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Abstract. An increasing number of cryptographic primitives use
operations such as addition modulo 2n, multiplication by a constant
and bitwise Boolean functions as a source of non-linearity. In NIST’s
SHA-3 competition, this applies to 6 out of the 14 second-round candi-
dates. In this paper, we generalize such constructions by introducing the
concept of S-functions. An S-function is a function that calculates the
i-th output bit using only the inputs of the i-th bit position and a finite
state S[i]. Although S-functions have been analyzed before, this paper is
the first to present a fully general and efficient framework to determine
their differential properties. A precursor of this framework was used in
the cryptanalysis of SHA-1. We show how to calculate the probability
that given input differences lead to given output differences, as well as
how to count the number of output differences with non-zero probabil-
ity. Our methods are rooted in graph theory, and the calculations can be
efficiently performed using matrix multiplications.
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1 Introduction

Since their introduction to cryptography, differential cryptanalysis [7] and linear
cryptanalysis [26] have shown to be two of the most important techniques in
both the design and cryptanalysis of symmetric-key cryptographic primitives.

Differential cryptanalysis was introduced by Biham and Shamir in [7]. For
block ciphers, it is used to analyze how input differences in the plaintext lead to
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output differences in the ciphertext. If this happens in a non-random way, this
can be used to build a distinguisher or even a key-recovery attack.

The analysis of how differences propagate through elementary components
of cryptographic designs is therefore essential to differential cryptanalysis. As
typical S-boxes are no larger than 8× 8, this analysis can be done by building a
difference distribution table. Such a difference distribution table lists the number
of occurrences of every combination of input and output differences.

The combination of S-box layers and permutation layers with good crypto-
graphic properties, are at the basis of the wide-trail design. The wide-trail design
technique is used in AES [10] to provide provable resistance against both linear
and differential cryptanalysis attacks.

However, not all cryptographic primitives are based on S-boxes. Another op-
tion is to use only operations such as addition modulo 2n, exclusive or (xor),
Boolean functions, bit shifts and bit rotations. For Boolean functions, we assume
that the same Boolean function is used for each bit position i of the n-bit input
words.

Each of these operations is very well suited for implementation in software,
but building a difference distribution table becomes impractical for commonly
used primitives where n = 32 or n = 64. Examples using such constructions
include the XTEA block cipher [32], the Salsa20 stream cipher family [5], as well
as the hash functions MD5, SHA-1, and 6 out of 14 second-round candidates1

of NIST’s SHA-3 hash function competition [31].
In this paper, we present the first known fully general framework to analyze

these constructions efficiently. It is inspired by the cryptanalysis techniques for
SHA-1 by De Cannière and Rechberger [12] (clarified in [30]), and by methods
introduced by Lipmaa, Wallén and Dumas [23]. The framework is used to calcu-
late the probability that given input differences lead to given output differences,
as well as to count the number of output differences with non-zero probability.
Our methods are based on graph theory, and the calculations can be efficiently
performed using matrix multiplications. We show how the framework can be
used to analyze several commonly used constructions.

Notation is defined in Table 1. Section 2 defines the concept of an S-function.
This type of function can be analyzed using the framework of this paper. The
differential probability xdp+ of addition modulo 2n, when differences are ex-
pressed using xor, is analyzed in Sect. 3. We show how to calculate xdp+ with
an arbitrary number of inputs. In Sect 4, we study the differential probability
adp⊕ of xor when differences are expressed using addition modulo 2n. Count-
ing the number of output differences with non-zero probability is the subject of
Sect. 5. We conclude in Sect. 6. The matrices obtained for xdp+ are listed in
Appendix A. We show all possible subgraphs for xdp+ in Appendix B. In Ap-
pendix C, we extend xdp+ to an arbitrary number of inputs. The computation
of xdp×C is explained in Appendix D.

1 The hash functions BLAKE [4], Blue Midnight Wish [14], CubeHash [6], Shabal [8],
SIMD [20] and Skein [13] can be analyzed using the general framework that is intro-
duced in this paper.
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Table 1. Notation

Notation Description

x ‖ y concatenation of the strings x and y
|A| number of elements of set A

x � s shift of x to the left by s positions
x � s shift of x to the right by s positions
x ≪ s rotation of x to the left by s positions
x ≫ s rotation of x to the right by s positions
x + y addition of x and y modulo 2n (in text)
x � y addition of x and y modulo 2n (in figures)
x[i] selection: bit (or element) at position i of word x,

where i = 0 is the least significant bit (element)

2 S-Functions

In this section, we define S-functions, the type of functions that can be ana-
lyzed using our framework. In order to show the broad range of applicability of
the proposed technique, we give several examples of functions that follow our
definition.

An S-function (short for “state function”) accepts n-bit words a1, a2, . . . , ak

and a list of states S[i] (for 0 ≤ i < n) as input, and produces an n-bit output
word b in the following way:

(b[i], S[i + 1]) = f(a1[i], a2[i], . . . , ak[i], S[i]), 0 ≤ i < n . (1)

Initially, we set S[0] = 0. Note that f can be any arbitrary function that can be
computed using only input bits a1[i], a2[i], . . . , ak[i] and state S[i]. For concise-
ness, the same function f is used for every bit 0 ≤ i < n. Our analysis, however,
does not require functions f to be the same, and not even to have the same
number of inputs. A schematic representation of an S-function is given in Fig. 1.

f

. . .

a1[0] a2[0] ak[0]

b[0]

S[0]
f

. . .

a1[1] a2[1] ak[1]

b[1]

S[1]
f

. . .

a1[n − 1] a2[n − 1] ak[n − 1]

b[n − 1]

S[n − 1] S[2]S[n]
. . .

