The differential production cross section of the phi（1020）meson in sqrt（s）＝7 TeV pp collisions measured with the ATLAS detector

Citation

Aad，G．，T．Abajyan，B．Abbott，J．Abdallah，S．Abdel Khalek，A．A．Abdelalim，O．Abdinov，et al． 2014．＂The differential production cross section of the phi（1020）meson in sqrt（s）$=7 \mathrm{TeV}$ pp collisions measured with the ATLAS detector．＂The European Physical Journal．C，Particles and Fields 74 （7）：2895．doi：10．1140／epjc／s10052－014－2895－2．http：／／dx．doi．org／10．1140／epjc／ s10052－014－2895－2．

Published Version

doi：10．1140／epjc／s10052－014－2895－2

Permanent link

http：／／nrs．harvard．edu／urn－3：HUL．InstRepos：14351172

Terms of Use

This article was downloaded from Harvard University＇s DASH repository，and is made available under the terms and conditions applicable to Other Posted Material，as set forth at http：／／ nrs．harvard．edu／urn－3：HUL．InstRepos：dash．current．terms－of－use\＃LAA

Share Your Story

The Harvard community has made this article openly available．
Please share how this access benefits you．Submit a story．

Accessibility

The differential production cross section of the $\phi(1020)$ meson in $\sqrt{s}=7 \mathrm{TeV} p p$ collisions measured with the ATLAS detector

The ATLAS Collaboration ${ }^{\star}$
CERN, 1211 Geneva 23, Switzerland
Received: 26 February 2014 / Accepted: 8 May 2014 / Published online: 1 July 2014
© CERN for the benefit of the ATLAS collaboration. This article is published with open access at Springerlink.com

Abstract

A measurement is presented of the $\phi \times \mathcal{B} \mathcal{R}(\phi \rightarrow$ $K^{+} K^{-}$) production cross section at $\sqrt{s}=7 \mathrm{TeV}$ using $p p$ collision data corresponding to an integrated luminosity of $383 \mu \mathrm{~b}^{-1}$, collected with the ATLAS experiment at the LHC. Selection of $\phi(1020)$ mesons is based on the identification of charged kaons by their energy loss in the pixel detector. The differential cross section is measured as a function of the transverse momentum, $p_{\mathrm{T}, \phi}$, and rapidity, y_{ϕ}, of the $\phi(1020)$ meson in the fiducial region $500<p_{\mathrm{T}, \phi}<1200 \mathrm{MeV},\left|y_{\phi}\right|<$ 0.8 , kaon $p_{\mathrm{T}, K}>230 \mathrm{MeV}$ and kaon momentum $p_{K}<$ 800 MeV . The integrated $\phi(1020)$-meson production cross section in this fiducial range is measured to be $\sigma_{\phi} \times \mathcal{B R}(\phi \rightarrow$ $K^{+} K^{-}$) $=570 \pm 8$ (stat) ± 66 (syst) ± 20 (lumi) $\mu \mathrm{b}$.

1 Introduction

Perturbative quantum chromodynamics (QCD) successfully describes physics of hadronic interactions at high momentum transfer ($Q^{2} \gg 1 \mathrm{GeV}^{2}$), while phenomenological models are needed for soft interactions at lower momentum transfers. An accurate description of these soft interactions is required to model so-called underlying events present in hard scattering events. Measurements of the ϕ (1020)-meson probe strangeness production at a soft scale $Q \sim 1 \mathrm{GeV}$, which is sensitive to s-quark and low- $x\left(x \sim 10^{-4}\right)$ gluon densities. The measurement is therefore sensitive to the proton parton distribution function (PDF), which is used by Monte Carlo (MC) generators to describe the longitudinal momentum distributions of the proton's constituent partons. Production of $\phi(1020)$ mesons is also sensitive to fragmentation details and thus $\phi(1020)$ measurements can constrain phenomenological soft hadroproduction models.

This paper presents a measurement with the ATLAS detector [1] of the $\phi(1020)$-meson production cross section in $p p$ interactions at $\sqrt{s}=7 \mathrm{TeV}$, using the $\phi \rightarrow K^{+} K^{-}$decay mode. The cross section is not corrected for the branching

[^0]fraction in the fiducial range. The cross section is measured in bins of transverse momentum, $p_{\mathrm{T}, \phi}$, or of rapidity $\left|y_{\phi}\right| .{ }^{1}$ The selection of $\phi(1020)$-meson candidates requires the identification of kaons in order to reduce the large combinatorial background from other charged particles. Charged particles are reconstructed with the inner detector, which consists of a silicon pixel detector, a microstrip semiconductor tracker (SCT), and a straw-tube transition radiation tracker (TRT). The inner detector barrel (end-cap) parts consist of $3(2 \times$ 3) pixel layers, $4(2 \times 9)$ layers of double-sided silicon strip modules, and $73(2 \times 160)$ layers of TRT straws. A track traversing the barrel typically has 11 silicon hits (3 pixel clusters, and 8 strip clusters), and more than 30 straw-tube hits. The whole inner detector is immersed in a 2 T axial magnetic field. The specific energy loss of charged particles in the pixel detector is used to identify low-momentum pions, kaons and protons [2].

To avoid model-dependent extrapolations outside the detector acceptance, the cross section is measured in the fiducial region, defined as $500<p_{\mathrm{T}, \phi}<1200 \mathrm{MeV},\left|y_{\phi}\right|<$ 0.8 , kaon transverse momentum $p_{\mathrm{T}, K}>230 \mathrm{MeV}$ and kaon momentum $p_{K}<800 \mathrm{MeV}$. In the region $0.8<\left|y_{\phi}\right|<$ $1.0, \phi(1020)$ decays would only be accepted up to $p_{\mathrm{T}, \phi} \sim$ 700 MeV , because the requirement of $p_{K}<800 \mathrm{MeV}$ has a lower efficiency at higher rapidity. The fiducial range is limited to the region where the differential cross section can be measured and where correcting for the losses due to the requirements on kaon momentum is reliable. The measurement is corrected for detector effects and can be compared directly with MC generators at particle level.

Many measurements of the $\phi(1020)$ production cross section have been performed at different centre-of-mass

[^1]energies, using different decay modes and in different rapidity ranges. Among these are a study at $\sqrt{s}=7 \mathrm{TeV}$ by ALICE [3] in a similar rapidity region and another by LHCb [4] in the forward rapidity region. The $\phi(1020)$ production cross section presented in this paper is compared to the measurement by ALICE and to MC predictions.

2 Data set and event selection

A data sample with an integrated luminosity of $383 \mu \mathrm{~b}^{-1}$ from $p p$ collision data taken in April 2010 at $\sqrt{s}=7 \mathrm{TeV}$ is used. The contribution of pile-up, i.e. multiple collisions per bunch crossing, is negligible for this data sample, with a peak luminosity of $1.8 \times 10^{28} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. The luminosity is measured in dedicated van der Meer scans with an estimated uncertainty of 3.5% [5]. The data sample was selected with the minimum bias trigger scintillators (MBTS) [6] to minimize any possible bias in the measured cross section. The MBTS are mounted at each end of the tracking detector in front of the liquid-argon endcap-calorimeter cryostats at $z=$ $\pm 3.56 \mathrm{~m}$ and were configured to require one hit above threshold from either side of the detector. This trigger is shown to be highly efficient in selecting inelastic $p p$ collisions [6]. Tracks are fitted with a kaon-mass assumption to account for energy losses in the detector material. Events are required to contain at least two tracks with $p_{\mathrm{T}}>150 \mathrm{MeV}$ and to have a primary vertex (PV, defined as the vertex in the event with the largest Σp_{T} over all reconstructed tracks associated to the vertex) [7] reconstructed using the beam spot information [6].

MC simulations are used to correct the data for detector effects and to compare with the fully corrected data. The MC generators used are PYTHIA 6 [8], PYTHIA 8 [9], Herwig++ [10] and EPOS [11,12]. Different versions of the same MC generator, that differ in sets of tunable parameters used in modeling the soft component of protonproton interactions, are called tunes. Both PYTHIA 6 and PYTHIA 8 are general purpose generators which implement the Lund string hadronisation model [13] and describe nondiffractive interactions (including Multiple Parton Interactions, MPI) via lowest-order perturbative QCD, with phenomenological regularisation of the divergence of the cross section as $p_{\mathrm{T}} \rightarrow 0$. Diffractive processes are included which involve the exchange of a colour singlet. Both inelastic non-diffractive and diffractive processes are mixed in accordance with the generator cross sections. The PYTHIA tunes considered are MC09 [14] with PYTHIA 6 version 6.421, DW [15] and Perugia0 [16] with PYTHIA 6 version 6.423, and two A2 tunes with PYTHIA 8 version 8.153 , i.e. with the MSTW2008LO [17,18] and CTEQ6L1 [19] PDF sets. The MC09 and Perugia0 tunes use a p_{T}-ordered parton shower model with MPI and the initial-state shower interleaved in a common sequence of decreasing p_{T}. For the PYTHIA 8

A2 tunes, the final-state showers are also interleaved in this way. The DW tune utilises the older virtuality-ordered parton shower which is not interleaved with MPI.

Herwig++ version 2.5.1 is used with the UE7-2 [20] tune. Herwig++ is also a general purpose generator but differs from PYTHIA in that it uses a cluster hadronisation model [21] and an angular-ordered parton shower. Herwig++ contains a tunable eikonalised MPI model which assumes independence between separate scatters in the event. In order to simulate inelastic minimum bias events the following mechanism is used. For a fixed impact parameter, Poisson distributions are sampled to provide the number of soft and perturbatively-treated semi-hard scatters to simulate per event.

EPOS 1.99 v 2965 is used with the EPOS-LHC [22] tune. EPOS contains a parametrised approximation of the hydrodynamic evolution of initial states using a parton based GribovRegge [23] theory which has been tuned to LHC data.

The ATLAS detector is simulated [24] using GEANT4 [25]. The reconstruction of $K^{ \pm}$tracks from $\phi \rightarrow K^{+} K^{-}$ decays generated by PYTHIA 6 MC09 is used for the calculation of the tracking efficiency. A consistency test of the full $\phi(1020)$-meson reconstruction is performed with PYTHIA 6 MC09 and Herwig++ UE7-2.

As the $\phi(1020)$ meson has no measurable decay length, only tracks originating from the PV are used. Each track must pass the following requirements: more than one pixel cluster and more than one SCT hit; $p_{\mathrm{T}}>230 \mathrm{MeV} ; p<800 \mathrm{MeV}$ and $|\eta|<2.0$. The condition $p_{\mathrm{T}}>230 \mathrm{MeV}$ is adopted since the tracking efficiency for kaon tracks with $p_{\mathrm{T}, K}<$ 230 MeV and central $|\eta|$ is close to zero. Kaons produced with such low momenta effectively deposit all their energy in the detector and support materials before reaching the SCT. The cut on track momentum of $p<800 \mathrm{MeV}$ is dictated by particle identification requirements and is explained in the next section.

3 Particle identification

Every pair of oppositely charged tracks passing the tracking cuts is examined. The identification of a pair of tracks candidate for a $\phi \rightarrow K^{+} K^{-}$decay requires a particle identification (PID) step to remove the large combinatorial background from pairs containing one or two charged particles that are not kaons. Discrimination between background (consisting mostly of pions) and kaons is achieved using energy loss in the pixel detector. The mean energy deposited by a charged particle is described by the Bethe-Bloch formula as a function of the particle's velocity [26]. For momenta larger than 1 GeV , the energy lost by the particles starts to be dominated by relativistic effects and can no longer be used for particle identification. The mean energy loss per unit length is esti-

Fig. 1 The truncated mean (see text for detailed explanation) for the energy loss per track as a function of signed momentum for tracks accepted in the analysis. The bands corresponding to the energy lost by pions, kaons and protons are labelled
mated as the energy deposited by a particle in the traversed layers of the pixel detector divided by the local thickness traversed in the detector material. The energy deposited is calculated after removing the pixel cluster with the largest charge for particles with three or four associated pixel clusters or after removing the two clusters with the largest charge for particles with more than four pixel clusters. The track $\mathrm{d} E / \mathrm{d} x$ is calculated using a truncated mean of the $\mathrm{d} E / \mathrm{d} x$ values of the individual pixel clusters as this gives a better resolution than the simple mean. The expected energy loss for a kaon with $p_{K}=500 \mathrm{MeV}$ is $2.4 \mathrm{MeV} \mathrm{g} \mathrm{g}^{-1} \mathrm{~cm}^{2}$. For a pion with the same momentum, an energy loss of $1.2 \mathrm{MeV} \mathrm{g}^{-1} \mathrm{~cm}^{2}$ is expected. The average energy loss per track as a function of signed momentum, $q p$, where q is the particle charge, is shown in Fig. 1; bands indicating pions, kaons and protons are clearly visible.

A comparison between data and MC prediction of track η, of the number of hits in the pixel and SCT detectors associated with tracks (with a requirement of at least two pixel clusters and two SCT hits) and of average energy loss per track is presented in Fig. 2. The distributions agree well, demonstrat-

Fig. 2 Comparison between data (black dots) and MC simulation (histogram) for a track η, \mathbf{b} number of pixel clusters assigned to the track, \mathbf{c} number of SCT clusters assigned to the track and \mathbf{d} the average track energy loss (see text). Statistical uncertainties are smaller than the marker size
ing a good understanding of track simulation and reconstruction in the inner detector. The slight disagreement in Fig. 2d, where the location of the peak of the average energy loss is overestimated by $\sim 0.05 \mathrm{MeV} \mathrm{g}^{-1} \mathrm{~cm}^{2}$ in the MC simulation, is due to the relative abundances of different particle species being slightly different for data and simulation.

The most probable value of the specific energy loss for a pion, kaon or proton hypothesis is parameterized as a function of the charged particle's Lorentz factor $\beta \gamma$. The measured energy loss is used to calculate the probability $P_{\text {particle }}$ of compatibility with a given hypothesis [2]. Kaon candidates are required to satisfy $P_{\text {pion }}<0.1$ and $P_{\text {kaon }}>0.84$ conditions. The candidate $\phi(1020)$ decays are searched for by selecting the oppositely charged track pairs for which both tracks pass the tracking and PID requirements defined above and combine to an invariant mass in the range $1000<$ $m\left(K^{+} K^{-}\right)<1060 \mathrm{MeV}$.

4 Determination of the cross section

The fiducial region is divided into eight bins in $\left|y_{\phi}\right|$ and ten bins in $p_{\mathrm{T}, \phi}$ with bin widths of 0.1 and 70 MeV , respectively. Unless specifically stated, the cross section is not corrected for the branching fraction of $\phi(1020)$-meson decays to kaons.

Each $\phi(1020)$ candidate is assigned a weight to correct for experimental losses. Firstly, a weight is given for trigger and vertex reconstruction efficiencies [6], which have both been measured in data to rapidly increase to 100% for events with four or more tracks. The trigger and vertex reconstruction efficiencies were found to have a negligible effect on this analysis and were applied on an event-by-event basis. Secondly, a weight is given for track reconstruction and kaon identification efficiencies on a track-by-track basis. These efficiencies are calculated separately for tracks from positively and negatively charged particles, because fewer pixel clusters are expected on the tracks of low-momentum negatively charged particles, which may pass in between two pixel modules due to the tiling and tilt of the modules. The average number of pixel clusters on tracks which pass the selection detailed in Sect. 2 is 2.96 ± 0.01 per positively charged particle and 2.79 ± 0.01 per negatively charged particle. Finally, a weight is given on a track-by-track basis to correct for the fraction of selected tracks passing the kinematic selection for which the corresponding generated kaon is outside the kinematic range. Following the determination of the weight of each of the candidate $\phi(1020)$, the efficiency-corrected number of reconstructed candidates is determined with a fit to the invariant mass distribution.

The calculation of track reconstruction efficiency, kaon identification efficiency and the subsequent signal yield extraction are explained in the next sections.

4.1 Track reconstruction efficiency

The track reconstruction efficiency, $\epsilon_{\text {rec }}$, is based on MC 'truth-matching', where generated particles are matched to reconstructed tracks. The simulation-based method is based on a matching probability evaluated using the number of common hits between particles at generator level and the reconstructed tracks, and is described in Ref. [6]. The average tracking efficiency for the two tracks of a $\phi \rightarrow K^{+} K^{-}$ decay is about 40% for the lower $p_{\mathrm{T}, \phi}$ bins and increases to 65% in the highest $p_{\mathrm{T}, \phi}$ bin. It is $\sim 50 \%$ for all bins in rapidity.

Only to estimate the quality of the MC description of $\epsilon_{\text {rec }}$ in data, the number of tracks passing all cuts in bins of pseudorapidity is divided by the number of tracks passing the cuts with one cut loosened. This efficiency is referred to as the relative efficiency $\epsilon_{\text {rel }}$. The behavior of $\epsilon_{\text {rel }}$ with one fewer pixel cluster or one fewer SCT hit required per track and a lower momentum cut is compared between simulation and data and found to be consistent within 0.5%. The systematic uncertainty inferred is 0.7% per track pair.

The dominant source of uncertainty is due to uncertainty in the MC material description, denoted as $\epsilon_{\text {rec }}$ (material). It is described in Ref. [6] and is given in bins of track η and p_{T}. The material uncertainty, expressed as a fraction of the corresponding tracking efficiency, is 2-3 \% for most tracks accepted in this analysis. To evaluate the impact of this uncertainty, the yield is extracted with the nominal tracking efficiency, and with the nominal tracking efficiency varied up and down by this uncertainty. The systematic uncertainty arising from $\epsilon_{\text {rec }}$ (material) is accounted for per bin in $p_{\mathrm{T}, \phi}$ or $\left|y_{\phi}\right|$ and is 5% per track pair.

The number of reconstructed decays is corrected for the fraction of selected tracks passing the kinematic selection for which the corresponding primary particle is outside the kinematic range. The distributions are subsequently corrected using a MC derived factor to account for the migration of reconstructed $\phi(1020)$-meson candidates into the fiducial volume. The systematic uncertainty arising from this migration correction is evaluated by re-calculating the migration correction after re-weighting the kaon momentum spectrum at particle-level to get a good description of the data at detector level. The variation of the extracted yield using the default and re-weighted migration correction is assigned as a systematic uncertainty and is below 1%.

