
The Different Dimensions of Dynamicity

Mayur Deshpande and Nalini Venkatasubramanian

Donald Bren School of Information and Computer Science

University of California, Irvine

Email: {mayur, nalini}@ics.uci.edu

Abstract

In a Peer-to-Peer (P2P) network, a ‘fabric’ of over-

lay links helps peers discover and use other peers’ re-

sources. This fabric, however, is highly dynamic and con-

stantly changing. While different measures of dynamicity

have been implicitly and explicitly proposed, there is lack of

deeper understanding about the various aspects of dynam-

icity. In this paper we systematically evaluate and quantify

different dimensions of dynamicity through controlled gen-

eration of different dynamic networks. We also introduce a

new dimension of dynamicity, persistence, which quantifies

stable nodes in a network. This measure could be quite use-

ful in the design and testing of P2P protocols that exploit the

presence of stable nodes. Also, quite coincidentally, and to

our surprise, a certain type of dynamic network that we de-

signed has node degree properties that resemble those ob-

served in social networks.

1. Introduction and Related Work

Peer-to-Peer(P2P) networks are evolving into an impor-

tant paradigm to support scalable, fault-tolerant and low

cost sharing of information and resources over the inter-

net. There is, therefore, a growing and widespread inter-

est in researching P2P networks to make them more ef-

fective and efficient. Researchers have explored [3] use of

novel data-structure abstractions such as Distributed Hash

Table [15] to construct overlays that have theoretical guar-

antees for object location and routing. Others propose mak-

ing current P2P application protocols more efficient through

better search protocols and scalable architectures [6, 17].

Many have also been actively observing, measuring and

quantifying different characteristics of current P2P sys-

tems [16, 9, 5] to get a ‘grounds-up’ understanding of

user/peer behavior in these networks. The studies show that

a key characteristic of P2P networks is their highly dynamic

nature [16]. In this respect, P2P networks are quite differ-

ent from other (relatively) well studied large networks such

as the Internet router network (routers are designed explic-

itly to be fail-safe) or the World Wide Web (WWW) (where

we-pages exist from weeks to years). Furthermore, under-

standing basic characteristics of a network impacts the pro-

tocols designed to operate in that environment [14]. We be-

lieve that, for P2P networks, understanding overlay dynam-

icity can be a key factor in designing effective and efficient

protocols and architectures.

1.1. Related Work

Dynamicity measure of files/objects in a P2P network

have been well studied and documented [9]. Empirical data

on aggregate node statistics (such as uptime) have also been

documented [16]. However, there seem to be a lack of statis-

tics that can reveal in a straightforward and intuitive way

the different dynamic characteristics of the whole network

of nodes.

Previous work [11, 5] has has addressed this issue to a

certain extent. In [11], the authors propose a measure of dy-

namicity called Half-life which measures the time taken for

half of the nodes in the network to change. Thus, a lower

half-life directly corresponds to a more dynamic network.

In [5], the authors (implicitly) define a notion of dynamicity

called turnover which indicates how many nodes are join-

ing and leaving the network in a given unit of time. How-

ever, these measures of dynamicity are not studied exclu-

sively by themselves but rather are introduced to provide a

basis to study or prove other properties of a P2P network.

Moreover, there is no information on how these different

metrics ‘interact’ in a network. For example, can one say

that if a network has a high turnover it will have a small

half-life?

1.2. Our Contribution

This paper makes three contributions to the study of net-

work dynamicity:

1. In addition to half-life and turnover, we identify two

more basic measures of network dynamcity, viz., size-

change and persistence. Persistence can be an useful

metric to quantify stable nodes in a network.

2. We generate different dynamic networks systemati-

cally and measure the values of the four metrics in the

networks. These measurements shed light on the corre-

lations and behavior of the four metrics and show that

no one metric is enough to characterize the dynamic-

ity of the network by itself.

3. We study the ‘evolution’ of the different networks and

observe that certain real-world network structures can

in fact be explained using simple rules and processes.

