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Abstract .  This paper introduces the differential cryptanalysis of addi- 
tive stream ciphers, and develops its theoretical basis. The relationships 
between differential and other types of stream cipher analysis are pre- 
sented. The conservation laws of patterns and of mutual information are 
derived. The cryptographic significance of pattern distribution of key- 
stream sequences is shown. The cryptographic transformation densities 
are introduced, and their relations with other cryptographic factors are 
summarized. This work is illustrated by reference to the design and se- 
curity of additive natural stream ciphers, which are nonlinear filtered 
sequences driven by a counter rather than by a shift register. 

1 I n t r o d u c t i o n  

Stream ciphers have a long history and still play an important role in securing 
communications. Most of the literature on stream ciphers is about the design 
and analysis of synchronous stream ciphers, and especially additive synchronous 
stream ciphers, because of their relatively tractable structure. 

The main design problem of additive synchronous stream ciphers is producing 
a secure key stream generator. So far many kinds of generator have been pro- 
posed: nonlinearly-filtered LFSR generators [18], nonlinearly-combined LFSR 
generators [13, 25], multiplexer generators [17], threshhold generators [10], inner 
product generators [20], BBS generators [9], knapsack generators [27], Shamir's 
generators [28], counter generators [11], clock-controlled LFSR generators (sur- 
vey in [16]), and the shrinking generator [6], to name only a few. Though there 
are some common security measures for every sequence generator (such as non- 
linearity, linear complexity, sphere complexity [12] and 2-adic complexity [19]), 
every system has its own particular security problems. 

Though it may be generally said that  cryptographic gains and losses usually 
go together, there are differences between cipher systems. Some are easy to 
implement, but may have tradeoffs between known security parameters; some 
are relatively difficult to implement, but their security may be easy to control; 
others may have both an easy implementation and ideal security, but be slow. Of 
course, fewer tradeoffs make for easier design. In designing secure cipher systems 
the most important problems are: 
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1. how can we build systems which have as few security tradeoffs as possible? 
2. what are the tradeoffs or conflicts in a given system? 
3. how do we manage tradeoffs and conflicts? 
4. how do we coordinate security and performance? 

The additive natural stream cipher presented in this paper will show that it is 
possible to build some stream ciphers with many security aspects in harmony. 
Some provably-secure ciphers have been presented in [20] [21], but they seem to 
be difficult to implement. Well-designed additive stream ciphers give examples 
of practical ciphers whose security can be proven to a certain extent. 

There are many kinds of attack on stream ciphers: divide-and-conquer attacks 
[29], correlation attacks [14, 22, 29], best affine approximation attacks [12], Zeng- 
Yang-Rao's consistency attack [31], Anderson's meet-in-the-middle consistency 
attack [1, 2], and the attacks on clock-controlled generators [15, 23], the derived- 
sequence attacks [3], to mention only a few. Most of these attacks are key- 
recovering attacks: they use known keystream to get information about the key. 
But the techniques involved vary from system to system. 

Much work has been done on the differential cryptanalysis for DES-like block 
ciphers since this technique was introduced by Biham and Shamir [7]. To make 
an iterated block cipher immune to this analysis, it is necessary to let the round 
function have good nonlinearity [20]; differential analysis is mainly based on 
the local linearity analysis of the round function. Differential analysis of hash 
functions was also carried out by Biham [8], Preneel, Govaerts and Vandewalle 
[26]. In this paper we extend differential ideas to additive natural stream ciphers: 
these are like nonlinearly filtered shift register systems, except that the shift 
register is replaced by a simple counter with arbitrary period N. 

2 A d d i t i v e  N a t u r a l  S t r e a m  C i p h e r s :  

The additive natural stream cipher is depicted in Figure 1, and is based on a 
filtered counter with period N or natural sequence generator (briefly, NSG), 
where (~)N denotes the integer modulo N addition, "+" denotes the binary 
operation of an abelian group (G, +) and f ( x )  a function from ZN to G. The 
key is the counter's initial state. Thus, this kind of stream cipher is different 
from the counter stream ciphers proposed by Diffie and Hellman [11], in that 
the key consists only of the initial state. 