Fig. 1. Representation of an S-function
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Examples of S-functions include addition, subtraction and multiplication by a
constant (all modulo 2n), exclusive-or (xor) and bitwise Boolean functions. Al-
though this paper only analyzes constructions with one output b, the extension to
multiple outputs is straightforward. Our technique therefore also applies to larger
constructions, such as the Pseudo-Hadamard Transform used in SAFER [1] and
Twofish [34], and first analyzed in [21].

With a minor modification, the concept of S-functions allows the inputs a1, a2,
. . . , ak and the output b to be rotated (or reordered) as well. This corresponds
to rotating (or reordering) the bits of the input and output of f . This results in
exactly the same S-function, but the input and output variables are relabeled
accordingly. An entire step of SHA-1 as well as the MIX primitive of the block
cipher RC2 can therefore be seen as an S-function. If the extension to multiple
output bits is made, this applies as well to an entire step of SHA-2: for every
step of SHA-2, two 32-bit registers are updated.

Every S-function is also a T-function, but the reverse is not always true.
Proposed by Klimov and Shamir [19], a T-function is a mapping in which the
i-th bit of the output depends only on bits 0, 1, . . . , i of the input. Unlike a
T-function, the definition of an S-function requires that the dependence on bits
0, 1, . . . , i−1 of the input can be described by a finite number of states. Therefore,
squaring modulo 2n is a T-function, but not an S-function.

In [11], Daum introduced the concept of a narrow T-function. A w-narrow
T-function computes the i-th output bit based on some information of length
w bits computed from all previous input bits. An S-function, however, requires
only the i-th input bit and a state S[i] to calculate the i-th output bit and the
next state S[i + 1]. There is a subtle difference between narrow T-functions and
S-functions. If the number of states is finite and not dependent on the word
length n, it may not always be possible for a narrow T-function to compute
S[i + 1] from the previous state S[i] and the i-th input bit.

It is possible to simulate every S-function using a finite-state machine (FSM),
also known as a finite-state automaton (FSA). This finite-state machine has k
inputs a1[i], a2[i], . . . , ak[i], and one state for every value of S[i]. The output is
b[i]. The FSM is clocked n times, for 0 ≤ i < n. From (1), we see that the output
depends on both the current state and the input. The type of FSM we use is
therefore a Mealy machine [27].

The straightforward hardware implementation of an S-function corresponds
to a bit-serial design. Introduced by Lyon in [24,25], a bit-serial hardware archi-
tecture treats all n bits in sequence on a single hardware unit. Every bit requires
one clock cycle to be processed.

The S-function framework can also be used in differential cryptanalysis, when
the inputs and outputs are xor- or additive differences. Assume that every input
pair (x1, x2) satisfies a difference Δ•x, using some group operator •. Then, if
both x1 and Δ•x are given, we can calculate x2 = x1 •Δ•x. It is then straight-
forward to define a function to calculate the output values and the output
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difference as well.This approach will become clear in the following sections, when
we calculate the differential probabilities xdp+ and adp⊕ of modular addition
and xor respectively.

3 Computation of xdp+

3.1 Introduction

In this section, we study the differential probability xdp+ of addition modulo 2n,
when differences are expressed using xor. Until [22], no algorithm was published
to compute xdp+ faster than exhaustive search over all inputs. In [22], the
first algorithm with a linear time in the word length n was proposed. If n-bit
computations can be performed, the time complexity of this algorithm becomes
sublinear in n.

In [23], xdp+ is expressed using the mathematical concept of rational series.
It is shown that this technique is more general, and can also be used to calculate
the differential probability adp⊕ of xor, when differences are expressed using
addition modulo 2n.

In this paper, we present a new technique for the computation of xdp+, using
graph theory. The main advantage of the proposed method over existing tech-
niques, is that it is not only more general, but also allows results to be obtained
in a fully automated way. The only requirement is that both the operations and
the input and output differences of the cryptographic component can be written
as the S-function of Sect. 2. In the next section, we introduce this technique to
calculate the probability xdp+.

3.2 Defining the Probability xdp+

Given n-bit words x1, y1, Δ
⊕x, Δ⊕y, we calculate Δ⊕z using

x2 ← x1 ⊕Δ⊕x , (2)

y2 ← y1 ⊕Δ⊕y , (3)
z1 ← x1 + y1 , (4)
z2 ← x2 + y2 , (5)

Δ⊕z ← z2 ⊕ z1 . (6)

We then define xdp+(α, β → γ) as

xdp+(α, β → γ) =
|{(x1, y1) : Δ⊕x = α, Δ⊕y = β, Δ⊕z = γ}|

|{(x1, y1) : Δ⊕x = α, Δ⊕y = β}| , (7)

= 4−n|{(x1, y1) : Δ⊕x = α, Δ⊕y = β, Δ⊕z = γ}| , (8)

as there are 2n · 2n = 4n combinations for the two n-bit words (x1, y1).
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3.3 Constructing the S-Function for xdp+

