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As an adaptation to changing climatic conditions that caused high rates of

photorespiration, C4 plants have evolved to display higher photosynthetic efficiency

than C3 plants under elevated temperature, high light intensities, and drought. The

C4 plants independently evolved more than 60 times in 19 families of angiosperms

to establish similar but not uniform C4 mechanisms to concentrate CO2 around

the carboxylating enzyme Rubisco (ribulose bisphosphate carboxylase oxygenase).

C4 photosynthesis is divided into at least two basic biochemical subtypes based

on the primary decarboxylating enzymes, NAD-dependent malic enzyme (NAD-ME)

and NADP-dependent malic enzyme (NADP-ME). The multiple polygenetic origins

of these subtypes raise questions about the association of C4 variation between

biochemical subtypes and diverse lineages. This review addresses the differences in

evolutionary scenario, leaf anatomy, and especially C4 metabolic flow, C4 transporters,

and cell-specific function deduced from recently reported cell-specific transcriptomic,

proteomic, and metabolic analyses of NAD-ME and NADP-ME subtypes. Current omic

analysis has revealed the extent to which component abundances differ between the

two biochemical subtypes, leading to a better understanding of C4 photosynthetic

mechanisms in NAD-ME and NADP-ME subtypes.

Keywords: C4 photosynthesis, C4 plants, NAD-ME subtype, NADP-ME subtype, comparative transcriptome

analysis

INTRODUCTION

In the warm-climate zones, C4 plants occupy nearly all grasslands and are a major component
of the flora and biomass production through their improved photosynthetic, water and
nutrient-use efficiencies (Sage, 2004; Gowik and Westhoff, 2011). C4 photosynthesis in C4

plants is not a single metabolic pathway. It has been established by a series of biochemical
and morphological modifications to concentrate CO2 at the site of ribulose bisphosphate
carboxylase oxygenase (Rubisco; Sage, 2004). In all C4 plants, CO2 is initially fixed by
phosphoenolpyruvate (PEP) carboxylase. The resulting four-carbon acids are transported to an
interior compartment where Rubisco is localized. Here, CO2 is released by a decarboxylating
enzyme specific for the four carbon acid, and assimilated by Rubisco through the Calvin cycle.
The decarboxylation reaction also produces a three-carbon acid, which diffuses back to the
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compartment where PEP carboxylase is located (Hatch, 1987;
Sage, 2004; Sommer et al., 2012). Almost all C4 plants require
the coordination of mesophyll (M) and bundle sheath (BS)
cells (called Kranz anatomy) to separate primary and secondary
carbon fixation reactions, while a few exceptions use internal
subcellular compartmentalization within a single cell (Hatch,
1987; Offermann et al., 2015).

Historically, C4 photosynthesis in traditional text books has
been classified into three subtypes based on the predominant
decarboxylating enzymes of the four carbon acid, NAD-
dependent malic enzyme (NAD-ME), NADP-dependent malic
enzyme (NADP-ME), and PEP carboxykinase (PEPCK) (Hatch,
1987). However, multiple pieces of evidence challenge the
establishment of the PEPCK subtype; no pure PEPCK-type C4

species has been discovered (Sage, 2004), and the robust model
analysis of “pure PEPCK type” indicates the imbalance of energy
requirements in BS and M cells (Wang et al., 2014). Therefore,
currently NAD-ME and NADP-ME subtypes are suggested as
distinct C4 biochemical pathways, both with or without the
additional service of the PEPCK pathway. Many productive
cereal, forage, and biofuel crops belong to either the NADP-
ME C4 subtype, for example, maize (Zea mays), sugarcane
(Saccharum spp.), and sorghum (Sorghum bicolor), or to the
NAD-ME subtype, for example, switchgrass (Panicum virgatum
L.), pearl millet [Pennisetum glaucum (L.) R. Br], and amaranth
(Amaranthaceae) (Edwards and Walker, 1983).