The statistical uncertainty on the tracking efficiency, $\epsilon_{\text {rec }}$ (stat), is in the range $1-5 \%$ and is propagated as a systematic uncertainty on the cross section. The total systematic uncertainty in the tracking efficiency determination is obtained by adding the previously mentioned components in quadrature and is summarized in Tables 1 and 2 as a function of $p_{\mathrm{T}, \phi}$ and $\left|y_{\phi}\right|$, respectively.

Table 1 The fitted number of $\phi(1020)$ candidates (Signal), the differential production cross section $\mathrm{d} \sigma / \mathrm{d} p_{\mathrm{T}}(\mu \mathrm{b} / \mathrm{MeV})$ of $\phi \rightarrow K^{+} K^{-}$and its statistical uncertainty in bins of $p_{\mathrm{T}, \phi}$ with $500<p_{\mathrm{T}, \phi}<1200 \mathrm{MeV}$, $\left|y_{\phi}\right|<0.8, p_{\mathrm{T}, K}>230 \mathrm{MeV}$ and $p_{K}<800 \mathrm{MeV}$ and the systematic uncertainties due to track reconstruction efficiency $\left(\epsilon_{\text {rec }}\right)$, kaon identification ($\epsilon_{\text {pid }}$) and fitting procedure. The uncertainty on the luminosity is 3.5%

Bin (MeV)	Signal (in units of $\left.10^{4}\right)$	$\mathrm{d} \sigma / \mathrm{d} p \mathrm{~T}$ $(\mu \mathrm{~b} / \mathrm{MeV})$	Systematic uncertainty $(\mu \mathrm{b} / \mathrm{MeV})$		
		$\epsilon_{\text {rec }}$	$\epsilon_{\text {pid }}$	Fitting	
$500<p_{\mathrm{T}, \phi} \leq 570$	1.22 ± 0.07	0.44 ± 0.03	± 0.03	± 0.03	± 0.03
$570<p_{\mathrm{T}, \phi} \leq 640$	2.34 ± 0.09	0.87 ± 0.04	± 0.06	± 0.05	± 0.05
$640<p_{\mathrm{T}, \phi} \leq 710$	2.71 ± 0.10	1.01 ± 0.04	± 0.06	± 0.06	± 0.06
$710<p_{\mathrm{T}, \phi} \leq 780$	3.19 ± 0.11	1.19 ± 0.04	± 0.07	± 0.09	± 0.07
$780<p_{\mathrm{T}, \phi} \leq 850$	3.16 ± 0.11	1.18 ± 0.04	± 0.06	± 0.10	± 0.07
$850<p_{\mathrm{T}, \phi} \leq 920$	2.85 ± 0.10	1.05 ± 0.04	± 0.05	± 0.09	± 0.06
$920<p_{\mathrm{T}, \phi} \leq 990$	2.15 ± 0.09	0.79 ± 0.04	± 0.03	± 0.08	± 0.06
$990<p_{\mathrm{T}, \phi} \leq 1060$	1.81 ± 0.07	0.67 ± 0.04	± 0.03	± 0.07	± 0.05
$1060<p_{\mathrm{T}, \phi} \leq 1130$	1.30 ± 0.06	0.48 ± 0.04	± 0.02	± 0.05	± 0.03
$1130<p_{\mathrm{T}, \phi} \leq 1200$	1.23 ± 0.08	0.46 ± 0.04	± 0.02	± 0.06	± 0.03

Table 2 The fitted number of $\phi(1020)$ candidates (Signal), the differential production cross section $\mathrm{d} \sigma / \mathrm{d}|y|(\mathrm{mb})$ of $\phi \rightarrow K^{+} K^{-}$and its statistical uncertainty in bins of $\left|y_{\phi}\right|$ with $500<p_{\mathrm{T}, \phi}<1200 \mathrm{MeV}$, $\left|y_{\phi}\right|<0.8, p_{\mathrm{T}, K}>230 \mathrm{MeV}$ and $p_{K}<800 \mathrm{MeV}$ and the systematic uncertainties due to track reconstruction efficiency $\left(\epsilon_{\text {rec }}\right)$, kaon identification ($\epsilon_{\text {pid }}$) and fitting procedure. The uncertainty on the luminosity is 3.5%

Bin	Signal (in units of 10^{4})	$\mathrm{d} \sigma / \mathrm{d}\|y\|$ (mb)	Systematic uncertainty (mb)		
		$\epsilon_{\text {rec }}$	$\epsilon_{\text {pid }}$	Fitting	
$0.0<\left\|y_{\phi}\right\| \leq 0.1$	3.44 ± 0.10	0.90 ± 0.03	± 0.04	± 0.06	± 0.05
$0.1<\left\|y_{\phi}\right\| \leq 0.2$	3.39 ± 0.10	0.88 ± 0.03	± 0.04	± 0.07	± 0.05
$0.2<\left\|y_{\phi}\right\| \leq 0.3$	3.22 ± 0.09	0.84 ± 0.03	± 0.04	± 0.06	± 0.05
$0.3<\left\|y_{\phi}\right\| \leq 0.4$	3.18 ± 0.09	0.82 ± 0.03	± 0.04	± 0.06	± 0.05
$0.4<\left\|y_{\phi}\right\| \leq 0.5$	3.36 ± 0.11	0.88 ± 0.03	± 0.05	± 0.08	± 0.05
$0.5<\left\|y_{\phi}\right\| \leq 0.6$	2.53 ± 0.12	0.66 ± 0.03	± 0.04	± 0.06	± 0.04
$0.6<\left\|y_{\phi}\right\| \leq 0.7$	2.01 ± 0.11	0.51 ± 0.02	± 0.03	± 0.05	± 0.04
$0.7<\left\|y_{\phi}\right\| \leq 0.8$	1.18 ± 0.07	0.30 ± 0.02	± 0.02	± 0.04	± 0.02

4.2 Particle identification efficiency

The particle identification efficiency, $\epsilon_{\text {pid }}$, is extracted from simulation as a function of both p_{K} and η. The data sample is not large enough to determine the PID efficiency with a purely data driven technique in bins of p_{K} and η. Therefore a data-driven tag-and-probe technique is used to determine the PID in bins of p_{K} and this is used to rescale the Monte Carlo estimates of the PID efficiency. The data sample is split up into five bins of p_{K} and the efficiency is measured as the fraction $N_{\text {probe }} / N_{\text {tag }}$, where $N_{\text {probe }}$ is the number of candidates for which both kaons pass the PID requirement of $P_{\text {pion }}<0.1$ and $P_{\text {kaon }}>0.84$, and $N_{\text {tag }}$ is the number of candidates for which at least the K^{+}or the K^{-}passes. To measure the signal yields $N_{\text {tag }}$ and $N_{\text {probe }}$, the invariant mass distribution in each bin of p_{K} is fitted with a probability density function (p.d.f.) that describes the signal and background contributions separately and which is detailed in Sect. 4.3. A final efficiency correction factor is defined by multiplying the two-dimensional efficiency from MC simulation by the ratio of data to MC tag-and-probe efficiencies, which is close to unity for $p_{K}<500 \mathrm{MeV}$, but decreases to a factor of slightly more than 0.3 for $700<p_{K}<800 \mathrm{MeV}$. The decreasing efficiency is due to the decreasing discrimination
power using energy loss with increasing momentum, seen in Fig. 1, where from $p_{K} \sim 600 \mathrm{MeV}$ the bands start to overlap.

The tag-and-probe method is validated using MC simulation by ascertaining that the $\epsilon_{\text {pid }}$ values obtained using MC truth-matching and the tag-and-probe method in bins of $p_{\mathrm{T}, \phi}$ and $\left|y_{\phi}\right|$ agree within MC statistical uncertainties. The particle identification efficiency decreases with increasing average kaon momentum from $\sim 90 \%$ for $230<p_{K} \leq 400 \mathrm{MeV}$ to $\sim 10 \%$ for $700<p_{K}<800 \mathrm{MeV}$.

The systematic uncertainty due to $\epsilon_{\text {pid }}$ is evaluated by fixing the background shape parameters in the tag sample to the values given by the fit to the same-sign background distribution (a maximum uncertainty of 10%) and by adding the same-sign background samples to the fitted data sets for the tag-and-probe validation in PYTHIA 6 to vary the signal to background ratio (a maximum uncertainty of 6%). Possible dependence of the cross section on the choice of $P_{\text {kaon }}$ requirement is tested by varying the requirement by 10% and is found to be well within the uncertainty due to fixing the background shape parameters. The statistical uncertainty on $\epsilon_{\text {pid }}$ is calculated using a binomial probability distribution, which leads to a relative uncertainty on $\epsilon_{\text {pid }}$ of at most 5%, denoted by $\epsilon_{\text {pid }}($ stat $)$. These uncertainties (evaluated per bin in $p_{\mathrm{T}, \phi}$ or $\left.\left|y_{\phi}\right|\right)$ are added in quadrature and are included as

Fig. 3 Examples of invariant $K^{+} K^{-}$mass distributions in the data (dots) compared to results of the fits (solid lines), as described in the text, for a the lowest $p_{\mathrm{T}, \phi}$ bin, \mathbf{b} one of the middle $p_{\mathrm{T}, \phi}$ bins, \mathbf{c} the most
systematic uncertainties on the cross section as summarized in Tables 1 and 2.

4.3 Signal extraction

To extract the signal yields, a binned χ^{2} fit to the invariant mass spectrum is performed in each region of phase space after applying corrections for the selection efficiencies to the tracks. The signal shape is described by a relativistic BreitWigner,
$f_{\mathrm{RBW}}\left(m ; m_{0}, \Gamma_{0}\right)=\frac{m^{2}}{\left(m^{2}-m_{0}^{2}\right)^{2}+m_{0}^{2} \Gamma^{2}(m)}$,
where the mass-dependent width is given by
$\Gamma(m)=\Gamma_{0}\left[\frac{m^{2}-4 m_{K}^{2}}{m_{0}^{2}-4 m_{K}^{2}}\right]^{3 / 2}$.
In Eq. (1), m_{0} is fixed to the $\phi(1020)$-meson mass of 1019.45 MeV [27], Γ_{0} to the natural width of 4.26 MeV [27], and m_{K} in Eq. (2) is the charged kaon mass [27].

The signal shape is convoluted with a Gaussian resolution function, with the mean and standard deviation left free in the

central $\left|y_{\phi}\right|$ bin and \mathbf{d} most forward $\left|y_{\phi}\right|$ bin. The dashed curves show the background contribution and the dotted red curves demonstrates the signal contributions, with paremeters listed in the legend
fit. The mean of the Gaussian is interpreted as the actual value of the $\phi(1020)$ mass, while its standard deviation corresponds to the experimental resolution. The values obtained from the fits are in the range $\sigma_{\text {exp }}=1.0-2.5 \mathrm{MeV}$.

This signal description is added to an empirical background description,

$$
\begin{align*}
f_{\mathrm{BKG}}(m)= & \left(1-e^{\left(2 m_{K}-m\right) / C}\right) \cdot\left(\frac{m}{2 m_{K}}\right)^{A} \\
& +B\left(\frac{m}{2 m_{K}}-1\right) \tag{3}
\end{align*}
$$

where A, B and C determine the background shape. Initial values for A, B and C are found by fitting the background p.d.f. to a sample of events with two kaons of the same charge. This same-sign sample contains the same sources of combinatorial background as the nominal selection but no true $\phi(1020)$ mesons, and so it provides a good initial description of the background shape. It was checked that the background model provides stable fitting results in all bins in $p_{\mathrm{T}, \phi}$ and $\left|y_{\phi}\right|$ for the same-sign sample.

Fits of the invariant mass of $K^{+} K^{-}$pairs are shown in Fig. 3 for four regions. It was found that the maximum of the

Fig. 4 The $\phi(1020) \times \mathcal{B R}\left(\phi \rightarrow K^{+} K^{-}\right)$cross section in the fiducial region, with $500<p_{\mathrm{T}, \phi}<1200 \mathrm{MeV},\left|y_{\phi}\right|<0.8, p_{\mathrm{T}, K}>230 \mathrm{MeV}$ and kaon momentum $p_{K}<800 \mathrm{MeV}$, as a function of $p_{\mathrm{T}, \phi}$ (left) and $\left|y_{\phi}\right|($ right $)$. The error bars represent the statistical uncertainty and the
signal peak, $m_{\text {peak }}$, is shifted upwards by almost 1 MeV for the lowest $p_{\mathrm{T}, \phi}$ bin. This is covered by the uncertainty on the momentum scale for the low-momentum tracks.

Three tests are conducted to estimate the systematic uncertainty on the extracted signal yield due to uncertainty on the signal, background shape and detector resolution. Firstly, the signal is extracted using a non-relativistic Breit-Wigner lineshape convolved with a Gaussian to describe the signal shape. This leads to a conservative estimate of the uncertainties in the extracted signal of 5-6\%, which are evaluated bin-by-bin in $p_{\mathrm{T}, \phi}$ and $\left|y_{\phi}\right|$. Secondly, the extracted yield changes by at most 2% if the signal shape is convolved with a Crystal Ball [28] resolution function, rather than a Gaussian. Thirdly, the extracted yields vary by at most 3% if the background p.d.f. is fitted to the sample of same-sign pairs of tracks in each bin and the shape is fixed to the result of this fit. Adding the relative changes in the yield in quadrature, a conservative estimate of 6-7 \% is assigned to the systematic uncertainty and summarized in Tables 1 and 2.

The cross section $\sigma_{\text {bin }}^{i}$ in bin i is determined by
$\sigma_{\text {bin }}^{i}=\frac{N_{i}}{\mathcal{L}}$,
where \mathcal{L} is the integrated luminosity and N_{i} is the number of efficiency-corrected reconstructed $\phi \rightarrow K^{+} K^{-}$candidates in bin i.

5 Results

The differential $\phi \times \mathcal{B} \mathcal{R}\left(\phi \rightarrow K^{+} K^{-}\right)$cross section in the fiducial region $500<p_{\mathrm{T}, \phi}<1200 \mathrm{MeV},\left|y_{\phi}\right|<0.8$, kaon transverse momentum $p_{\mathrm{T}, K}>230 \mathrm{MeV}$ and kaon momentum $p_{K}<800 \mathrm{MeV}$ is shown in Fig. 4 a) as a function of
(b)

green boxes represent the quadratic sum of the statistical and systematic uncertainties. The 3.5% uncertainty on the luminosity is not included. The data are compared to various MC expectations as described in the legends
$p_{\mathrm{T}, \phi}$ and in Fig. 4 b) as a function of $\left|y_{\phi}\right|$ and compared to simulation. Tables 1 and 2 give the differential cross sections and the relevant systematic uncertainties. The total statistical uncertainty ranges from 3 to 8% and the total systematic uncertainty is $8-12 \%$. The uncertainty on the luminosity is 3.5% [5] for all bins. The integrated cross section is calculated as the sum of the differential cross sections as a function of $p_{\mathrm{T}, \phi}$. This determination is less sensitive to mismodelling of the $p_{\mathrm{T}, \phi}$ distribution than a determination based on the sum of the differential cross sections as a function of $\left|y_{\phi}\right|$ and is measured to be $\sigma_{\phi} \times \mathcal{B R}\left(\phi \rightarrow K^{+} K^{-}\right)=570 \pm 8$ (stat) ± 68 (syst) ± 20 (lumi) $\mu \mathrm{b}$.

The fiducial cross section increases as a function of $p_{\mathrm{T}, \phi}$ in the range $500-700 \mathrm{MeV}$, reaches a maximum at $p_{\mathrm{T}, \phi} \sim 750 \mathrm{MeV}$ and decreases for $p_{\mathrm{T}, \phi} \geq 850 \mathrm{MeV}$. The increase in the number of measured decays as $p_{\mathrm{T}, \phi}$ rises to 700 MeV is due to the cut on kaon transverse momentum $p_{\mathrm{T}, K}>230 \mathrm{MeV}$, along with the increasing phase space for $\phi(1020)$ production. The fiducial cross section is seen to decrease from $\left|y_{\phi}\right| \geq 0.5$. This is due to the $p_{K}<800 \mathrm{MeV}$ requirement for efficient PID which excludes an increasing fraction of kaons as the rapidity increases. The region $\left|y_{\phi}\right|<0.8$ is well within the rapidity plateau at LHC energies, therefore the differential cross section for $\phi(1020)$ is expected to be flat as a function of $\left|y_{\phi}\right|$ in the measured range of $\left|y_{\phi}\right|$.

The cross section is best described by the PYTHIA 6 tune DW and by the EPOS-LHC tune. These provide a good description for the $p_{\mathrm{T}, \phi}$ and $\left|y_{\phi}\right|$ dependencies as well as for the total yield. The PYTHIA 6 MC09 tune slightly overestimates the data in the fiducial region. The PYTHIA 6 Perugia0 tune underestimates the cross section by around a factor of two compared to the data in the whole fiducial volume. The two PYTHIA 8 A2 tunes, based on different PDFs,
show similar predictions for the cross section, which are also about a factor of two too small. Herwig++ provides a good description for the cross section for $p_{\mathrm{T}, \phi}<700 \mathrm{MeV}$ and for $\left|y_{\phi}\right|>0.6$, but exhibits an overly steeply falling $p_{\mathrm{T}, \phi}$ dependence, such that the cross section is underestimated for $p_{\mathrm{T}, \phi}>700 \mathrm{MeV}$ and in the mid-rapidity range $\left|y_{\phi}\right|<0.6$.

6 Extrapolated cross section

The kaon momenta requirements arising from tracking and PID cuts $\left(p_{\mathrm{T}, K}>230 \mathrm{MeV}\right.$ and $p_{K}<800 \mathrm{MeV}$) reject a significant number of $\phi \rightarrow K^{+} K^{-}$candidates. In order to allow comparison with other measurements, the cross section in the fiducial region is extrapolated to a cross section in the kinematic region $500<p_{\mathrm{T}, \phi}<1200 \mathrm{MeV}$ and central rapidity $\left|y_{\phi}\right|<0.5$, using MC particle level information. The variation of the expected correction between the different generators considered is 10% and is included as an additional systematic uncertainty on the extrapolated result. A correction for the branching fraction is also applied. The systematic uncertainty on the branching fraction is 1% [27]. The extrapolation is done with PYTHIA 6, because the cross section's dependence on $p_{\mathrm{T}, \phi}$ within the fiducial region is well described by this generator, as shown in Fig. 4. The extrapolation is restricted to $\left|y_{\phi}\right|<0.5$, where the fiducial acceptance is large, over 70%. The extrapolation factor is 2.78 for the lowest $p_{\mathrm{T}, \phi}$ bin, then decreases to 1.08 at $p_{\mathrm{T}, \phi} \sim$ 900 MeV and becomes 1.21 in highest $p_{\mathrm{T}, \phi}$ bin.