We rewrite (2)-(6) on a bit level, using the formulas for multiple-precision
addition in radix 2 [28, §14.2.2]:

x2[i]← x1[i]⊕Δ⊕x[i] , (9)

y2[i]← y1[i]⊕Δ⊕y[i] , (10)
z1[i]← x1[i]⊕ y1[i]⊕ c1[i] , (11)

c1[i + 1]← (x1[i] + y1[i] + c1[i])� 1 , (12)
z2[i]← x2[i]⊕ y2[i]⊕ c2[i] , (13)

c2[i + 1]← (x2[i] + y2[i] + c2[i])� 1 , (14)

Δ⊕z[i]← z2[i]⊕ z1[i] , (15)

where carries c1[0] = c2[0] = 0. Let us define

S[i]← (c1[i], c2[i]) , (16)
S[i + 1]← (c1[i + 1], c2[i + 1]) . (17)

Then, (9)-(15) correspond to the S-function

(Δ⊕z[i], S[i + 1]) = f(x1[i], y1[i], Δ⊕x[i], Δ⊕y[i], S[i]), 0 ≤ i < n . (18)

Because we are adding two words in binary, both carries c1[i] and c2[i] can be
either 0 or 1.

3.4 Computing the Probability xdp+

In this section, we use the S-function (18), defined by (9)-(15), to compute xdp+.
We explain how this probability can be derived from the number of paths in a
graph, and then show how to calculate xdp+ using matrix multiplications.

Graph Representation. For 0 ≤ i ≤ n, we will represent every state S[i] as a
vertex in a graph (Fig. 2). This graph consists of several subgraphs, containing
only vertices S[i] and S[i + 1] for some bit position i. We repeat the following
for all combinations of (α[i], β[i], γ[i]):

Set α[i] ← Δ⊕x[i] and β[i] ← Δ⊕y[i]. Then, we loop over all values of
(x1[i], y1[i], S[i]). For each combination, Δ⊕z[i] and S[i] are uniquely determined
by (18). We draw an edge between S[i] and S[i+ 1] in the subgraph, if and only
if Δ⊕z[i] = γ[i]. Note that several edges may have the same set of endpoints.

For completeness, all subgraphs for xdp+ are given in Appendix B. Let α, β, γ
be given. As shown in Fig. 2, we construct a full graph containing all vertices
S[i] for 0 ≤ i ≤ n, where the edges between these vertices correspond to those
of the subgraphs for α[i], β[i], γ[i].

Theorem 1. Let P be the set of all paths from (c1[0], c2[0]) = (0, 0) to any of
the four vertices (c1[n], c2[n]) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} (see Fig. 2). Then,
there is exactly one path in P for every pair (x1, y1) of the set in the definition
of xdp+, given by (8).
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Proof. Given x1[i], y1[i], Δ⊕x[i], Δ⊕y[i], c1[i] and c2[i], the values of Δ⊕z[i],
c1[i + 1] and c2[i + 1] are uniquely determined by (9)-(15). All paths in P start
at (c1[0], c2[0]) = (0, 0), and only consist of vertices (c1[i], c2[i]) for 0 ≤ i ≤ n
that satisfy (9)-(15). Furthermore, edges for which Δ⊕z[i] �= γ[i] are not in the
graph, and therefore not part of any path P . Thus by construction, P contains
every pair (x1, y1) of the set in (8) exactly once. 	
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Fig. 2. An example of a full graph for xdp+. Vertices (c1[i], c2[i]) ∈
{(0, 0), (0, 1), (1, 0), (1, 1)} correspond to states S[i]. There is one edge for every in-
put pair (x1, y1). All paths that satisfy input differences α, β and output difference γ
are shown in bold. They define the set of paths P of Theorem 1.

Multiplication of Matrices. The differential (α[i], β[i]→ γ[i]) at bit position
i is written as a bit string w[i] ← α[i] ‖ β[i] ‖ γ[i]. Each w[i] corresponds
to a subgraph of Appendix B. As this subgraph is a bipartite graph, we can
construct its biadjacency matrix Aw[i] = [xkj ], where xkj is the number of edges
that connect vertices j = S[i] and k = S[i + 1]. These matrices are given in
Appendix A.

Let the number of states S[i] be N . Define 1×N matrix L = [1 1 · · · 1 ] and
N × 1 matrix C = [1 0 · · · 0 ]T . For any directed acyclic graph, the number of
paths between two vertices can be calculated as a matrix multiplication [9]. We
can therefore calculate the number of paths P as

|P | = LAw[n−1] · · ·Aw[1]Aw[0]C . (19)

Using (8), we find that xdp+(α, β → γ) = 4−n|P |. Therefore, we can define
A∗

w[i] = Aw[i]/4, and obtain

xdp+(α, β → γ) = LA∗
w[n−1] · · ·A∗

w[1]A
∗
w[0]C . (20)

As such, we obtain a similar expression as in [23], where the xdp+ was calculated
using the concept of rational series. Our matrices A∗

w[i] are of size 4× 4 instead
of 2 × 2, however. We now give a simple algorithm to reduce the size of our
matrices.
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3.5 Minimizing the Size of the Matrices for xdp+

Corresponding to (20), we can define a non-deterministic finite-state automaton
(NFA) with states S[i] and inputs w[i]. Compared to a deterministic finite-state
automaton, the transition function is replaced by a transition relation. There
are several choices for the next state, each with a certain probability. This NFA
can be minimized as follows.

