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Abstract. We construct a family of n disjoint convex set in 1~ a having (n/(d - 1)) a- 1 
geometric permutations. As well, we complete the enumeration problem for geometric 
permutations of families of disjoint translates of a convex set in the plane, settle the 
case for cubes in R d, and construct a family of d + 1 translates in R ~ admitting 
(d + 1)!/2 geometric permutations. 

1. Introduction 

A stabbing line, or common transversal, for a family ~¢ of sets in R d is a straight 
line that intersects every member  of ~q¢. If d is finite and if the members of ~¢ 
are convex and pairwise disjoint, then a common transversal meets the members 
of ~¢ in a definite order. The transversal thus determines two permutations of ~q¢, 
one being the reverse of the other. The pair of permutations is called a geometric 
permutation or a G.P. of ~¢. Figure 1 gives examples of families admitting exactly 
one, two, three, and six different geometric permutations. 

Geometric permutat ions were introduced in [6] and [8] where an example was 
given of n convex sets in the plane having 2n - 2 different G.P.s, and where it was 
shown that  for n pairwise disjoint convex sets the number of G.P.s cannot  exceed 
/ \ 

(~ ) .  Wenger [10] tightened the upper bound by showing that the number  of G.V.s 

cannot exceed 6n + 6, and Edelsbrunner and Sharir [2] have completely closed 
the gap by showing that the maximum number  is in fact 2n - 2. 

The situation in higher dimensions is of some interest. In  [8] we claimed that 
the number  of G.P.s for n disjoint convex sets in •d may exceed n d- t times a 
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Fig. 1. Families with exactly one, two, three, and six eometric permutations. 

000, ,  

constant. As pointed out in E2] and [10], as yet this is still just a claim, and so 
in this note we provide a proof. 

In the plane, a family consisting of mutually disjoint translates of a compact 
convex set cannot have such a large number of G.P.s. In [7] we showed that, with 
some possible exceptions, the number of G.P.s cannot exceed three. Here, we show 
that the result is true without any exceptions. 

We also examine families of translates in higher dimensions. We show that, in 
R d, a family of disjoint translates of a cube can have no more than 2 d- 1 G.P.s. 
An example is given to show that a family of cubes can actually have this many 
G.P.s. For  arbitrary families of translates, this number is far from an upper 
bound--we provide an example showing that a family of disjoint translates of a 
compact convex set may admit (d + 1)!/2 G.P.s. 

The study of geometric permutations has been motivated by a theorem of 
Hadwiger [4] which states that if a disjoint family of compact convex sets in the 
plane can be ordered in such a way that every three members of the family admit 
a transversal in the specified order, then there is a transversal for the entire family. 

Hadwiger's theorem relates orderings of the sets to common transversals, and 
it was hoped that more information on G.P.s would yield results on the existence 
of stabbing lines. This has proved to be the case: see the results in [5] and those 
of Tverberg [9]. These two papers have used geometric permutations to provide 
an affirmative answer to a conjecture of Griinbaum E3] that a family of disjoint 
translates of a convex set in the plane has a common transversal if every five 
members of the family have a common transversal. 

2. Geometric Permutations in d Dimensions 

In this section we show that it is possible for n pairwise disjoint compact convex 
sets in R d to have ( n / ( d  - 1)) a- 1 geometric permutations. 



The Different Ways of Stabbing Disjoint Convex Sets 

Fig. 2. A family of six sets in R 3 admitting nine geometric permutations. 
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Since we are dealing with a finite family of sets and a finite number  of common 
transversals, we note that there is no loss in generality if the sets are unbounded. 
(If some sets are unbounded, then choose one point from the intersection of each 
set with each stabbing line. The collection of all of these points is bounded, and 
so we can create a bounded family with the same number of geometric permuta- 
tions by intersecting the family with a ball of sufficiently large radius.) 

We mention that there is also no real loss if some of the sets are not closed, 
provided each transversal intersects the relative interior of each nonclosed set. (A 
proof  follows from the fact that if p is a relative interior point of a convex set C, 
then, for a n y / t  with 0 < # < 1, the closure of p + p ( C  - p) is a subset of C.) 

The family of n sets is comprised of d -  1 closed cylinders together with a 
collection of (m - 1)(d - 1) relatively open parallel plates. Figure 2 depicts the 
situation for d = 3 and m - - 3  (the common transversals are not shown). The 
cylinders are given by 

C, = {x: x~ + ( x d -  302 < 1}, i = 1, 2 . . . . .  d -  1. 