The extrapolated cross section is compared to the measurement by the ALICE Collaboration of the $\phi(1020)$ production cross section as described in Ref. [3]. A comparison between the cross section measurements is shown in Fig. 5. The measurements as a function of $p_{\mathrm{T}, \phi}$ are in agreement to within 10% in the first two bins and to within 3% in the other bins, which is well within the systematic uncertainties.

7 Summary

This paper presents a measurement of the differential production cross section of the $\phi(1020)$ meson using the $K^{+} K^{-}$ decay mode and $383 \mu \mathrm{~b}^{-1}$ of $7 \mathrm{TeV} p p$ collision data collected with the ATLAS experiment at the LHC. To avoid model-dependent extrapolations outside the detector acceptance, the cross section is measured in a fiducial region, with $500<p_{\mathrm{T}, \phi}<1200 \mathrm{MeV},\left|y_{\phi}\right|<0.8$, kaon $p_{\mathrm{T}, K}>230 \mathrm{MeV}$ and kaon momentum $p_{K}<800 \mathrm{MeV}$ requirements, which are determined by particle identification and track reconstruction constraints.

The ϕ (1020) production cross section is in agreement with the predictions of the MC generator tunes EPOS-LHC and

Fig. 5 The $\phi(1020)$-meson cross section as a function of $p_{\mathrm{T}, \phi}$, extrapolated using PYTHIA 6 to the kinematic region with $500<p_{\mathrm{T}, \phi}<$ 1200 MeV and $\left|y_{\phi}\right|<0.5$, is compared to the measurement by the ALICE Collaboration [3]. The error bars represent the statistical uncertainty and the boxes represent the quadratic sum of the statistical and systematic uncertainties. The 3.5% uncertainty on the luminosity is not included

PYTHIA 6 DW. PYTHIA 6 predictions using different tunes are observed to differ significantly. The cross section is also underestimated by PYTHIA 8 and by Herwig++. This measurement can provide useful input for tuning and development of phenomenological models in order to improve MC generators.

Acknowledgments We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, The Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
Funded by SCOAP ${ }^{3}$ / License Version CC BY 4.0.

References

1. ATLAS Collaboration, JINST 3, S08003 (2008). http://arxiv.org/ abs/0901.0512 [hep-ex]
2. ATLAS Collaboration, ATLAS-CONF-2011-016. http://cds.cern. ch/record/1336519
3. ALICE Collaboration, Eur. Phys. J. C 72, 2183 (2012). http://arxiv. org/abs/1208.5717 [hep-ex]
4. LHCb Collaboration, Phys. Lett. B 703, 267 (2011). http://arxiv. org/abs/1107.3935 [hep-ex]
5. ATLAS Collaboration, Eur. Phys. J. C 73, 2518 (2013). http://arxiv. org/abs/1302.4393 [hep-ex]
6. ATLAS Collaboration, New J. Phys. 13, 053033 (2011). http:// arxiv.org/abs/1012.5104 [hep-ex]
7. ATLAS Collaboration, ATLAS-CONF-2010-069. http://cds.cern. ch/record/1281344
8. T. Sjöstrand, S. Mrenna, P.Z. Skands, J. High Energy Phys. 0605, 026 (2006). http://arxiv.org/abs/hep-ph/0603175
9. T. Sjöstrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852 (2008)
10. M. Bähr et al., Eur. Phys. J. C 58, 639 (2008). http://arxiv.org/abs/ 0803.0883 [hep-ph]
11. K. Werner, F.-M.K. Liu, T. Pierog, Phys. Rev. C 74, 044902 (2006). http://arxiv.org/abs/hep-ph/0506232
12. K. Werner et al., Phys. Rev. C 82, 044904 (2010). http://arxiv.org/ abs/1004.0805 [nucl-th]
13. B. Andersson, G. Gustafson, G. Ingelman, T. Sjöstrand, Phys. Rept. 97, 31 (1983)
14. ATLAS Collaboration, ATL-PHYS-PUB-2010-002. http://cds. cern.ch/record/1247375
15. M. Albrow et al. (TeV4 QCD Working Group). http://arxiv.org/ abs/hep-ph/0610012. Femilab-Conf-06-359
16. P.Z. Skands, Phys. Rev. D 82, 074018 (2010). http://arxiv.org/abs/ 1005.3457 [hep-ph]
17. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). http://arxiv.org/abs/0901.0002 [hep-ph]
18. R. Corke, T. Sjöstrand, J. High Energy Phys. 1103, 032 (2011). http://arxiv.org/abs/1011.1759 [hep-ph]
19. J. Pumplin et al., JHEP 0207 (2002) 012. http://arxiv.org/abs/ hep-ph/0201195
20. S. Gieseke, C.A. Rohr, A. Siodmok. http://arxiv.org/abs/1110.2675 [hep-ph]. MPI@LHC 2010 proceedings
21. B.R. Webber, Nucl. Phys. B 238, 492 (1984)
22. T. Pierog et al. http://arxiv.org/abs/1306.0121 [hep-ph]
23. H.J. Drescher et al., Phys. Rept. 350, 93 (2001). http://arxiv.org/ abs/hep-ph/0007198
24. ATLAS Collaboration, Eur. Phys. J. C 70, 823 (2010). http://arxiv. org/abs/1005.4568 [hep-ex]
25. S. Agostinelli et al., GEANT4 Collaboration, Nucl. Instrum. Meth. A 506, 250 (2003)
26. H. Bethe, J. Ashkin, ed. by E. Segré (Wiley, New York, 1953)
27. J. Beringer et al., Particle Data Group, Phys. Rev. D 86, 010001 (2012)
28. J.E. Gaiser, PhD thesis, SLAC, 1982

The ATLAS Collaboration

G. Aad ${ }^{48}$, T. Abajyan ${ }^{21}$, B. Abbott ${ }^{111}$, J. Abdallah ${ }^{12}$, S. Abdel Khalek ${ }^{115}$, A. A. Abdelalim ${ }^{49}$, O. Abdinov ${ }^{11}$, R. Aben ${ }^{105}$, B. Abi ${ }^{112}$, M. Abolins ${ }^{88}$, O. S. AbouZeid ${ }^{158}$, H. Abramowicz ${ }^{153}$, H. Abreu ${ }^{136}$, B. S. Acharya ${ }^{164 a, 164 b}$, L. Adamczyk ${ }^{38}$, D. L. Adams 25, T. N. Addy ${ }^{56}$, J. Adelman ${ }^{176}$, S. Adomeit ${ }^{98}$, P. Adragna ${ }^{75}$, T. Adye ${ }^{129}$, S. Aefsky ${ }^{23}$, J. A. Aguilar-Saavedra ${ }^{124 \mathrm{~b}, \mathrm{a}}$, M. Agustoni ${ }^{17}$, M. Aharrouche ${ }^{81}$, S. P. Ahlen ${ }^{22}$, F. Ahles ${ }^{48}$, A. Ahmad ${ }^{148}$, M. Ahsan ${ }^{41}$, G. Aielli ${ }^{133 a}, 133 \mathrm{~b}$, T. P. A. Åkesson ${ }^{79}$, G. Akimoto ${ }^{155}$, A. V. Akimov ${ }^{94}$, M. S. Alam ${ }^{2}$, M. A. Alam ${ }^{76}$, J. Albert ${ }^{169}$, S. Albrand ${ }^{55}$, M. Aleksa ${ }^{30}$, I. N. Aleksandrov ${ }^{64}$, F. Alessandria ${ }^{89 a}$, C. Alexa ${ }^{26 a}$, G. Alexander ${ }^{153}$, G. Alexandre ${ }^{49}$, T. Alexopoulos ${ }^{10}$, M. Alhroob ${ }^{164 a, 164 \mathrm{c}}$, M. Aliev ${ }^{16}$, G. Alimonti ${ }^{89 \mathrm{a}}$, J. Alison ${ }^{120}$, B. M. M. Allbrooke ${ }^{18}$, P. P. Allport ${ }^{73}$, S. E. Allwood-Spiers ${ }^{53}$, J. Almond ${ }^{82}$, A. Aloisio ${ }^{102 a, 102 b}$, R. Alon ${ }^{172}$, A. Alonso ${ }^{79}$, F. Alonso ${ }^{70}$, A. Altheimer ${ }^{35}$, B. Alvarez Gonzalez ${ }^{88}$, M. G. Alviggi ${ }^{102 a, 102 b}$, K. Amako ${ }^{65}$, C. Amelung 23, V. V. Ammosov ${ }^{128, *}$, S. P. Amor Dos Santos ${ }^{124 \mathrm{a}}$, A. Amorim ${ }^{124 \mathrm{a}, \mathrm{b}}$, N. Amram ${ }^{153}$, C. Anastopoulos ${ }^{30}$, L. S. Ancu ${ }^{17}$, N. Andari ${ }^{115}$, T. Andeen ${ }^{35}$, C. F. Anders ${ }^{58 \mathrm{~b}}$, G. Anders ${ }^{58 \mathrm{a}}$, K. J. Anderson ${ }^{31}$, A. Andreazza ${ }^{89 \mathrm{a}}$, 89 b , V. Andrei ${ }^{58 \mathrm{a}}$, M-L. Andrieux ${ }^{55}$, X. S. Anduaga ${ }^{70}$, S. Angelidakis ${ }^{9}$, P. Anger ${ }^{44}$, A. Angerami ${ }^{35}$, F. Anghinolfi ${ }^{30}$, A. Anisenkov ${ }^{107}$, N. Anjos ${ }^{124 a}$, A. Annovi ${ }^{47}$, A. Antonaki ${ }^{9}$, M. Antonelli ${ }^{47}$, A. Antonov ${ }^{96}$, J. Antos ${ }^{144 \mathrm{~b}}$, F. Anulli ${ }^{132 \mathrm{a}}$, M. Aoki ${ }^{101}$, S. Aoun ${ }^{83}$, L. Aperio Bella ${ }^{5}$, R. Apolle ${ }^{118, \mathrm{c}}$, G. Arabidze ${ }^{88}$, I. Aracena ${ }^{143}$, Y. Arai ${ }^{65}$, A. T. H. Arce ${ }^{45}$, S. Arfaoui ${ }^{148}$, J-F. Arguin ${ }^{93}$, S. Argyropoulos ${ }^{42}$, E. Arik ${ }^{19 a,}{ }^{*}$, M. Arik ${ }^{19 a}$, A. J. Armbruster ${ }^{87}$, O. Arnaez ${ }^{81}$, V. Arnal ${ }^{80}$, C. Arnault ${ }^{115}$, A. Artamonov ${ }^{95}$, G. Artoni ${ }^{132 a, 132 b}$, D. Arutinov ${ }^{21}$, S. Asai ${ }^{155}$, S. Ask ${ }^{28}$, B. Åsman ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$, L. Asquith ${ }^{6}$, K. Assamagan ${ }^{25}$, A. Astbury ${ }^{169}$, M. Atkinson ${ }^{165}$, B. Aubert 5, E. Auge ${ }^{115}$, K. Augsten ${ }^{127}$, M. Aurousseau ${ }^{145 \mathrm{a}}$, G. Avolio ${ }^{30}$, R. Avramidou ${ }^{10}$, D. Axen ${ }^{168}$, G. Azuelos ${ }^{93, \mathrm{~d}}$, Y. Azuma ${ }^{155}$, M. A. Baak ${ }^{30}$, G. Baccaglioni ${ }^{89 \text { a }}$, C. Bacci $^{134 \mathrm{a}, 134 \mathrm{~b}}$, A. M. Bach ${ }^{15}$, H. Bachacou ${ }^{136}$, K. Bachas ${ }^{30}$, M. Backes ${ }^{49}$, M. Backhaus 21, J. Backus Mayes ${ }^{143}$, E. Badescu ${ }^{26 a}$, P. Bagnaia ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, S. Bahinipati ${ }^{3}$, Y. Bai ${ }^{33 \mathrm{a}}$, D. C. Bailey ${ }^{158}$, T. Bain ${ }^{158}$, J. T. Baines ${ }^{129}$, O. K. Baker ${ }^{176}$, M. D. Baker ${ }^{25}$, S. Baker ${ }^{77}$, P. Balek ${ }^{126}$, E. Banas ${ }^{39}$, P. Banerjee ${ }^{93}$, Sw. Banerjee ${ }^{173}$, D. Banfi ${ }^{30}$, A. Bangert ${ }^{150}$, V. Bansal ${ }^{169}$, H. S. Bansil ${ }^{18}$, L. Barak ${ }^{172}$, S. P. Baranov ${ }^{94}$, A. Barbaro Galtieri ${ }^{15}$, T. Barber ${ }^{48}$, E. L. Barberio ${ }^{86}$, D. Barberis $^{50 \mathrm{a}, 50 \mathrm{~b}}$, M. Barbero ${ }^{21}$, D. Y. Bardin ${ }^{64}$, T. Barillari ${ }^{99}$, M. Barisonzi ${ }^{175}$, T. Barklow ${ }^{143}$, N. Barlow ${ }^{28}$, B. M. Barnett ${ }^{129}$, R. M. Barnett ${ }^{15}$, A. Baroncelli ${ }^{134 \mathrm{a}}$, G. Barone ${ }^{49}$, A. J. Barr ${ }^{118}$, F. Barreiro ${ }^{80}$, J. Barreiro Guimarães da Costa ${ }^{57}$, P. Barrillon ${ }^{115}$, R. Bartoldus ${ }^{143}$, A. E. Barton ${ }^{71}$, V. Bartsch ${ }^{149}$, A. Basye ${ }^{165}$, R. L. Bates ${ }^{53}$, L. Batkova ${ }^{144 a}$, J. R. Batley ${ }^{28}$, A. Battaglia ${ }^{17}$, M. Battistin 30, F. Bauer ${ }^{136}$, H. S. Bawa ${ }^{143, \mathrm{e}}$, S. Beale ${ }^{98}$, T. Beau ${ }^{78}$, P. H. Beauchemin ${ }^{161}$, R. Beccherle ${ }^{50 \mathrm{a}}$, P. Bechtle ${ }^{21}$, H. P. Beck 17, A. K. Becker ${ }^{175}$, S. Becker ${ }^{98}$, M. Beckingham ${ }^{138}$, K. H. Becks ${ }^{175}$, A. J. Beddall ${ }^{19 \mathrm{c}}$, A. Beddall ${ }^{19 \mathrm{c}}$, S. Bedikian ${ }^{176}$, V. A. Bednyakov ${ }^{64}$, C. P. Bee ${ }^{83}$, L. J. Beemster ${ }^{105}$, M. Begel ${ }^{25}$, S. Behar Harpaz ${ }^{152}$, P. K. Behera ${ }^{62}$, M. Beimforde ${ }^{99}$, C. Belanger-