Let a periodic sequence generator have output sequence s ~ of period N. Now 
we define a function on the residue ring ZN by 

f ( i )  = si, i C ZN. 

We see that every sequence generator which produces periodic sequences can 
be realized by the generator of figure 1 - this is why we call it natural, and 
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Fig. 1. The additive natural stream cipher system 

one reason for its cryptographic significance. Another interesting fact about  this 
generator is that  many of its security aspects are easy to coordinate: this will be 
seen later. 

3 The Differential Analysis of Additive Stream Ciphers 

For the generator of Figure 1, assume that f ( x ) ,  N and a piece of key stream 
h t = hohl  . . .  ht-1 are known to a cryptanalyst, who wishes to recover the key 
at the time when ho was produced. 

3.1 D-Crptanalysis: 

Let C ( f ) i  = {x  : x C ZN,  
attack can be described as follows: 

Step 1: Find parameters ( i , j ;w)~s  with ( i , j )  C G • G, w C Z N  such that  

d / ( i , j ;  w) = IC( f ) i  A ( C ( f ) j  - w)l 

is as small as possible, and determine the corresponding sets 

D f ( i , j ; w )  = C(/)~ n ( C ( / b  - w). 

f ( x )  = i} for i = 0, 1. Then the procedure of this 

(1) 

(2) 
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S t e p  2: Look at the known sequence h t and find patterns i * * . . .  * j of length 
w + 1 in the known key-stream sequence. If such pat tern is found and i is in 
the krth position of the known peace of sequence, then 

k E D / ( i , j ; w )  - k'. (3) 

If d / ( i , j ; w )  is small, then search the set for k; otherwise, choose another 
(i', jr; w r) and find the corresponding D / ( i  r, j~; w r) - k ' .  Then 

k E ( D / ( i , j ; w )  - k') N ( D f ( i ' , j r ; w  r) - k ' ) .  (4) 

Continue in this way until the number of the set which contains k is small 
enough. 

3.2 T h e  F o r m  o f  t h e  Attack: 

Let's see why this can be considered to be a differential attack. In Step 1 above, 
the parameter  d / ( i , j ;  w)  is in fact the number of ways in which the element w 
of Z N  can be written as the difference of the elements of C ( f ) j  and C( f ) i ,  i.e., 
it is the number of solutions of the difference equation 

zo = z j  - x5 e c ( f b ,  e (5) 

That  is why (1) and (2) are called difference parameters. The main part  of the 
attack is based on analysing the difference parameters: the idea is to find small 
w's or large w's which can be written as few difference of some Ci and Cj as 
possible. 

3.3 T h e  T h e o r e t i c a l  Bas is  o f  the  Attack: 

Theoretically every bit of a keystream can give information about  a generator 's 
initial state and the key. Thus a basic requirement for stream ciphers is tha t  
every bit of keystream gives approximately the same amount of information. 
In our case, this yields balance requirements for the filter function f ( x ) .  This 
single bit analysis is apparently suitable to all synchronous stream ciphers. If 
n = log 2 N,  we can write 

I (k;  ho = O) = n - log 2 IC(])0l bits, 

I (k;  ho = 1) = n - log 2 IC( f ) l l  bits. 

Noticing that  IC(f)ol  + IC( f ) l l  = N ,  we get 

(6) 
(7) 

2 ~-I(k;h~176 + 2  ~-I(~;h~ = N .  (8) 



105 

This is the theoretical basis for keeping the mutual information stability of 
a keystream as flat as possible. 

If we now consider two bits hi and hj separately or arbitrarily, we may not 
obtain I(k; hi) + I(k; hi) bits of information about the key. If the cipher is not 
properly designed, some combinations of bits may give much more informa- 
tion about  the key than others. We call such combinations with their length 
(hi, hi, [i - j[) 's  bad patterns. The idea behind the differential at tack is to look 
for bad patterns,  and in particular for triples (i, j ;  w) which gives as much infor- 
mation about  the key as possible. 