The plates are half-hyperplanes of the form 

Pi , j  = {x: x a = 3i + j / 2 m ,  x i  > x / 1  - (xa - -  3i)2}, 

i = 1, 2 , . . . , d -  1; j  = 1, 2 . . . . .  m -  1. 

No two cylinders and no two plates intersect since their projections onto the 
xa axis do not intersect. For  the same reason, when i ~ i', the cylinder Ci and the 
plate Pi,.j do not intersect. Finally, C~ and P~O do not intersect because xi < 

x / 1  - -  (x  a - 302 in C, while x, > x / l  - (xa - 302 in Pi . j .  

For  i = 1, 2 . . . . .  d -  1 and j = 1, 2 . . . . .  m, let H~. i be the hyperplane tangent 
to the cylinder C~ at the (d - 2)-flat 

{x: xa = 3i + j / 2 m  - 1 /4m,  x i = ~ / 1  - (xd - 302}. 
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The intersection of HLj  ~, H2,j2 . . . . .  Ha-  Lj~_~ is a line passing through all cylinders 
and plates. Each choice ofjk'S gives rise to a different geometric permutation. There 
are m d-1 such choices, and so the cylinders and plates admit ( n / ( d -  1)) d-~ 
geometric permutations. 

3. Geometric Permutations of Translates 

In [7] it was shown that, in the plane, a family of pairwise disjoint translates of 
a compact convex set has at most three G.P.s, except possibly for families of size 
five or six. In this section we show that the result remains true even for families 
containing five or six sets. 

If a line meets the sets Si,, Si 2 . . . . .  S~k in that order, then the resulting geometric 
permutation may be denoted using either (il ,  i2 . . . . .  ik) or (i  k, ik-l . . . . .  i~). In [7] 
it was shown that certain pairs of geometric permutations cannot coexist. We state 
these facts here as lemmas, but omit the proofs. (In all of the lemmas, by a family 
of translates it is understood to mean a family of pairwise disjoint translates of a 
given compact convex set.) 

Lemma 3.1. l f  ( i, j, k, l) is a G.P. for a family of  translates, then (j ,  i, 1, k )  is not. 

l_emma 3.2. l f  ( i, j, k, 1) is a G.P. for a family of translates, then ( i, I, k, j )  is not. 

It should be mentioned that although Lemma 3.1 is stated in the context of a 
family of translates, it remains true for any family of pairwise disjoint compact 
convex sets. However, Lemma 3.2, as well as the ones below, fails for families that 
are not translates. 

We compare different G.P.s by using their representations. We say that the 
representations (u 1 . . . .  , u , )  and (vl  . . . . .  v,~ are K-consistent if u~ = vi except 
possibly for i~ {j , j  + 1 . . . . .  j + k - 1} where k is some positive integer with k < n. 
In other words, the two representations are k-consistent if they are identical except 
in at most k consecutive places. 

Since each G.P. has two possible representations, it is clear that the notion of 
k-consistency depends upon which representatives are chosen. The following two 
results were also obtained in [7]: 

Lemma 3.3. Given any two G.P.s for a family of translates, it is possible to choose 
representatives that are 4-consistent. 

Lemma 3.4. I f  all G.P.s for a family of  translates can be represented by permuta- 
tions that are pairwise 4-consistent, then the family has at most three G.P.s. 

In order to show that a family of translates of five or six sets has at most three 
G.P.s, we will show that such families satisfy the hypothesis of Lemma 3.4. The 
proofs for the two cases are somewhat different and are presented separately. 
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Theorem 3.5. All G.P.s for a family of five translates may be represented by 
permutations that are pairwise 4-consistent. 

Proof Let  p = (1,  2, 3,4, 5 )  be a represen ta t ion  for a G.P.  for the family of  
t ranslates .  By L e m m a  3.3, for every o ther  G.P.  it is poss ible  to  choose  a 
representa t ive  that  is 4-consis tent  with p. We wilt show tha t  any  two such 
representat ives ,  say u = (u~ . . . .  , u s )  and  v = (v  1 . . . . .  vs) ,  are  4-consis tent  with 
each other.  