During the past decade, high throughput tools have made
it possible to quantify the transcriptome, proteome, and
metabolome at the cell- or tissue-levels (Metzker, 2010). Such
applications have expanded the borders and enhanced our
knowledge of C4 photosynthesis, which was first reported in the
1950s. In this review, we focus on the differences associated with
C4 photosynthesis in NAD-ME and NADP-ME subtypes in terms
of genetic, physiological, cytological, biochemical, and molecular
traits.

EVOLUTIONARY SCENARIOS OF
NAD-ME AND NADP-ME SUBTYPES

The evolution of C4 photosynthesis has been achieved over
60 times through individually adaptive steps in 19 families of
angiosperms (Sage, 2004), and was hypothetically triggered by the
decrease of atmospheric CO2 concentration and plant hydraulics
(Christin et al., 2008; Osborne and Sack, 2012). The NAD-ME
and NADP-ME subtypes represent almost equal numbers of
genera in the eudicots, and the NADP-ME subtype dominates in
monocot families (Sage et al., 2011).

The distinct subtypes and lineages of C4 plants were
hypothesized to have evolved in adaptation to selective pressure
such as shortage of nitrogen and water (Liu and Osborne, 2015;
Brautigam and Gowik, 2016). Global geographic surveys of C4

grasses have shown that the NAD-ME subtype occurs more in
drier areas and the percentage of NADP-ME subtypes increases
with annual precipitation (Vogel et al., 1978; Hattersley, 1992;
Taub, 2000). Correspondingly, the largely NAD-ME grass lineage
Chloridoideae exhibits a significantly greater enhancement of

FIGURE 1 | Simplified phylogenetic tree of grasses with selected C4

and C3 families, drawn based on Grass Phylogeny Working Group II

(2012) and Washburn et al. (2015). Black square means the possible

evolutionary conversions between NAD-ME and NADP-ME subtypes.

Representative species of families are marked in parentheses.

water use efficiency than NADP-ME grasses under drought
condition, due to its leaf structure and faster leaf curling
rates (Ghannoum et al., 2002; Liu and Osborne, 2015). High
correlation was observed between photosynthetic nitrogen use
efficiency and the NADP-ME subtype. Plants in the NADP-
ME subtype (except those in the Aristidoideae tribe) tend to
have higher photosynthetic nitrogen use efficiency compared
with other C4 grasses under adequate or deficient nitrogen
supply (Taub and Lerdau, 2000; Ghannoum, 2005; Pinto
et al., 2014, 2015). A reduced content of nitrogen and faster
Rubisco activity in leaves contribute to better nitrogen-use
efficiency in NADP-ME grasses (Ghannoum, 2005). However,
the association of C4 subtypes with particular physiological
traits, and whether the optimization of nitrogen or water usage
drives the evolution of at least some C4 lineages, remain to be
determined.

Multiple origins of C4 photosynthesis have been suggested
as C3 to C4 transitions and evolutionary conversions between
two C4 subtypes (Grass Phylogeny Working Group II, 2012;
Washburn et al., 2015). Figure 1 shows a simplified example
of a phylogenetic tree with selected families of grasses and
three origins (black squares in Figure 1) are considered as
the evolutionary conversions between NAD-ME and NADP-ME
subtypes (Grass Phylogeny Working Group II, 2012; Washburn
et al., 2015). Three models have been proposed to describe the
evolutionary divergence of C4 subtypes. One places the NAD-ME
subtype as the ancestral C4 subtype, with the NADP-ME subtype
evolving from it (Gutierrez et al., 1974; Washburn et al., 2015).
The second model proposes that the NAD-ME and NADP-ME
subtypes were shared at some level in a commonC4 ancestor, then
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individually predominated in distinct lineages (Washburn et al.,
2015). In the third model, NAD-ME and NADP-ME subtypes
evolved independently from a C3–C4 intermediate as their most
recent common ancestor (Washburn et al., 2015).