One may argue that  we should design our cipher so that  the mutual infor- 
mation I(k; (i ,j;w)) is as small as possible for all (i , j;w) �9 Z2 x Z2 x ZN, but 
in fact we cannot achieve this: one pat tern (i , j;w) e Z2 x Z2 x ZN gives us 

I = n - log 2 df(i , j;  w) = n - log 2 IC(f) i  n (C(f)~ - w)l bits (9) 

of information about  the key. Now consider the following theorems: 

T h e o r e m  1. (Conservation Law for Difference Parameters): With symbols as 
above, we have 

E dl(i,J; w) = Ic(fhl,  i �9 z2,  w �9 ZN; 
J 

E d l ( i , j ; w )  = IC(f)/I;  j �9 Z2, w �9 ZN; 
i 

E af( i , j ;w) = N, w �9 ZN. 
(i,j)eZ2 xZ2 

(10) 

(11) 

(12) 

These are the laws of conservation between difference parameters which ap- 
pear in three forms. It follows that: 

T h e o r e m  2. 
we have 

(Conservation Law of Mutual Information:) With symbols as above, 

E 2 n - ~ ( k ; ( i J ; ~ ) )  = ]C(fh], i c z2, w c ZN; 
J 

E 2  '~-1(k;(i'j;~)) = IC(f)jl; j E Z2, w E ZN; 
i 

E = N, w C ZN; 2n-l(k;(i,j;w)) 

(i,j)EZ2 • 

E 2n_i(k;(i,j;w) ) : N 2. 
(ij;w) 

(13) 

(14) 

(15) 

(16) 
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It is not difficult to prove the above theorems, which provide the theoretical 
basis for analysing mutual information stability between two-bit patterns and 
the key. Generalization of the above theorems to the case of an arbi t rary finite 
G is also easy. 

In particular, similar results hold for three-bit patterns, and attacks based 
on three-bit pat tern analysis can also be developed. 

Now one question arises: does mutual information stability between the key 
and both one-bit and two-bit patterns give us any results for patterns of more 
bits? The answer is yes - but the proof is not easy. 

3.4 The  Attack and Pat tern  Dis tr ibut ion:  

Many tests and measures of sequence randomness have been proposed in the lit- 
erature, including Golomb's three postulates. One may ask why these postulates 
are important;  this is shown clearly by differential attacks. Indeed, a stronger 
randomness postulate is indicated: 

All patterns (il, i 2 , ' " , i t )  with fixed distances between iu and iu+l for 
u = 1, ..., t - 1, should appear with probability about 2 - t  in a key stream 
sequence. 

If some keystream sequence has bad patterns with significantly lower than ran- 
dom probability, then searching for these patterns may enable us to break it 
more quickly than exhaustive search. 

3.5 Pract ical  Attacks: 

As shown, the key part of this attack is the first step, i.e., finding some of the 
parameters of (1) and (2). In practice we do not need to determine all of these, 
as a selection of them may be enough to determine the key. To this end, we may 
first t ry  to determine the C( f ) i  for some i, and then use (1) and (2) to determine 
the d/(i, j; w) and Dr(i, j; w). Another method is to introduce the function 

gi,j;w(X) = (f(x) + 1 + i)(f(x + W) + 1 + j ) ,  

where f(x)  is a binary function. It is easy to know that  C(gi j ;~) l  = D/(i, j;w). 
This means that  the determination of the differential parameters of (1) and (2) is 
equivalent to that  of characteristic set of gi,j;w (x). Since the algorithm is known, 
there are two ways to do this: computation and theoretical analysis. 

The complexity of the computational method will depends partially on N 
and f(x). If N is not large enough, it will be possible to break the system. For 
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example, if N = 19, f(x) = (x 2 mod 19) rood 2, we have 

C(f)o = {0, 2, 17, 4, 15, 5, 14} 

Dr(0 ,0 ;  1 ) =  {4,14}, Dr(0 ,0 ;2)  = {17,0,15,2}, 

Dr (0 ,0 ;3 )  = {14,2}, D r ( 0 , 0 ; 4 ) =  {0,17,15}, 

Dj~(0, 0; 5) = {0, 14}, D/(0,  0; 7) -- {14, 17}. 

