 1.3.

We suppose now in addition that A > 0. Then the above formula for /'
shows that \j\oc < 1728 . The second inequality in Theorem 1.3 is then imme-
diate from the first.   D

7. An application: Generators for the Mordell-Weil group

It is still an open problem to give an effective algorithm for computing gener-
ators of the Mordell-Weil group of an elliptic curve. The proof of the Mordell-
Weil theorem falls into two parts. In the first part, if one is lucky, one finds
generators for the quotient E(K)/mE(K) for some small integer m (typically
m = 2 ). It is then possible to refine this set into a set of generators for E(K)
itself; and this refinement process is effective. However, in practice one needs
an effective estimate for the difference h - \h(x). We will illustrate this process
for the three elliptic curves described in Examples 2.4, 2.5, and 2.6. For other
examples, see [1, 3].

Example 7.1. Let F/Q be the elliptic curve

F : y  = x  - x + 1
considered in Example 2.4. Since #F(F3) = 7 and #F(F5) = 8, we see that
F(Q) has no torsion. A standard descent (cf. [2]) shows that the rank is at most
1, and a brief search for rational points turns up

(32) (-1,1),  (0,1),  (1,1), (3,5), (5,11).
Hence F(Q) has rank 1, and it remains to find a generator.

Using the algorithm in [11], we compute the canonical height of these five
points. The point P = (1, 1) has the smallest height, h(P) = 0.0249... , and
one can then check that the five listed points are (in order) 2F, -3F, P, -4P,
5P. We would like to show that F generates F(Q).

Suppose not. Then P = nR for some n > 2 and some R G E(Q). Further,
since x(P) G Z, we see that also x(R) G Z. If such an R exists, then its height
satisfies

h(R) = \h(P) < \h(P) = 0.0061....
Now we use the estimate (15) from Example 2.4, which says that

h(x(R))<2h(R) + 3.84 < 3.86.
Hence, if R exists, then it satisfies x(R) G Z, and \x(R)\ < e3M < 48. Now
it is a simple matter to check all integer values for x between -1 and 48. (If
x < -2, then x3 - x + 1 < 0.) The only points which appear are the five points
in (32). Therefore R does not exist, which completes the proof that

F(Q) = Z(1,1).
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Notice our computation uncovered all points with integral coordinates and
canonical height less than 0.0061. In particular, it would have found any tor-
sion points, which gives an alternative proof that F(Q) is torsion-free.

The computation in Example 7.1 proceeded especially smoothly because
E(Q) had rank 1. When the rank is greater than 1, the following (unpublished)
observation of Don Zagier is often helpful.

Proposition 7.2 (Zagier). Let K be a number field and E/K an elliptic curve.
For any real number B, let

S(B) = {PGE(K):h(P)<B}.

Suppose that there is an integer m > 2 such that S(B) surjects onto the group
E(K)/mE(K). Then S(B) generates E(K).
Proof. Let G = SpanzS(B). If G ^ E(K), choose a Q G E(K)\G with
minimal height. This is possible, since h(E(K)) is a discrete subset of R.
Since Q ^ S(B), we have a strict inequality h(Q) > B .

Choose a F G S(B) so that P and Q have the same image in E(K)/mE(K),
and write P = Q + mR with R G E(K). Note that R £ G. We will show that
h(R) < h(Q), which will contradict the choice of Q having minimal height,
thereby proving that G = E(K):

h(R) = \h(P -Q)< -^(h(P) + h(Q))
m m

<^j(B + h(Q))    (since F G S(B))
m

<^2h(Q)    (since Q £ S(B))
m

< h(Q)    (since m > 2).   G

Example 7.3. Let F/Q be the elliptic curve

E: y  = x  - x + 15

considered in Example 2.5. Since #F(F3) = 4 and #F(F5) = 8, we see that
F(Q) has at most 2-torsion; it is easy to check that F(Q)[2] = 0. Hence F(Q)
is torsion-free.

A standard descent (cf. [2]) should show that the rank is at most 2 (although
I have not actually done the calculation), and a brief search for rational points
turns up

(33) F = (6, 15)   and   Q = (-2, 3).

We also note that
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Using [11], we compute the heights h(P) = 1.0217... , 'h(Q) = 0.7229, ... ,
and h(P + Q) = 1.4092... , and then the height regulator

,P2    i'?!") =0.7105.((P,\(P, Q)   (Q,Q).
Since the regulator is nonzero, F and Q are linearly independent.

Using the same procedure as in Example 7.1, it is easy to check that F, Q
and P + Q are not in 2F(Q). Hence the map

{0,F,ß,F + Ö}-F(Q)/2F(Q)
is surjective, assuming, as always, that F(Q) has rank 2.   Incidentally, this
surjectivity proves anew that F and Q are independent.

We now apply Proposition 7.2, which says that F(Q) is generated by the set

S = {RG E(Q) : h(R) < h(P + Q) = 1.4092...}.
From (16), any point in S satisfies

h(x(R)) < 2h(R) + 2.444 < 5.27.

So if RgS , and if we write x(R) = a/d   in lowest terms, then

max{|iz|, d } < e '   < 195.

So finally we see that F(Q) is generated by the set

S' = {(^, J^eF(Q):|tf|<194,   1<¿<13, b > oj .

Using a microcomputer, one finds that

S'= f(-2,3),(6, 15), -7   27\    /17   249\ \
4 '  8 J ' V16 '  64 J j

= {Q,P,-P-Q,-P + Q}.
This completes the proof that

F(Q) = Z(-2,3)©Z(6, 15),

subject to the assumption that rank F(Q) = 2.

Example 7.4. We conclude by considering the curve

F: y2 = x3 - 28x - 48 = (x + 4)(x + 2)(x - 6)

from Example 2.6. It is proven in [10, Chapter X, Example 1.5] that the group
F(Q)/2F(Q) is generated by the three points

F = (-3,3),     Q, = (-2,0),     ß2 = (-4,0).

Here, Qx and Q2 are points of order 2, and F has infinite order. We wish to
show that P, Qx, Q2 actually generate F(Q).
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Suppose that they do not generate E(Q). Since Qx, Q2 have order 2 and
since P, Qx, Q2 do generate F(Q)/2F(Q), it follows that

F = mR   for some odd integer m > 3.

(That is, we must have P + T = mR for some T G E[2] and some odd m ,
and then P = m(R + T).) Hence,

1  - 0 7222
h(R) = -\h(P) = 2      < 0.080....

m m
It then follows from (17) that

h(x(R)) <2h(R) + 6.54 < 6.7.
Since also x(R) G Z, we must look for all points R G E(Q) with x(R) G Z
and \x(R)\ < e    < 813 . A computer search finds all such points, namely

{(-4, 0), (-3, 3), (-2, 0), (6, 0), (14, 48), (16, 60)}
= {Q1,P,Ql,Qx + Q1,P + Ql,-P + Q1).

This concludes the proof that

E(Q) = Z(-3, 3) ©Z(-4, 0) eZ(-2, 0) = Z® ^ ® ̂  .
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