Champagne ${ }^{85}$, P. J. Bell ${ }^{49}$, W. H. Bell ${ }^{49}$, G. Bella ${ }^{153}$, L. Bellagamba ${ }^{20 \mathrm{a}}$, M. Bellomo ${ }^{30}$, A. Belloni ${ }^{57}$, O. Beloborodova ${ }^{107, f}$, K. Belotskiy ${ }^{96}$, O. Beltramello ${ }^{30}$, O. Benary ${ }^{153}$, D. Benchekroun ${ }^{135 \mathrm{a}}$, K. Bendtz ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$, N. Benekos ${ }^{165}$, Y. Benhammou ${ }^{153}$, E. Benhar Noccioli ${ }^{49}$, J. A. Benitez Garcia ${ }^{159 b}$, D. P. Benjamin ${ }^{45}$, M. Benoit ${ }^{115}$, J. R. Bensinger ${ }^{23}$, K. Benslama ${ }^{130}$, S. Bentvelsen ${ }^{105}$, D. Berge ${ }^{30}$, E. Bergeaas Kuutmann ${ }^{42}$, N. Berger ${ }^{5}$, F. Berghaus ${ }^{169}$, E. Berglund ${ }^{105}$, J. Beringer ${ }^{15}$, P. Bernat ${ }^{77}$, R. Bernhard 48, C. Bernius ${ }^{25}$, T. Berry ${ }^{76}$, C. Bertella ${ }^{83}$, A. Bertin ${ }^{20 a, 20 b}$, F. Bertolucci ${ }^{122 a, 122 b}$, M. I. Besana ${ }^{89 a, 89 b}$, G. J. Besjes ${ }^{104}$, N. Besson ${ }^{136}$, S. Bethke ${ }^{99}$, W. Bhimji ${ }^{46}$, R. M. Bianchi ${ }^{30}$, L. Bianchini ${ }^{23}$, M. Bianco ${ }^{72 a, 72 b}$, O. Biebel ${ }^{98}$, S. P. Bieniek ${ }^{77}$, K. Bierwagen 54, J. Biesiada ${ }^{15}$, M. Biglietti ${ }^{134 \mathrm{a}}$, H. Bilokon ${ }^{47}$, M. Bindi ${ }^{20 a, 20 b}$, S. Binet ${ }^{115}$, A. Bingul ${ }^{19 \mathrm{c}}$, C. Bini ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, C. Biscarat ${ }^{178}$, B. Bittner ${ }^{99}$, C. W. Black ${ }^{150}$, K. M. Black ${ }^{22}$, R. E. Blair ${ }^{6}$, J.-B. Blanchard ${ }^{136}$, G. Blanchot ${ }^{30}$, T. Blazek ${ }^{144 \mathrm{a}}$, I. Bloch 42, C. Blocker 23, J. Blocki ${ }^{39}$, A. Blondel ${ }^{49}$, W. Blum ${ }^{81}$, U. Blumenschein ${ }^{54}$, G. J. Bobbink ${ }^{105}$, V. B. Bobrovnikov ${ }^{107}$, S. S. Bocchetta ${ }^{79}$, A. Bocci ${ }^{45}$, C. R. Boddy ${ }^{118}$, M. Boehler ${ }^{48}$, J. Boek ${ }^{175}$, N. Boelaert ${ }^{36}$, J. A. Bogaerts ${ }^{30}$, A. Bogdanchikov ${ }^{107}$, A. Bogouch $^{90, *}$, C. Bohm ${ }^{146 a}$, J. Bohm ${ }^{125}$, V. Boisvert ${ }^{76}$, T. Bold ${ }^{38}$, V. Boldea ${ }^{26 a}$, N. M. Bolnet ${ }^{136}$, M. Bomben ${ }^{78}$, M. Bona ${ }^{75}$, M. Boonekamp ${ }^{136}$, S. Bordoni ${ }^{78}$, C. Borer ${ }^{17}$, A. Borisov ${ }^{128}$, G. Borissov ${ }^{71}$, I. Borjanovic ${ }^{13 a}$, M. Borri ${ }^{82}$, S. Borroni ${ }^{87}$, J. Bortfeldt ${ }^{98}$, V. Bortolotto ${ }^{134 a, 134 b}$, K. Bos ${ }^{105}$, D. Boscherini ${ }^{20 a}$, M. Bosman ${ }^{12}$, H. Boterenbrood ${ }^{105}$, J. Bouchami ${ }^{93}$, J. Boudreau 123, E. V. Bouhova-Thacker ${ }^{71}$, D. Boumediene ${ }^{34}$, C. Bourdarios ${ }^{115}$, N. Bousson ${ }^{83}$, A. Boveia ${ }^{31}$, J. Boyd ${ }^{30}$, I. R. Boyko 64, I. Bozovic-Jelisavcic ${ }^{13 b}$, J. Bracinik ${ }^{18}$, P. Branchini ${ }^{134 \mathrm{a}}$, A. Brandt ${ }^{8}$, G. Brandt ${ }^{118}$, O. Brandt ${ }^{54}$, U. Bratzler ${ }^{156}$, B. Brau 84, J. E. Brau ${ }^{114}$, H. M. Braun ${ }^{175, *}$, S. F. Brazzale ${ }^{164 a, 164 \mathrm{c}}$, B. Brelier ${ }^{158}$, J. Bremer ${ }^{30}$, K. Brendlinger ${ }^{120}$, R. Brenner ${ }^{166}$, S. Bressler 172, D. Britton ${ }^{53}$, F. M. Brochu ${ }^{28}$, I. Brock ${ }^{21}$, R. Brock ${ }^{88}$, F. Broggi ${ }^{89 \text { a }}$, C. Bromberg ${ }^{88}$, J. Bronner ${ }^{99}$, G. Brooijmans ${ }^{35}$, T. Brooks ${ }^{76}$, W. K. Brooks ${ }^{32 \mathrm{~b}}$, G. Brown ${ }^{82}$, H. Brown ${ }^{8}$, P. A. Bruckman de Renstrom ${ }^{39}$, D. Bruncko ${ }^{144 \mathrm{~b}}$, R. Bruneliere ${ }^{48}$, S. Brunet 60, A. Bruni ${ }^{20 a}$, G. Bruni ${ }^{20 a}$, M. Bruschi ${ }^{20 a}$, T. Buanes ${ }^{14}$, Q. Buat ${ }^{55}$, F. Bucci ${ }^{49}$, J. Buchanan ${ }^{118}$, P. Buchholz ${ }^{141}$, R. M. Buckingham 118, A. G. Buckley ${ }^{46}$, S. I. Buda ${ }^{26 a}$, I. A. Budagov ${ }^{64}$, B. Budick ${ }^{108}$, V. Büscher ${ }^{81}$, L. Bugge ${ }^{117}$, O. Bulekov ${ }^{96}$, A. C. Bundock ${ }^{73}$, M. Bunse ${ }^{43}$, T. Buran ${ }^{117}$, H. Burckhart ${ }^{30}$, S. Burdin ${ }^{73}$, T. Burgess ${ }^{14}$, S. Burke ${ }^{129}$, E. Busato ${ }^{34}$, P. Bussey ${ }^{53}$, C. P. Buszello ${ }^{166}$, B. Butler ${ }^{143}$, J. M. Butler ${ }^{22}$, C. M. Buttar ${ }^{53}$, J. M. Butterworth ${ }^{77}$, W. Buttinger ${ }^{28}$, M. Byszewski ${ }^{30}$, S. Cabrera Urbán ${ }^{167}$, D. Caforio ${ }^{20 \mathrm{a}, 20 \mathrm{~b}}$, O. Cakir ${ }^{4 \mathrm{a}}$, P. Calafiura ${ }^{15}$, G. Calderini ${ }^{78}$, P. Calfayan ${ }^{98}$, R. Calkins ${ }^{106}$, L. P. Caloba ${ }^{24 \mathrm{a}}$, R. Caloi ${ }^{132 a, 132 b}$, D. Calvet ${ }^{34}$, S. Calvet ${ }^{34}$, R. Camacho Toro ${ }^{34}$, P. Camarri ${ }^{133 a, 133 b}$, D. Cameron ${ }^{117}$, L. M. Caminada ${ }^{15}$, R. Caminal Armadans ${ }^{12}$, S. Campana ${ }^{30}$, M. Campanelli ${ }^{77}$, V. Canale ${ }^{102 \mathrm{a}, 102 \mathrm{~b}}$, F. Canelli ${ }^{31}$, A. Canepa ${ }^{159 \mathrm{a}}$, J. Cantero ${ }^{80}$, R. Cantrill 76, L. Capasso ${ }^{102 \mathrm{a}, 102 \mathrm{~b}}$, M. D. M. Capeans Garrido 30, I. Caprini ${ }^{26 \mathrm{a}}$, M. Caprini ${ }^{26 \mathrm{a}}$, D. Capriotti ${ }^{99}$, M. Capua ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, R. Caputo ${ }^{81}$, R. Cardarelli ${ }^{133 \mathrm{a}}$, T. Carli ${ }^{30}$, G. Carlino ${ }^{102 \mathrm{a}}$, L. Carminati ${ }^{89 \mathrm{a}, 89 \mathrm{~b}}$, B. Caron ${ }^{85}$, S. Caron ${ }^{104}$, E. Carquin ${ }^{32 \mathrm{~b}}$, G. D. Carrillo-Montoya ${ }^{145 b}$, A. A. Carter ${ }^{75}$, J. R. Carter ${ }^{28}$, J. Carvalho ${ }^{124 a, g}$, D. Casadei ${ }^{108}$, M. P. Casado ${ }^{12}$, M. Cascella ${ }^{122 a, 122 b}$, C. Caso ${ }^{50 \mathrm{a}, 50 \mathrm{~b}, *}$, A. M. Castaneda Hernandez ${ }^{173, \mathrm{~h}}$, E. Castaneda-Miranda ${ }^{173}$, V. Castillo Gimenez ${ }^{167}$, N. F. Castro ${ }^{124 \mathrm{a}}$, G. Cataldi ${ }^{72 \mathrm{a}}$, P. Catastini ${ }^{57}$, A. Catinaccio ${ }^{30}$, J. R. Catmore ${ }^{30}$, A. Cattai ${ }^{30}$, G. Cattani ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, S. Caughron ${ }^{88}$, V. Cavaliere ${ }^{165}$, P. Cavalleri ${ }^{78}$, D. Cavalli ${ }^{89 \mathrm{a}}$, M. Cavalli-Sforza ${ }^{12}$, V. Cavasinni ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, F. Ceradini ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, A. S. Cerqueira ${ }^{24 \mathrm{~b}}$, A. Cerri ${ }^{30}$, L. Cerrito ${ }^{75}$, F. Cerutti ${ }^{47}$, S. A. Cetin ${ }^{19 b}$, A. Chafaq ${ }^{135 a}$, D. Chakraborty ${ }^{106}$, I. Chalupkova ${ }^{126}$, K. Chan ${ }^{3}$, P. Chang ${ }^{165}$, B. Chapleau 85, J. D. Chapman ${ }^{28}$, J. W. Chapman ${ }^{87}$, E. Chareyre ${ }^{78}$, D. G. Charlton ${ }^{18}$, V. Chavda ${ }^{82}$, C. A. Chavez Barajas ${ }^{30}$, S. Cheatham ${ }^{85}$, S. Chekanov ${ }^{6}$, S. V. Chekulaev ${ }^{159 \text { a }}$, G. A. Chelkov ${ }^{64}$, M. A. Chelstowska ${ }^{104}$, C. Chen ${ }^{63}$, H. Chen ${ }^{25}$, S. Chen ${ }^{33 \mathrm{c}}$, X. Chen ${ }^{173}$, Y. Chen ${ }^{35}$, Y. Cheng ${ }^{31}$, A. Cheplakov ${ }^{64}$, R. Cherkaoui El Moursli ${ }^{135 e}$, V. Chernyatin ${ }^{25}$, E. Cheu ${ }^{7}$, S. L. Cheung ${ }^{158}$, L. Chevalier ${ }^{136}$, G. Chiefari ${ }^{102 \mathrm{a}, 102 \mathrm{~b}}$, L. Chikovani ${ }^{51 \mathrm{a}, *}$, J. T. Childers ${ }^{30}$, A. Chilingarov ${ }^{71}$, G. Chiodini ${ }^{72 \mathrm{a}}$, A. S. Chisholm ${ }^{18}$, R. T. Chislett ${ }^{77}$, A. Chitan ${ }^{26 a}$, M. V. Chizhov ${ }^{64}$, G. Choudalakis ${ }^{31}$, S. Chouridou ${ }^{137}$, I. A. Christidi ${ }^{77}$, A. Christov ${ }^{48}$, D. Chromek-Burckhart ${ }^{30}$, M. L. Chu ${ }^{151}$, J. Chudoba ${ }^{125}$, G. Ciapetti ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, A. K. Ciftci ${ }^{4 \mathrm{a}}$, R. Ciftci ${ }^{4 \mathrm{a}}$, D. Cinca 34, V. Cindro ${ }^{74}$, C. Ciocca ${ }^{20 \mathrm{a}, 20 \mathrm{~b}}$, A. Ciocio ${ }^{15}$, M. Cirilli ${ }^{87}$, P. Cirkovic ${ }^{13 \mathrm{~b}}$, Z. H. Citron ${ }^{172}$, M. Citterio ${ }^{89 \mathrm{a}}$, M. Ciubancan ${ }^{26 \mathrm{a}}$, A. Clark ${ }^{49}$, P. J. Clark 46, R.N. Clarke ${ }^{15}$, W. Cleland ${ }^{123}$, J. C. Clemens ${ }^{83}$, B. Clement ${ }^{55}$, C. Clement ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$, Y. Coadou ${ }^{83}$, M. Cobal ${ }^{164 \mathrm{a}, 164 \mathrm{c}}$, A. Coccaro ${ }^{138}$, J. Cochran ${ }^{63}$, L. Coffey ${ }^{23}$, J. G. Cogan ${ }^{143}$, J. Coggeshall ${ }^{165}$, E. Cogneras ${ }^{178}$, J. Colas ${ }^{5}$, S. Cole ${ }^{106}$, A. P. Colijn ${ }^{105}$, N. J. Collins ${ }^{18}$, C. Collins-Tooth ${ }^{53}$, J. Collot ${ }^{55}$, T. Colombo ${ }^{119 a, 119 b}$, G. Colon ${ }^{84}$, G. Compostella ${ }^{99}$, P. Conde Muiño ${ }^{124 a}$, E. Coniavitis ${ }^{166}$, M. C. Conidi ${ }^{12}$, S. M. Consonni ${ }^{89 a, 89 b}$, V. Consorti ${ }^{48}$, S. Constantinescu ${ }^{26 a}$, C. Conta ${ }^{119 a, 119 b}$, G. Conti ${ }^{57}$, F. Conventi ${ }^{102 a, i}$, M. Cooke ${ }^{15}$, B. D. Cooper ${ }^{77}$, A. M. Cooper-Sarkar ${ }^{118}$, K. Copic ${ }^{15}$, T. Cornelissen ${ }^{175}$, M. Corradi ${ }^{20 a}$, F. Corriveau ${ }^{85, j}$, A. Cortes-Gonzalez ${ }^{165}$, G. Cortiana ${ }^{99}$, G. Costa ${ }^{89 \text { a }}$, M. J. Costa ${ }^{167}$, D. Costanzo ${ }^{139}$, D. Côté ${ }^{30}$, L. Courneyea ${ }^{169}$, G. Cowan ${ }^{76}$, C. Cowden ${ }^{28}$, B. E. Cox ${ }^{82}$, K. Cranmer ${ }^{108}$, F. Crescioli ${ }^{122 a, 122 b}$, M. Cristinziani ${ }^{21}$, G. Crosetti ${ }^{37 a, 37 b}$, S. CrépéRenaudin ${ }^{55}$, C.-M. Cuciuc ${ }^{26 a}$, C. Cuenca Almenar ${ }^{176}$, T. Cuhadar Donszelmann ${ }^{139}$, J. Cummings ${ }^{176}$, M. Curatolo ${ }^{47}$, C. J. Curtis ${ }^{18}$, C. Cuthbert ${ }^{150}$, P. Cwetanski ${ }^{60}$, H. Czirr ${ }^{141}$, P. Czodrowski ${ }^{44}$, Z. Czyczula ${ }^{176}$, S. D'Auria ${ }^{53}$, M. D’Onofrio ${ }^{73}$, A. D’Orazio ${ }^{132 a, 132 b}$, M. J. Da Cunha Sargedas De Sousa ${ }^{124 a}$, C. Da Via ${ }^{82}$, W. Dabrowski ${ }^{38}$, A. Dafinca ${ }^{118}$, T. Dai ${ }^{87}$, C. Dallapiccola ${ }^{84}$, M. Dam 36, M. Dameri ${ }^{50 a, 50 b}$, D. S. Damiani ${ }^{137}$, H. O. Danielsson ${ }^{30}$, V. Dao ${ }^{49}$, G. Darbo ${ }^{50 \mathrm{a}}$, G. L. Darlea ${ }^{26 \mathrm{~b}}$, J. A. Dassoulas ${ }^{42}$, W. Davey ${ }^{21}$, T. Davidek ${ }^{126}$, N. Davidson ${ }^{86}$, R. Davidson ${ }^{71}$, E. Davies ${ }^{118, \mathrm{c}}$, M. Davies ${ }^{93}$, O. Davignon ${ }^{78}$, A. R. Davison ${ }^{77}$, Y. Davygora ${ }^{58 \mathrm{a}}$, E. Dawe ${ }^{142}$, I. Dawson ${ }^{139}$, R. K. Daya-Ishmukhametova ${ }^{23}$, K. De ${ }^{8}$, R. de Asmundis ${ }^{102 \mathrm{a}}$, S. De Castro ${ }^{20 a, 20 b}$, S. De Cecco ${ }^{78}$, J. de Graat ${ }^{98}$, N. De Groot ${ }^{104}$, P. de Jong ${ }^{105}$, C. De La Taille ${ }^{115}$, H. De la Torre ${ }^{80}$, F. De

