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Abstract. This paper is concerned with the computation of the drag T associated with a body
traveling at uniform velocity in a fluid governed by the stationary Navier–Stokes equations. It is
assumed that the fluid fills a domain of the form Ω+u, where Ω ⊂ R3 is a reference domain and u is a
displacement field. We assume only that Ω is a Lipschitz domain and that u is Lipschitz-continuous.
We prove that, at least when the velocity of the body is sufficiently small, u 7→ T (Ω + u) is a C∞

mapping (in a ball centered at 0). We also compute the derivative at 0.
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1. Introduction. Formulation of the problem. In this paper, we study the be-
havior of the drag T associated with a body traveling at uniform velocity γ in a
viscous incompressible fluid. It is assumed that the flow of this fluid is governed by
the stationary Navier–Stokes equations. We are interested in viewing T as a function
of the shape of the body.

More precisely, let B be a reference shape for the body and Ω be the corres-
ponding fluid domain. The body variations are described by a field u, and we search
for a formula of the kind

T (Ω + u) = T (Ω) + T ′(Ω;u) + O(u),

where the modified fluid domain is

Ω + u = {x ∈ Rd; x = (I + u)(ξ), ξ ∈ Ω}.

We are thus led to an analysis of the differentiability of the function u 7→ T (Ω + u).
The main results. We prove that when Ω is a Lipschitz domain, u is Lipschitz-

continuous, and the velocity γ is sufficiently small, the function u 7→ T (Ω + u) is
differentiable. More precisely (see Theorem 4), we show that it is a C∞ mapping in a
small ball W whose elements are Lipschitz vector fields. We also compute explicitly
T ′(Ω;u), i.e., the derivative at 0 in the direction u.

In the similar but more simple case of an elliptic equation, differentiability results
have been established by F. Murat and J. Simon in [9], [10] without any regularity
hypothesis on Ω. The proof relies on the change of variables x = (I+u)(ξ), by means
of which one is led to a fixed domain. This method has been used for many equations
by several authors.
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DIFFERENTIABILITY OF THE DRAG 627

Some difficulties related to incompressibility. The general method in [9], [10]
cannot be directly applied to the Stokes and Navier–Stokes cases. This is due to the
incompressibility condition

∇ . y(u) = 0 in Ω + u,

which has to be satisfied by the velocity field y(u). This difficulty was surmounted
when Ω is a W 2,∞ domain by J. Simon [17] for Stokes flows and by J. A. Bello,
E. Fernández-Cara, and J. Simon [1], [2] for Navier–Stokes flows. In [17], the author
uses a variant of the implicit function theorem; in [1], [2], one introduces a family of
isomorphisms which allow us to rewrite the equation ∇ . y(u) = 0 appropriately. In
this paper, the incompressibility equation is rewritten explicitly.

We will assume that Ω is a Lipschitz domain and that u is Lipschitz-continuous.
This includes many interesting situations in which ∂Ω and/or ∂(Ω + u) possess “cor-
ner” points.

Recall that formal computations of the derivative were previously carried out by
O. Pironneau [12] (see also [13]) using “normal” variations.

Some difficulties related to weak regularity. The “natural” expression of the
derivative T ′(Ω;u) (that is, the right-hand side of (15)) is not defined a priori since
y is only H1(Ω)d. Nevertheless, we will give a meaning for this expression using the
technical result (17).

2. The definition of the drag. Let D and B be bounded open connected sets
in Rd, d = 2 or 3, with B ⊂⊂ D. Let us set Ω = D\B. In the following discussion, it
will be assumed that

(1) Ω is a Lipschitz domain;

that is to say, its boundary ∂Ω is locally the graph of a Lipschitz-continuous func-
tion and Ω is the corresponding epigraph. (This is explained more in detail in the
appendix.)

Let γ ∈ Rd be a given vector. We consider the stationary Navier–Stokes problem
[4]

(2)


y − g ∈ H1

0 (Ω)d,

p ∈ L2(Ω),
∫

Ω p = 0,
− ν∆y + (y . ∇) y +∇p = 0,
∇ . y = 0.

Here, g ∈ H1(Rd)d and satisfies

(3) ∇ . g = 0, g = γ in a neighborhood of ∂D, g = 0 in a neighborhood of B.

When B is small with respect to D, any solution (y, p) to (2) provides good
approximations to the velocity field and the pressure distribution of a viscous incom-
pressible fluid in Ω having constant velocity far from B. It can be imagined that we
have chosen spatial coordinates fixed with respect to B, D is an approximation to
Rd, the fluid is at rest at infinity, and B is the shape of a body traveling at constant
velocity −γ.

The requirement
∫

Ω p = 0 provides uniqueness for the pressure p that, otherwise,
would be defined up to an additive constant.

D
ow

nl
oa

de
d 

05
/2

0/
16

 to
 1

50
.2

14
.1

82
.1

69
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



628 J. BELLO, E. FERNÁNDEZ-CARA, J. LEMOINE, AND J. SIMON

If γ is sufficiently small, problem (2) possesses exactly one solution, which is
“small” and does not depend on the choice of g. More precisely, Theorem 2.1 in [9]
gives the following lemma.

LEMMA 1. There exists a constant α > 0 such that, if |γ| < αν, then (2) possesses
exactly one solution, (y, p) ∈ H1(Ω)d × L2(Ω). This solution does not depend on the
choice of the function g satisfying (3). Furthermore, for each ε > 0, the constant α
can be chosen in such a way that

‖y‖H1(Ω)d ≤ εν.