The rest of the paper is as follows. In Section- 2 we

present our model of a dynamic graph, which is used as a

basis to define the various dynamicity measures. In Section-

3, we present our approach to generate different dynamic

graphs. The dynamicity measures for these different graphs

and the inter-relation between the different measures is ex-

plored in Section- 4. In Section- 5, we explore the distribu-

tion of degree of the emergent network for the different dy-

namic graphs. We conclude in Section- 6.

2. Dynamic Graph Model

In this section, we formally define a model of a dynamic

graph and define various dynamicity measures with respect

to this model.

Dynamic graphs have an implicit notion of change and

time i.e the structure of the graph changes over time. An in-

tuitive way to think about a dynamic graph is, as a ‘record-

ing’ of snapshots of the evolving graph. Operations that

took place between graph snapshots are recorded so that ap-

plication of the operations on a previous snapshot yields the

next snapshot. We define this notion more formally as fol-

lows:

A Static Graph is defined as a graphG = {V,E} of ver-
tices and edges. A Dynamic Operation on a static graph is

any operation that changes the structure of the graph. We

define four dynamic operations in our model: AddVertex,

DeleteVertex, AddEdge & DeleteEdge. As their name sug-

gests, the operations are quite straightforward. For example,

AddVertex adds a new vertex to a graph.

Application of an ordered set of operations, {Oi}, on
a static graph, Gi, leads to the evolution of the graph to

Gi+1. Gi and Gi+1 are called consecutive Graph Snap-

shots. Graph snapshots could also be time-stamped to de-

note the time at which the snapshots were taken. A graph

snapshot is then denoted as Gt
i, the ith snapshot taken at

time t.
A Dynamic Graph DG is an ordered set of graph snap-

shots and the set of operations following each snapshot:

DG = {(G0
r, O

0
r), (G1

s, O
1
s)..(Gi

t, O
i
t)}, r < s < t (1)

The set of operations, Oi is never null i.e. two consec-

utive snapshots differ by at least one vertex or one edge.

The vertex set and edge set of a graph snapshot Gt
i are de-

noted as V t
i and Et

i respectively. Sometimes, for simplicity,

a graph snapshot is referenced by either just its snapshot

number as Gi or the time of the snapshot as Gt, as is ap-

propriate. Also, Gi ∩ Gi+1 may include the null set ({∅})
i.e. the set of vertices, if any, in Gi+1 are completely differ-

ent from the ones in Gi.

Using this model of the dynamic graph in, we now define

various dynamicity measures. These measures are all de-

fined exclusively with respect to vertices. Analogous mea-

sures with respect to edges could also be defined.

2.1. Dynamicity Measures

2.1.1. Graph Turnover We define graph turnover, θ, as
the fraction of vertices that have ’left’ the graph between

two snapshots over the total number of vertices in the ini-

tial snapshot:

θ(Gi, Oi, Gj ,) = NumDeleteV ertex(Oi)/|Vi| (2)

NumDeleteV ertex(Oi) returns the number of

DeleteVertex operations in Oi. Oi is the set of opera-

tions needed to transition Gi to Gj .

Turnover could also be measured as the total number of

vertices added (AddV ertex) during a particular timeframe
or the combination of bothAddV ertex andDeleteV ertex
operations. Turnover has been mentioned implicitly in [5].

2.1.2. Half-life Half-life of a graph is the minimum time

taken for half of the vertices in a graph to change (either

through addition or deletion). It can be defined (for a given

time of reference, i) as:

HalfLife(DG, i) = (j − i) ∧ min(j) ∧ j > i ≥ t (3)

|V i ∩ V j | ≥ |V i|/2 or |V i ∩ V j | ≥ |V j |/2

Therefore, half-life is the minimum time needed so that

the two snapshots differ by at least half of the nodes in ei-

ther snapshot (see [11] for a more detailed explanation and

analysis).