Lorenzi ${ }^{63}$, L. de Mora ${ }^{71}$, L. De Nooij ${ }^{105}$, D. De Pedis ${ }^{132 a}$, A. De Salvo ${ }^{132 a}$, U. De Sanctis ${ }^{164 a, 164 c}$, A. De Santo ${ }^{149}$, J. B. De Vivie De Regie ${ }^{115}$, G. De Zorzi ${ }^{132 a, 132 b}$, W. J. Dearnaley ${ }^{71}$, R. Debbe ${ }^{25}$, C. Debenedetti ${ }^{46}$, B. Dechenaux ${ }^{55}$, D. V. Dedovich ${ }^{64}$, J. Degenhardt ${ }^{120}$, J. Del Peso ${ }^{80}$, T. Del Prete ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, T. Delemontex ${ }^{55}$, M. Deliyergiyev ${ }^{74}$, A. Dell'Acqua ${ }^{30}$, L. Dell'Asta ${ }^{22}$, M. Della Pietra ${ }^{102 a, i}$, D. della Volpe ${ }^{102 a, 102 b}$, M. Delmastro ${ }^{5}$, P. A. Delsart ${ }^{55}$, C. Deluca ${ }^{105}$, S. Demers ${ }^{176}$, M. Demichev ${ }^{64}$, B. Demirkoz $^{12, k}$, S. P. Denisov ${ }^{128}$, D. Derendarz ${ }^{39}$, J. E. Derkaoui ${ }^{135 d}$, F. Derue ${ }^{78}$, P. Dervan ${ }^{73}$, K. Desch ${ }^{21}$, E. Devetak ${ }^{148}$, P. O. Deviveiros ${ }^{105}$, A. Dewhurst ${ }^{129}$, B. DeWilde ${ }^{148}$, S. Dhaliwal ${ }^{158}$, R. Dhullipudi ${ }^{25,1}$, A. Di Ciaccio ${ }^{133 a, 133 b}$, L. Di Ciaccio ${ }^{5}$, C. Di Donato ${ }^{102 \mathrm{a}, 102 \mathrm{~b}}$, A. Di Girolamo ${ }^{30}$, B. Di Girolamo ${ }^{30}$, S. Di Luise ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, A. Di Mattia ${ }^{173}$, B. Di Micco ${ }^{30}$, R. Di Nardo ${ }^{47}$, A. Di Simone ${ }^{133 a, 133 b}$, R. Di Sipio ${ }^{20 a}$,20b, M. A. Diaz ${ }^{32 a}$, E. B. Diehl ${ }^{87}$, J. Dietrich ${ }^{42}$, T. A. Dietzsch ${ }^{58 a}$, S. Diglio ${ }^{86}$, K. Dindar Yagci 40, J. Dingfelder ${ }^{21}$, F. Dinut ${ }^{26 a}$, C. Dionisi ${ }^{132 a, 132 b}$, P. Dita ${ }^{26 a}$, S. Dita ${ }^{26 a}$, F. Dittus ${ }^{30}$, F. Djama ${ }^{83}$, T. Djobava ${ }^{51 b}$, M. A. B. do Vale ${ }^{24 \mathrm{c}}$, A. Do Valle Wemans ${ }^{124 \mathrm{a}, \mathrm{m}}$, T. K. O. Doan ${ }^{5}$, M. Dobbs ${ }^{85}$, D. Dobos ${ }^{30}$, E. Dobson ${ }^{30, \mathrm{n}}$, J. Dodd ${ }^{35}$, C. Doglioni ${ }^{49}$, T. Doherty ${ }^{53}$, Y. Doi ${ }^{65, *}$, J. Dolejsi ${ }^{126}$, I. Dolenc ${ }^{74}$, Z. Dolezal ${ }^{126}$, B. A. Dolgoshein ${ }^{96, *}$, T. Dohmae ${ }^{155}$, M. Donadelli ${ }^{24 \mathrm{~d}}$, J. Donini ${ }^{34}$, J. Dopke ${ }^{30}$, A. Doria ${ }^{102 \mathrm{a}}$, A. Dos Anjos ${ }^{173}$, A. Dotti ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, M. T. Dova ${ }^{70}$, A. D. Doxiadis ${ }^{105}$, A. T. Doyle ${ }^{53}$, N. Dressnandt ${ }^{120}$, M. Dris ${ }^{10}$, J. Dubbert ${ }^{99}$, S. Dube ${ }^{15}$, E. Duchovni ${ }^{172}$, G. Duckeck ${ }^{98}$, D. Duda ${ }^{175}$, A. Dudarev ${ }^{30}$, F. Dudziak ${ }^{63}$, M. Dührssen ${ }^{30}$, I. P. Duerdoth ${ }^{82}$, L. Duflot ${ }^{115}$, M-A. Dufour ${ }^{85}$, L. Duguid ${ }^{76}$, M. Dunford ${ }^{58 a}$, H. Duran Yildiz ${ }^{4 a}$, R. Duxfield ${ }^{139}$, M. Dwuznik ${ }^{38}$, M. Düren ${ }^{52}$, W. L. Ebenstein ${ }^{45}$, J. Ebke ${ }^{98}$, S. Eckweiler ${ }^{81}$, K. Edmonds ${ }^{81}$, W. Edson ${ }^{2}$, C. A. Edwards ${ }^{76}$, N. C. Edwards ${ }^{53}$, W. Ehrenfeld ${ }^{42}$, T. Eifert ${ }^{143}$, G. Eigen ${ }^{14}$, K. Einsweiler ${ }^{15}$, E. Eisenhandler ${ }^{75}$, T. Ekelof ${ }^{166}$, M. El Kacimi ${ }^{135 c}$, M. Ellert 166, S. Elles ${ }^{5}$, F. Ellinghaus ${ }^{81}$, K. Ellis ${ }^{75}$, N. Ellis ${ }^{30}$, J. Elmsheuser ${ }^{98}$, M. Elsing ${ }^{30}$, D. Emeliyanov ${ }^{129}$, R. Engelmann ${ }^{148}$, A. Engl ${ }^{98}$, B. Epp ${ }^{61}$, J. Erdmann ${ }^{54}$, A. Ereditato ${ }^{17}$, D. Eriksson ${ }^{146 a}$, J. Ernst ${ }^{2}$, M. Ernst ${ }^{25}$, J. Ernwein ${ }^{136}$, D. Errede ${ }^{165}$, S. Errede ${ }^{165}$, E. Ertel ${ }^{81}$, M. Escalier ${ }^{115}$, H. Esch ${ }^{43}$, C. Escobar ${ }^{123}$, X. Espinal Curull ${ }^{12}$, B. Esposito ${ }^{47}$, F. Etienne ${ }^{83}$, A. I. Etienvre ${ }^{136}$, E. Etzion ${ }^{153}$, D. Evangelakou ${ }^{54}$, H. Evans ${ }^{60}$, L. Fabbri ${ }^{20 a}$, 20b , C. Fabre ${ }^{30}$, R. M. Fakhrutdinov ${ }^{128}$, S. Falciano ${ }^{132 \mathrm{a}}$, Y. Fang ${ }^{173}$, M. Fanti ${ }^{89 \mathrm{a}, 89 \mathrm{~b}}$, A. Farbin ${ }^{8}$, A. Farilla ${ }^{134 \mathrm{a}}$, J. Farley ${ }^{148}$, T. Farooque ${ }^{158}$, S. Farrell ${ }^{163}$, S. M. Farrington ${ }^{170}$, P. Farthouat 30, F. Fassi ${ }^{167}$, P. Fassnacht ${ }^{30}$, D. Fassouliotis ${ }^{9}$, B. Fatholahzadeh ${ }^{158}$, A. Favareto ${ }^{89 a}$, 89b, L. Fayard ${ }^{115}$, S. Fazio ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, R. Febbraro ${ }^{34}$, P. Federic ${ }^{144 \mathrm{a}}$, O. L. Fedin ${ }^{121}$, W. Fedorko ${ }^{88}$, M. Fehling-Kaschek ${ }^{48}$, L. Feligioni ${ }^{83}$, C. Feng ${ }^{33 \mathrm{~d}}$, E. J. Feng ${ }^{6}$, A. B. Fenyuk ${ }^{128}$, J. Ferencei ${ }^{144 b}$, W. Fernando ${ }^{6}$, S. Ferrag ${ }^{53}$, J. Ferrando ${ }^{53}$, V. Ferrara ${ }^{42}$, A. Ferrari ${ }^{166}$, P. Ferrari ${ }^{105}$, R. Ferrari ${ }^{119 a}$, D. E. Ferreira de Lima ${ }^{53}$, A. Ferrer ${ }^{167}$, D. Ferrere ${ }^{49}$, C. Ferretti ${ }^{87}$, A. Ferretto Parodi ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, M. Fiascaris ${ }^{31}$, F. Fiedler ${ }^{81}$, A. Filipčič ${ }^{74}$, F. Filthaut ${ }^{104}$, M. Fincke-Keeler ${ }^{169}$, M. C. N. Fiolhais ${ }^{124 a, g}$, L. Fiorini ${ }^{167}$, A. Firan ${ }^{40}$, G. Fischer ${ }^{42}$, M. J. Fisher ${ }^{109}$, M. Flechl ${ }^{48}$, I. Fleck ${ }^{141}$, J. Fleckner ${ }^{81}$, P. Fleischmann ${ }^{174}$, S. Fleischmann ${ }^{175}$, T. Flick ${ }^{175}$, A. Floderus ${ }^{79}$, L. R. Flores Castillo ${ }^{173}$, M. J. Flowerdew ${ }^{99}$, T. Fonseca Martin ${ }^{17}$, A. Formica ${ }^{136}$, A. Forti ${ }^{82}$, D. Fortin ${ }^{159 a}$, D. Fournier ${ }^{115}$, A. J. Fowler 45, H. Fox ${ }^{71}$, P. Francavilla ${ }^{12}$, M. Franchini ${ }^{20 a}$,20b, S. Franchino ${ }^{119 a, 119 b}$, D. Francis ${ }^{30}$, T. Frank ${ }^{172}$, M. Franklin ${ }^{57}$, S. Franz 30, M. Fraternali ${ }^{119 a, 119 b}$, S. Fratina ${ }^{120}$, S. T. French ${ }^{28}$, C. Friedrich ${ }^{42}$, F. Friedrich ${ }^{44}$, R. Froeschl ${ }^{30}$, D. Froidevaux ${ }^{30}$, J. A. Frost 28, C. Fukunaga ${ }^{156}$, E. Fullana Torregrosa ${ }^{30}$, B. G. Fulsom ${ }^{143}$, J. Fuster ${ }^{167}$, C. Gabaldon ${ }^{30}$, O. Gabizon ${ }^{172}$, T. Gadfort 25, S. Gadomski ${ }^{49}$, G. Gagliardi ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, P. Gagnon ${ }^{60}$, C. Galea ${ }^{98}$, B. Galhardo ${ }^{124 \mathrm{a}}$, E. J. Gallas ${ }^{118}$, V. Gallo ${ }^{17}$, B. J. Gallop ${ }^{129}$, P. Gallus ${ }^{125}$, K. K. Gan ${ }^{109}$, Y. S. Gao ${ }^{143, \mathrm{e}}$, A. Gaponenko ${ }^{15}$, F. Garberson ${ }^{176}$, M. Garcia-Sciveres ${ }^{15}$, C. García ${ }^{167}$, J. E. García Navarro ${ }^{167}$, R. W. Gardner ${ }^{31}$, N. Garelli ${ }^{30}$, H. Garitaonandia ${ }^{105}$, V. Garonne ${ }^{30}$, C. Gatti ${ }^{47}$, G. Gaudio ${ }^{119 a}$, B. Gaur ${ }^{141}$, L. Gauthier ${ }^{136}$, P. Gauzzi ${ }^{132 a, 132 b}$, I. L. Gavrilenko ${ }^{94}$, C. Gay ${ }^{168}$, G. Gaycken ${ }^{21}$, E. N. Gazis ${ }^{10}$, P. Ge ${ }^{33 \mathrm{~d}}$, Z. Gecse 168, C. N. P. Gee ${ }^{129}$, D. A. A. Geerts ${ }^{105}$, Ch. Geich-Gimbel ${ }^{21}$, K. Gellerstedt ${ }^{146 a, 146 \mathrm{~b}}$, C. Gemme ${ }^{50 \mathrm{a}}$, A. Gemmell ${ }^{53}$, M. H. Genest ${ }^{55}$, S. Gentile ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, M. George ${ }^{54}$, S. George ${ }^{76}$, P. Gerlach ${ }^{175}$, A. Gershon ${ }^{153}$, C. Geweniger ${ }^{58 \mathrm{a}}$, H. Ghazlane ${ }^{135 \mathrm{~b}}$, N. Ghodbane ${ }^{34}$, B. Giacobbe ${ }^{20 \mathrm{a}}$, S. Giagu ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, V. Giakoumopoulou ${ }^{9}$, V. Giangiobbe ${ }^{12}$, F. Gianotti ${ }^{30}$, B. Gibbard ${ }^{25}$, A. Gibson 158, S. M. Gibson ${ }^{30}$, M. Gilchriese ${ }^{15}$, D. Gillberg ${ }^{29}$, A. R. Gillman ${ }^{129}$, D. M. Gingrich ${ }^{3, \text { d }}$, J. Ginzburg ${ }^{153}$, N. Giokaris ${ }^{9}$, M. P. Giordani ${ }^{164 \mathrm{c}}$, R. Giordano ${ }^{102 a, 102 b}$, F. M. Giorgi ${ }^{16}$, P. Giovannini ${ }^{99}$, P. F. Giraud ${ }^{136}$, D. Giugni ${ }^{89 a}$, M. Giunta ${ }^{93}$, B. K. Gjelsten 117, L. K. Gladilin ${ }^{97}$, C. Glasman ${ }^{80}$, J. Glatzer ${ }^{21}$, A. Glazov ${ }^{42}$, K. W. Glitza ${ }^{175}$, G. L. Glonti ${ }^{64}$, J. R. Goddard ${ }^{75}$, J. Godfrey ${ }^{142}$, J. Godlewski ${ }^{30}$, M. Goebel ${ }^{42}$, T. Göpfert ${ }^{44}$, C. Goeringer ${ }^{81}$, C. Gössling ${ }^{43}$, S. Goldfarb ${ }^{87}$, T. Golling ${ }^{176}$, A. Gomes $^{124 \mathrm{a}, \mathrm{b}}$, L. S. Gomez Fajardo ${ }^{42}$, R. Gonçalo ${ }^{76}$, J. Goncalves Pinto Firmino Da Costa ${ }^{42}$, L. Gonella ${ }^{21}$, S. González de la Hoz^{167}, G. Gonzalez Parra ${ }^{12}$, M. L. Gonzalez Silva ${ }^{27}$, S. Gonzalez-Sevilla ${ }^{49}$, J. J. Goodson ${ }^{148}$, L. Goossens ${ }^{30}$, P. A. Gorbounov 95, H. A. Gordon ${ }^{25}$, I. Gorelov ${ }^{103}$, G. Gorfine ${ }^{175}$, B. Gorini ${ }^{30}$, E. Gorini ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, A. Gorišek ${ }^{74}$, E. Gornicki ${ }^{39}$, A. T. Goshaw ${ }^{6}$, M. Gosselink ${ }^{105}$, M. I. Gostkin ${ }^{64}$, I. Gough Eschrich ${ }^{163}$, M. Gouighri ${ }^{135 a}$, D. Goujdami ${ }^{135 c}$, M. P. Goulette ${ }^{49}$, A. G. Goussiou ${ }^{138}$, C. Goy ${ }^{5}$, S. Gozpinar ${ }^{23}$, I. Grabowska-Bold ${ }^{38}$, P. Grafström ${ }^{20 a}{ }^{20 b}$, K-J. Grahn ${ }^{42}$, E. Gramstad ${ }^{117}$, F. Grancagnolo $^{72 \mathrm{a}}$, S. Grancagnolo ${ }^{16}$, V. Grassi ${ }^{148}$, V. Gratchev ${ }^{121}$, N. Grau ${ }^{35}$, H. M. Gray ${ }^{30}$, J. A. Gray ${ }^{148}$, E. Graziani ${ }^{134 \mathrm{a}}$, O. G. Grebenyuk ${ }^{121}$, T. Greenshaw ${ }^{73}$, Z. D. Greenwood ${ }^{25,1}$, K. Gregersen ${ }^{36}$, I. M. Gregor ${ }^{42}$, P. Grenier ${ }^{143}$, J. Griffiths ${ }^{8}$, N. Grigalashvili ${ }^{64}$, A. A. Grillo ${ }^{137}$, S. Grinstein ${ }^{12}$, Ph. Gris ${ }^{34}$, Y. V. Grishkevich ${ }^{97}$, J.-F. Grivaz ${ }^{115}$, E. Gross ${ }^{172}$, J. GrosseKnetter ${ }^{54}$, J. Groth-Jensen ${ }^{172}$, K. Grybel ${ }^{141}$, D. Guest ${ }^{176}$, C. Guicheney ${ }^{34}$, E. Guido ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, S. Guindon ${ }^{54}$, U. Gul ${ }^{53}$, J. Gunther ${ }^{125}$, B. Guo ${ }^{158}$, J. Guo ${ }^{35}$, P. Gutierrez ${ }^{111}$, N. Guttman ${ }^{153}$, O. Gutzwiller ${ }^{173}$, C. Guyot ${ }^{136}$, C. Gwenlan ${ }^{118}$, C. B. Gwilliam 73, A. Haas ${ }^{108}$, S. Haas ${ }^{30}$, C. Haber ${ }^{15}$, H. K. Hadavand ${ }^{8}$, D. R. Hadley ${ }^{18}$, P. Haefner ${ }^{21}$, F. Hahn ${ }^{30}$, Z. Hajduk ${ }^{39}$,
H. Hakobyan ${ }^{177}$, D. Hall ${ }^{118}$, K. Hamacher ${ }^{175}$, P. Hamal ${ }^{113}$, K. Hamano ${ }^{86}$, M. Hamer ${ }^{54}$, A. Hamilton ${ }^{145 b, o}$, S. Hamilton ${ }^{161}$, L. Han ${ }^{33 b}$, K. Hanagaki ${ }^{116}$, K. Hanawa ${ }^{160}$, M. Hance ${ }^{15}$, C. Handel ${ }^{81}$, P. Hanke ${ }^{58 \mathrm{a}}$, J. R. Hansen ${ }^{36}$, J. B. Hansen ${ }^{36}$, J. D. Hansen 36, P. H. Hansen ${ }^{36}$, P. Hansson ${ }^{143}$, K. Hara ${ }^{160}$, T. Harenberg ${ }^{175}$, S. Harkusha ${ }^{90}$, D. Harper ${ }^{87}$, R. D. Harrington ${ }^{46}$, O. M. Harris ${ }^{138}$, J. Hartert ${ }^{48}$, F. Hartjes ${ }^{105}$, T. Haruyama ${ }^{65}$, A. Harvey ${ }^{56}$, S. Hasegawa ${ }^{101}$, Y. Hasegawa ${ }^{140}$, S. Hassani ${ }^{136}$, S. Haug 17, M. Hauschild ${ }^{30}$, R. Hauser ${ }^{88}$, M. Havranek ${ }^{21}$, C. M. Hawkes ${ }^{18}$, R. J. Hawkings ${ }^{30}$, A. D. Hawkins ${ }^{79}$, T. Hayakawa ${ }^{66}$, T. Hayashi ${ }^{160}$, D. Hayden ${ }^{76}$, C. P. Hays ${ }^{118}$, H. S. Hayward ${ }^{73}$, S. J. Haywood ${ }^{129}$, S. J. Head ${ }^{18}$, V. Hedberg ${ }^{79}$, L. Heelan ${ }^{8}$, S. Heim 120, B. Heinemann ${ }^{15}$, S. Heisterkamp ${ }^{36}$, L. Helary ${ }^{22}$, C. Heller ${ }^{98}$, M. Heller ${ }^{30}$, S. Hellman ${ }^{146 a, 146 \mathrm{~b}}$, D. Hellmich ${ }^{21}$, C. Helsens ${ }^{12}$, R. C. W. Henderson ${ }^{71}$, M. Henke ${ }^{58 \mathrm{a}}$, A. Henrichs ${ }^{176}$, A. M. Henriques Correia ${ }^{30}$, S. Henrot-Versille ${ }^{115}$, C. Hensel ${ }^{54}$, T. Henß ${ }^{175}$, C. M. Hernandez ${ }^{8}$, Y. Hernández Jiménez ${ }^{167}$, R. Herrberg ${ }^{16}$, G. Herten ${ }^{48}$, R. Hertenberger ${ }^{98}$, L. Hervas ${ }^{30}$, G. G. Hesketh 77, N. P. Hessey ${ }^{105}$, E. Higón-Rodriguez ${ }^{167}$, J. C. Hill ${ }^{28}$, K. H. Hiller ${ }^{42}$, S. Hillert ${ }^{21}$, S. J. Hillier ${ }^{18}$, I. Hinchliffe ${ }^{15}$, E. Hines ${ }^{120}$, M. Hirose ${ }^{116}$, F. Hirsch ${ }^{43}$, D. Hirschbuehl ${ }^{175}$, J. Hobbs ${ }^{148}$, N. Hod ${ }^{153}$, M. C. Hodgkinson ${ }^{139}$, P. Hodgson ${ }^{139}$, A. Hoecker ${ }^{30}$, M. R. Hoeferkamp ${ }^{103}$, J. Hoffman ${ }^{40}$, D. Hoffmann ${ }^{83}$, M. Hohlfeld ${ }^{81}$, M. Holder ${ }^{141}$, S. O. Holmgren ${ }^{146 a}$, T. Holy ${ }^{127}$, J. L. Holzbauer ${ }^{88}$, T. M. Hong ${ }^{120}$, L. Hooft van Huysduynen ${ }^{108}$, S. Horner ${ }^{48}$, J-Y. Hostachy ${ }^{55}$, S. Hou ${ }^{151}$, A. Hoummada $^{135 a}$, J. Howard ${ }^{118}$, J. Howarth ${ }^{82}$, I. Hristova ${ }^{16}$, J. Hrivnac ${ }^{115}$, T. Hryn'ova ${ }^{5}$, P. J. Hsu ${ }^{81}$, S.-C. Hsu ${ }^{15}$, D. Hu ${ }^{35}$, Z. Hubacek ${ }^{127}$, F. Hubaut ${ }^{83}$, F. Huegging ${ }^{21}$, A. Huettmann ${ }^{42}$, T. B. Huffman ${ }^{118}$, E. W. Hughes ${ }^{35}$, G. Hughes ${ }^{71}$, M. Huhtinen ${ }^{30}$, M. Hurwitz ${ }^{15}$, N. Huseynov ${ }^{64, \text { p, J. Huston }}{ }^{88}$, J. Huth ${ }^{57}$, G. Iacobucci ${ }^{49}$, G. Iakovidis ${ }^{10}$, M. Ibbotson ${ }^{82}$, I. Ibragimov ${ }^{141}$, L. Iconomidou-Fayard ${ }^{115}$, J. Idarraga ${ }^{115}$, P. Iengo ${ }^{102 \mathrm{a}}$, O. Igonkina ${ }^{105}$, Y. Ikegami ${ }^{65}$, M. Ikeno ${ }^{65}$, D. Iliadis ${ }^{154}$, N. Ilic ${ }^{158}$, T. Ince 99, P. Ioannou ${ }^{9}$, M. Iodice ${ }^{134 \mathrm{a}}$, K. Iordanidou ${ }^{9}$, V. Ippolito ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, A. Irles Quiles ${ }^{167}$, C. Isaksson ${ }^{166}$, M. Ishino ${ }^{67}$, M. Ishitsuka ${ }^{157}$, R. Ishmukhametov ${ }^{109}$, C. Issever ${ }^{118}$, S. Istin ${ }^{19 a}$, A. V. Ivashin ${ }^{128}$, W. Iwanski ${ }^{39}$, H. Iwasaki ${ }^{65}$, J. M. Izen ${ }^{41}$, V. Izzo $^{102 a}$, B. Jackson ${ }^{120}$, J. N. Jackson ${ }^{73}$, P. Jackson ${ }^{1}$, M. R. Jaekel ${ }^{30}$, V. Jain ${ }^{60}$, K. Jakobs ${ }^{48}$, S. Jakobsen ${ }^{36}$, T. Jakoubek ${ }^{125}$, J. Jakubek ${ }^{127}$, D. O. Jamin ${ }^{151}$, D. K. Jana ${ }^{111}$, E. Jansen ${ }^{77}$, H. Jansen ${ }^{30}$, J. Janssen ${ }^{21}$, A. Jantsch ${ }^{99}$, M. Janus ${ }^{48}$, R. C. Jared ${ }^{173}$, G. Jarlskog ${ }^{79}$, L. Jeanty ${ }^{57}$, I. Jen-La Plante ${ }^{31}$, D. Jennens ${ }^{86}$, P. Jenni ${ }^{30}$, A. E. Loevschall-Jensen ${ }^{36}$, P. Jež ${ }^{36}$, S. Jézéquel ${ }^{5}$, M. K. Jha ${ }^{20 \mathrm{a}}$, H. Ji ${ }^{173}$, W. Ji ${ }^{81}$, J. Jia ${ }^{148}$, Y. Jiang ${ }^{33 \mathrm{~b}}$, M. Jimenez Belenguer ${ }^{42}$, S. Jin ${ }^{33 \mathrm{a}}$, O. Jinnouchi ${ }^{157}$, M. D. Joergensen ${ }^{36}$, D. Joffe ${ }^{40}$, M. Johansen ${ }^{146 a, 146 b}$, K. E. Johansson ${ }^{146 a}$, P. Johansson ${ }^{139}$, S. Johnert ${ }^{42}$, K. A. Johns ${ }^{7}$, K. Jon-And ${ }^{146 a, 146 b, ~ G . ~}$ Jones 170, R. W. L. Jones ${ }^{71}$, T. J. Jones ${ }^{73}$, C. Joram ${ }^{30}$, P. M. Jorge ${ }^{124 a}$, K. D. Joshi ${ }^{82}$, J. Jovicevic ${ }^{147}$, T. Jovin ${ }^{13 \mathrm{~b}}$, X. Ju ${ }^{173}$, C. A. Jung 43, R. M. Jungst ${ }^{30}$, V. Juranek ${ }^{125}$, P. Jussel ${ }^{61}$, A. Juste Rozas ${ }^{12}$, S. Kabana ${ }^{17}$, M. Kaci ${ }^{167}$, A. Kaczmarska ${ }^{39}$, P. Kadlecik ${ }^{36}$, M. Kado ${ }^{115}$, H. Kagan ${ }^{109}$, M. Kagan ${ }^{57}$, E. Kajomovitz ${ }^{152}$, S. Kalinin ${ }^{175}$, L. V. Kalinovskaya ${ }^{64}$, S. Kama ${ }^{40}$, N. Kanaya ${ }^{155}$, M. Kaneda 30, S. Kaneti ${ }^{28}$, T. Kanno ${ }^{157}$, V. A. Kantserov ${ }^{96}$, J. Kanzaki ${ }^{65}$, B. Kaplan ${ }^{108}$, A. Kapliy ${ }^{31}$, J. Kaplon ${ }^{30}$, D. Kar ${ }^{53}$, M. Karagounis ${ }^{21}$, K. Karakostas ${ }^{10}$, M. Karnevskiy ${ }^{42}$, V. Kartvelishvili ${ }^{71}$, A. N. Karyukhin ${ }^{128}$, L. Kashif ${ }^{173}$, G. Kasieczka ${ }^{58 b}$, R. D. Kass 109, A. Kastanas ${ }^{14}$, M. Kataoka ${ }^{5}$, Y. Kataoka ${ }^{155}$, E. Katsoufis ${ }^{10}$, J. Katzy ${ }^{42}$, V. Kaushik ${ }^{7}$, K. Kawagoe ${ }^{69}$, T. Kawamoto ${ }^{155}$, G. Kawamura ${ }^{81}$, M. S. Kayl ${ }^{105}$, S. Kazama ${ }^{155}$, V. A. Kazanin ${ }^{107}$, M. Y. Kazarinov ${ }^{64}$, R. Keeler ${ }^{169}$, P. T. Keener ${ }^{120}$, R. Kehoe ${ }^{40}$, M. Keil ${ }^{54}$, G. D. Kekelidze ${ }^{64}$, J. S. Keller ${ }^{138}$, M. Kenyon ${ }^{53}$, O. Kepka ${ }^{125}$, N. Kerschen ${ }^{30}$, B. P. Kerševan ${ }^{74}$, S. Kersten ${ }^{175}$, K. Kessoku ${ }^{155}$, J. Keung ${ }^{158}$, F. Khalil-zada ${ }^{11}$, H. Khandanyan ${ }^{146 a, 146 b}$, A. Khanov ${ }^{112}$, D. Kharchenko ${ }^{64}$, A. Khodinov ${ }^{96}$, A. Khomich $^{58 \mathrm{a}}$, T. J. Khoo 28, G. Khoriauli ${ }^{21}$, A. Khoroshilov ${ }^{175}$, V. Khovanskiy ${ }^{95}$, E. Khramov ${ }^{64}$, J. Khubua ${ }^{51 \mathrm{~b}}$, H. Kim ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$, S. H. Kim ${ }^{160}$, N. Kimura ${ }^{171}$, O. Kind ${ }^{16}$, B. T. King ${ }^{73}$, M. King ${ }^{66}$, R. S. B. King ${ }^{118}$, J. Kirk ${ }^{129}$, A. E. Kiryunin ${ }^{99}$, T. Kishimoto ${ }^{66}$, D. Kisielewska ${ }^{38}$, T. Kitamura ${ }^{66}$, T. Kittelmann ${ }^{123}$, K. Kiuchi ${ }^{160}$, E. Kladiva ${ }^{144 \mathrm{~b}}$, M. Klein ${ }^{73}$, U. Klein ${ }^{73}$, K. Kleinknecht ${ }^{81}$, M. Klemetti ${ }^{85}$, A. Klier ${ }^{172}$, P. Klimek ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$, A. Klimentov ${ }^{25}$, R. Klingenberg ${ }^{43}$, J. A. Klinger ${ }^{82}$, E. B. Klinkby ${ }^{36}$, T. Klioutchnikova ${ }^{30}$, P. F. Klok ${ }^{104}$, S. Klous ${ }^{105}$, E.-E. Kluge ${ }^{58 \mathrm{a}}$, T. Kluge ${ }^{73}$, P. Kluit ${ }^{105}$, S. Kluth ${ }^{99}$, E. Kneringer ${ }^{61}$, E. B. F. G. Knoops 83, A. Knue ${ }^{54}$, B. R. Ko ${ }^{45}$, T. Kobayashi ${ }^{155}$, M. Kobel ${ }^{44}$, M. Kocian ${ }^{143}$, P. Kodys ${ }^{126}$, K. Köneke ${ }^{30}$, A. C. König ${ }^{104}$, S. Koenig ${ }^{81}$, L. Köpke ${ }^{81}$, F. Koetsveld ${ }^{104}$, P. Koevesarki ${ }^{21}$, T. Koffas ${ }^{29}$, E. Koffeman ${ }^{105}$, L. A. Kogan ${ }^{118}$, S. Kohlmann ${ }^{175}$, F. Kohn ${ }^{54}$, Z. Kohout ${ }^{127}$, T. Kohriki ${ }^{65}$, T. Koi ${ }^{143}$, G. M. Kolachev ${ }^{107, *}$, H. Kolanoski ${ }^{16}$, V. Kolesnikov ${ }^{64}$, I. Koletsou ${ }^{89 \mathrm{a}}$, J. Koll 88, A. A. Komar ${ }^{94}$, Y. Komori ${ }^{155}$, T. Kondo ${ }^{65}$, T. Kono $^{42, \text { q , A. I. Kononov }}{ }^{48}$, R. Konoplich ${ }^{108, r}$, N. Konstantinidis ${ }^{77}$, R. Kopeliansky 152, S. Koperny ${ }^{38}$, K. Korcyl ${ }^{39}$, K. Kordas ${ }^{154}$, A. Korn ${ }^{118}$, A. Korol ${ }^{107}$, I. Korolkov ${ }^{12}$, E. V. Korolkova ${ }^{139}$, V. A. Korotkov 128, O. Kortner ${ }^{99}$, S. Kortner ${ }^{99}$, V. V. Kostyukhin ${ }^{21}$, S. Kotov ${ }^{99}$, V. M. Kotov ${ }^{64}$, A. Kotwal ${ }^{45}$, C. Kourkoumelis ${ }^{9}$, V. Kouskoura ${ }^{154}$, A. Koutsman ${ }^{159 a}$, R. Kowalewski ${ }^{169}$, T. Z. Kowalski ${ }^{38}$, W. Kozanecki ${ }^{136}$, A. S. Kozhin ${ }^{128}$, V. Kral ${ }^{127}$, V. A. Kramarenko ${ }^{97}$, G. Kramberger ${ }^{74}$, M. W. Krasny ${ }^{78}$, A. Krasznahorkay ${ }^{108}$, J. K. Kraus ${ }^{21}$, S. Kreiss ${ }^{108}$, F. Krejci ${ }^{127}$, J. Kretzschmar ${ }^{73}$, N. Krieger ${ }^{54}$, P. Krieger ${ }^{158}$, K. Kroeninger ${ }^{54}$, H. Kroha ${ }^{99}$, J. Kroll ${ }^{120}$, J. Kroseberg ${ }^{21}$, J. Krstic ${ }^{13 a}$, U. Kruchonak 64, H. Krüger ${ }^{21}$, T. Kruker ${ }^{17}$, N. Krumnack ${ }^{63}$, Z. V. Krumshteyn ${ }^{64}$, M. K. Kruse ${ }^{45}$, T. Kubota ${ }^{86}$, S. Kuday ${ }^{4 \mathrm{a}}$, S. Kuehn 48, A. Kugel ${ }^{58 \mathrm{c}}$, T. Kuhl ${ }^{42}$, D. Kuhn ${ }^{61}$, V. Kukhtin ${ }^{64}$, Y. Kulchitsky ${ }^{90}$, S. Kuleshov ${ }^{32 b}$, C. Kummer ${ }^{98}$, M. Kuna ${ }^{78}$, J. Kunkle ${ }^{120}$, A. Kupco ${ }^{125}$, H. Kurashige ${ }^{66}$, M. Kurata ${ }^{160}$, Y. A. Kurochkin ${ }^{90}$, V. Kus ${ }^{125}$, E. S. Kuwertz ${ }^{147}$, M. Kuze ${ }^{157}$, J. Kvita ${ }^{142}$, R. Kwee ${ }^{16}$, A. La Rosa ${ }^{49}$, L. La Rotonda ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, L. Labarga ${ }^{80}$, J. Labbe ${ }^{5}$, S. Lablak ${ }^{135 \mathrm{a}}$, C. Lacasta ${ }^{167}$, F. Lacava ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, J. Lacey ${ }^{29}$, H. Lacker ${ }^{16}$, D. Lacour ${ }^{78}$, V. R. Lacuesta ${ }^{167}$, E. Ladygin ${ }^{64}$, R. Lafaye ${ }^{5}$, B. Laforge ${ }^{78}$, T. Lagouri ${ }^{176}$, S. Lai ${ }^{48}$, E. Laisne ${ }^{55}$, L. Lambourne ${ }^{77}$, C. L. Lampen ${ }^{7}$, W. Lampl ${ }^{7}$, E. Lancon ${ }^{136}$, U. Landgraf ${ }^{48}$, M. P. J. Landon ${ }^{75}$, V. S.