The evolutionary transition to C4 photosynthesis remains
undetermined. Phylogenomics analysis has indicated the
difference of recruitment of major decarboxylating enzymes into
C4 photosynthesis in NAD-ME and NADP-ME subtypes (Maier
et al., 2011; Christin et al., 2013). The non-photosynthetic NAD-
ME in C3 plants is composed of α and β subunits, and functions
as a homodimer and heterodimer in the respiration of malate in
mitochondria of all cells (Tronconi et al., 2008). In leaves of the
dicot C4 plant Cleome gynandra, transcripts corresponding to
two genes encoding α and β subunits are abundant in BS cells
(Brautigam et al., 2011; Aubry et al., 2014) and the formation
of heterodimeric photosynthetic NAD-ME was found in leaves
of Amaranthus hypochondriacus (Long et al., 1994), whereas in
the monocot C4 plant switchgrass, only one gene encoding the
NAD-ME β subunit is highly expressed in BS cells of leaves (Rao
et al., 2016), and an octamer of only one type of subunit exists in
Eleusine coracana and Panicum dichotomiflorum leaves (Murata
et al., 1989). Phylogenetic analysis indicates that NAD-MEs in
C4 plants evolved from the existing mitochondrial NAD-ME
and may be acquired through changes in regulatory and kinetic
properties, rather than gene duplication (Maier et al., 2011).
In contrast, C4 NADP-ME, which is thought to derive from a
C3 chloroplast-localized ancestor and rooted from an ancient
cytosolic isoform, has specific function in C4 photosynthesis in
BS cells of NADP-ME subtype plants (Maier et al., 2011).

The emergence of C4 NAD-ME and NADP-ME would
include the steps of enriched expression in BS cells and
optimization of enzymatic properties (Maier et al., 2011).
However, the preferential expression of NAD-ME and NADP-
ME may be not exclusively correlated with its corresponding
subtype. Significant transcript levels of genes associated with
NAD-ME subtype C4 photosynthesis and high NAD-ME activity
have been observed in the C3–C4 intermediate species Flaveria
ramosissima, which is close to the NADP-ME C4 Flaveria lineage
(Gowik et al., 2011). Additionally, the NADP-ME ortholog
was found to be preferentially accumulated in BS cells of
NAD-ME subtype switchgrass, in which low NADP-ME activity
was detected (Rao et al., 2016). These unpredicted transcript
profiles may reflect the common C4 ancestor, within which
NAD-ME and NADP-ME subtype C4 pathway are present
together at some level (Gowik et al., 2011; Washburn et al.,
2015).

KRANZ ANATOMY IN LEAVES OF
NAD-ME AND NADP-ME SUBTYPES

In most C4 species, an altered arrangement of cells within
the leaf known as Kranz anatomy facilitates the cellular
compartmentation of carboxylation and decarboxylation (Nelson
and Langdale, 1992; Heckmann, 2016). A typical Kranz anatomy
includes an outer layer of chloroplast-containing M cells for
initial carboxylation, and an inner layer of large, distinctive BS

cells that surround the vascular bundle for carbon reduction
(Sage, 2004).

Kranz form varies as a consequence of the distinct
evolutionary origins of C4 plants (Fouracre et al., 2014). In
the NADP-ME subtype, the layer of cells between the BS cells
and the vascular bundle is absent, and suberin is deposited
in the BS cell wall. BS chloroplasts with reduced grana are
arranged centrifugally in monocotyledons and centripetally in
dicotyledons (Gutierrez et al., 1974; Hattersley andWatson, 1976;
Prendergast et al., 1987; Lundgren et al., 2014). Comparatively,
the vasculature of the NAD-ME subtype is usually surrounded
by a double sheath, consisting of the outer BS and the inner
non-photosynthetic mestome sheath (Prendergast et al., 1987;
Lundgren et al., 2014). Suberin ubiquitously deposits in the
mestome sheath rather than in BS cells, and BS chloroplasts
with developed grana are arranged centripetally (Hattersley and
Watson, 1976; Nelson and Langdale, 1989; Fouracre et al.,
2014; Mertz and Brutnell, 2014). Loss of one layer of mestome
sheath cells in the NADP-ME type suggests differences in the
origination of cell divisions. The single BS in C4 NADP-ME type
grasses is derived from the procambium and M cells develop
from the ground meristem. In the double-sheath species of the
NAD-ME type, both the BS and M cells are derived from the
ground meristem and the mestome sheath is derived from the
procambium (Nelson and Langdale, 1989; Soros and Dengler,
2001).