First, we remove non-accessible states. A state is said to be non-accessible, if
it can never be reached from the initial state S[0] = 0. This can be done using a
simple algorithm to check for connectivity, with a time complexity that is linear
in the number of edges.

Secondly, we merge indistinguishable states. The method we propose, is sim-
ilar to the FSM reduction algorithms found independently by [17] and [29].
Initially, we assign all states S[i] to one equivalence class T [i] = 0. We try to
partition this equivalence class into smaller classes, by repeating the following
steps:

– We iterate over all states S[i].
– For every input w[i] and every equivalence class T [i], we sum the transition

probabilities to every state S[i] of this equivalence class.
– If these sums are different for two particular states S[i], we partition them

into different equivalence classes T [i].

The algorithm stops when the equivalence classes T [i] cannot be partitioned
further.

In the case of xdp+, we find that all states are accessible. However, there are
only two indistinguishable states: T [i] = 0 and T [i] = 1 when (c1[i], c2[i]) are
elements of the sets {(0, 0), (1, 1)} and {(0, 1), (1, 0)} respectively. Our algorithm
shows how matrices A∗

w[i] of (20) can be reduced to matrices A′
w[i] of size 2× 2.

These matrices are the same as in [23], but they have now been obtained in
an automated way. For completeness, they are given again in Appendix A. Our
approach also allows a new interpretation of matrices A′

w[i] in the context of
S-functions (18): every matrix entry defines the transition probability between
two sets of states, where all states of one set were shown to be equivalent by the
minimization algorithm.

3.6 Extensions of xdp+

In this section, we show how S-functions not only lead to expressions to calculate
xdp+(α, β → γ), but can be applied to related constructions as well.

Multiple Inputs xdp+(α, β, . . . → γ). Using the framework of this paper,
we can easily calculate xdp+ for more than two (independent) inputs. This cal-
culation can be used, for example, in the differential cryptanalysis of XTEA [32]
using xor differences. In [15], a 3-round iterative characteristic (α, 0) → (α, 0)
is used, where α = 0x80402010. In the third round of the characteristic, there
are two consecutive applications of addition modulo 2n. Separately, these result
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in probabilities xdp+(α, 0 → α) = 2−3 and xdp+(α, α → 0) = 2−3. It is shown
in [15] that the joint probability xdp+(α, 0, α → 0) is higher than the prod-
uct of the probabilities 2−3 · 2−3 = 2−6, and is estimated to be 2−4.755. Using
the techniques presented in this paper, we evaluate the exact joint probability
to be 2−3. We also verified this experimentally. The calculations are detailed
in Appendix C. This result can be trivially confirmed using the commutativity
property of addition: xdp+(α, α → 0) · xdp+(0, 0 → 0) = xdp+(α, α → 0) =
2−3. Nevertheless, our method is more general and can be used for any input
difference.

Multiplication by a Constant xdp×C. A problem related to xdp+, is the
differential probability of multiplication by a constant C where differences are
expressed by xor. We denote this probability by xdp×C . In the hash function
Shabal [8], multiplications by 3 and 5 occur. EnRUPT [33] uses a multiplication
by 9. In the cryptanalysis of EnRUPT [18], a technique is described to calculate
xdp×9. This technique is based on a precursor of the framework in this paper. In
Appendix D, we show how each of these probabilities can be calculated efficiently,
using the framework of this paper. The example of xdp×3 is fully worked out.

Pseudo-Hadamard Transform xdpPHT. The Pseudo-Hadamard Transform
(PHT) is defined as PHT(x1, x2) = (2x1+x2, x1+x2). It is a reversible operation,
used to provide diffusion in several cryptographic primitives, including block
ciphers SAFER [1] and Twofish [34]. Its differential properties were first studied
in [21]. If we allow an S-function to be constructed with two outputs b1 and b2,
the analysis of this construction becomes straightforward using the techniques
of this paper.

Step Functions of the MD4 Family. The MD4 family consists of several
hash functions, including MD4, MD5, SHA-1, SHA-2 and HAS-160. Currently,
the most commonly used hash functions worldwide are MD5 and SHA-1. The
step functions of MD4, HAS-160 and SHA-1 can each be represented as an S-
function. This applies as well to the MIX primitive of the block cipher RC2.
They can therefore also be analyzed using our framework. The calculation of
the uncontrolled probability Pu(i) in the cryptanalysis of SHA-1 [12,30] uses a
precursor of the techniques in this paper. By making the extension to multiple
outputs, the same analysis can be made as well for the step function of SHA-2.

4 Computation of adp⊕

4.1 Introduction

In this section, we study the differential probability adp⊕ of xor when differences
are expressed using addition modulo 2n. The best known algorithm to compute
adp⊕ was exhaustive search over all inputs, until an algorithm with a linear time
in n was proposed in [23].

We show how the technique introduced in Sect. 3 for xdp+ can also be applied
to adp⊕. Using this, we confirm the results of [23]. The approach we introduced
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in this section is conceptually much easier than [23], and can easily be generalized
to other constructions with additive differences.