2.1.3. Graph Size-Change Graph size-change, δ, given a
graph snapshot,Gi, and the set of operations, O, performed
on Gi is defined as:

δ(Gi, O) = 1 − MinSize(Gi, O)/MaxSize(Gi, O) (4)

Let (g1, g2, ...gi) denote the graphs that have evolved

from Gi after application of each operation in {O}
(oi, o2, ...oi). Note that gi results after application of of all

operations, from (o1...oi). Using this, we define:

MinSize(Gi, O) = min(|v1|, |v2|, ...|vi|)

MaxSize(Gi, O) = max(|v1|, |v2|, ...|vi|)

Graph size-change, therefore, gives an intuitive feel into

the fluctuation of the size of a graph (in vertices) between

the two snapshots. A value close to zero indicates that the

graph size did not vary by much, while a value close to one

indicates the opposite.

2.1.4. Graph Persistence We define a measure for graph

dynamicity called Graph Persistence, σ. Persistence be-
tween two snapshots Gi and Gj , j > i (or even Gi and

Gj), is defined as:

σ(Gi, Gj) = 1 − (|Vi ∩ VJ |)/|Vi| (5)

i.e. the fraction of vertices remaining in the new snap-

shot over the total number of vertices in the old snapshot.

Persistence of a graph gives an intuition into how much a

graph has ‘changed’ (or not changed) between snapshots. A

value close to zero indicates the graph has changed dramat-

ically between the two snapshots while a value closer to one

indicates that the change is small.

3. Generation of Dynamic Networks

In this section we describe our process for generating

different dynamic networks. The networks are generated by

combining three policies in various ways (the policies and

their values are shown in Figure 2) . The policies control the

distribution of lifetimes of nodes, how new nodes attach and

how nodes leave the network. The policies are ‘plugged’

into a network simulator to simulate various types of dy-

namic networks. We first describe the simulator followed

by the three policies.

3.1. The Dynamic Network Simulator

Our simulator (Fig. 1) follows the general dynamic graph

model presented in Section 2. Each simulation is driven

by certain simulation parameters (values used in our sim-

ulations are listed in Fig. 2). Each simulation is started

with a graph snapshot that has the specified number of ver-

tices. This initial snapshot is built using only AddV ertex
and AddEdge till the required amount of vertices are met
(GraphSize).
After snapshot-0 is built, the graph is allowed to change.

Snapshot-0 is equivalent toG0

0
(snapshot zero at time zero).

Time is incremented in ‘ticks’. Each vertex has a unique

lifetime and depending upon the Lifetime Policy the life-

times of vertices follow certain distributions.

At each time tick, the uptime of each vertex is increased

by 1. If a vertex has outlived it’s life (uptime is greater than

it’s intended lifetime), it is removed from the graph. As the

graph is evolving snapshots are taken at regular intervals. A

snapshot of the graph is taken whenever GraphSize new
vertices have been added to the graph. This also implies

thatGraphSize vertices have been removed from the graph

Dynamic Network Simulator

Time T = 0
SnapshotCount = 0
GraphSnapshotList G(SnapshotCount) = G0

TotalV ertices = 0
LastCountV ertices = 0
GraphSize = SimulationParameter

SimulationV ertices = SimulationParameter

LifetimePolicyLP = SimulationParameter

AttachmentPolicyAP = SimulationParameter

DetachmentPolicyDP = SimulationParameter

DeadNodes = 0
while (TotalV ertices ≥ SimulationV ertices)

if (TotalV ertices ≥ LastCountV ertices + GraphSize)

// Take Snapshot of Graph

G(SnapshotCount) = GT

Increment SnapshotCount by 1

LastCountV ertices = TotalV ertices

∀v ∈ {VT } :
Increment vuptime by 1

if (vuptime = vlife)

RemoveV ertex(GT , v)
if (DP = Single)

vn = GenerateNewV ertex(LP)
AddV ertex(GT , vn)
AddEdge(GT , vn) using AP

ElseIf (DP = Aggregate)

IncrementDeadNodes by 1

Increment TotalV ertices by 1

If (DP = Aggregate)

ForDeadNodes times:

vn = GenerateNewV ertex(LP)
AddV ertex(GT , vn)
AddEdge(GT , vn) using AP

Increment T by 1

Figure 1. Simulation Engine

since the last snapshot. All vertices that have been removed

are recorded as well. When SimulationV ertices vertices
have been generated, the simulation is stopped and a final

snapshot is taken.