METABOLITE FLOW OF C4

PHOTOSYNTHESIS IN NAD-ME AND
NADP-ME SUBTYPES

All C4 plants share a common enzymatic step, the initial
carboxylation reaction catalyzed by PEPC to yield oxaloacetic
acid (OAA) in M cells (Sage, 2004). Subsequent steps to
concentrate CO2, the transportedmetabolites, and the subcellular
localization of the decarboxylation reaction, differ between the
different biochemical subtypes (Figure 2).

The traditional biochemical view of the NADP-ME subtype
places malate, derived from OAA, as the dominant transported
metabolite to diffuse to the BS cells. Pyruvate is formed during
the decarboxylation reaction, and returns to the M cells to be
phosphorylated back to PEP. The synthesis of malate occurs in
the M chloroplasts and the decarboxylation by NADP-ME in the
BS chloroplasts. In contrast, NAD-ME plants use aspartate as the
major transport metabolite, which is formed by transamination
of OAA. After transfer to the BS cells, aspartate is converted
to malate by a reductive deamination reaction. Pyruvate is also
formed during the NAD-ME decarboxylation reaction, but is
partially transported back to the M cells in the form of alanine
to maintain the ammonia balance between the two cell types.
Alanine in the M is converted through several steps into PEP,
which provides the precursor for a new round of carboxylation
and decarboxylation.

In the NAD-ME subtype, aspartate is synthesized in
the M cytosol, while malate formation and decarboxylation
by NAD-ME occur in the BS mitochondria (Hatch, 1971;
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FIGURE 2 | Detailed schematic of the C4 photosynthesis pathway of NAD-ME and NADP-ME subtypes. The major C4 biochemical pathway, the additional

PEPCK pathway and the possible alternative pathway are indicated with bold, narrow, and dashed lines, respectively. The abundances of 4-carbon acids (metabolite

level) and transporters (transcript level) are indicated with font style (with bold representing more abundant) and font/circle size (with larger representing more

abundant), respectively. Ala, alanine; Asp, aspartate; Mal, malate; Pyr, pyruvate; OAA, oxaloacetate; PEP, phosphoenolpyruvate; CA, carbonic anhydrase; PEPC,

phosphoenolpyruvate carboxylase; PPDK, pyruvate/orthophosphate dikinase; AspAT, aspartate aminotransferase; AlaAT, alanine aminotransferase; NADP-MDH,

NADP-dependent malate dehydrogenase; NADP-ME, NADP-dependent malic enzyme; NAD-MDH, NAD-dependent malate dehydrogenase; NAD-ME,

NAD-dependent malic enzyme; PCK, phosphoenolpyruvate carboxykinase. 1, Plasma membrane intrinsic protein (PIP); 2, dicarboxylate transporter 1 (DiT1, OMT1);

3, phosphate/phosphoenolpyruvate translocator (PPT); 4, sodium bile acid symporter 2 (BASS2) and sodium:hydrogen antiporter (NHD); 5, malate phosphate

antiport 1 (DIC1) and phosphate proton symport (PIC); 6, mitochondrial carrier (DTC); 7, mitochondrial pyruvate carrier (MPC); 8, plasma membrane intrinsic protein

(PIP) of chloroplast; 9, proton:pyruvate cotransporter (MEP); 10, dicarboxylate transport 2 (DiT2, DCT2).