Lang $^{58 \mathrm{a}}$, C. Lange ${ }^{42}$, A. J. Lankford ${ }^{163}$, F. Lanni ${ }^{25}$, K. Lantzsch ${ }^{175}$, S. Laplace ${ }^{78}$, C. Lapoire ${ }^{21}$, J. F. Laporte ${ }^{136}$, T. Lari ${ }^{89 a}$, A. Larner ${ }^{118}$, M. Lassnig ${ }^{30}$, P. Laurelli ${ }^{47}$, V. Lavorini ${ }^{37 a, 37 b}$, W. Lavrijsen ${ }^{15}$, P. Laycock ${ }^{73}$, O. Le Dortz ${ }^{78}$, E. Le Guirriec ${ }^{83}$, E. Le Menedeu ${ }^{12}$, T. LeCompte ${ }^{6}$, F. Ledroit-Guillon ${ }^{55}$, H. Lee ${ }^{105}$, J. S. H. Lee ${ }^{116}$, S. C. Lee ${ }^{151}$, L. Lee ${ }^{176}$, M. Lefebvre ${ }^{169}$, M. Legendre ${ }^{136}$, F. Legger ${ }^{98}$, C. Leggett ${ }^{15}$, M. Lehmacher ${ }^{21}$, G. Lehmann Miotto ${ }^{30}$, A. G. Leister ${ }^{176}$, M. A. L. Leite ${ }^{24 d}$, R. Leitner ${ }^{126}$, D. Lellouch ${ }^{172}$, B. Lemmer ${ }^{54}$, V. Lendermann ${ }^{58 \mathrm{a}}$, K. J. C. Leney ${ }^{145 b}$, T. Lenz ${ }^{105}$, G. Lenzen ${ }^{175}$, B. Lenzi ${ }^{30}$, K. Leonhardt ${ }^{44}$, S. Leontsinis ${ }^{10}$, F. Lepold ${ }^{58 \mathrm{a}}$, C. Leroy ${ }^{93}$, J-R. Lessard ${ }^{169}$, C. G. Lester ${ }^{28}$, C. M. Lester ${ }^{120}$, J. Levêque ${ }^{5}$, D. Levin ${ }^{87}$, L. J. Levinson ${ }^{172}$, A. Lewis ${ }^{118}$, G. H. Lewis ${ }^{108}$, A. M. Leyko ${ }^{21}$, M. Leyton ${ }^{16}$, B. Li ${ }^{33 b}$, B. Li ${ }^{83}$, H. Li ${ }^{148}$, H. L. Li^{31}, S. Li ${ }^{33 \mathrm{~b}, \mathrm{~s}}$, X. Li ${ }^{87}$, Z. Liang ${ }^{118, \mathrm{t}}, \mathrm{H}$. Liao 34, B. Liberti ${ }^{133 \mathrm{a}}$, P. Lichard ${ }^{30}$, M. Lichtnecker ${ }^{98}$, K. Lie 165, W. Liebig ${ }^{14}$, C. Limbach 21, A. Limosani ${ }^{86}$, M. Limper ${ }^{62}$, S. C. Lin $^{151, \text { u }}$, F. Linde 105, J. T. Linnemann ${ }^{88}$, E. Lipeles ${ }^{120}$, A. Lipniacka ${ }^{14}$, T. M. Liss ${ }^{165}$, D. Lissauer ${ }^{25}$, A. Lister ${ }^{49}$, A. M. Litke ${ }^{137}$, C. Liu 29, D. Liu ${ }^{151}$, H. Liu ${ }^{87}$, J. B. Liu ${ }^{87}$, L. Liu ${ }^{87}$, M. Liu ${ }^{33 b}$, Y. Liu ${ }^{33 b}$, M. Livan ${ }^{119 a, 119 b}$, S. S. A. Livermore ${ }^{118}$, A. Lleres ${ }^{55}$, J. Llorente Merino ${ }^{80}$, S. L. Lloyd ${ }^{75}$, E. Lobodzinska ${ }^{42}$, P. Loch 7, W. S. Lockman ${ }^{137}$, T. Loddenkoetter ${ }^{21}$, F. K. Loebinger ${ }^{82}$, A. Loginov ${ }^{176}$, C. W. Loh ${ }^{168}$, T. Lohse ${ }^{16}$, K. Lohwasser ${ }^{48}$, M. Lokajicek ${ }^{125}$, V. P. Lombardo ${ }^{5}$, R. E. Long ${ }^{71}$, L. Lopes ${ }^{124 a}$, D. Lopez Mateos ${ }^{57}$, J. Lorenz ${ }^{98}$, N. Lorenzo Martinez ${ }^{115}$, M. Losada ${ }^{162}$, P. Loscutoff ${ }^{15}$, F. Lo Sterzo ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, M. J. Losty ${ }^{159 \mathrm{a}, *}$, X. Lou ${ }^{41}$, A. Lounis ${ }^{115}$, K. F. Loureiro ${ }^{162}$, J. Love ${ }^{6}$, P. A. Love ${ }^{71}$, A. J. Lowe ${ }^{143, e}$, F. Lu ${ }^{33 a}$, H. J. Lubatti ${ }^{138}$, C. Luci ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, A. Lucott ${ }^{55}$, A. Ludwig ${ }^{44}$, D. Ludwig 42, I. Ludwig 48, J. Ludwig ${ }^{48}$, F. Luehring ${ }^{60}$, G. Luijckx ${ }^{105}$, W. Lukas ${ }^{61}$, L. Luminari ${ }^{132 \mathrm{a}}$, E. Lund ${ }^{117}$, B. Lund-Jensen ${ }^{147}$, B. Lundberg 79, J. Lundberg ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$, O. Lundberg ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$, J. Lundquist ${ }^{36}$, M. Lungwitz ${ }^{81}$, D. Lynn ${ }^{25}$, E. Lytken ${ }^{79}$, H. Ma ${ }^{25}$, L. L. Ma ${ }^{173}$, G. Maccarrone ${ }^{47}$, A. Macchiolo ${ }^{99}$, B. Maček ${ }^{74}$, J. Machado Miguens ${ }^{124 a}$, D. Macina ${ }^{30}$, R. Mackeprang ${ }^{36}$, R. J. Madaras ${ }^{15}$, H. J. Maddocks ${ }^{71}$, W. F. Mader ${ }^{44}$, R. Maenner ${ }^{58 \mathrm{c}}$, T. Maeno ${ }^{25}$, P. Mättig ${ }^{175}$, S. Mättig ${ }^{42}$, L. Magnoni ${ }^{163}$, E. Magradze ${ }^{54}$, K. Mahboubi ${ }^{48}$, J. Mahlstedt ${ }^{105}$, S. Mahmoud ${ }^{73}$, G. Mahout ${ }^{18}$, C. Maiani ${ }^{136}$, C. Maidantchik ${ }^{24 \mathrm{a}}$, A. Maio ${ }^{124 a, b}$, S. Majewski ${ }^{25}$, Y. Makida ${ }^{65}$, N. Makovec ${ }^{115}$, P. Mal ${ }^{136}$, B. Malaescu ${ }^{30}$, Pa. Malecki ${ }^{39}$, P. Malecki ${ }^{39}$, V. P. Maleev ${ }^{121}$, F. Malek ${ }^{55}$, U. Mallik ${ }^{62}$, D. Malon ${ }^{6}$, C. Malone ${ }^{143}$, S. Maltezos ${ }^{10}$, V. Malyshev ${ }^{107}$, S. Malyukov ${ }^{30}$, R. Mameghani ${ }^{98}$, J. Mamuzic ${ }^{13 b}$, A. Manabe ${ }^{65}$, L. Mandelli ${ }^{89 \mathrm{a}}$, I. Mandić ${ }^{74}$, R. Mandrysch ${ }^{16}$, J. Maneira ${ }^{124 \mathrm{a}}$, A. Manfredini ${ }^{99}$, L. Manhaes de Andrade Filho ${ }^{24 \mathrm{~b}}$, J. A. Manjarres Ramos ${ }^{136}$, A. Mann ${ }^{54}$, P. M. Manning ${ }^{137}$, A. Manousakis-Katsikakis ${ }^{9}$, B. Mansoulie ${ }^{136}$, A. Mapelli ${ }^{30}$, L. Mapelli 30, L. March ${ }^{167}$, J. F. Marchand ${ }^{29}$, F. Marchese ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, G. Marchiori ${ }^{78}$, M. Marcisovsky ${ }^{125}$, C. P. Marino ${ }^{169}$, F. Marroquim $^{24 a}$, Z. Marshall ${ }^{30}$, L. F. Marti ${ }^{17}$, S. Marti-Garcia ${ }^{167}$, B. Martin ${ }^{30}$, B. Martin ${ }^{88}$, J. P. Martin ${ }^{93}$, T. A. Martin ${ }^{18}$, V. J. Martin ${ }^{46}$, B. Martin dit Latour ${ }^{49}$, S. Martin-Haugh ${ }^{149}$, M. Martinez ${ }^{12}$, V. Martinez Outschoorn ${ }^{57}$, A. C. Martyniuk ${ }^{169}$, M. Marx ${ }^{82}$, F. Marzano ${ }^{132 \mathrm{a}}$, A. Marzin ${ }^{111}$, L. Masetti ${ }^{81}$, T. Mashimo ${ }^{155}$, R. Mashinistov ${ }^{94}$, J. Masik ${ }^{82}$, A. L. Maslennikov ${ }^{107}$, I. Massa ${ }^{20 \mathrm{a}, 20 \mathrm{~b}}$, G. Massaro 105, N. Massol ${ }^{5}$, P. Mastrandrea ${ }^{148}$, A. Mastroberardino ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, T. Masubuchi ${ }^{155}$, P. Matricon ${ }^{115}$, H. Matsunaga ${ }^{155}$, T. Matsushita ${ }^{66}$, C. Mattravers ${ }^{118, c}$, J. Maurer ${ }^{83}$, S. J. Maxfield ${ }^{73}$, D. A. Maximov ${ }^{107, f}$, A. Mayne ${ }^{139}$, R. Mazini ${ }^{151}$, M. Mazur ${ }^{21}$, L. Mazzaferro ${ }^{133 a, 133 b}$, M. Mazzanti ${ }^{89 a}$, J. Mc Donald ${ }^{85}$, S. P. Mc Kee ${ }^{87}$, A. McCarn ${ }^{165}$, R. L. McCarthy ${ }^{148}$, T. G. McCarthy ${ }^{29}$, N. A. McCubbin ${ }^{129}$, K. W. McFarlane ${ }^{56, *}$, J. A. Mcfayden ${ }^{139}$, G. Mchedlidze ${ }^{51 b}$, T. Mclaughlan 18, S. J. McMahon ${ }^{129}$, R. A. McPherson ${ }^{169, j}$, A. Meade ${ }^{84}$, J. Mechnich ${ }^{105}$, M. Mechtel ${ }^{175}$, M. Medinnis ${ }^{42}$, S. Meehan ${ }^{31}$, R. Meera-Lebbai ${ }^{111}$, T. Meguro ${ }^{116}$, S. Mehlhase ${ }^{36}$, A. Mehta ${ }^{73}$, K. Meier ${ }^{58 \mathrm{a}}$, B. Meirose ${ }^{79}$, C. Melachrinos ${ }^{31}$, B. R. Mellado Garcia ${ }^{173}$, F. Meloni ${ }^{89 a, 89 b}$, L. Mendoza Navas ${ }^{162}$, Z. Meng ${ }^{151, v}$, A. Mengarelli ${ }^{20 a}$, 20b, S. Menke ${ }^{99}$, E. Meoni ${ }^{161}$, K. M. Mercurio ${ }^{57}$, P. Mermod ${ }^{49}$, L. Merola ${ }^{102 \mathrm{a}, 102 \mathrm{~b}}$, C. Meroni ${ }^{89 \mathrm{a}}$, F. S. Merritt ${ }^{31}$, H. Merritt ${ }^{109}$, A. Messina ${ }^{30, \mathrm{w}}$, J. Metcalfe ${ }^{25}$, A. S. Mete ${ }^{163}$, C. Meyer ${ }^{81}$, C. Meyer ${ }^{31}$, J-P. Meyer ${ }^{136}$, J. Meyer ${ }^{174}$, J. Meyer ${ }^{54}$, S. Michal ${ }^{30}$, L. Micu ${ }^{26 a}$, R. P. Middleton ${ }^{129}$, S. Migas ${ }^{73}$, L. Mijović ${ }^{136}$, G. Mikenberg ${ }^{172}$, M. Mikestikova ${ }^{125}$, M. Mikuž ${ }^{74}$, D. W. Miller ${ }^{31}$, R. J. Miller ${ }^{88}$, W. J. Mills ${ }^{168}$, C. Mills ${ }^{57}$, A. Milov ${ }^{172}$, D. A. Milstead ${ }^{146 a, 146 b}$, D. Milstein ${ }^{172}$, A. A. Minaenko ${ }^{128}$, M. Miñano Moya ${ }^{167}$, I. A. Minashvili ${ }^{64}$, A. I. Mincer ${ }^{108}$, B. Mindur ${ }^{38}$, M. Mineev ${ }^{64}$, Y. Ming ${ }^{173}$, L. M. Mir ${ }^{12}$, G. Mirabelli ${ }^{132 a}$, J. Mitrevski ${ }^{137}$, V. A. Mitsou ${ }^{167}$, S. Mitsui ${ }^{65}$, P. S. Miyagawa ${ }^{139}$, J. U. Mjörnmark ${ }^{79}$, T. Moa ${ }^{146 a, 146 b}$, V. Moeller ${ }^{28}$, K. Mönig ${ }^{42}$, N. Möser ${ }^{21}$, S. Mohapatra ${ }^{148}$, W. Mohr ${ }^{48}$, R. Moles-Valls ${ }^{167}$, A. Molfetas ${ }^{30}$, J. Monk ${ }^{77}$, E. Monnier ${ }^{83}$, J. Montejo Berlingen ${ }^{12}$, F. Monticelli ${ }^{70}$, S. Monzani ${ }^{20 a}$, 20b , R. W. Moore ${ }^{3}$, G. F. Moorhead ${ }^{86}$, C. Mora Herrera ${ }^{49}$, A. Moraes ${ }^{53}$, N. Morange ${ }^{136}$, J. Morel ${ }^{54}$, G. Morello ${ }^{37 \mathrm{a}}$, 37b , D. Moreno ${ }^{81}$, M. Moreno Llácer ${ }^{167}$, P. Morettini ${ }^{50 a}$, M. Morgenstern ${ }^{44}$, M. Morii ${ }^{57}$, A. K. Morley ${ }^{30}$, G. Mornacchi ${ }^{30}$, J. D. Morris ${ }^{75}$, L. Morvaj ${ }^{101}$, H. G. Moser ${ }^{99}$, M. Mosidze ${ }^{51 b}$, J. Moss ${ }^{109}$, R. Mount ${ }^{143}$, E. Mountricha ${ }^{10, x}$, S. V. Mouraviev ${ }^{94, *}$, E. J. W. Moyse 84, F. Mueller ${ }^{58 \mathrm{a}}$, J. Mueller ${ }^{123}$, K. Mueller ${ }^{21}$, T. A. Müller ${ }^{98}$, T. Mueller ${ }^{81}$, D. Muenstermann ${ }^{30}$, Y. Munwes ${ }^{153}$, W. J. Murray ${ }^{129}$, I. Mussche ${ }^{105}$, E. Musto ${ }^{152}$, A. G. Myagkov ${ }^{128}$, M. Myska ${ }^{125}$, O. Nackenhorst ${ }^{54}$, J. Nadal ${ }^{12}$, K. Nagai ${ }^{160}$, R. Nagai ${ }^{157}$, K. Nagano ${ }^{65}$, A. Nagarkar ${ }^{109}$, Y. Nagasaka ${ }^{59}$, M. Nagel ${ }^{99}$, A. M. Nairz ${ }^{30}$, Y. Nakahama ${ }^{30}$, K. Nakamura ${ }^{155}$, T. Nakamura ${ }^{155}$, I. Nakano ${ }^{110}$, G. Nanava ${ }^{21}$, A. Napier ${ }^{161}$, R. Narayan ${ }^{58 b}$, M. Nash ${ }^{77, \text { c }}$, T. Nattermann ${ }^{21}$, T. Naumann ${ }^{42}$, G. Navarro 162, H. A. Neal ${ }^{87}$, P. Yu. Nechaeva ${ }^{94}$, T. J. Neep ${ }^{82}$, A. Negri ${ }^{119 a}{ }^{119 b}$, G. Negri ${ }^{30}$, M. Negrini ${ }^{20 a}$, S. Nektarijevic ${ }^{49}$, A. Nelson ${ }^{163}$, T. K. Nelson ${ }^{143}$, S. Nemecek ${ }^{125}$, P. Nemethy ${ }^{108}$, A. A. Nepomuceno ${ }^{24 \mathrm{a}}$, M. Nessi ${ }^{30, y}$, M. S. Neubauer ${ }^{165}$, M. Neumann ${ }^{175}$, A. Neusiedl ${ }^{81}$, R. M. Neves ${ }^{108}$, P. Nevski ${ }^{25}$, F. M. Newcomer ${ }^{120}$, P. R. Newman ${ }^{18}$, V. Nguyen Thi Hong ${ }^{136}$, R. B. Nickerson ${ }^{118}$, R. Nicolaidou ${ }^{136}$, B. Nicquevert ${ }^{30}$, F. Niedercorn ${ }^{115}$, J. Nielsen ${ }^{137}$, N. Nikiforou ${ }^{35}$, A. Nikiforov ${ }^{16}$, V.