If O ⊂⊂ D is given, one can also choose α = α(ε,O, D) not depending on B, provided
B ⊂ O. Finally, if Ω is a W 2,∞ domain, then (y, p) ∈ H2(Ω)d ×H1(Ω).

Thus, at least when γ is small, one can associate with Ω a drag

(4) T (Ω) =
ν

2

∫
Ω
σ(y)2,

where σ(y)2 = σ(y) . σ(y) ≡
∑
ij(σij(y))2.

Remark. If Ω is regular enough, T (Ω) coincides with the usual hydrodynamical
drag, which is given as follows (cf. [14]):

T (Ω) = −γ .
∫
∂B

(− p Id+ ν σ(y)) . nds.

Indeed, using the boundary condition, we obtain

T (Ω) = −
∫
∂Ω

(p (y − γ)− ν σ(y) . (y − γ)) . nds.

From Gauss formula and incompressibility, this gives

T (Ω) = −
∫

Ω
∇ . (p (y − γ)− ν σ(y) . (y − γ))

=
∫

Ω
((ν∆y −∇p) . (y − γ) + ν σ(y) . ∇y).

Note that, again using incompressibility,

(ν∆y −∇p) . (y − γ) = ((y . ∇) y) . (y − γ) = ∇ . (|y − γ|2 y).

Therefore, ∫
Ω

(ν∆y −∇p) . (y − γ) =
∫
∂Ω
|y − γ|2 y . nds = 0,

and, finally, since σ(y) . ∇y = 1
2 σ(y)2, we have T (Ω) = T (Ω).

3. The domain variations. We will choose fields u ∈W 1,∞(Rd,Rd) such that
u = 0 on ∂D. This condition expresses the fact that the outer boundary limiting the
fluid is fixed.

We will also assume ‖u‖Lip < c(Ω), with c(Ω) being small enough to ensure that
Ω + u is Lipschitzian and also that B + u is included in a fixed open set O satisfying

B ⊂⊂ O ⊂⊂ D.
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DIFFERENTIABILITY OF THE DRAG 629

Here, we have denoted by ‖u‖Lip the best Lipschitz constant for u. More precisely,
we have the following obvious result (see [8] for a proof).

LEMMA 2. Assume that O is as before. There exists c(Ω), 0 < c(Ω) < 1, such
that

(5) B + u ⊂ O

for all u ∈W 1,∞(Rd,Rd) satisfying u = 0 on ∂D and ‖u‖Lip ≤ c(Ω).
We will also use the following result, whose proof is given in the appendix.
LEMMA 3. There exists c(Ω), 0 < c(Ω) < 1, such that

(6) Ω + u is a bounded Lipschitz domain in Rd

for all u ∈W 1,∞(Rd,Rd) satisfying ‖u‖W 1,∞(Rd,Rd) ≤ c(Ω).
Remark. This lemma holds for each bounded Lipschitz domain Ω ⊂ Rd.
For the subsequent discussion, we introduce

W = {u ∈W 1,∞(Rd,Rd); ‖u‖W 1,∞(Rd,Rd) < c(Ω), u = 0 on ∂D},

with c(Ω) being as in Lemmas 2 and 3. Observing that

‖u‖Lip ≤ ‖u‖W 1,∞(Rd,Rd)

we see that (5) and (6) are satisfied for all u ∈ W.
It will also be assumed in the sequel that

(7) |γ| < α(ε,O, D) ν,

where α is furnished by Lemma 1. The precise value of ε will be fixed below. Now,
we choose g satisfying (3) and

g ≡ 0 in a neighborhood of O.

(Such a choice is always possible; for instance, one can take g = a∧∇ψ, where a ∈ R3,
a . γ = 0, |a| = 1, ψ ∈ C∞(R3), ψ = 0 in O, ψ(x) = (g ∧ a) . x in a neighborhood
of ∂D.) If u ∈ W, one has g = 0 in a neighborhood of ∂B + u. The Navier–Stokes
problem in Ω + u can be written as follows:

(8)



y(u)− g ∈ H1
0 (Ω + u)d,

p(u) ∈ L2(Ω + u),
∫

Ω
p(u) ◦ (I + u) = 0,

− ν∆y(u) + (y(u) . ∇) y(u) +∇p(u) = 0,
∇ . y(u) = 0.

From Lemma 1, we know that (8) possesses exactly one solution (y(u), p(u)).
Accordingly, the drag associated with B + u can be defined and is given by

(9) T (Ω + u) =
ν

2

∫
Ω+u

σ(y(u))2
.

Remark. In principle, it seems more natural to normalize p(u) by imposing that∫
Ω+u p(u) = 0. However, it will be seen below that the choice that we have made is

more useful when one considers different fields u ∈ W. (Indeed, it yields
∫

Ω P (u) = 0
for the transported pressure P (u) = p(u) ◦ (I + u); see (23).)
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630 J. BELLO, E. FERNÁNDEZ-CARA, J. LEMOINE, AND J. SIMON

4. A differentiability result for the drag. Our main interest in this section
to describe the variations of T (Ω +u) with respect to u. As already mentioned in the
introduction, we search for a formula

(10) T (Ω + u) = T (Ω) + T ′(Ω;u) + O(u),

which must hold for all u ∈ W, with T ′(Ω; . ) being a linear mapping and

O(u)/‖u‖W 1,∞(Rd,Rd) → 0 as ‖u‖W 1,∞(Rd,Rd) → 0.