Thus, one pat tern  00 in the output  sequences makes the set containing the 
key to be {4, 14}. Similarly, 0 * *0 gives {14, 2}, 0 * * �9 *0 gives {0, 14}, etc.. 
Furthermore,  two patterns 00 and 0 * *0 determine the key 14. Thus, if we can 
compute difference parameters exhaustively, then we can break such a cipher 
unless f(x) is extremely well chosen. However, the computational complexity of 
this task needs to be filrther investigated. 

The other approach, theoretical analysis, means dctermining the differential 
parameters  algebraically. A poor choice of .f(x) may make it easy to find C( f ) i ' s  
and thus the differential parameters. Let us illustrate this by the following ex- 
ample. 

We choose for the additive NSC of Figure 1 N = 4t + 1 a prime with t also 
prime or N = 4t - 1 with 2t - 1 also prime, and filter function f(x) = x mod 2. 
It is not difficult to show that  there is no trivial affine function from (ZN, +) 
to (Z2, +) when N is odd. It follows that  f(x) is nonlinear with respect to the 
additions of ZN and Z2. It can bc proven that  L(s ~) = N - 1 and SCk(s ~) > 
N - 1 if 0 _< k _< (N - 3)/2,  where L(s) denotes the linear complexity of 
s, and SCk(s) is the sphere complexity of s [12]. By analysis we have Co = 
{0, 2, 4 , . . . ,  N - 3, N - 1}, C1 = {1, 3, 5 , . . . ,  N - 4, N - 2} and the differential 
results are as follows: 

Co A (Co - 1) = { N -  1} 

Co N (Co - 3) = { N -  1 , N -  3} 

Co n (Co - 5) = { N -  1, N -  3, N -  5} 

Co n (Co - (fit _ 2)) = {N - 1, N - 3, N - 5,. �9 2}. 

This means that  if we have two bits 00 in the known keystream, then the key 
that  generate the first 0 was k = N - 1. We have 

0 0 - + k = N - 1  

0 . * 0 - +  k = N -  1, o r N - 3  

O****O~ k =  N - 1 , N - 3 ,  or N - 5 .  

Similar arguments show that  

Co N (C, - 2) = { N -  1} 
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Co D (C1 - 4) = { N -  1 , N -  3} 

Co N (Ct - 6) = { N -  1 , X -  3 , N -  5} 

Co n (Ct - ( N -  1)) = { N -  1 , N -  3, N -  5 , . . . , 2 } .  

0 . 1 - + k = N - - 1  

O*** l - + k =  N - 1 ,  o r N - 3  

O*****  l--+ k =  N - 1 ,  N - 3 , o r  N -  5. 

c ~  n (Co - 2) = { N  -- 2 )  

C1 n ( C o -  4) = { N -  2 , N -  4} 

Ca n (Co - 6) = { N -  2, N -  4, N -  6} 

Ca n (Co - ( g -  1)) = { N -  2 , g -  4 , N -  6 , . . . , 1 } .  

1 . 0 - + k = N - 2  

l * * * 0 - + k = N - 2 ,  o r N - 4  

1 . * * * . 0 - +  k =  N - 2 ,  N - 4 ,  or N - 6 .  

c l  n (c~ - 2) = {N - 1} 

C1 n (C~ - 4) = { N -  1, N -  3} 

C 1 D ( C 1 - 6 ) = { N - 1 , N - 3 ,  N - 5 }  

C1 n (C1 - ( N -  1)) = { N -  1, N -  3 , N -  5 , . . . , 2 } .  

1 . 1 - + k = N - 1  

l * * * l - + k = N - 1 ,  o r N - 3  

l * * * * *  l -+ k =  N - 1 ,  N - 3 , o r  N -  5. 

The above analysis shows that  the bad patterns in the keystream are: 

0 * .- - * 0 of length 21 with 1 small enough 

0 * --- * 1, 1 * .-- * 0 and 1 *-- -  * 1 of length 2t + 1 with l small enough. 

Thus keys which are very near to N - 1 (k or N - k for small k) are very 
weak under this analysis. Those keys which are far away 0 in both directions are 
of course strong keys. 