Now,  by 4-consis tency with p, ei ther  ua = 1 or  u 5 = 5 and  likewise ei ther  v~ = 1 
or  v 5 = 5. If  we suppose  that  u is not  4-consis tent  with v, then u is 4-consis tent  
with - v  = (v  5 . . . . .  v l ) .  In  this case it is imposs ib le  tha t  ei ther  ua = 1 = v~ or  
u5 = 5 = vs. By symmetry ,  we m a y  assume tha t  u~ = 1 # v~ and  u 5 ¢ 5 = v 5. Then  
we mus t  have u 5 = v~ ~ {2, 3, 4}. We show tha t  each of  these three possibi l i t ies  
canno t  occur.  

Case I: u s = v 1 = 2. Let  i ,j  ~ {2, 3, 4}, with i < j.  If u i > u j, then from u we ob t a in  
the G.P.  (1,  ul, uj, 2) ,  while from p we get the G.P.  (1,  2, uj, u~), which con t rad ic t s  
L e m m a  3.2. This  leaves only the poss ibl i ty  tha t  u = (1,  3, 4, 5, 2) .  Then  f rom u 
we ob ta in  the G.P.  (3,  4, 5, 2 )  while f rom p we ob ta in  (2,  3, 4, 5) ,  which con-  
t radic ts  L e m m a  3.2. 

Case H: u 5 = v a = 3. Let  u i = 4 and  uj = 5. If i>  j, then u yields the G.P.  
(1,  5, 4, 3)  while p conta ins  (1,  3, 4, 5) ,  con t rad ic t ing  L e m m a  3.2. So u is one  of  
(1,  2, 4, 5, 3) ,  (1,  4, 2, 5, 3) ,  o r  (1,  4, 5, 2, 3) .  However ,  the last one yields the G.P.  
(4,  5, 2, 3) ,  and  p yields (2,  3, 4, 5) ,  which is imposs ib le  by L e m m a  3.1. I t  follows 
tha t  u mus t  con ta in  the G.P.  (1,  2, 5, 3).  

N o w  let v~ = 1 and  vj = 2. If i > j ,  then f rom v we ob ta in  the G.P.  (3,  2, 1, 5) ,  
and  f rom p we ob ta in  (1,  2, 3, 5) ,  which is imposs ib le  by  L e m m a  3.2. So we 
mus t  have i < j ,  showing tha t  v yields (3,  1, 2, 5) ,  but  this, toge ther  with the G.P.  
(1,  2, 5, 3)  from u, con t rad ic t s  L e m m a  3.2. 

Case III: u s -- v~ = 4. The  a rgumen t  for this case paral le ls  tha t  for Case I. [ ]  

Theorem 3.6. All G.P.s for a family of six translates may be represented by 
permutations that are pairwise 4-consistent. 

Proof. We m a y  assume tha t  p = (1,  2, 3, 4, 5, 6> is a represen ta t ion  for one of 
the G.P.s  for the family of  t ranslates .  As in the previous  proof ,  by L e m m a  3.3 it 
is poss ible  to choose  representa t ives  for all o ther  G.P.s  tha t  are  4-consis tent  with 
p. We will show that  any  two such representat ives ,  say u = ( u a , . . . ,  u6) and  
v = (va . . . . .  v6), are  4-consis tent  with each other.  

Again,  by  4-consis tency with p, ei ther  u~ = 1 or  u6 = 6 and  l ikewise ei ther  
v~ = 1 or  v 6 = 6. Suppose  tha t  u is no t  4-consis tent  wi th  v. Then  u is 4-consis tent  
with - v  = (v6 . . . . .  v l ) .  As a consequence,  it  is imposs ib le  tha t  ei ther u~ = 1 = v~ 
or  u6 = 6 = v 6. By symmet ry ,  we m a y  assume tha t  ul  = 1 ~ v6 and  u 6 ¢ 6 = v 6. 
Since u6 ~ 6 in o rde r  tha t  u and  p be 4-consis tent  we mus t  have u2 = 2. Similarly,  
we mus t  have vs = 5. Since u and  - v  are  4-consistent ,  and  since ul ~ v 6, we mus t  
have u 5 = v 2 and  u 6 = v~, and  these values mus t  be 3 and  4. 
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If  us = v2 = 3, then u 6 = v 1 = 4, and we obta in  G.P.s (6, 2, 3, 4 )  from v and 
(2,  3, 4, 6 )  f rom p. If  u5 = v2 = 4, then u6 = va = 3, and obtain G.P.s (1, 5, 4, 3)  
f rom u and  (1, 3, 4, 5 )  f rom p. Either case contradicts  L e m m a  3.2. [ ]  

4. Examples for Translates in d Dimensions 

One  of  the earliest results about  c o m m o n  transversals was obtained by Santalo 
[1],  [4-1, and dealt with families of  parallelotopes whose edges were parallel to the 
coordina te  axes (an isothetic family). 