4.2 Defining the Probability adp⊕

Given n-bit words x1, y1, Δ
+x, Δ+y, we calculate Δ+z using

x2 ← x1 + Δ+x , (21)

y2 ← y1 + Δ+y , (22)
z1 ← x1 ⊕ y1 , (23)
z2 ← x2 ⊕ y2 , (24)

Δ+z ← z2 − z1 . (25)

Similar to (8), we define adp⊕(α, β → γ) as

adp⊕(α, β → γ) =
|{(x1, y1) : Δ+x = α, Δ+y = β, Δ+z = γ}|

|{(x1, y1) : Δ+x = α, Δ+y = β}| , (26)

= 4−n|{(x1, y1) : Δ+x = α, Δ+y = β, Δ+z = γ}| , (27)

as there are 2n · 2n = 4n combinations for the two n-bit words (x1, y1).

4.3 Constructing the S-Function for adp⊕

We rewrite (21)-(25) on a bit level, again using the formulas for multiple-precision
addition and subtraction in radix 2 [28, §14.2.2]:

x2[i]← x1[i]⊕Δ+x[i]⊕ c1[i] , (28)

c1[i + 1]← (x1[i] + Δ+x[i] + c1[i])� 1 , (29)

y2[i]← y1[i]⊕Δ+y[i]⊕ c2[i] , (30)

c2[i + 1]← (y1[i] + Δ+y[i] + c2[i])� 1 , (31)
z1[i]← x1[i]⊕ y1[i] , (32)
z2[i]← x2[i]⊕ y2[i] , (33)

Δ+z[i]← (z2[i]⊕ z1[i]⊕ c3[i])[0] , (34)
c3[i + 1]← (z2[i]− z1[i] + c3[i])� 1 , (35)

where carries c1[0] = c2[0] = 0 and borrow c3[0] = 0. We assume all variables
to be integers in two’s complement notation, all shifts are signed shifts. Let us
define

S[i]← (c1[i], c2[i], c3[i]) , (36)
S[i + 1]← (c1[i + 1], c2[i + 1], c3[i + 1]) . (37)

Then (28)-(35) correspond to the S-function

(Δ+z[i], S[i + 1]) = f(x1[i], y1[i], Δ+x[i], Δ+y[i], S[i]), 0 ≤ i < n . (38)

Both carries c1[i] and c2[i] can be either 0 or 1; borrow c3[i] can be either 0 or −1.
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4.4 Computing the Probability adp⊕

Using the description of the S-function (38), the calculation of adp⊕ follows di-
rectly from Sect. 3.4. We obtain eightmatrices Aw[i] of size 8×8.After applying the
minimization algorithm of Sect. 3.5, the size of the matrices remains unchanged.
Here, we use the expression −4 · c3[i] + 2 · c2[i] + c1[i] as an index to order the
states S[i]. The matrices we obtain are then permutation similar to those of [23];
their states S′[i] can be related to our states S[i] by permutation σ:

σ =
(

0 1 2 3 4 5 6 7
0 4 2 6 1 5 3 7

)
. (39)

We calculate the number of paths using (19). From (27), we get adp⊕(α, β →
γ) = 4−n|P |. Therefore, we can define A∗

w[i] = Aw[i]/4, and obtain

adp⊕(α, β → γ) = LA∗
w[n−1] · · ·A∗

w[1]A
∗
w[0]C . (40)

5 Counting Possible Output Differences

5.1 Introduction

In the previous sections, we showed for several constructions how to calculate
the probability that given input differences lead to a given output difference. A
related problem is to calculate the number of possible output differences, when
the input differences are given. We say that an output difference is possible, if
it occurs with a non-zero probability.

First, we describe a naive algorithm to count the number of output differences.
It has a time complexity that is exponential in the word length n. We investigate
both improvements in existing literature, as well as cryptanalysis results where
such a calculation is necessary.

Then, we introduce a new algorithm. We found it to be the first in existing
literature with a time complexity that is linear in n. We show that our algorithm
can be used for all constructions based on S-functions.

5.2 Algorithm with a Exponential Time in n

Generic Exponential-in-n Time Algorithm. A naive, but straightforward
algorithm works as follows. All output differences with non-zero probability can
be represented in a search tree. Every level in this tree contains nodes of one
particular bit position, with the least significant bit at the top level. This tree
is traversed using depth-first search. For each output difference with non-zero
probability that is found, we increment a counter for the number of output
differences by one. When all nodes are traversed, this counter contains the total
number of possible output differences. The time complexity of this algorithm is
exponential in n, the memory complexity is linear in n.
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Improvement for xdc+(α, β). We introduce the notation xdc+(α, β) for
the number of output xor-differences of addition modulo 2n, given input xor-
differences α and β. In [3], xdc+ was used to build a key-recovery attack on top
of a boomerang distinguisher for 32-round Threefish-512 [13]. They introduced
a new algorithm to calculate xdc+. The correctness of this algorithm is proven
in the full version of [3], i.e. [2]. The algorithm, however, only works if one of the
inputs contains either no difference, or a difference only in the most significant
bit. Also, it does not generalize to other types of differences. The time complexity
of this algorithm is exponential in the number of non-zero input bits, and the
memory complexity is linear in the number of non-zero input bits. As a result,
it is only usable in practice for sparse input differences. We were unable to find
any other work on this problem in existing literature.