Of course, the output  sequence of the NSG of Figure 1 is cryptographically 
very bad. This is because the nonlinearity (and the difference property) of S(x) is 
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poor. The purpose of the example is to show that if the characteristic sets C(]) i  
can be determined algebraically, then the cipher can often be broken, provided 
that the f(x) has bad difference property. Thus there are two rules a stream 
cipher designer must follow: 

1. make sure that the characteristic sets of your f(x) can not be determined 
(whether computationally or algebraically); or 

2. choose f so that its characteristic sets have good difference properties. 

If a designer chooses the second option, then the cipher may be secure against 
this attack even if the characteristic sets are given to an attacker. 

4 D i f f e r e n t i a l  a n d  O t h e r  A n a l y s e s  

The analysis of (1) is called the differential analysis of the additive natural 
stream ciphers. It is equivalent to the following: 

1. nonlinearity analysis of ](x) with respect to ZN and G; 
2. autocorrelation analysis of the key stream sequences; 
3. analysis of the mutual information between the key and the key stream 

sequence; 
4. analysis of the transformation density of the ciphers. 

Its equivalence to the analysis of the mutual information has already been im- 
plied in the above discussion. The proofs of other equivalences are too long to be 
presented here. In what follows, we would like to introduce the notion of crypto- 
graphic transformation density and its relation to the other analytic techniques. 

Let M be the plaintext space, C the ciphertext space, K the key space and 
TK the set of encryption or decryption transformations specified by the keys. 
Then the transformation densities are defined by 

p(tk,tk,) 
D(T,K)=I-Ek,k, ( I K I )  

D0(T, K) = 1 - ~,p( tk ,  tk,)/IKI, 

where p(tk, tk,) denotes the probability of agreement between the two encryption 
or decryption transformations specified by the two keys, which is usually replaced 
by d(tk, dk,)/IMI for simplicity. The transformation densities were inspired by 
the following three questions about cryptography. 

Question 1: To break a cipher or to decipher a piece of ciphertext, do we 
have to recover the original key? 
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Question 2: Are the encryption decryption transformations specified by 
the keys really "different" from one another? 

Question 3: When the answer to Question 2 is "yes", for a given key k, 
is there any key k ~ E K such that the probability of agreement p(tk, tk,) 
or the distance d(tk,tk,)  is small enough? If there are, which are they 
and how many? 

The importance of the questions are clear, as attacks may involve trying 
partial keys. That they are practical, follows from the fact that the M-209 cipher 
machine had large equivalence classes of keys. However, it seems that for most 
proposed ciphers the above three question have not been answered. 

The transformation density (briefly, T-density) is related to partial-key at- 
tacks, key density, key size, message density, message and cryptogam residue 
classes, perfect secrecy, autocorrelation and crosscorrelation functions of se- 
quences, difference sets, difference property of partitions, nonlinearity of cryp- 
tographic functions, affine approximation of functions, mutual information sta- 
bility and source coding. 

5 Differential Analysis and Security 

For the additively natural stream ciphers of Figure 1, the following attacks are 
related: 

1. differential attacks; 
2. key determining attacks based on decision trees; 
3. partial-key attacks; 
4. linear approximation attacks with respect to additions of ZN and G; 
5. key (or key stream) correlation attacks. 

The idea of the key determining attacks based on decision trees is to make use of 
the known keystream segment sequentially. For example, let hohl �9 �9 �9 ht-1 be the 
known keystream segment. Using h0 and the cryptographic algorithm we can 
decide whether k E C( f )o  or E C ( f ) l .  If k C C(f)o,  then we continue withhl 
and partition C(f)o  into two further sets, and so on. Continuing in this way we 
can zero in on the key 

u0 _~ Vl _~-.._~ u~ = {k} 

This kind of attack makes use of the known sequence sequentially, but not 
optimally. That is one of the ways in which it differs from differential attack. 

The idea of the partial-key attack is to partition the key space into small sub- 
spaces such that the distance between two decryption transformations specified 
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by any two keys in a subspace is smaller than a given constant c. If for a properly 
chosen c there is a usable partition such that the number of subsets is not large, 
then we can choose only one key in each subset to decipher a peace of ciphertext 
until a correct message is obtained. The probability of correct decipherment is 
determined by the constant. These are therefore ciphertext-only attacks. 