Nikolaenko ${ }^{128}$, I. Nikolic-Audit ${ }^{78}$, K. Nikolics ${ }^{49}$, K. Nikolopoulos ${ }^{18}$, H. Nilsen ${ }^{48}$, P. Nilsson ${ }^{8}$, Y. Ninomiya ${ }^{155}$, A. Nisati ${ }^{132 \mathrm{a}}$, R. Nisius ${ }^{99}$, T. Nobe ${ }^{157}$, L. Nodulman ${ }^{6}$, M. Nomachi ${ }^{116}$, I. Nomidis ${ }^{154}$, S. Norberg ${ }^{111}$, M. Nordberg ${ }^{30}$, P. R. Norton ${ }^{129}$, J. Novakova 126, M. Nozaki ${ }^{65}$, L. Nozka ${ }^{113}$, I. M. Nugent ${ }^{159 \text { a }}$, A.-E. Nuncio-Quiroz ${ }^{21}$, G. Nunes Hanninger ${ }^{86}$, T. Nunnemann ${ }^{98}$, E. Nurse ${ }^{77}$, B. J. O’Brien ${ }^{46}$, D. C. O’Neil ${ }^{142}$, V. O'Shea ${ }^{53}$, L. B. Oakes ${ }^{98}$, F. G. Oakham ${ }^{29, \text { d }}$, H. Oberlack ${ }^{99}$, J. Ocariz ${ }^{78}$, A. Ochi 66, S. Oda ${ }^{69}$, S. Odaka ${ }^{65}$, J. Odier ${ }^{83}$, H. Ogren ${ }^{60}$, A. Oh ${ }^{82}$, S. H. Oh ${ }^{45}$, C. C. Ohm ${ }^{30}$, T. Ohshima ${ }^{101}$, W. Okamura ${ }^{116}$, H. Okawa ${ }^{25}$, Y. Okumura ${ }^{31}$, T. Okuyama ${ }^{155}$, A. Olariu ${ }^{26 a}$, A. G. Olchevski ${ }^{64}$, S. A. Olivares Pino ${ }^{32 \mathrm{a}}$, M. Oliveira ${ }^{124 \mathrm{a}, \mathrm{g}}$, D. Oliveira Damazio ${ }^{25}$, E. Oliver Garcia ${ }^{167}$, D. Olivito ${ }^{120}$, A. Olszewski ${ }^{39}$, J. Olszowska ${ }^{39}$, A. Onofre ${ }^{124 a, z}$, P. U. E. Onyisi ${ }^{31}$, C. J. Oram ${ }^{159 \mathrm{a}}$, M. J. Oreglia ${ }^{31}$, Y. Oren ${ }^{153}$, D. Orestano ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, N. Orlando ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, I. Orlov ${ }^{107}$, C. Oropeza Barrera ${ }^{53}$, R. S. Orr ${ }^{158}$, B. Osculati ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, R. Ospanov ${ }^{120}$, C. Osuna ${ }^{12}$, G. Otero y Garzon ${ }^{27}$, J. P. Ottersbach ${ }^{105}$, M. Ouchrif ${ }^{135 d}$, E. A. Ouellette 169, F. Ould-Saada ${ }^{117}$, A. Ouraou ${ }^{136}$, Q. Ouyang ${ }^{33 \mathrm{a}}$, A. Ovcharova ${ }^{15}$, M. Owen ${ }^{82}$, S. Owen ${ }^{139}$, V. E. Ozcan ${ }^{19 \mathrm{a}}$, N. Ozturk ${ }^{8}$, A. Pacheco Pages ${ }^{12}$, C. Padilla Aranda ${ }^{12}$, S. Pagan Griso ${ }^{15}$, E. Paganis ${ }^{139}$, C. Pahl ${ }^{99}$, F. Paige ${ }^{25}$, P. Pais ${ }^{84}$, K. Pajchel ${ }^{117}$, G. Palacino ${ }^{159 b}$, C. P. Paleari ${ }^{7}$, S. Palestini ${ }^{30}$, D. Pallin ${ }^{34}$, A. Palma ${ }^{124 a}$, J. D. Palmer ${ }^{18}$, Y. B. Pan ${ }^{173}$, E. Panagiotopoulou ${ }^{10}$, J. G. Panduro Vazquez ${ }^{76}$, P. Pani ${ }^{105}$, N. Panikashvili ${ }^{87}$, S. Panitkin ${ }^{25}$, D. Pantea ${ }^{26 a}$, A. Papadelis ${ }^{146 a}$, Th. D. Papadopoulou ${ }^{10}$, A. Paramonov ${ }^{6}$, D. Paredes Hernandez ${ }^{34}$, W. Park ${ }^{25, \text { aa }}$, M. A. Parker ${ }^{28}$, F. Parodi ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, J. A. Parsons ${ }^{35}$, U. Parzefall ${ }^{48}$, S. Pashapour ${ }^{54}$, E. Pasqualucci ${ }^{132 a}$, S. Passaggio ${ }^{50 \mathrm{a}}$, A. Passeri ${ }^{134 \mathrm{a}}$, F. Pastore ${ }^{\text {134a, 134b, }}$, Fr. Pastore ${ }^{76}$, G. Pásztor ${ }^{49, a b}$, S. Pataraia ${ }^{175}$, N. Patel ${ }^{150}$, J. R. Pater ${ }^{82}$, S. Patricelli ${ }^{102 a, 102 b}$, T. Pauly ${ }^{30}$, M. Pecsy ${ }^{144 a}$, S. Pedraza Lopez ${ }^{167}$, M. I. Pedraza Morales ${ }^{173}$, S. V. Peleganchuk ${ }^{107}$, D. Pelikan ${ }^{166}$, H. Peng ${ }^{33 b}$, B. Penning ${ }^{31}$, A. Penson ${ }^{35}$, J. Penwell ${ }^{60}$, M. Perantoni ${ }^{24 a}$, K. Perez ${ }^{35, a c}$, T. Perez Cavalcanti ${ }^{42}$, E. Perez Codina ${ }^{159 a}$, M. T. Pérez García-Estañ ${ }^{167}$, V. Perez Reale ${ }^{35}$, L. Perini ${ }^{89 a, 89 b}$, H. Pernegger ${ }^{30}$, R. Perrino ${ }^{72 \mathrm{a}}$, P. Perrodo ${ }^{5}$, V. D. Peshekhonov ${ }^{64}$, K. Peters ${ }^{30}$, B. A. Petersen ${ }^{30}$, J. Petersen ${ }^{30}$, T. C. Petersen ${ }^{36}$, E. Petit ${ }^{5}$, A. Petridis ${ }^{154}$, C. Petridou ${ }^{154}$, E. Petrolo ${ }^{132 \mathrm{a}}$, F. Petrucci ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, D. Petschull ${ }^{42}$, M. Petteni ${ }^{142}$, R. Pezoa ${ }^{32 \mathrm{~b}}$, A. Phan ${ }^{86}$, P. W. Phillips ${ }^{129}$, G. Piacquadio ${ }^{30}$, A. Picazio ${ }^{49}$, E. Piccaro 75, M. Piccinini ${ }^{20 a}$, 20b , S. M. Piec ${ }^{42}$, R. Piegaia ${ }^{27}$, D. T. Pignotti ${ }^{109}$, J. E. Pilcher ${ }^{31}$, A. D. Pilkington ${ }^{82}$, J. Pina ${ }^{124 a, b}$, M. Pinamonti ${ }^{164 a, 164 \mathrm{c}}$, A. Pinder ${ }^{118}$, J. L. Pinfold ${ }^{3}$, B. Pinto ${ }^{124 a}$, C. Pizio ${ }^{89 a, 89 b}$, M. Plamondon ${ }^{169}$, M.-A. Pleier ${ }^{25}$, E. Plotnikova ${ }^{64}$, A. Poblaguev ${ }^{25}$, S. Poddar ${ }^{58 \mathrm{a}}$, F. Podlyski ${ }^{34}$, L. Poggioli ${ }^{115}$, D. Pohl ${ }^{21}$, M. Pohl ${ }^{49}$, G. Polesello ${ }^{119 \mathrm{a}}$, A. Policicchio ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, A. Polini ${ }^{20 a}$, J. Poll ${ }^{75}$, V. Polychronakos ${ }^{25}$, D. Pomeroy ${ }^{23}$, K. Pommès ${ }^{30}$, L. Pontecorvo ${ }^{132 \mathrm{a}}$, B. G. Pope ${ }^{88}$, G. A. Popeneciu ${ }^{26 a}$, D. S. Popovic ${ }^{13 a}$, A. Poppleton ${ }^{30}$, X. Portell Bueso ${ }^{30}$, G. E. Pospelov ${ }^{99}$, S. Pospisil ${ }^{127}$, I. N. Potrap ${ }^{99}$, C. J. Potter ${ }^{149}$, C. T. Potter ${ }^{114}$, G. Poulard ${ }^{30}$, J. Poveda ${ }^{60}$, V. Pozdnyakov ${ }^{64}$, R. Prabhu ${ }^{77}$, P. Pralavorio ${ }^{83}$, A. Pranko ${ }^{15}$, S. $\operatorname{Prasad}^{30}$, R. Pravahan ${ }^{25}$, S. Prell ${ }^{63}$, K. Pretzl ${ }^{17}$, D. Price ${ }^{60}$, J. Price 73, L. E. Price ${ }^{6}$, D. Prieur ${ }^{123}$, M. Primavera ${ }^{72 \mathrm{a}}$, K. Prokofiev ${ }^{108}$, F. Prokoshin ${ }^{32 b}$, S. Protopopescu ${ }^{25}$, J. Proudfoot ${ }^{6}$, X. Prudent ${ }^{44}$, M. Przybycien ${ }^{38}$, H. Przysiezniak ${ }^{5}$, S. Psoroulas ${ }^{21}$, E. Ptacek ${ }^{114}$, E. Pueschel ${ }^{84}$, J. Purdham ${ }^{87}$, M. Purohit ${ }^{25, a a}$, P. Puzo ${ }^{115}$, Y. Pylypchenko ${ }^{62}$, J. Qian ${ }^{87}$, A. Quadt ${ }^{54}$, D. R. Quarrie ${ }^{15}$, W. B. Quayle ${ }^{173}$, F. Quinonez ${ }^{32 a}$, M. Raas ${ }^{104}$, V. Radeka ${ }^{25}$, V. Radescu ${ }^{42}$, P. Radloff ${ }^{114}$, F. Ragusa ${ }^{89 a, 89 b}$, G. Rahal ${ }^{178}$, A. M. Rahimi ${ }^{109}$, D. Rahm ${ }^{25}$, S. Rajagopalan ${ }^{25}$, M. Rammensee ${ }^{48}$, M. Rammes ${ }^{141}$, A. S. Randle-Conde ${ }^{40}$, K. Randrianarivony ${ }^{29}$, F. Rauscher ${ }^{98}$, T. C. Rave ${ }^{48}$, M. Raymond ${ }^{30}$, A. L. Read ${ }^{117}$, D. M. Rebuzzi ${ }^{119 a, 119 b}$, A. Redelbach ${ }^{174}$, G. Redlinger ${ }^{25}$, R. Reece ${ }^{120}$, K. Reeves ${ }^{41}$, A. Reinsch ${ }^{114}$, I. Reisinger ${ }^{43}$, C. Rembser ${ }^{30}$, Z. L. Ren ${ }^{151}$, A. Renaud 115, M. Rescigno ${ }^{132 \mathrm{a}}$, S. Resconi ${ }^{89 a}$, B. Resende ${ }^{136}$, P. Reznicek ${ }^{98}$, R. Rezvani ${ }^{158}$, R. Richter ${ }^{99}$, E. Richter-Was ${ }^{5, \text { ad }}$, M. Ridel ${ }^{78}$, M. Rijpstra ${ }^{105}$, M. Rijssenbeek ${ }^{148}$, A. Rimoldi ${ }^{119 \mathrm{a}, 119 \mathrm{~b}}$, L. Rinaldi ${ }^{20 \mathrm{a}}$, R. R. Rios ${ }^{40}$, I. Riu ${ }^{12}$, G. Rivoltella ${ }^{89 \mathrm{a}, 89 \mathrm{~b}}$, F. Rizatdinova ${ }^{112}$, E. Rizvi ${ }^{75}$, S. H. Robertson ${ }^{85, j}$, A. Robichaud-Veronneau ${ }^{118}$, D. Robinson ${ }^{28}$, J. E. M. Robinson ${ }^{82}$, A. Robson ${ }^{53}$, J. G. Rocha de Lima ${ }^{106}$, C. Roda ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, D. Roda Dos Santos ${ }^{30}$, A. Roe ${ }^{54}$, S. Roe ${ }^{30}$, O. Røhne ${ }^{117}$, S. Rolli ${ }^{161}$, A. Romaniouk ${ }^{96}$, M. Romano ${ }^{20 a, 20 b}$, G. Romeo ${ }^{27}$, E. Romero Adam ${ }^{167}$, N. Rompotis ${ }^{138}$, L. Roos ${ }^{78}$, E. Ros ${ }^{167}$, S. Rosati $^{132 \mathrm{a}}$, K. Rosbach 49, A. Rose 149, M. Rose ${ }^{76}$, G. A. Rosenbaum ${ }^{158}$, E. I. Rosenberg ${ }^{63}$, P. L. Rosendah1 ${ }^{14}$, O. Rosenthal ${ }^{141}$, L. Rosselet ${ }^{49}$, V. Rossetti ${ }^{12}$, E. Rossi ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, L. P. Rossi ${ }^{50 \mathrm{a}}$, M. Rotaru ${ }^{26 a}$, I. Roth ${ }^{172}$, J. Rothberg ${ }^{138}$, D. Rousseau ${ }^{115}$, C. R. Royon ${ }^{136}$, A. Rozanov ${ }^{83}$, Y. Rozen ${ }^{152}$, X. Ruan ${ }^{33 a, a e}$, F. Rubbo ${ }^{12}$, I. Rubinskiy ${ }^{42}$, N. Ruckstuhl ${ }^{105}$, V. I. Rud ${ }^{97}$, C. Rudolph ${ }^{44}$, G. Rudolph ${ }^{61}$, F. Rühr ${ }^{7}$, A. Ruiz-Martinez ${ }^{63}$, L. Rumyantsev ${ }^{64}$, Z. Rurikova ${ }^{48}$, N. A. Rusakovich ${ }^{64}$, A. Ruschke ${ }^{98}$, J. P. Rutherfoord ${ }^{7}$, P. Ruzicka ${ }^{125}$, Y. F. Ryabov ${ }^{121}$, M. Rybar ${ }^{126}$, G. Rybkin ${ }^{115}$, N. C. Ryder ${ }^{118}$, A. F. Saavedra ${ }^{150}$, I. Sadeh ${ }^{153}$, H. F-W. Sadrozinski ${ }^{137}$, R. Sadykov ${ }^{64}$, F. Safai Tehrani ${ }^{132 a}$, H. Sakamoto ${ }^{155}$, G. Salamanna ${ }^{75}$, A. Salamon ${ }^{133 a}$, M. Saleem ${ }^{111}$, D. Salek ${ }^{30}$, D. Salihagic ${ }^{99}$, A. Salnikov ${ }^{143}$, J. Salt ${ }^{167}$, B. M. Salvachua Ferrando ${ }^{6}$, D. Salvatore ${ }^{37 a, 37 b}$, F. Salvatore ${ }^{149}$, A. Salvucci ${ }^{104}$, A. Salzburger ${ }^{30}$, D. Sampsonidis ${ }^{154}$, B. H. Samset ${ }^{117}$, A. Sanchez ${ }^{102 a, 102 b}$, V. Sanchez Martinez ${ }^{167}$, H. Sandaker 14, H. G. Sander ${ }^{81}$, M. P. Sanders ${ }^{98}$, M. Sandhoff ${ }^{175}$, T. Sandoval ${ }^{28}$, C. Sandoval ${ }^{162}$, R. Sandstroem ${ }^{99}$, D. P. C. Sankey ${ }^{129}$, A. Sansoni ${ }^{47}$, C. Santamarina Rios ${ }^{85}$, C. Santoni ${ }^{34}$, R. Santonico ${ }^{133 a, 133 b}$, H. Santos ${ }^{124 a}$, I. Santoyo Castillo ${ }^{149}$, J. G. Saraiva ${ }^{124 a}$, T. Sarangi ${ }^{173}$, E. Sarkisyan-Grinbaum ${ }^{8}$, F. Sarri ${ }^{122 a, 122 b}$, G. Sartisohn ${ }^{175}$, O. Sasaki ${ }^{65}$, Y. Sasaki ${ }^{155}$, N. Sasao ${ }^{67}$, I. Satsounkevitch ${ }^{90}$, G. Sauvage ${ }^{5, *}$, E. Sauvan ${ }^{5}$, J. B. Sauvan ${ }^{115}$, P. Savard ${ }^{158, \text { d }}$, V. Savinov ${ }^{123}$, D. O. Savu ${ }^{30}$, L. Sawyer ${ }^{25,1}$, D. H. Saxon ${ }^{53}$, J. Saxon ${ }^{120}$, C. Sbarra ${ }^{20 a}$, A. Sbrizzi ${ }^{20 a, 20 b}$, D. A. Scannicchio ${ }^{163}$, M. Scarcella ${ }^{150}$, J. Schaarschmidt ${ }^{115}$, P. Schacht 99, D. Schaefer ${ }^{120}$, U. Schäfer ${ }^{81}$, A. Schaelicke ${ }^{46}$, S. Schaepe ${ }^{21}$, S. Schaetzel ${ }^{58 b}$, A. C. Schaffer ${ }^{115}$, D. Schaile ${ }^{98}$, R. D. Schamberger 148, A. G. Schamov ${ }^{107}$, V. Scharf ${ }^{58 \mathrm{a}}$, V. A. Schegelsky ${ }^{121}$, D. Scheirich ${ }^{87}$, M. Schernau ${ }^{163}$, M. I. Scherzer ${ }^{35}$, C.