That such a formula can be obtained stems from the next result, which is the
most important in this article.

THEOREM 4. There exists α > 0 such that if |γ| < αν, then u 7→ T (Ω + u) is a
C∞ mapping in the set W.

In addition, the first derivative at 0 can be obtained from any of the expressions
(11), (15), or (18).

THEOREM 5. Assume |γ| < αν.
(i) For all u ∈W 1,∞(Rd,Rd) such that u|∂D = 0, one has

(11)

T ′(Ω;u) = ν

∫
Ω

∑
ijσij(y)

(
σij(ẏ(u))−

∑
k (∂iuk ∂kyj + ∂juk ∂kyi) +

1
2
σij(y)∇ . u

)
with (ẏ(u), ṗ(u)) being the unique solution to the linear problem

(12)



ẏ(u) ∈ H1
0 (Ω)d,

ṗ(u) ∈ L2(Ω),
∫

Ω
ṗ(u) = 0,

− ν∆ẏ(u) + (ẏ(u) . ∇) y + (y . ∇) ẏ(u) +∇ṗ(u) = G(u, y, p),
∇ . ẏ(u) =

∑
ij∂iuj ∂jyi.

Here, y = y(0), p = p(0), and Gk(u, y, p) ∈ H−1(Ω) is given as follows for 1 ≤ k ≤ d:

(13)

Gk(u, y, p) =− ν
∑
ij (∂j(∂iuj ∂iyk) + ∂j(∂jui ∂iyk)) + ν

∑
j ∂j((∇ . u) ∂jyk)

+
∑
ij yi ∂iuj ∂jyk − (y . ∇) yk∇ . u

+
∑
j ∂j(∂kuj p)− ∂k((∇ . u) p).

Moreover, y ∈ C∞(Ω)d, p ∈ C∞(Ω), and, consequently,
(14)
G(u, y, p) = −ν∆((u . ∇) y) + (((u . ∇) y) . ∇) y + (y . ∇)((u . ∇) y) +∇(u . ∇p).

(ii) One also has

(15) T ′(Ω;u) = ν

∫
Ω

∑
ij

(
σij(y)σij(y′(u)) +

1
2
∇ .

(
σij(y)2u

))
,

with (y′(u), p′(u)) being the unique solution to

(16)



y′(u) + (u . ∇) y ∈ H1
0 (Ω)d,

(p′(u) + u . ∇p) ∈ L2(Ω),
∫

Ω
(p′(u) + u . ∇p) = 0,

− ν∆y′(u) + (y′(u) . ∇) y + (y . ∇) y′(u) +∇p′(u) = 0,

∇ . y′(u) = 0.
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DIFFERENTIABILITY OF THE DRAG 631

Furthermore, y′(u) ∈ H1
loc(Ω)d and the sum in (15) satisfies

(17)
∑
ij

(
σij(y)σij(y′(u)) +

1
2
∇ .

(
σij(y)2u

))
∈ L1(Ω).

(iii) If B and D are W 2,∞ domains and u ∈W 2,∞(Rd,Rd), then (y, p) ∈ H2(Ω)d×
H1(Ω) and

(18) T ′(Ω;u) =
∫
∂B

u . n
(
∂w

∂n
− ∂y

∂n

)
.
∂y

∂n
ds,

with (w, q) being the unique solution to the “adjoint” problem

(19)



w ∈ H1
0 (Ω)d ∩H2(Ω)d,

q ∈ H1(Ω),
∫

Ω
q = 0,

− ν∆wi +
∑
j ∂iyj wj −

∑
j yj ∂jwi + ∂iq = −2ν∆yi , 1 ≤ i ≤ d,

∇ . w = 0.

Remark. In order to compute the derivative of the drag in several directions
using (15), one has to solve, for each direction u, the corresponding partial differential
problem (16). It is much more interesting to use the identity (18) because it suffices
to solve (2) and (19) only once; then, for each u, one has only to compute an integral
on ∂B.

Remark. One can also obtain expressions for the derivatives of higher orders.
This must be made with caution; indeed, T ′′(Ω; . , . ) (i.e., the second derivative at
0 of u 7→ T (Ω + u)) does not coincide with (T ′(Ω; . )′; . ) (i.e., the derivative at 0
of the mapping u 7→ T ′(Ω + u; . )). In fact, these two quantities are related by the
following formula (see [16]):

T ′′(Ω;u, v) = (T ′(Ω;u)′; v)− T ′(Ω; (u . ∇) v).

5. Differentiability results for the velocity and the pressure. In order
to prove Theorem 4, we will first show that u 7→ y(u) is, in a certain sense, a “dif-
ferentiable” mapping. An important difficulty arises here, because y(u) is a function
defined only for x ∈ Ω + u, a domain which depends on u. This is why we introduce
a suitable change of variables and we rewrite the equations satisfied by y(u) and p(u)
in the fixed domain Ω. Then, we will have to differentiate the transported variable
Y (u) = y(u) ◦ (I + u), which is defined in Ω.

In what follows, y and p stand for y(0) and p(0), respectively. We will check the
following:

ẏ(u) = Y ′(0) . u ≡ lim
t→0

y(tu) ◦ (I + tu)− y
t

.