Theorem 4.1. An isothetic family of pairwise disjoint parallelotopes in R d admits 
at most 2 d- ~ G.P.s. 

Proof. The p roo f  uses an idea employed by Wenger  in [10]. Any two of  the 
parallelotopes can be separated by a translate of one of  the coordinate  hyperplanes. 
Consequently,  two transversals of  the form x = p + 2a and y = q + 2b will result 
in the same G.P. if a and b belong to the same d-dimensional orthant .  The theorem 
now follows because every line in R d is parallel to  a vector  in one of  2 d- t orthants.  

The following shows that  the upper  bound  is tight. 

Theorem 4.2. In R a, d = 2, 3 . . . . .  there is a family of  d + 1 disjoint translates of  the 
unit cube that admits 2 d- 1 G.P.s. 

Proof. We construct  the family inductively, beginning with d = 2. The family in 
R 2 is shown in Fig. 3(a). In  fact, we use a process similar to that  in Section 2. 
Rather  than actually fit the cubes in place, we construct  a family of  unbounded  

+.L+ A1 A2 

A3 

(a) (b) 

Fig. 3. (a) Translates of three "cubes" in R 2 admitting two G.P.s. (b) Associated unbounded sets At, 
Az, A3 (see the proof of Theorem 4.2). 
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open sets each of which is of the type 

{ ( x .  x2 . . . . .  x~): x~ .~ 0 , j  = i~ . . . . .  i.,}, (1) 

where ~ denotes either " < "  or " >  ." In R 2 the sets (see Fig. 3(b)) are 

A1 = {(xl, x2): xl  < 0, x z > 0}, 

A 2 = {(xl, x2): x x > 0, x 2 > 0}, 

A3 = {(xl, x2): x2 < 0}. 

If a straight line in R a intersects the d + t sets A~, it is evident that we can find 
a cube of a sufficiently large size, say Q = {(xl . . . . .  xd): [x~t < M, 1 < j  _< d}, such 
that the line intersects all of the sets A~ c~ Q. Now, for each set A~ n Q, there is a 
translate v~ + Q of Q such that 

Ai c~ Q c v i + Q ~ Ai, 

and this shows that there is no loss in generality in dealing with open bounded 
sets of the type defined by (1). The proof that these sets admit 2 d+l geometric 
permutations is straightforward and is left to the reader. [ ]  

If we do not distinguish between a permutation and its reversal, the maximum 
number of permutations of n objects is n!/2. Whether this can be achieved for 
geometric permutations of n mutually disjoint translates of a convex set depends 
upon the shape of the set. For  example, Theorem 4.1 shows that it is not possible 
with cubes in •d, while Fig. 1 demonstrates that in R 2 it is possible with n = 3 
circles. We will show that a similar result holds in R a, that is, there is a family 
of n = d + 1 translates admitting n!/2 geometric permutations. We begin with the 
following lemma: 

L e m m a  4.3, Let V = {Vl, V 2 . . . . .  Vd+l} be the vertices of a simplex whose centroid 
is the origin, and let Ki be the convex cone spanned by V\{vi}. There is a straight 
line that intersects the interior of  each o f  K1 . . . . .  Kd + 1. 

Proof. Let c~ > 0 be fixed. Let L be the straight line whose equation is x = p + 2q, 
- oo < 2 < 0% where 

d+ l  d + l  
p = ~ o~2Jvj a n d  q = -  ~ ~Jvj. 

j = l  j = l  

This line intersects the interior of each K~. To check this, let 2~ = 2~ i, and write 
p + 2iq as ~=+~ yjvj. The coefficients are yj = ~2j _ 2 ~ j ,  and when j = i we have 
Yt = _~2i. Then, f o r j  ~ i, 

~'j - "~'i = ~ 2 j  _ 2 o ( ~ j  + ~ 2 i  = (~ j  _ oci)2 > O, 
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showing tha t  7~ is strictly larger than  7i, Then,  since ~d+ /,~= 1 v~ = 0, 

d + l  d + l  d + l  

P + 2iq = 2 7JvJ-- ?i ~, v j =  2 (Tj--71)vj, 
j = l  j = l  j ~ i , j = l  

which shows tha t  p + 2iq is interior  to K~. [] 

Theorem 4.4, In R d there is a family of  disjoint translates of size d + 1 that admits 
(d + 1)!/2 geometric permutations. 