5.3 Algorithm with a Linear Time in n

In Sect. 3 and 4, we showed how to calculate the probability of an output dif-
ference using both graph theory and matrix multiplications. We now present a
similar method to calculate the number of possible output differences. First, the
general algorithm is explained. It is applicable to any type of construction based
on S-functions. Then, we illustrate how the matrices for xdp+ can be turned
into matrices for xdc+. This paper is the first to present an algorithm for this
problem with a linear-in-n time complexity. We also extend the results to adp⊕.
Our strategy is similar to the calculation of the controlled probability Pc(i), used
in the cryptanalysis of SHA-1 [12,30].

Graph Representation. As in Sect. 3.4, we will again construct a graph. Let
N be the number of states |T [i]| that we obtained in Sect. 3.5. For xdp+, we found
N = 2. We will now construct larger subgraphs, where the nodes do not represent
states T [i], but elements of its power set P(T [i]). This power set P(T [i]) contains
2N elements, ranging from the empty set ∅ to set of all states {0, 1, . . . , N−1}. In
automata theory, this technique is known as the subset construction [16, §2.3.5].
It converts the non-deterministic finite-state automaton (NFA) of Sect. 3.5 into
a deterministic finite-state automaton (DFA).

For every subgraph, the input difference bits α[i] and β[i] are fixed. We then
define exactly one edge for every output bit γ[i] from every set in P(T [i]) to the
corresponding set of next states in P(T [i + 1]). The example in the next section
will clarify this step.

Theorem 2. Let P be the set of all paths that start in {0} at position i = 0
and end in a non-empty set at position i = n. Then, the number of paths |P |
corresponds to the number of possible output differences.

Proof. All paths P start in {0} at i = 0, and end in a non-empty set at i = n. For
a given output difference bit, there is exactly one edge leaving from a non-empty
set of states to another non-empty set of states. Therefore by construction, every
possible output difference corresponds to exactly one path in P . 	
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Multiplication of Matrices. The differential (α[i], β[i]) at bit position i is
written as a bit string w[i] ← α[i] ‖ β[i]. As in Sect. 3.4, we construct the
biadjacency matrices of these subgraphs. They will be of size 2N × 2N . As we
are only interested in possible output differences, these matrices can be reduced
to matrices Bw[i] of size (2N − 1)× (2N − 1) by removing the empty set ∅.

Define 1×(2N−1) matrix L=[11 · · · 1 ] and (2N−1)×1 matrix C = [1 0 · · · 0 ]T .
Similar to (19), we obtain the number of possible output differences as

|P | = LBw[n−1] · · ·Bw[1]Bw[0]C . (41)

The time complexity of (41) is linear in the word length n.
We note that these matrices can have large dimensions. However, this is often

not a problem in practice, as they are typically very sparse. If we keep track of
only non-zero elements, there is little memory required to store vectors, and fast
algorithms exist for sparse matrix-vector multiplications. Also, the size of the
matrices can be minimized using Sect. 3.5.

5.4 Computing the Number of Output Differences xdc+

In the minimized matrices for xdp+ (given in [23] and again in Appendix A), we
refer to the states corresponding to the first and the second column as S[i] = 0
and S[i] = 1 respectively. Then, the subgraphs for xdc+ can be constructed as in
Fig. 3. Regardless of the value of the output bit, edges leaving from the empty
set ∅ at i will always arrive at the empty set at i + 1. Assume that the input
differences are α[i] = β[i] = 0, and that we are in state S[i] = 1, represented in
Fig. 3 as {1}. Recall that the matrices for xdp+ are

A′
000 =

[
1 0
0 0

]
, A′

001 =
1
2

[
0 1
0 1

]
, (42)

for output differences γ[i] = 0 and γ[i] = 1 respectively. To find out which states
can be reached from state S[i] = 1, we multiply both matrices to the right by[
0 1

]T . We obtain

A′
000

[
0
1

]
=

[
0
0

]
, A′

001

[
0
1

]
=

1
2

[
1
1

]
. (43)

We see that we cannot reach a valid next state if γ[i] = 0, so there is an edge
between {1} at i and ∅ at i + 1 for γ[i] = 0. If γ[i] = 1, both states can be
reached. Therefore, we draw an edge between {1} at i and {0, 1} at i + 1 for
γ[i] = 1. The other edges of Fig. 3 can be derived in a similar way.

Matrices B00, B01, B10, B11 of (41) can be derived from Fig. 3 as

B00 =

⎡
⎣1 0 1

0 0 0
0 1 1

⎤
⎦ , B01 = B10 =

⎡
⎣0 0 0

0 0 0
1 1 2

⎤
⎦ , B11 =

⎡
⎣0 0 0

0 1 1
1 0 1

⎤
⎦ . (44)
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∅ ∅

{0} {0}

{1} {1}

{0, 1} {0, 1}

0

1
0

1

1

0
0

1

(0,0)

∅ ∅
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1
1

0
0

1

0

1

Fig. 3. All possible subgraphs for xdc+. Vertices correspond to valid sets of states S[i].
There is one edge for every output difference bit γ[i]. Above each subgraph, the value
of (α[i], β[i]) is given in bold.

If the input differences are very sparse or very dense, (41) can be sped up by
using the following expressions for the powers of matrices:

Bk
00 =

⎡
⎣1 k − 1 k

0 0 0
0 1 1

⎤
⎦ , Bk

01 = Bk
10 =

⎡
⎣ 0 0 0

0 0 0
2k−1 2k−1 2k

⎤
⎦ , Bk

11 =

⎡
⎣ 0 0 0

k − 1 1 k
1 0 1

⎤
⎦ .