Edwards and Walker, 1983; Hatch, 1987; Weber and von
Caemmerer, 2010; Figure 2). In addition, the activity of
PEPCK enzyme was detected at different levels in multiple
lineages of NAD-ME and NADP-ME subtypes, which can
decarboxylate OAA to PEP for CO2 release in the cytosol
of BS cells (Pick et al., 2011; Sage et al., 2011; Figure 2).
The supplementary utilization of the PEPCK pathway in
some C4 plants is considered to enhance plant adaption to

various environmental conditions (Wang et al., 2014; Furbank,
2016).

However, flexibility in the NADP-ME type C4 carbon fixation
mechanism has been observed. Early C14 labeling experiments
in maize (NADP-ME type C4 monocot) showed that label was
incorporated into both malate and aspartate, with the latter
occupying a minor but significant proportion (approximately
25%) of the active C4 acid pool (Hatch, 1971). Subsequent
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experiments showed that, in the presence of 2-oxoglutarate,
aspartate can be decarboxylated by isolated BS cells of maize
at lower rates (Chapman and Hatch, 1981). A similar study in
Flaveria bidentis (NADP-ME type C4 dicotyledon) revealed that
aspartate and malate contributed equally to transfer CO2 to the
BS cells (Meister et al., 1996). High levels of transcripts encoding
the major isoforms of aspartate aminotransferase (AspAT)
and alanine aminotransferase (AlaAT) were detected in maize
leaves, and enzymatic assays further confirmed the sufficiency
of aminotransferase activity to carry out the carboxylation and
decarboxylation reaction (Pick et al., 2011). Interestingly, cell-
specific transcriptome analysis has revealed that AspAT and
AlaAT are preferentially expressed at high levels in M and BS
cells, respectively, in both NADP-ME type maize and Setaria
viridis (Chang et al., 2012; John et al., 2014). The preferential
accumulation of AspAT and AlaAT proteins was confirmed by
proteomics analysis in isolated M (Majeran et al., 2005) and BS
(Manandhar-Shrestha et al., 2013) cells of maize.

Several hypotheses have been put forward to explain how
aspartate contributes to carbon fixation in NADP-ME plants.
Majeran et al. (2005) suggested that the abundance of AspAT in
M chloroplasts serves as a metabolic link between amino acid
synthesis and nitrogen assimilation to generate aspartate as the
final step of incorporation of ammonia into amino acid. This
view is consistent with the observation of accelerated turnover
of aspartate in response to nitrogen deficiency in maize leaves
(Khamis et al., 1992). The reduction of cellular aspartate may
decrease the rate of protein synthesis, and transcriptome analysis
has indeed revealed reduced expression of protein synthesis-
related genes in some NADP-ME plants (Brautigam et al., 2011;
Gowik et al., 2011). This likely causes the reduction of protein
content and therefore higher nitrogen-use efficiency in NADP-
ME plants, compared with that of their NAD-ME counterparts
(Brautigam and Gowik, 2016).

The fate of aspartate after translocation from M to BS
cells is unclear. One proposal is that it can serve as a C4

regulator by influencing the transport of malate or pyruvate
across the BS chloroplast, rather than serving a metabolic role
(Chapman and Hatch, 1979). Another proposal is that AspAT
in BS cells converts aspartate into OAA. OAA can be directly
decarboxylated in the cytosol by PEP-CK (route I), or re-
reduced to malate and then decarboxylated by NADP-ME in
the chloroplast (route II) (Furbank, 2011; Gowik and Westhoff,
2011; Pick et al., 2011). However, for route I, no or limited
PEP-CK activity has been reported in some NADP-ME subtype
plants such as S. bicolor and F. bidentis; for route II, the mixed
model including four transfer acids (aspartate, malate, alanine,
and pyruvate) of the NADP-ME subtype requires comparable
amounts of AspAT and AlaAT in BS cells to those in M
cells, which is not consistent with the finding of the unequal
accumulation of aminotransferase in M and BS chloroplasts in
maize (Majeran et al., 2005; Manandhar-Shrestha et al., 2013).
Rigid definitions of decarboxylation pathwaysmay bemisleading,
and variants of the C4 NADP-ME subtype may be considered
(Wang et al., 2014). Aspartate may be transaminated and
decarboxylated by PEP-CK in NADP-ME variants that present
sufficient PEP-CK activity, such as maize, or be transformed