3.2. Lifetime Policy

The lifetime policy decides from which distribution to

pick a node’s lifetime value. We use four distributions; three

distributions are ”off the self” and one is “custom” which

we have explicitly designed. Lifetimes of nodes are picked

at random from the distributions.

Parameter Name Value(s)

SimualtionV ertices 1, 000, 000
GraphSize 100, 000
LifetimeParameter 100
LifetimePolicy Uniform-Random, Gaussian,

Custom, Power-Law

AttachmentPolicy Random, Preferential

DetachmentPolicy Single, Aggregate

Figure 2. Table of Simulation Parameters

3.2.1. Uniform-Random Generates uniform-random

numbers from 1 − LifetimeParameter. The Java

Math.random method generates numbers of this type.

This generator is referred to as the Uniform genera-

tor for the rest of the paper.

3.2.2. Gaussian Generates random numbers that follow a

Gaussian-Normal distribution. We used the Java Gaussian

generator for this purpose. This generator generates num-

bers between -1 and +1 with a mean of 0 and a variance

of 1. We used the following method to change the mean

and make all the generated numbers positive: (p(x)+1.0)∗
LifetimeParameter, where p(x) is the number generated
from the Java gaussian generator.

3.2.3. Power-Law Generates random numbers that follow

a Power-Law distribution. Power-Laws are characterized by

the following formula:

f(x) = βxα (6)

In our simulations, β is the maximum lifetime of a vertex

(LifetimeParameter). x was chosen uniformly at ran-
dom from from the range [1..SimulationV ertices].

3.2.4. Custom We devised a “mixture” generator that

mixes seven different generators: one a power-law gen-

erator and six other gaussian generators with different

means. This generator is labeled as ’Custom’ in all fig-

ures. The algorithm used by this generator is described in

Figure 3. Our intuition for this custom generator comes

from the fact that observed uptimes of peers do not fol-

low any of the ‘off-the-shelf’ distributions in a straight-

forward way. However, it may be possible that different

groups of peers in a P2P network follow different distribu-

tions. The custom distribution also came closest (of all the

four distributions) to modeling the distribution that was re-

ported in Figure8(b) of [16].

We plotted the distributions of the lifetimes generated by

the different generators (Figure 4) (we generated 10 mil-

lion values for each distribution). as a Cumulative Density

Function (CDF) of probabilities, i.e. the probability that a

generated lifetime is greater than a certain value. This fig-

ure is useful to illustrate the presence of a power-law in a

Custom Lifetime Generator

GraphSize = SimulationParameter

MaxLifetime = LifeTimeParameter

luck = Random () /* Between 0.0 - 1.0 */

if (luck > 0.99) return Gaussian() * MaxLifetime/4
if (luck > 0.95) return Gaussian() * MaxLifetime/8
if (luck > 0.9) return Gaussian() * MaxLifetime/16
if (luck > 0.8) return Gaussian() * MaxLifetime/30
if (luck > 0.6) return Gaussian() * MaxLifetime/50
if (luck > 0.5) return Gaussian() * MaxLifetime/75
if (luck > 0.4) return PowerLaw()

Figure 3. The Custom Lifetime Generator

straightforward manner (both axes are log-log scale). How-

ever, as can be seen in Figure 4, the power-law generator

does not yield a “straight line” in the log-log plot. The im-

precision may be due to rounding errors in floating point

operations.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

P(
X>

x)

Uptime

Uniform-Random
Gaussian

Custom
Power-Law

1.04*x**-3.5

Figure 4. Vertex Lifetimes Distribution as

Probability CDF

3.3. Attachment Policy

When new nodes join the network, they do so by form-

ing an edge to one of the existing nodes in the network.

How they form this edge is dictated by the attachment pol-

icy. An attachment policy is defined as a stochastic rule. We

use two attachment policies in our network generation: Ran-

dom and Preferential. These are defined as follows (v is the
new node and vi is an existing node in the graph):

Random : p(v, vi) = 1/|V | (7)

Preferential : p(v, vi) = degree(vi)/|E| (8)

The random policy is quite straightforward to imple-

ment. A node picks an existing node at random to join. The

preferential attachment algorithm is more sophisticated and

is borrowed from [12].