(45)

This way, we obtain an algorithm with a time complexity that is linear in the
number of non-zero input bits. As such, our algorithm always outperforms the
naive exponential time algorithm, as well as the exponential time algorithm of [3]
that only works for some input differences.

Let L = [1 1 ] and C = [1 0 ]T . We illustrate our method by recalculating the
example given in [3]:

xdc+(0x1000010402000000, 0x0000000000000000) (46)

= L · B3
00 ·B10 ·B19

00 · B10 ·B5
00 ·B10 · B8

00 · B10 ·B25
00 · C (47)

= 5880 (48)

5.5 Calculation of adc⊕

We can also calculate adc⊕, which is the number of output differences for xor,
when all differences are expressed using addition modulo 2n. As the matrices
A∗

w[i] for adp⊕ are of dimension 8 × 8, the matrices Bw[i] of adc⊕ would be of
dimension (28 − 1)× (28 − 1) = 255× 255. However, we find that only 24 out of
255 states are accessible. Furthermore, we find that all 24 accessible states are
equivalent to 2 states. In the end, we obtain the following 2× 2 matrices:

B00 =
[

1 0
0 2

]
, B01 = B10 = B11 =

[
0 0
1 2

]
. (49)
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These matrices Bw[i] are consistent with Theorem 2 of [23]. Although the end
result is simple, this example encompasses many of the techniques presented in
this paper.

6 Conclusion

In Sect. 2, we introduced the concept of an S-function, for which we build a
framework in this paper. In Sect. 3, we analyzed the differential probability xdp+

of addition modulo 2n, when differences are expressed using xor. This probability
was derived using graph theory, and calculated using matrix multiplications. We
showed not only how to derive the matrices in an automated way, but also give
an algorithm to minimize their size. The results are consistent with [23]. This
technique was extended to an arbitrary number of inputs and to several related
constructions, including an entire step of SHA-1. A precursor of the methods
in this section was already used for the cryptanalysis of SHA-1 [12,30]. We are
unaware of any other fully systematic and efficient framework for the differential
cryptanalysis of S-functions using xor differences.

Using the proposed framework, we studied the differential probability adp⊕

of xor when differences are expressed using addition modulo 2n in Sect 4. To the
best of our knowledge, this paper is the first to obtain this result in a construc-
tive way. We verified that our matrices correspond to those obtained in [23]. As
these techniques can easily be generalized, this paper provides the first known
systematic treatment of the differential cryptanalysis of S-functions using addi-
tive differences.

Finally, in Sect. 5, we showed how the number of output differences with non-
zero probability can be calculated. An exponential-in-n algorithm was already
used for this problem in the cryptanalysis of Threefish [3]. As far as we know,
this paper is the first to present an algorithm for this with a time complexity
that is linear in the number of non-zero bits.
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A Matrices for xdp+

The four distinct matrices Aw[i] obtained for xdp+ in Sect. 3.4 are given in (50).
The remaining matrices can be derived using A001 = A010 = A100 and A011 =
A101 = A110.

A000 =

⎡
⎢⎢⎣
3 0 0 1
0 0 0 0
0 0 0 0
1 0 0 3

⎤
⎥⎥⎦ , A001 =

⎡
⎢⎢⎣
0 1 1 0
0 2 0 0
0 0 2 0
0 1 1 0

⎤
⎥⎥⎦ , A011 =

⎡
⎢⎢⎣
2 0 0 0
1 0 0 1
1 0 0 1
0 0 0 2

⎤
⎥⎥⎦ , A111 =

⎡
⎢⎢⎣
0 0 0 0
0 1 3 0
0 3 1 0
0 0 0 0

⎤
⎥⎥⎦ .

(50)
Similarly, we give the four distinct matrices A′

w[i] of Sect. 3.4 in (51). The re-
maining matrices satisfy A′

001 = A′
010 = A′

100 and A′
011 = A′

101 = A′
110.

A′
000 =

[
1 0
0 0

]
, A′

001 =
1
2

[
0 1
0 1

]
, A′

011 =
1
2

[
1 0
1 0

]
, A′

111 =
[
0 0
0 1

]
. (51)

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://www.movable-type.co.uk/scripts/xtea.pdf
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B All Possible Subgraphs for xdp+

All possible subgraphs for xdp+ are given in Fig. 4.

C Computation of xdp+ with Multiple Inputs

In Sect. 3, we showed how to compute the probability xdp+(α, β → γ), by
introducing S-functions and using techniques based on graph theory and ma-
trix multiplications. In the same way, we can also evaluate the probability
xdp+(α[i], β[i], ζ[i], . . . → γ[i]) for multiple inputs. We illustrate this for the
simplest case of three inputs. We follow the same basic steps from Sect. 3 and
Sect. 4: construct the S-function, construct the graph and derive the matrices,
minimize the matrices, and multiply them to compute the probability.