into the donor of NADP-ME in NADP-ME variants such as
F. bidentis, which has substantial PSII activity in BS to maintain
redox balance during the reduction of aspartate (Meister et al.,
1996).

PLASTID TRANSPORTERS INVOLVED IN
C4 PHOTOSYNTHESIS IN NAD-ME AND
NADP-ME SUBTYPES

The dispersed sub-localization of carboxylating, decarboxylating,
and transaminase enzymes in M and BS cells of C4 plants
requires the collaboration of multiple translocators to transfer
reaction substrates and products across membranes. NAD-ME
and NADP-ME subtype plants utilize different plastid transports
to maintain this metabolite flux (Figure 2).

In all C4 versions, pyruvate is predominantly found in M cells,
where it is converted to PEP as the precursor for fixing CO2.
Pyruvate in M cells is compartmented in chloroplasts making its
cytosolic concentration low (Ohnishi et al., 1990). Two different
mechanisms for transport of pyruvate into M chloroplasts have
been identified in a range of C4 species: proton-dependent
and sodium-dependent (Aoki et al., 1992; Furumoto et al.,
2011), with the assumption that NAD-ME and NADP-ME types
might use sodium:pyruvate and proton:pyruvate cotransporters,
respectively (Ohnishi et al., 1990; Weber and von Caemmerer,
2010). Recent comparative transcriptome analyses between
NAD-ME and NADP-ME type C4 plants have supported this
hypothesis; transcripts encoding sodium:pyruvate cotransporter
were preferentially expressed in M cells of the NAD-ME-type
plants switchgrass andC. gynandra, whereas transcripts encoding
proton:pyruvate cotransporter were enriched in M cells of the
NADP-ME-type plants S. viridis and maize (Chang et al., 2012;
Aubry et al., 2014; John et al., 2014; Rao et al., 2016).

The decarboxylation and assimilation of CO2 both happen
in BS chloroplasts of NADP-ME type plants, and metabolite
transporters are required to transfer malate and pyruvate across
the chloroplast envelope membrane. The major decarboxylating
enzyme NAD-ME, NAD-MDH, and AspAT are restricted to
mitochondria in NAD-ME subtypes. Compared with NADP-
ME subtypes, additional mitochondrial transporters are required
in NAD-ME subtypes, including those for imported OAA and
glutamate, exported aspartate and 2-oxoglutarate for the AspAT
processes and imported malate and exported pyruvate for the
NAD-MDH and NAD-ME processes. These postulated carriers
involved in the C4 biochemical pathways are indicated on
Figure 2.

A high rate of CO2 diffusion across the plasma membrane
of M cells is expected in all C4 versions. Compared with
NADP-ME subtype plants, an additional transport process is
required to facilitate the CO2 permeability of BS chloroplasts in
NAD-ME subtype plants since CO2 is released outside of the
chloroplast. The membrane channel aquaporins, PIPs (plasma
membrane intrinsic protein), have been demonstrated to mediate
M CO2 conductance in leaves of some C3 plants such as tobacco
(NtAQP1; Uehlein et al., 2008), Arabidopsis (AtPIP1;2; Uehlein
et al., 2012), and barley (PIP2 family; Mori et al., 2014). The
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TABLE 1 | Summary of the different traits associated with NAD-ME and NADP-ME subtypes.