3.4. Detachment Policy

In our simulator, we also control how nodes leave the

network. This is called the Detachment Policy. In Single

Detachment Policy, nodes leave ‘one at a time’, i.e., a new

node is generated immediately after a node leaves the net-

work. Thus, at most, the size of the network changes by 1.

In Aggregate Detachment Policy, all nodes that have out-

lived their life (at a particular time tick) are removed to-

gether. New nodes equal in number to the removed nodes

are then generated and added back to the network.

4. Empirical Comparison of Dynamicity

Measures

In this section we analyze the various dynamic networks

(Section 3) using the different dynamicity metrics (Sec-

tion 2) and comment on the appropriateness of the dynam-

icity metrics to measure a particular aspect of dynamicity.

4.1. Turnover

In our network simulator, we simulate a certain total

number of nodes (SimulationV ertices) and take snap-
shots of the dynamic network after every GraphSize of
nodes leave the network (Figure 1). When turnover is high,

the time between snapshots is small (lesser simulation ticks)

as compared to when the turnover is lower (higher simula-

tion ticks). Figure 5(a) shows this.

Of interest is the fact that Custom has a higher turnover

than Power-Law (one would have expected the opposite).

The reason for this is becasue 68% of nodes in Custom have

lifetimes less than 1 as compared to 50% in Power-Law.

4.2. Persistence

Persistence gives an intuition into the presence of stable

nodes in a network. Figure 5(b) shows the persistence value

for the different lifetime policies across snapshots. We mea-

sure persistence after a fixed number of nodes have left the

network and not in relation to time ticks. The reason for

this is to make the persistence statistic independent of time

frame and compare the different networks in a objective and

straightforward way (Note that the average lifetimes for the

different lifetime policies are different).

The results in Figure 5(b) are counter-intuitive if

turnover and persistence are expected to be directly corre-

lated. If they were, Uniform should have higher persistence

than Gaussian, and Power-law higher than Custom. Sur-

prisingly, Custom has a higher persistence than both

Power-Law and Uniform! Thus, in the Custom-generated

network, more nodes are persistent even though a higher

number of nodes have lesser lifetime. A key motiva-

tion in the design of the Custom generator was also to

illustrate this counter-intuition. In P2P networks, it is im-

portant to differentiate between the more stable in the net-

work (some protocols such as KaZaa already do this by

making stability as one of the parameters in the selec-

tion of super-nodes). Doing so, one can utilize the more sta-

ble nodes to make the P2P protocol, as a whole, more

scalable.

4.3. Half-life

Half-life measures the time it takes for half of the net-

work to change. From a given snapshot, we measure the ear-

liest tick when half of the network has changed. Figure 5(c)

plots the half-life when different lifetime policies are used.

As can be seen from Figure 5(c), the correlation between

turnover (Figure 5(a)) and half-life is quite apparent; the

lower the turnover, the higher the half-life (For custom and

power-law, our granularity of measurements in time ticks

was not sufficient to reveal the differences between them.

Since their turnovers are greater than 25% for each time

tick, their half-life is also 1 time-tick).

4.4. Size-change

Size-change measures how much the network as a whole

has fluctuated in size. In single-change Detachment Policy

(DP), the size change of the network is the same (differ-

ence of 1 node at maximum). In aggregate DP, however, the

more nodes that, the bigger the size change. However, given

the way, size-change is defined, in our simulation model,

turnover and size-change are identical for aggregate DP.

To understand this, consider the definition of size-change.

Starting with the definition of size change 4, MinSize is
equivalent to (GraphSize − DeadNodes). (DeadNodes
are the total number of nodes that died during a time tick).

MaxSize is GraphSize. Therefore,

δ = 1 − ((GraphSize − DeadNodes)/GraphSize)

= (DeadNodes/GraphSize)

= Turnover

Size-change has an impact more on the evolution of the

structure of the network and this is discussed in Section- 5.