This is the “total derivative” of y(u) at 0, used in (11) to give an expression of T ′(Ω;u).
We will also have to use the “local derivative.” In fact, we will check that

y′(u) =
d

dv
y(v)|ω(0) . u ≡ lim

t→0

y(tu)|ω − y|ω
t

in ω.
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632 J. BELLO, E. FERNÁNDEZ-CARA, J. LEMOINE, AND J. SIMON

This defines y′(u) in each open set ω ⊂⊂ Ω and, consequently, in the whole domain
Ω. The previous local derivative was used in (15) to give an expression of T ′(Ω;u).
More precisely, the following result holds.

THEOREM 6. There exists α > 0 such that if |γ| < αν, then
(i) The mapping u 7→ (y(u), p(u))◦ (I+u) is C∞ in W, with values in the product

space H1(Ω)d × L2(Ω). Its derivative at 0 in the direction u is the unique solution
(ẏ(u), ṗ(u)) to (12).

(ii) For all ω ⊂⊂ Ω, the mapping u 7→ y(u)|ω is differentiable in W, with values
in L2(ω)d. Its derivative at 0 in the direction u is y′(u)|ω, where y′(u) is uniquely
defined by (16). One also has

(20) y′(u) = ẏ(u)− (u . ∇) y.

Remark. From general results on local differentiability (see Lemma 2.1 in [15]),
(ii) is implied by (i).

Theorems 4, 5, and 6 will be demonstrated in several steps:
— differentiability at 0 of the velocity, the pressure (section 5), and the drag

(section 6);
— differentiability at any point in W (section 7); higher-order differentiability

(section 8).

6. Proof of differentiability at 0 of the velocity and the pressure. The
goal of this section is to prove the following result.

LEMMA 7. There exists α > 0 such that, if |γ| < αν, then the mapping u 7→
(y(u), p(u)) ◦ (I + u), which is defined in W and takes values in H1(Ω)d × L2(Ω), is
differentiable at 0. Its derivative, denoted by (ẏ(u), ṗ(u)), is uniquely determined by
(12).

The proof is based on the implicit function theorem. We will show that this lemma
holds with α being of the form α(ε,O, D) (as in Lemma 1) for an appropriate constant
ε. First, we will have to rewrite the equations (8) in the fixed domain Ω. For this, we
have to “transport” all the terms, some of which belong to H−1(Ω + u). But it is not
clear for a distribution f ∈ H−1(Ω + u) how f ◦ (I + u) can be defined. Contrarily,
following [10, Definition 4.1], one can give a definition of (f ◦ (I + u)) Jac(I + u) .

DEFINITION 8. Assume u ∈ W and f ∈ H−1(Ω + u). Then

(f ◦ (I + u)) Jac(I + u) ∈ H−1(Ω)

is defined as follows: for any ϕ ∈ H1
0 (Ω), one has

(21) 〈(f ◦ (I +u)) Jac(I +u), ϕ〉H−1(Ω)×H1
0 (Ω) = 〈f, ϕ ◦ (I +u)−1〉H−1(Ω+u)×H1

0 (Ω+u).

Remark. Rigorously speaking, (f ◦ (I + u)) Jac(I + u) is not a good notation,
because f ◦ (I + u) is not defined. However, it will be used in subsequent discussion
for convenience.

Note that (21) makes sense; indeed, ϕ◦(I+u)−1 ∈ H1
0 (Ω+u) (see [10, Lemma 4.1]).

It does not change the usual definition of (f ◦(I+u)) Jac(I+u) when f ∈ L1
loc(Ω+u).

In order to rewrite (8), we denote by D(u) the operator whose components Di(u)
are given as follows:

(22) Di(u) =
∑
jMij(u) ∂j , M(u) = t [∂j(I + u)i]

−1
.

Here, t [∂j(I + u)i]
−1 is the transpose of the inverse of the matrix of components

∂j(I + u)i. We will use the following three lemmas (see [9] and [10]).
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DIFFERENTIABILITY OF THE DRAG 633

LEMMA 9. Assume u ∈ W and f ∈ H1(Ω + u). Then

(∂if) ◦ (I + u) =
∑
jMij(u) ∂j(f ◦ (I + u)) = Di(u)(f ◦ (I + u)).

LEMMA 10. If u ∈ W and f ∈ L2(Ω + u), then

((∂if) ◦ (I + u)) Jac(I + u) =
∑
j ∂j(Mij(u) (f ◦ (I + u)) Jac(I + u)).

LEMMA 11. Assume u ∈ W and f ∈ H1(Ω + u). Then

((∆f) ◦ (I + u)) Jac(I + u) =
∑

ij ∂j(Mij(u) Jac(I + u)Di(u)(f ◦ (I + u))).

The Navier–Stokes problem (8) can now be written as follows:

(23)



Y (u)− g ∈ H1
0 (Ω)d,

P (u) ∈ L2(Ω),
∫

Ω
P (u) = 0,

− ν
∑
ij ∂j(Mij(u) Jac(I + u)Di(u)Yk(u))

+ (Y (u) . D(u))Yk(u) Jac(I + u)
+
∑
j ∂j(Mkj(u)P (u) Jac(I + u)) = 0, 1 ≤ k ≤ d,

D(u) . Y (u) Jac(I + u) = 0.