Traits Description NAD-ME NADP-ME Reference

Evolutionary scenario Recruitment of NAD-ME or

NADP-ME from C3

ancestor

NAD-ME comes from

existed mitochondrial

NAD-ME; dual performance

in C4 photosynthesis and

all cells

NADP-ME arises from gene

duplication from C3

ancestor; specific function

in C4 photosynthesis

Maier et al., 2011

Physiology Higher water use efficiency

(?)

Higher photosynthetic

nitrogen use efficiency

Ghannoum, 2005; Pinto

et al., 2014, 2015

Kranz anatomy Chloroplast position in BS

cells

Centrifugal Centripetal in monocot

centrifugal in dicot

Lundgren et al., 2014

Grana in BS chloroplasts Developed Reduced

Inner layer of bundle sheath

in BS cells

Double sheath (mestome

sheath and vascular

bundle)

Single sheath (vascular

bundle)

The origination of cell

division

BS and M derived from the

ground meristem; the

mestome sheath derived

from the procambium

BS derived from the

procambium; M cells

derived from ground

meristem

Soros and Dengler, 2001

C4 biochemical cycle Enzymes and site of

decarboxylation

NAD-malic enzyme in

mitochondrion

NADP-malic enzyme in

chloroplast

Furbank, 2011; Gowik and

Westhoff, 2011; Pick et al.,

2011

Decarboxylated acid Aspartate/alanine Malate/pyruvate

Aspartate/alanine (?)

C4 plastid transporters Pyruvate transport in

chloroplasts of M cells

Sodium:pyruvate

cotransporters

Proton:pyruvate

cotransporters in monocots

Weber and von

Caemmerer, 2010;

Brautigam et al., 2011;

Furumoto et al., 2011

Transporters in

mitochondrion of BS cells

Required N/A

CO2 transport in

chloroplasts of BS cells

Required N/A

M and BS cell-specific

function

PSII activity in BS cells Enhanced Reduced Meierhoff and Westhoff,

1993

C4 acid decarboxylation

and assimilation

Light-dependent; sufficient

supply of

ribulose-1,5-diphosphate in

Calvin cycle

Partially light-dependent;

insufficient supply of

ribulose-1,5-diphosphate in

Calvin cycle

Hatch and Kagawa, 1976

Cell type-gene enrichment RNA regulation enhanced

or equally distributed in M

cells; protein biogenesis

enhanced or equally

distributed in BS cells

RNA regulation enhanced in

BS cells; protein biogenesis

enhanced in M cells

Chang et al., 2012; Aubry

et al., 2014, John et al.,

2014; Rao et al., 2016

The statements remaining in argument are indicated with question marks. BS, bundles sheath; M, mesophyll; N/A, not applied.

role of PIPs in CO2 diffusion is still unclear in C4 plants.
The diurnal expression of ZmPIPs in the M of maize leaves
might suggest their possible roles as CO2 facilitators (Hachez
et al., 2008), and CgPIP1B was suggested to be the candidate
CO2 transporter across the M cell plasmalemma in Cleome
(Brautigam et al., 2011). PIPs, especially the PIP2 subfamily, also
show high water transport activity (Katsuhara and Hanba, 2008)
and the activity of PIPs is dynamically controlled in BS cells
in Arabidopsis as a response to hydraulic stress (Shatil-Cohen
et al., 2011). The dual roles of PIPs in CO2 and water transport
might be responsible for CO2 assimilation and water movement
in C4 plants, also contributing to resistance of C4 plants to
drought stress. Furthermore, it is worth considering whether the
additional service of PIPs in BS cells of the NAD-ME subtype
increases drought tolerance, at least in some lineages.