Summary

Different dynamicity measures are useful in showing dif-

ferent characteristics of the network. Moreover, they may

not be directly correlated. A higher turnover does not nec-

essarily mean that the network is more ‘volatile’ in total-

ity. Additionally, a combination of measures may give a

more complete picture. For example, using both turnover

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 10 100 1000

T
u
r
n
o
v
e
r

Time

Uniform

Gaussian

Custom

Power-Law

(a) Turnover

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

P
e

rs
is

te
n

c
e

Snapshot Number

Uniform
Gaussian

Custom
Power-Law

(b) Persistence

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8 9

H
a
lf
-L

if
e
 T

im
e

Snapshot Number

Uniform
Gaussian

Custom
Power-Law

(c) Half-Life

Figure 5. Dynamicity Measures of Different Networks

and size-change we can judge how fast (turnover) a network

is growing or shrinking (size-change), if at all.

5. Dynamicity Impact on Structure of Net-

work

In this section we explore the impact of dynamicity on

the structure of a network. By structure, we mean the dis-

tribution of edges (nodes degree) in the network. A power-

law distribution, for example, indicates presence of hubs [4]

while an exponential distribution is a characteristic of a

‘Random Network’ [8]. Our goal is to study whether dy-

namicity impacts the structure of a network and if so, what

is the impact.

This could have important implications into the design

of how nodes in a P2P network initiate and form connec-

tions with each other. As we’ll describe, dynamicity com-

bined with different attachment policies can lead to radi-

cally different network structures.

The effect of attachment policies in static or growing net-

works has been well studied across many types of actual

networks and simulations [4, 1, 10, 7]. However, there has

been relatively little research into how the structure changes

as a network evolves for different kinds of dynamic net-

works. We feel that our work is (one of the) first to address

this issue.

We study the impact of dynamicity on the structure of

the network by plotting the degree distribution of the ini-

tial (G0) and final (G10) snapshot. The time tick of the final

snapshot is indicated in parenthesis in the results. We com-

pare the ‘evolution’ in the degree for all the combinations

of Lifetime, Attachment and Detachment policies. The re-

sults are presented in the following sub sections. For brevity,

networks using Random Attachment Policy are called as

random-networks (and similarly preferential-networks. Ad-

ditionally, we use the lifetime policy in the network name as

well (for example, a uniform-random-network is a random-

network in which the nodes follow uniform-random distri-

bution in lifetimes).

5.1. Single Change Detachment Policy

We study the impact of dynamicity when the detachment

policy is single change. The results of the experiment are

shown in Figure 6. The bottom part of the figures are snap-

shots from the first snapshot while the top parts are from the

final snapshots (for the same attachment policy, we should

not see any difference in the distribution of degree for the

different lifetime policies at snapshot-0, since the lifetime

policies have still to come into effect. However small dif-

ferences can be seen at the tail of the distributions and these

give an idea about the possible deviations in different runs

of the simulator).

Analysis As a network evolves under the single change de-

tachment policy, vertices with higher degree start to dis-

appear and more vertices have lesser degree. This is ob-

served in both random and preferential networks. The ef-

fect of Lifetime Policy (and hence different types of dynam-

icity) seems to have minimal effect on random-networks

(the resulting distributions are still strongly exponential in-

dicated by straight lines, though with a higher slope). The

degree distributions for all the lifetime policies seem quite

similar suggesting that a random-network is quite ‘insensi-

tive’ to variation in lifetimes of vertices. Structured P2P net-

works (that use Distributed Hash Table) use a randomiza-

tion function to select which node a new node should join

to. In this regard, DHT-based P2P networks, can be thought

of as random-networks. For these networks, therefore, dy-

namicity of nodes does not lead to any big change in the

structure of the network (when size change is small).