Linear approximation attacks refer to all the attacks based on the linear 
approximation of the crytographic function f(x) with respect to the additions 
of ZN and G. Key correlation or key-stream correlation attacks refer to all the 
attacks based on the cross-correlation analysis of the output sequences produced 
by two keys. 

It can be proven that for the cipher system of Figure I, if N is chosen large 
enough and the filter function f (x) is chosen such that the difference parameter of 
(i) is stable (it is approximately the same for all (i, j)), then the cipher is secure 
against all the attacks mentioned above. Furthermore, if the partner pair (N, 
(G, +)) is properly chosen, the linear complexity and linear-complexity stability 
of the key-stream sequence can be controlled without causing tradeoffs between 
the linear complexity aspect and the nonlinearity (difference property) aspect. 
Thus, many security aspects of the additive natural system are in harmony. 

6 T h e  D e s i g n  o f  N a t u r a l  S e q u e n c e  G e n e r a t o r s  

The discussions in the previous sections show that the main problems in design- 
ing the NSG of Figure 1 consist of 

- choosing the partner pair (ZN; (G, +)); and 
- designing the cryptographic function f(x) 

such that 

1. the partner pair (ZN; (G, +)) works in "harmony"; 
2. the output sequences have large linear complexity, good linear complexity 

stability, good autocorrelation, and good pattern distribution; 
3. the cryptographic function f(x) has good nonlinearity with respect to (ZN, +) 

and (G, +) and also good difference property with respect to (ZN, +). 
4. the additive natural stream ciphers have good cryptographic transformation 

densities and are secure against all the five attacks mentioned in Section 5. 

For binary NSGs, i.e., (G, +) = (Z2, +), we should choose first the cryptographic 
function f (x). Possible choices are the characteristic functions of the cyclic differ- 
ence sets of (ZN, +), i.e., the characteristic sets C(])0 and C(f)t should be the 
(N, k, A) residue difference sets such that k/N ~ 0.5. Good choices for the cryp- 
tographic function ](x) are also those such that the partition {C(f)0, C(f)l } of 
ZN has good difference property, i.e., the parameter in (1) is fairly stable. 
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One of the best candidates for f(x) is the function 

f(x) = (x (N-1)/2 mod N) mod 2, (17) 

where N is chosen to be a large prime. If the prime N is of the form 4t - 1, 
then C ( f ) l  is the famous (N, (N - 1)/2, (N - 3)/4) quadratic residue difference 
set. If N is of the form 4t + 1, then C(f)o and C ( f ) l  are not residue difference 
sets, but  they are almost-difference sets, by which we mean that  the difference 
property of this parti t ion of ZN is almost the same as the case of N being of the 
form 4t - 1. We call the corresponding NSGs DSC (difference-set characterized) 
generators and ADSC (almost difference-set characterized) generators. In fact 
the nonlinearity of the function of (17) with respect to (ZN, +) and (Z2, +), 
which is optimal, is determined by the cyclotomic numbers of order 2 [30]. The 
proof of this is to long to be presented here. 

To control the linear complexity and linear-complexity stability of the DSC 
generator, N should be chosen to be N = 4t - 1 with N and 2t - 1 both prime. 
This will guarantee 

L(s ~) _> W - 1, (18) 

SCk(s ~) > N - 1, if 0 _< k < min{WH(sN), N - WH(sN)}, (19) 

where WH(s N) denotes the Hamming weight of one period segment of the pe- 
riodic sequence s ~ .  To control these for the ADSC generator, N = 4t + 1 with 
both N and t being prime is chosen. This gives the same results of (18) and (19). 
In fact, in both cases, we actually get Legendre sequences. It should be pointed 
out that  there are both good and bad cryptographic Legengdre sequences. Pro- 
vided we choose the prime N properly, the corresponding Legendre sequences 
are among the best cryptographic sequences. 