Here, we have set Y (u) = y(u) ◦ (I + u) and P (u) = p(u) ◦ (I + u).
We will also introduce in (23) the new variable X(u) = Y (u) − g. This leads to

the following system, equivalent to (23) (which is, in turn, equivalent to (8)):

(24)



X(u) ∈ H1
0 (Ω)d,

P (u) ∈ L2(Ω),
∫

Ω
P (u) = 0,

− ν
∑
ij ∂j(Mij(u) Jac(I + u)Di(u)(X(u) + g)k)

+ ((X(u) + g) . D(u)) (X(u) + g)k Jac(I + u)
+
∑
j ∂j(Mkj(u)P (u) Jac(I + u)) = 0, 1 ≤ k ≤ d,

D(u) . (X(u) + g) Jac(I + u) = 0.

This equation can be written

(25) H(u;X(u), P (u)) = 0,

where the function H is defined, from W ×H1
0 (Ω)d × L2

0(Ω) into H−1(Ω)d × L2
0(Ω),

by

(26)



H(u;χ, π) = (F (u;χ, π), R(u;χ, π)), F = (F1, . . . , Fd),

Fk(u;χ, π) = −ν
∑
ij ∂j(Mij(u) Jac(I + u)Di(u)(χ+ g)k)

+ ((χ+ g) . D(u))(χ+ g)k Jac(I + u)
+
∑
j ∂j(Mkj(u)π Jac(I + u)), 1 ≤ k ≤ d,

R(u;χ, π) = D(u) . (χ+ g) Jac(I + u).
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634 J. BELLO, E. FERNÁNDEZ-CARA, J. LEMOINE, AND J. SIMON

The fact that R(u;χ, π) ∈ L2
0(Ω) is crucial. This is true because∫

Ω
(D(u) . Y (u)) Jac(I + u) =

∫
Ω+u

(D(u) . Y (u)) ◦ (I + u)−1

=
∫

Ω+u
∇ . (Y (u) ◦ (I + u)−1)

= 0.

Now, we check that the assumptions of the implicit function theorem are satisfied.
First, H is C1 in a neighborhood of (0;X,P ), where we have set X = X(0) = y − g,
P = P (0) = p. Indeed, the coefficients in D(u) and M(u) are C1 since, according
to the results in [10], the mapping u 7→ Mij(u) is C1 in a neighborhood of 0 in
W 1,∞(Rd,Rd), with values in L∞(Rd,Rd2

).
On the other hand, let us see that the differential operator L = D(χ,π)H(0;X,P )

is an isomorphism from H1
0 (Ω)d × L2

0(Ω) onto H−1(Ω)d × L2
0(Ω). For each (χ, π) ∈

H1
0 (Ω)d × L2

0(Ω), one has

(27) L(χ, π) = (− ν∆χ+ (χ . ∇) y + (y . ∇)χ+∇π , ∇ . χ).

The operator L is linear and bounded from H1
0 (Ω)d × L2

0(Ω) into H−1(Ω)d × L2
0(Ω).

Hence, we have to check that, for each f ∈ H−1(Ω)d and φ ∈ L2
0(Ω), there exists a

unique solution (χ, π) ∈ H1
0 (Ω)d × L2

0(Ω) to the system

(28)

{
− ν∆χ+ (χ . ∇) y + (y . ∇)χ+∇π = f,

∇ . χ = φ

and, also, that this solution depends continuously on the data. Since Ω is a Lipschitz
domain, Corollary 2.4 in [6] asserts
(29)

∀φ ∈ L2(Ω) such that
∫

Ω
φ = 0, there exists ψ ∈ H1

0 (Ω)d such that ∇ . ψ = φ.

Setting Φ = χ− ψ, system (28) reduces to{
Φ ∈ V, π ∈ L2

0(Ω),
− ν∆Φ + (Φ . ∇) y + (y . ∇) Φ +∇π = F,

where V = {v ∈ H1
0 (Ω)d; ∇ . v = 0} and F = f + ν∆ψ − (ψ . ∇)y − (y . ∇)ψ.

This equation is elliptic with respect to Φ and possesses a unique solution depending
continuously on the data if, for some appropriate r = r(O, D) > 0, one has

(30) ‖y‖H1
0 (Ω)d < r ν.

Hence, if we choose ε < r, α = α(ε,O, D) as in Lemma 1 and

|γ| < αν,

this condition holds and L is an isomorphism.
This allows us to apply the implicit function theorem to (25). We deduce that

the mapping u 7→ (X(u), P (u)), which takes values in the space H1
0 (Ω)d × L2

0(Ω), is
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DIFFERENTIABILITY OF THE DRAG 635

differentiable at 0. Since y(u) ◦ (I+u) = X(u) + g and p(u) ◦ (I+u) = P (u), the first
part of Lemma 7 is proven.

Finally, let us deduce the equations satisfied by (ẏ(u), ṗ(u)). In accordance with
the implicit function theorem,

L(ẏ(u), ṗ(u)) = −DvH(0;X,P ) . u

for all admissible u. Taking into account (26) and also the identities

(31) M ′ik(0) . u = −∂iuk and
d

dv
Jac(I + v)(0) . u = ∇ . u

(see [10]), we find that (ẏ(u), ṗ(u)) is a solution to (12). But this problem possesses
exactly one solution, since L is an isomorphism. Consequently, Lemma 7 is proven.