In the case of preferential-networks, however, there is

perceptible differences in the emergent distributions.; the

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 2 4 6 8 10 12 14 16 18

P
 (X

>x
)

1/(2
x
)

Uniform (0)
Gaussian (0)

Custom (0)
Power-Law (0)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
 (X

>x
)

Degree

1/(2
x
)

Uniform (413)
Gaussian (161)

Custom (19)
Power-Law (24)

(a) Random Attachment Policy

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

P
 (X

>x
)

0.74*x
-1.75

Uniform (0)
Gaussian (0)

Custom (0)
Power-Law (0)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
 (X

>x
)

Degree

0.74*x
-1.75

Uniform (413)
Gaussian (161)

Custom (19)
Power-Law (24)

(b) Preferential Attachment Policy

Figure 6. First and Last Snapshots of a Dynamic Graph Under Different Attachment and Lifetime Poli-

cies with Single Change Detachment Policy

power-laws are ‘truncated’ [13, 2]. Dynamicity of nodes

combined with steady change leads to this truncation. Net-

works such as the WWW and router networks are predom-

inantly growing (and show power-laws in their structure)

whereas the networks we simulated are not growing but at

a constant size. Networks where truncated power-laws have

been observed are also approximately steady state (nodes

join and leave but the rates of both are approximately equal).

Examples of these are actor-networks (ties between actors

who act together in movies) or social ecology networks

(prey-predator ties in ecologies).

5.2. Aggregate Change Detachment Policy

In aggregate detachment model, the difference in the size

of the networks varies across the lifetime policy used; Cus-

tom has highest size difference while Uniform has the least

(Figure 5(a)). Figure 7 shows the effect of dynamicity on

the different networks when the aggregate change policy is

used.

Analysis Unlike in single-change networks, aggregate-

change networks (networks where aggregate change

detachment policy is used) show both truncation and exten-

sion. In both random and preferential networks, power-law

and custom-networks show distributions where ver-

tices have higher degree (as compared to snapshot-0). In

preferential-networks, this effect is highly pronounced

with vertices having an orders of magnitude greater num-

ber of edges (Custom and Power-law). This is because,

in aggregate change, a large percent of nodes are re-

moved at once (in Custom and Power-law). Thus when new

nodes join, they join nodes that already have many con-

nections leading to those nodes becoming even more ‘pre-

ferred’. As the network evolves, these preferred nodes

amass a huge number of links to other nodes. Where

the rate of leaving is not so high (Uniform and Gaus-

sian), more nodes are available for new nodes to choose

from. These networks, therefore, in contrast, exhibit trun-

cation in degree distributions.

Also, it is interesting to see the effect of the interplay be-

tween persistence and size-change in the preferential attach-

ment model. Custom has a higher size-change and higher

persistence than power-law. Therefore more nodes leave

and join the network at each time tick. However more nodes

are also present consistently across time, for new nodes to

join to. In Power-law, lesser number of nodes leave the net-

work at each time tick but only a select few are able to

stay in the network consistently. Therefore the select few

end up acquiring massive number of edges as compared

to the Custom-preferential-network (Figure 7(b)). For un-

structured P2P networks with highly skewed lifetime dis-

tributions, therefore, protocols must be designed to avoid

preferential attachment. Else, the load on ‘preferred’ nodes

may increase exponentially making them a bottleneck to the

whole system.

6. Conclusion and Future Work

In this paper, through exploratory simulation, we showed

how systematically studying dynamicity may provide im-

portant clues and insights in understanding and modelling

dynamic networks. However, it would be good to apply the

results found here to real-world P2P networks. We are cur-

rently working on collecting data from real P2P applica-

tions and applying the dynamicity measures to characterize

them. Many types of network dynamicity were not consid-

ered, such as network partitioning. Moreover, it is not ob-

vious that the dynamic graph model that we used will be

10
-
6

10
-
5

10
-
4

10
-
3

10
-
2

10
-
1

10
0

0 2 4 6 8 10 12 14 16 18

P
 (X

>x
)

1/(2
x
)

Uniform (0)
Gaussian (0)

Custom (0)
Power-Law (0)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
 (X

>x
)

Degree

1/(2
x
)

Uniform (413)
Gaussian (161)

Custom (19)
Power-Law (24)