M and BS CELL-SPECIFIC FUNCTIONS
IN NAD-ME AND NADP-ME SUBTYPES

The spatial compartmentation of many metabolic pathways has
been observed in M and BS cells of C4 plants (Majeran et al.,
2005), and has generally been considered to be associated with
the spatial separation of carboxylation and decarboxylation in
the two cell types. There are both overlapping and differential
cell-specific features of metabolic pathways in M and BS cells
in NAD-ME and NADP-ME plants (Zhao et al., 2013; Koteyeva
et al., 2014).

The light-dependent reactions of photosynthesis are not
equally distributed in M and BS cells of NADP-ME plants.
There is a depletion of PSII activity and reduction of the
associated development of grana generally present at various
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degrees in BS chloroplasts of NADP-ME type species such as
maize, sorghum, and sugarcane (Chapman and Hatch, 1981;
Meierhoff andWesthoff, 1993). In contrast, enhancement of PSII
activity and grana development in BS chloroplasts is observed in
NAD-ME plants (Edwards and Walker, 1983). This is because,
in the NADP-ME subtype, the primary shuttle of malate from M
cells to BS chloroplasts provides NADPH, the balance of which
would be influenced by a high level of PSII activity, whereas
the transferred C4 acid aspartate in NAD-ME subtype does not
deliver NADPH as reductive power (Edwards and Walker, 1983;
Koteyeva et al., 2014).

Biochemical studies have further revealed differences in
metabolic control of the Calvin cycle in BS cells of NAD-ME
and NADP-ME subtypes; the addition of ribose-5-phosphate
significantly increased light-dependent CO2 fixation, and light
is required in C4 acid decarboxylation and assimilation into the
Calvin cycle in maize (NADP-ME type), but ribose-5-phosphate
only partially or little affected light-dependent CO2 fixation
in Atriplex spongiosa and Panicum miliaceum (NAD-ME type;
Hatch and Kagawa, 1976). This suggests that there would be
insufficient supply of ribulose 1,5-diphosphate in the Calvin
cycle and the ratio of C4 assimilation into the cycle might
be controlled in NADP-ME subtype, whereas the Calvin cycle
functions independently in NAD-ME subtype plants (Hatch and
Kagawa, 1976).

Recently, comparative transcriptome analysis has indicated
differential enrichment of transcripts involved in RNA regulation
and protein biogenesis/homeostasis in M and BS cells of two
NAD-ME-type plants (switchgrass and Cleome) and two NADP-
ME-type plants (maize and S. viridis) (Chang et al., 2012; Aubry
et al., 2014; John et al., 2014; Rao et al., 2016). Transcripts
involved in protein synthesis, folding, and assembly are more
abundant in M cells in the two NADP-ME-type plants, but
are preferentially or equally expressed in BS cells of the two
NAD-ME-type plants. In contrast, transcripts involved in RNA
regulation are enriched in BS cells of the two NADP-ME-type
plants, but are more abundant in M cells of the NAD-ME-
type plant switchgrass. The differentiation for transcriptional and
post-transcriptional regulatory mechanisms in M and BS cells
of NADP-ME and NAD-ME types might be associated with the

unequal distribution of metabolites within the M and BS cells of
these two subtypes (Rao et al., 2016).

CONCLUSION

A brief overview of the differences in features of NAD-ME
and NADP-ME plants is shown in Table 1. C4 photosynthesis
represents one of the most successfully evolutionary events
in response to environmental change on the earth and can
be divided into two broad biochemical groups, NAD-ME and
NADP-ME. A clear statement of dichotomy in morphology
and biochemistry can be made between the two C4 subtypes
with some exceptions (Sage, 2004; Sage et al., 2011; Lundgren
et al., 2014). The nature and commonality of C4 transporters
and cell-type specific functional differentiation still remain to be
determined beyond a few well-studied species, to explore whether
these are common in most C4 plants or only within some C4

lineages. The diversification of physiological, biochemical, and
molecular functions of the NAD-ME type and NADP-ME type
might be a result of their distinct evolutionary pathways, and
be associated with the accommodation of various environmental
conditions.
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