Remark. In order to solve (28), we have had to assume that Ω is a Lipschitz
domain. The same requirement is found when one writes (28) as a mixed problem and
one tries to apply general results concerning mixed variational formulations.

7. Proof of differentiability at 0 of the drag. The goal of this section is to
prove Theorem 5.

Proof of part (i). By definition, one has

T (Ω + u) =
ν

2

∫
Ω+u

∑
ij(∂iyj(u) + ∂jyi(u))2

=
ν

2

∫
Ω

∑
ij(
∑
k(Mik(u) ∂kYj(u) +Mjk(u) ∂kYi(u)))2 Jac(I + u).

We will deduce the differentiability of the mapping u 7→ T (Ω + u) from the following
result (Theorem 4.1 in [10]).

LEMMA 12. Assume that z(u) is well defined for all u ∈ W and, also, that

(32) u 7→ z(u) ◦ (I + u) is differentiable at 0, with values in L1(Ω).

Then the mapping u 7→ S(Ω + u) =
∫

Ω (z(u) ◦ (I + u)) Jac(I + u) is also differentiable
at 0. Its derivative at 0 in the direction u is given by

S′(Ω;u) =
∫

Ω
(ż(u) + z(0)∇ . u).

We will apply this lemma with

z(u) ◦ (I + u) =
∑

ij(
∑
k(Mik(u) ∂kYj(u) +Mjk(u) ∂kYi(u)))2

.

Obviously, S(Ω + u) ≡ T (Ω + u) in this case; also, that (32) holds is deduced from
the differentiability at 0 of the H1

0 (Ω)d-valued mapping u 7→ Y (u).
Let us compute T ′(Ω;u). From (31) and the fact that M(0) = Id, one has

ż(u) = 2
∑
ij (∂iyj + ∂jyi)(∂iẏj(u) + ∂j ẏi(u)−

∑
k ∂iuk ∂kyj −

∑
k ∂juk ∂kyi)

= 2
∑
ij σij(y)(σij(ẏ(u))−

∑
k ∂iuk ∂kyj −

∑
k ∂juk ∂kyi).

Since z(0) =
∑
ijσij(y)2, we have

T ′(Ω;u) = ν

∫
Ω

∑
ij σij(y)

(
σij(ẏ(u))−

∑
k (∂iuk ∂kyj + ∂juk ∂kyi) +

1
2
σij(y)∇ . u

)
.
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636 J. BELLO, E. FERNÁNDEZ-CARA, J. LEMOINE, AND J. SIMON

This proves (11). The regularity results are y ∈ C∞(Ω)d and p ∈ C∞(Ω). (This is
well known; for instance, see [7].) The identity (14) is then an easy consequence of
(13).

Proof of part (ii). Let us set

y′(u) = ẏ(u)− (u . ∇) y, p′(u) = ṗ(u)− u . ∇p.

Using (14) we see that (12) and (16) are equivalent. On the other hand, these defini-
tions provide the following identity:

∑
ij

(
σij(y)σij(y′(u)) +

1
2
∇ . (σij(y)2u)

)
=
∑
ijσij(y)

(
σij(ẏ(u))−

∑
k (∂iuk ∂kyj + ∂juk ∂kyi) +

1
2
σij(y)∇ . u

)
.

Hence, (11) implies (17) and (15).
Proof of part (iii). Let us now suppose that Ω is a W 2,∞ domain and u ∈

W 2,∞(Rd,Rd). According to Lemma 1, one has y ∈ H2(Ω)d and p ∈ H1(Ω). Conse-
quently, one obtains from (15)

(33) T ′(Ω;u) = ν

∫
Ω

∑
ij σij(y)σij(y′(u)) +

ν

2

∫
∂Ω

∑
ij σij(y)2 u . nds.

Since ẏ(u) = 0 and y ≡ const. on ∂Ω, y′(u) = −u . n ∂y
∂n on ∂Ω. Therefore,

ν

∫
Ω

∑
ij σij(y)σij(y′(u))

= −2ν
∫

Ω
∆y . y′(u)− 2ν

∑
ij

∫
∂Ω
u . n (∂iyj + ∂jyi)

∂yi
∂n

nj ds.

In addition,
∑

i ∂iyi = 0 imply
∑
ij (∂iyj + ∂jyi) ∂yi∂n nj = | ∂y∂n |2, whence

T ′(Ω;u) = −2ν
∫

Ω
∆y . y′(u)− ν

∫
∂Ω

∣∣∣∣∂y∂n
∣∣∣∣2 u . nds.

If w and q are given by (19), after some manipulation, one obtains

T ′(Ω;u) =
∫

Ω

∑
i(−ν∆wi y′i(u) +

∑
j(∂iyj wj − yj∂jwi)y′i(u) + ∂iq y

′
i(u))

− ν
∫
∂Ω

∣∣∣∣∂y∂n
∣∣∣∣2 u . nds

= 〈−ν∆y′(u) + (y′(u) . ∇) y + (y . ∇) y′(u) +∇p′(u), w〉H−1(Ω)d×H1
0 (Ω)d

+ ν

∫
∂Ω
u . n

(
∂w

∂n
− ∂y

∂n

)
.
∂y

∂n
ds.

Using (16) satisfied by (y′(u), p′(u)), one sees that the duality product on the right-
hand side cancels. This proves (18), since u = 0 on ∂D.
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DIFFERENTIABILITY OF THE DRAG 637

8. Proof of differentiability at any point in W of the velocity, the pres-
sure, and the drag. In this section, we prove the following result.