Another good binary NSG is the twin-primes generator, in which we choose 
the cryptographic function f(x) to be the characteristic function of the famous 
twin-primes difference set [4]. In fact this function can be expressed by 

1, x=O,p,p+ 2,2(p+ 2) , . . . , (p-1)(p+ 2); 
f(x) = 0, x = p ,  2 p , . . . , ( p +  1)p; (20) 

x x 2 (1 + (~)(v--~))/ , gcd(j,p(p + 2)) = 1, 

where (a/p) denotes the Legendre symbol. Here N = p(p + 2), p and p + 2 both 
are primes. If p is chosen of the form 4t + 1, then the linear complexity of the 
sequence is N = p(p + 2). To control the linear complexity stability we should 
choose p = 4 t+  1 where both t and 2 t - 1  consist only of large prime factors. All of 
the above generators are relatively easy to implement using fast exponentiation 
algorithms. 

Let s ~176 be a binary sequence of period N. setting 

I1 = { i :  s i=l ,  0 < i < N - 1 } ,  

Io={i:  si=O, 0 < i < N - 1 } ,  
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we know that  Io and 11 are a partition of ZN. We call Io and/1  the characteristic 
sets of s ~ ,  and conversely s ~ the characteristic sequence of the partition {I  o,/1 }- 
Let 

s N  (x) : S 0 "-~ 81 J r . . .  + 8N_1 x N - 1 .  

Then we have the following theorem about the linear complexity of the charac- 
teristic sequence of a difference partition: 

T h e o r e m  3. Let I0,/1 be a partition of ZN with I1 being a (N, k, ~) difference 
set of ZN and s ~ be the characteristic sequence of the partition. Then 

1. I f  k is even and ~ odd, then L(s ~)  = N -  1. 

2. I f  k is odd and A even, then L(s ~ )  = N.  

3. I f  k and A both are even, then 

gcd(SN(x-1)x  N, x N + 1) 
L(s~ )  = deg[gcd(gcd(SN(x), x N + 1), gcd(SN(x-1)x  N, x N + 1)) ]" 

4. I f  k and )~ both are odd, then 

gcd(SN(x-1)x  N, X N + 1)(x + 1) 
L(s ~ )  

deg[gcd(gcd(SN(x), x N + 1), gcd(SJV(x-1)x N, x N + 1)) ]" 

This theorem shows how to control the linear complexity of output  sequences of 
a natural sequence generator when we want to use the characteristic functions 
of difference sets as the cryptographic functions for this kind of generators. This 
can be done by choosing these difference sets with n = k - ), being odd. 

Let Io a n d / 1  be a partition of Z~ wi th /1  being an (N, k, A) difference set 
of ZN. The function defined by 

f ( x )  = i, for all i C Ii, i -- 0,1, 

is called the characteristic function of the partition. Concerning the nonlinearity 
of the characteristic function of an (N, k, A) difference set we have the following 
conclusion: 

T h e o r e m 4 .  Let I1 be an (N, K, ~) difference set, f (x )  the characteristic func- 
tion of the partition {Io,I1}. Then for any a ~ o, it holds 

p ( f (x )  - f (y )  = ~lx - y = a) -- { 2(k[N -_(k~)/N,- A)]/N,~ = 1. ~ = O, 
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This result means that  only the characteristic functions of those residue differ- 
ence sets of parameters (N, k, A) with k ~ N / 2  and k - ~ = N / 4  have good 
nonlinearity with respect to (ZN, +) and (Z2, +). The nonlinearity of the cryp- 
tographic functions of the DSC generator, the ADSC generator and the twin- 
primes generator can easily be written down using the above theorem. 

Suppose we choose a large prime p = de + 1, (G, +) = (Zd, +) and filter 
function f ( x )  = h(g(x)) with 

c, x = 0; 
g(x) = x (p-1)/d mod p, x ~ O, (21) 

where c = a (p-1) /d  mod p ~ 0 is a constant, while the function g(x) is defined 
by g(x) = loge x, where ~ is a primitive root modulo p. It can be shown that  the 
nonlinearity of the f ( x )  with respect to (Zp, +) and (Zd, +) and the difference 
property of the cryptographic function with respect to (Zp, +) is determined by 
the cyclotomic numbers of order d, which is usually ideal. The linear complexity 
and the linear-complexity stability of the output sequences need to be controlled, 
but this can be done in many cases. 

Interestingly, the properties of this kind of generator are related to many (if 
not most) of the outstanding problems in number theory; so it is not surprising 
that  we can only make part of the design mathematically tractable. 
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