Proof. Let  v o = 13 and  let vl, v2 . . . . .  vd + 1 be the vertices of  an equilateral  simplex 
whose centroid  is the origin in R d. Let A be the interior of  the convex hull of  
{vi + vj: 0 < i, j < d + 1; i C j}. We will show that  the family {A -- vi: 1 < i < 
d + 1} is pairwise disjoint  and  admi ts  (d + 1)!/2 geometr ic  permuta t ions .  (In R 2, 
A is a hexagon;  in R 3 it is the po lyhedron  shown in Fig. 4(c). As well as A, 
we m a y  use the interior of  the convex hull of  

{kv~ + vj: 1 < i < d + 1; 0 _<j <_ d + 1 ; j  ¢ i}, 

where k > 1 is constant .  A po lyhedron  of this type is used in Fig. 4(a) and 
(b).) 

To verify that A - vm and A - v. arc disjoint, note that A - v. is the interior 
of the convex hull of {vl + v# - v.: 0 <_ i, j <_ d + I; i :~j}. Letting (.,-) denote 
the inner product, and using the fact that (vl, v#) -- c < 0 when v i and v; are different 

(a) (b) 

(c) 

Fig. 4. (a) A family of four translates in R 3 admitting 12 geometric permutations (b) An "exploded 
view" of the family. (c) The set used in the proof of Theorem 4.4. 
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vertices of the equilateral simplex, we have 

(IIv..It 2 - (v . , ,  v . ) ,  

( v , .  - Vn,  V~ + V i - -  V.) = ,) l lv, .  - v.I12, [o, 
I1v.It 2 - (vm, v . ) ,  

(i,j} = {m, . ) ,  
{i , j}  n {m, n} = {m}, 
{i , j}  n {m, n} = {n}, 
otherwise. 

This shows that i n f ( v . -  v., A -  v . )=  0, and, by interchanging m and n, that 
inf (v . -vm,  A - V m ) = 0 ,  that is, s u p ( v . , - v . , A - v m ) = 0 ,  showing that 
A - v. and A -- v,. are disjoint. 

We also note that the convex cone, K', generated by A -- v. is the same as the 
cone K.  defined in Lemma 4.3. To verify this, note that K' is generated by 
{v i + vj - v.: 0 <_ i , j  < d + 1; i C j}. Letting vj = v., we see that v ~  K' ,  showing 
that K.  c K'. On the other hand, if either v~ or vj equals v., then we have 
v~ + vj - v . ~ K . .  If neither v~ nor vj equals v. then, noting that - v .  = ~ j # .  vj, 
it is evident that v~ + vj - v. is a nonnegative linear combination of v~, i = 1 . . . . .  
n - 1, n + 1 . . . . .  d + 1, and again we have v i + vj - v. ~ K..  Thus, K'  c K..  

Because of symmetry, to show that the family {A + vi: 1 _< i _< d + 1} has 
(d + 1)!/2 geometric permutations, it suffices to show that it has one geometric 
permutation. This follows from Lemma 4.3, and completes the proof of the 
theorem. []  

Questions. 1. Is it true that the maximum number of G.P.s for any family of 
disjoint translates in •d is (d + 1)!/2? Although we conjecture that this is so, except 
for the case where d = 2, it is not even known if there is an upper bound that is 
independent of the size of the family. 

2. A similar question arises for arbitrary disjoint families in R d, that is, is the 
lower bound of C" n d-  x given in Section 2 also an upper bound for a family of n 
compact convex sets? The constant C in the example is (d - 1) -td- 1j. Is the result 
true with a constant that does not depend upon the dimension? 

Very relevant to both of the questions is a result of Wenger who showed in 
[10] that a family of n pairwise disjoint compact convex sets admits at most 
O(n2d-2) geometric permutations. 
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