LEMMA 13. The mapping u 7→ (y(u), p(u)) ◦ (I + u), which takes values in
H1(Ω)d × L2(Ω), is differentiable at any point u0 ∈ W. The mapping u 7→ T (Ω + u)
is also differentiable at any u0 ∈ W.

Proof. Let u0 ∈ W be given. We have

(34) Ω + (u0 + v) = (Ω + u0) + v ◦ (I + u0)−1

for v ∈ W small enough in order to have u0 + v ∈ W. According to the results in
section 6, the mapping w 7→ T ((Ω + u0) + w) is differentiable at 0. The mapping
v 7→ v ◦ (I+u0)−1 is linear and bounded (therefore differentiable) from W 1,∞(Rd,Rd)
into itself. Consequently,

v 7→ T ((Ω + u0) + v ◦ (I + u0)−1) is differentiable at 0;

i.e., u 7→ T (Ω + u) is differentiable at u0.
Now we will apply the previous results to some new reference domains different

from Ω. So we introduce the more explicit notation (y(Ω; v), p(Ω; v)) for the solution
to the Navier–Stokes problem in Ω + v. We see from (34) that, for small v,

(35) y(Ω;u0 + v) ◦ (I + (u0 + v)) = y(Ω + u0; v ◦ (I + u0)−1) ◦ (I + u0 + v).

On the other hand, from Lemma 7, we know that the H1(Ω + u0)d-valued mapping
w 7→ y(Ω+u0;w)◦(I+w) is differentiable at 0. Thus, v 7→ y(Ω;u0 +v)◦(I+u0 +v) is
differentiable at 0; i.e., u 7→ y(Ω;u)◦(I+u) is differentiable at u0. A similar argument
holds for the function u 7→ p(Ω;u) ◦ (I + u).

Remark. Theorem 4.1 in [1] asserts that, when Ω is a W 2,∞ domain, the mapping
u 7→ (y(u), p(u)) ◦ (I +u) is well defined for u ∈W 2,∞(Rd,Rd)∩W and differentiable
at 0, with values in H2(Ω)d×H1(Ω). Adapting the previous argument, we can deduce
differentiability at each point in a W 2,∞-open ball centered at 0.

9. Higher-order differentiability. In this section, we will prove Theorems 6
and 4.

Proof of part (i) of Theorem 6. It remains to prove that u 7→ (Y (u), P (u)) is a C∞

mapping. (The remainder of part (i) has already been proven in section 6, Lemma 7.)
Observe that the mapping H, introduced in section 5 and defined from W ×

H1
0 (Ω)d×L2

0(Ω) into H−1(Ω)d×L2
0(Ω), is C∞. This is a consequence of the fact that

u 7→ Mij(u) and u 7→ Jac(I + u) are C∞ mappings. In turn, this stems from the
following:

(a) The mapping u 7→ Jac(I +u) is multilinear and, consequently, is of class C∞.
(b) The mapping u 7→M(u) = t [∂i(I + u)j ]

−1 is C∞ onW, because the inversion
operator is indefinitely differentiable in the set of the nonsingular matrices.

From the implicit function theorem, we deduce that u 7→ (Y (u), P (u)) possesses
derivatives of all orders at 0. Again using (35), which can be written in the form

Y (Ω;u0 + u) = Y (Ω + u0;u ◦ (I + u0)−1) ◦ (I + u0),

one also sees that u 7→ Y (Ω;u) is C∞ at each point u0 ∈ W. The same is true for
u 7→ P (Ω;u).

Proof of part (ii). The differentiability of the mapping u 7→ y(u)|ω at 0 in L2(ω)d

and the identity (20) are consequences of the differentiability of u 7→ y(u) ◦ (I + u)
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638 J. BELLO, E. FERNÁNDEZ-CARA, J. LEMOINE, AND J. SIMON

given in Lemma 7. This is a consequence of general results on differentiation with
respect to domains (see Lemma 2.1 in [15]). On the other hand, (12) and (20) together
imply (16).

Proof of Theorem 4. We have to check that u 7→ T (Ω+u) is a C∞ mapping. This
is deduced from the above results and the following equality, which has already been
used in section 6:

T (Ω + u) =
ν

2

∫
Ω

∑
ij(
∑
k(Mik(u) ∂kYj(Ω;u) +Mjk(u) ∂kYi(Ω;u)))2Jac(I + u).

10. Miscellaneous remarks. The case of a non-Lipschitz domain. Until now,
we have assumed that Ω is a Lipschitz domain in order to ensure, among other things,
that (29) is true. Actually, this assumption on Ω can be replaced by (29) itself:

∀φ ∈ L2(Ω) such that
∫

Ω
φ = 0, there exists ψ ∈ H1

0 (Ω)d such that ∇ . ψ = φ;

i.e., the divergence operator maps H1
0 (Ω)d onto L2

0(Ω).
Under this weaker hypothesis, the results in the previous sections hold again with

minor changes. Instead of p ∈ C∞(Ω) ∩ L2(Ω), we now have only

(36) p ∈ C∞(Ω), ∇p ∈ H−1(Ω)d.

On the other hand, we cannot normalize p and ṗ(u) as before. Instead, a possibility
is to fix a nonempty open set ω ⊂⊂ Ω and to impose∫

ω

p = 0,
∫
ω

ṗ(u) = 0.