(a) Random Attachment Policy

10
-
5

10
-
4

10
-
3

10
-
2

10
-
1

10
0

10
0

10
1

10
2

10
3

10
4

P
 (X

>x
)

0.74*x
-1.75

Uniform (0)
Gaussian (0)

Custom (0)
Power-Law (0)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
 (X

>x
)

Degree

0.74*x
-1.75

Uniform (413)
Gaussian (161)

Custom (19)
Power-Law (24)

(b) Preferential Attachment Policy

Figure 7. First and Last Snapshots of a Dynamic Graph Under Different Attachment and Lifetime Poli-

cies and with Aggregated Delete-And-Join Policy

sufficient for all P2P networks (e.g. multicast addresses and

caching other peers’ addresses but not explicitly connect-

ing to them are difficult to model using a graph). More so-

phisticated models (such as hyper-graphs) may be needed.

However, this only shows that studying network dynamic-

ity by itself is a rich area for exploration.

Acknowledgements

We would like to thank Prof. Carter Butts and the four

anonymous reviewers for their insightful comments and

feedback. This work was supported by the National Science

Foundation, under award numbers 0331707 and 0331690.

References

[1] R. Albert, H. Jeong, and A. L. Barabasi. The internet’s

achilles’ heel: Error and attack tolerance of complex net-

works. Nature, 2000.

[2] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stan-

ley. Classes of small-world networks. Proc. Natl. Acad. Sci.

USA, 97(21):11149–11152, 2000.

[3] H. Balakrishnan. Looking up data in p2p systems. In Com-

munications of the ACM (CACM), 2002.

[4] A.-L. Barabasi, R. Albert, and H. Jeong. Scale-free charac-

teristics of random networks: the topology of the world-wide

web. Physica A, 281:69–77, 2000.

[5] R. Bhagwan, S. Savage, and G. M. Voelker. Understanding

availability. In International Workshop on Peer-to-Peer Sys-

tems (IPTPS), 2003.

[6] A. Crespo and H. Garcia-Molina. Routing Indices For Peer-

to-Peer Systems. In Proceedings of the 22nd International

Conference on Distributed Systems, pages 23–32, Vienna,

Austria, 2002.

[7] D. Eppstein and J. Wang. A steady state model for graph

power laws. In 2nd International Workshop on Web Dynam-

ics, May 2002.

[8] P. Erdos and A. Renyi. On random graphs. Publ. Math. De-

brecen, 6:290–297, 1959.

[9] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.

Levy, and J. Zahorjan. Measurement, modeling and analy-

sis of a peer-to-peer file-sharing workload. In Symposium on

Operatinng Systems Principles (SOSP), October 2003.

[10] K. Klemm and V. M. Eguiluz. Highly clustered scale-free

networks. Physical Reeview E., 65, 2002.

[11] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analy-

sis of the evolution of peer-to-peer systems. In PODC, pages

233–242, 2002.

[12] A. Medina, A. Lakhina, I. Matta, and J. Byers. Brite: Univer-

sal topology generation from a user’s perspective. In In Pro-

ceedings of Workshop the International Workshop on Mod-

eling, Analysis and Simulation of Computer and Telecommu-

nications Systems (MASCOTS ’01), October 2001.

[13] S. Mossa, M. Barthelemy, H. E. Stanley, and L. A. N. Ama-

ral. Truncation of power law behavior in scale-free network

models due to information filtering. Physical Review Let-

ters, 88(13), 2002.

[14] C. R. Palmer and J. G. Steffan. Generating network

topologies that obey power laws. In In Proceedings of

GLOBECOMM, 2000.

[15] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing

nearby copies of replicated objects in a distributed environ-

ment. In Ninth annual ACM symposium on Parallel algo-

rithms and architectures, pages 311–320, 1997.

[16] S. Sen and J. Wang. Analyzing peer-to-peer traffic across

large networks. ACM Transactions of Networking, 12(2),

2004.

[17] B. Yang and H. Garcia-Molina. Designing a super-peer net-

work. In Proceedings of the 19th International Conference

on Data Engineering (ICDE), March 2003.