Let us define

S[i]← (c1[i], c2[i]) , (52)
S[i + 1]← (c1[i + 1], c2[i + 1]) . (53)

Then, the S-function corresponding to the case of three inputs x, y, q and output
z is:

(Δ⊕z[i], S[i+1]) = f(x1[i], y1[i], q1[i], Δ⊕x[i], Δ⊕y[i], Δ⊕q[i], S[i]). 0 ≤ i < n .
(54)

Because we are adding three words in binary, the values for the carries c1[i] and
c2[i] are both in the set {0, 1, 2}. The differential (α[i], β[i], ζ[i] → γ[i]) at bit
position i is written as a bit string w[i] ← α[i] ‖ β[i] ‖ ζ[i] ‖ γ[i]. Using this
S-function and the corresponding graph, we build the matrices Aw[i]. After we
apply the minimization algorithm (removing inaccessible states and combining
equivalent states) we obtain the following minimized matrices. The remaining
matrices satisfy A0001 = A0010 = A0100 = A1000, A0011 = A0101 = A0110 =
A1001 = A1010 = A1100 and A0111 = A1011 = A1101 = A1110.

A0000 =

⎡
⎢⎢⎣
4 0 0 2
0 0 8 0
0 0 0 0
4 0 0 6

⎤
⎥⎥⎦ , A0001 =

⎡
⎢⎢⎣
0 1 0 0
0 4 0 0
0 0 0 0
0 3 0 0

⎤
⎥⎥⎦ , A0011 =

⎡
⎢⎢⎣
2 0 0 0
4 0 4 4
0 0 2 0
2 0 2 4

⎤
⎥⎥⎦ ,

A0111 =

⎡
⎢⎢⎣
0 0 0 0
0 4 0 0
0 1 0 0
0 3 0 0

⎤
⎥⎥⎦ , A1111 =

⎡
⎢⎢⎣
0 0 0 0
8 0 0 0
0 0 4 2
0 0 4 6

⎤
⎥⎥⎦ .
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D Computation of xdp×3

Given n-bit words x1, Δ
⊕x, we can calculate Δ⊕z using

x2 ← x1 ⊕Δ⊕x , (55)
z1 ← x1 · 3 = (x1 � 1) + x1 , (56)
z2 ← x2 · 3 = (x2 � 1) + x2 , (57)

Δ⊕z ← z2 ⊕ z1 . (58)

We then define xdp×3(α→ γ) as

xdp×3(α→ γ) =
|{x1 : Δ⊕x = α, Δ⊕z = γ}|

|{x1 : Δ⊕x = α}| , (59)

= 2−n|{x1 : Δ⊕x = α, Δ⊕z = γ}| , (60)

as there are 2n values for the n-bit word x1.
The left shift by one requires one bit of both x1[i] and x2[i] to be stored for

the calculation of the next output bit. For this, we will use d1[i] and d2[i]. In
general, shifting to the left by i positions requires the i previous inputs to be
stored. Therefore, (55)-(58) correspond to the following bit level expressions:

x2[i]← x1[i]⊕Δ⊕x[i] , (61)
z1[i]← x1[i]⊕ d1[i]⊕ c1[i] , (62)

c1[i + 1]← (x1[i] + d1[i] + c1[i])� 1 , (63)
d1[i + 1]← x1[i] , (64)

z2[i]← x2[i]⊕ d2[i]⊕ c2[i] , (65)
c2[i + 1]← (x2[i] + d2[i] + c2[i])� 1 , (66)
d2[i + 1]← x2[i] , (67)

Δ⊕z[i]← z2[i]⊕ z1[i] , (68)

where c1[0] = c2[0] = d1[0] = d2[0] = 0. Let us define

S[i]← (c1[i], c2[i], d1[i], d2[i]) , (69)
S[i + 1]← (c1[i + 1], c2[i + 1], d1[i + 1], d2[i + 1]) . (70)

Then (61)-(68) correspond to the S-function

(Δ⊕z[i], S[i + 1]) = f(x1[i], Δ⊕x[i], S[i]), 0 ≤ i < n . (71)

Each of c1[i], c2[i], d1[i], d2[i] can be either 0 or 1. After minimizing the 16
states S[i], we obtain only 4 indistinguishable states. Define again 1× 4 matrix
L = [1 1 1 1 ] and 4× 1 matrix C = [1 0 0 0 ]T . The differential (α[i] → γ[i]) at
bit position i is written as a bit string w[i]← α[i] ‖ γ[i]. Then xdp×3 is equal to

xdp×3(α→ γ) = LA∗
w[n−1] · · ·A∗

w[1]A
∗
w[0]C , (72)
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where

A∗
00 =

1
2

⎡
⎢⎢⎣

1 0 2 0
0 0 0 2
1 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , A∗

01 =
1
2

⎡
⎢⎢⎣

0 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , A∗

10 =
1
2

⎡
⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 0 0
0 1 0 0

⎤
⎥⎥⎦ , A∗

11 =
1
2

⎡
⎢⎢⎣
0 0 0 0
2 0 0 0
0 0 0 1
0 0 2 1

⎤
⎥⎥⎦ .

We now illustrate this calculation by example. Let α = 0x12492489 and γ =
0x3AEBAEAB. Then xdp×3(α→ γ) = 2−15, whereas xdp+(α, α� 1→ γ) = 2−25.
From this example, we see that approximating the probability calculation of
multiplication by a constant using xdp+, can give a result that is completely
different from the actual probability. This motivates the need for the technique
that we present in this section. We note there is no loss in generality when we
analyze xdp×3: the same technique can be automatically applied for xdp×C,
where C is an arbitrary constant.
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