Remark. The condition (29) requires some regularity on Ω, which is probably not
far from being Lipschitz.

Remark. It is important to note that, here, the difficulty is not related to nonlin-
earity. Even if we were concerned with Stokes flows (the term (y . ∇) y disappears),
(36) could not be improved unless a regularity assumption is required for Ω. This
difficulty is connected with the fact that the equations are coupled by the incompress-
ibility condition ∇ . y = 0.

Remark. For more simple (scalar) problems, we can obtain a result similar to
Theorem 4, without any regularity hypothesis for Ω. For example, let y be the unique
solution to

(37) −∆y = f in Ω, y − g ∈ H1
0 (Ω)d,

and let us set

S(Ω) =
∫

Ω
|∇(y − z)|2,

where f ∈ L2(Ω)d, g ∈ H2(Rd), and z ∈ H1(Rd) are given and Ω is an arbitrary
bounded open set in Rd. Then, u 7→ S(Ω + u) is well defined and differentiable in a
neighborhood of 0 in W 1,∞(Rd,Rd) [10, Theorem 5.2, p. V.10].

The particular case of a polygonal two-dimensional body. Assume that B is a two-
dimensional polygonal domain with vertices s1, s2, . . . , sn. Let us set s = (s1, . . . , sn),
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DIFFERENTIABILITY OF THE DRAG 639

and let us assume that the corresponding polygonal line, ∂B, does not cross itself.
Thus, using the notation sn+1 = s1, one has

(38) [si, si+1[
⋂

[sj , sj+1[ = ∅ if 1 ≤ i < j ≤ n.

Also, assume that

(39) B ⊂⊂ O ⊂⊂ D.

It is then obvious that Ωs = D\B satisfies (1). In this situation, the following is not
difficult to prove:

The mapping s 7→ T (Ωs) is C∞ at each point s ∈ R2n satisfying (38) and (39).
Other examples. Above, the polygonal domain can be replaced by a spline de-

pending on a finite number of parameters. In such a way, we obtain similar results
for “NACA profiles” or other piecewise C1 boundaries. Similar results hold for three-
dimensional domains.

11. Appendix. In order to prove Lemma 3, we need some previous definitions
and results.

DEFINITION 14. Let Ω be a bounded open set in Rd.
(i) We say that Ω is a Lipschitz domain (also that Ω is Lipschitzian; see [11], [5])

if there exist constants a > 0 and b > 0 such that, for each z ∈ ∂Ω, one can find
— coordinates (x1, . . . , xd),
— a Lipschitz-continuous real-valued function ψ in Θ∗ with best Lipschitz constant

smaller than b, where Θ∗ = {x∗; |x∗ − z∗| < a}, x∗ = (x1, . . . , xd−1), and z∗ =
(z1, . . . , zd−1),
such that, for each x ∈ Θ = {x ∈ Rd; |x∗ − z∗| < a, |xd − ψ(x∗)| < a}, one has

x ∈ Ω⇐⇒ xd > ψ(x∗).

(ii) We say that Ω satisfies the cone property uniformly if there exist constants
α > 0 and b > 0 such that, for each z ∈ ∂Ω, one can find coordinates such that

x ∈ Ω ∩B(z;α) =⇒ x+ Cb,α ⊂ Ω.

Here, we have set B(z;α) = {x ∈ Rd; |x− z| < α} and

Cb,α = {x ∈ Rd; xd > b |x∗|, |x| < α}.

The properties (i) and (ii) are equivalent. More precisely, we have the following
result (see [3]).

LEMMA 15. A bounded open set in Rd is Lipschitzian if and only if it satisfies the
cone property uniformly.

The following result was also used in the proof of Lemma 3.
LEMMA 16. Assume that α > 0 and b > 0 are given. There exist α′ > 0,

b′ > 0, and l ∈ (0, 1) such that, whenever v ∈W 1,∞(Rd,Rd), ‖v‖W 1,∞(Rd,Rd) ≤ l, and
v(0) = 0, one has

Cb′,α′ ⊂ (I + v) Cb,α.

Proof of Lemma 3. From Lemma 15, there exist α > 0 and b > 0 such that, for
each z ∈ ∂Ω, one has

(40) x ∈ Ω ∩B(z;α) =⇒ x+ Cb,α ⊂ Ω.
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Again from Lemma 15, it is enough to find α′ and b′ such that, for each z′ ∈ ∂(Ω+u),

(41) x′ ∈ (Ω + u) ∩B(z′;α′) =⇒ x′ + Cb′,α′ ⊂ Ω + u.

Given such an x′, let ξ′ ∈ Cb′,α′ , and define x and z by x′ = x+ u(x), z′ = z + u(z).
Lemma 16 with v(ξ) = u(ξ + x) − u(x) gives the existence of ξ ∈ Cb,α such that
ξ′ = ξ + u(ξ + x)− u(x). Then

x′ + ξ′ = x+ ξ + u(x+ ξ).

This gives (41), provided that x + ξ ∈ Ω. By (40), it is enough to check that x ∈ Ω
(which is obvious) and |x − z| ≤ α, which is satisfied for α′ ≤ α(1 − c) (indeed,
x′ − z′ = x− z + u(x)− u(z) implies |x′ − z′| ≥ |x− z|(1− c)).
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