Schiavi ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, J. Schieck ${ }^{98}$, M. Schioppa ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, S. Schlenker ${ }^{30}$, E. Schmidt ${ }^{48}$, K. Schmieden ${ }^{21}$, C. Schmitt ${ }^{81}$, S. Schmitt ${ }^{58 \mathrm{~b}}$, B. Schneider ${ }^{17}$, U. Schnoor ${ }^{44}$, L. Schoeffel ${ }^{136}$, A. Schoening ${ }^{58 b}$, A. L. S. Schorlemmer ${ }^{54}$, M. Schott ${ }^{30}$, D. Schouten ${ }^{159 \text { a }}$, J. Schovancova ${ }^{125}$, M. Schram ${ }^{85}$, C. Schroeder ${ }^{81}$, N. Schroer ${ }^{58 \mathrm{c}}$, M. J. Schultens ${ }^{21}$, J. Schultes ${ }^{175}$, H.-C. Schultz-Coulon ${ }^{58 \mathrm{a}}$, H. Schulz ${ }^{16}$, M. Schumacher ${ }^{48}$, B. A. Schumm ${ }^{137}$, Ph. Schune ${ }^{136}$, C. Schwanenberger ${ }^{82}$, A. Schwartzman ${ }^{143}$, Ph. Schwegler ${ }^{99}$, Ph. Schwemling ${ }^{78}$, R. Schwienhorst ${ }^{88}$, R. Schwierz ${ }^{44}$, J. Schwindling ${ }^{136}$, T. Schwindt ${ }^{21}$, M. Schwoerer ${ }^{5}$, F. G. Sciacca ${ }^{17}$, G. Sciolla 23, W. G. Scott ${ }^{129}$, J. Searcy ${ }^{114}$, G. Sedov ${ }^{42}$, E. Sedykh ${ }^{121}$, S. C. Seidel ${ }^{103}$, A. Seiden ${ }^{137}$, F. Seifert ${ }^{44}$, J. M. Seixas ${ }^{24 a}$, G. Sekhniaidze ${ }^{102 a}$, S. J. Sekula ${ }^{40}$, K. E. Selbach ${ }^{46}$, D. M. Seliverstov ${ }^{121}$, B. Sellden ${ }^{146 a}$, G. Sellers ${ }^{73}$, M. Seman ${ }^{144 b}$, N. Semprini-Cesari ${ }^{20 a}, 20 \mathrm{~b}$, C. Serfon ${ }^{98}$, L. Serin ${ }^{115}$, L. Serkin ${ }^{54}$, R. Seuster ${ }^{159 a}$, H. Severini ${ }^{111}$, A. Sfyrla ${ }^{30}$, E. Shabalina ${ }^{54}$, M. Shamim 114, L. Y. Shan ${ }^{33 a}$, J. T. Shank ${ }^{22}$, Q. T. Shao ${ }^{86}$, M. Shapiro ${ }^{15}$, P. B. Shatalov ${ }^{95}$, K. Shaw ${ }^{164 a, 164 c}$, D. Sherman ${ }^{176}$, P. Sherwood ${ }^{77}$, S. Shimizu ${ }^{101}$, M. Shimojima ${ }^{100}$, T. Shin ${ }^{56}$, M. Shiyakova ${ }^{64}$, A. Shmeleva ${ }^{94}$, M. J. Shochet ${ }^{31}$, D. Short ${ }^{118}$, S. Shrestha ${ }^{63}$, E. Shulga ${ }^{96}$, M. A. Shupe ${ }^{7}$, P. Sicho ${ }^{125}$, A. Sidoti ${ }^{132 a}$, F. Siegert ${ }^{48}$, Dj. Sijacki ${ }^{13 a}$, O. Silbert ${ }^{172}$, J. Silva ${ }^{124 a}$, Y. Silver ${ }^{153}$, D. Silverstein ${ }^{143}$, S. B. Silverstein ${ }^{146 a}$, V. Simak ${ }^{127}$, O. Simard ${ }^{136}$, Lj. Simic ${ }^{13 a}$, S. Simion ${ }^{115}$, E. Simioni ${ }^{81}$, B. Simmons ${ }^{77}$, R. Simoniello ${ }^{89 a, 89 b}$, M. Simonyan ${ }^{36}$, P. Sinervo ${ }^{158}$, N. B. Sinev ${ }^{114}$, V. Sipica ${ }^{141}$, G. Siragusa ${ }^{174}$, A. Sircar ${ }^{25}$, A. N. Sisakyan ${ }^{64, *}$, S. Yu. Sivoklokov ${ }^{97}$, J. Sjölin ${ }^{146 a, 146 b}$, T. B. Sjursen ${ }^{14}$, L. A. Skinnari ${ }^{15}$, H. P. Skottowe ${ }^{57}$, K. Skovpen ${ }^{107}$, P. Skubic ${ }^{111}$, M. Slater ${ }^{18}$, T. Slavicek ${ }^{127}$, K. Sliwa ${ }^{161}$, V. Smakhtin ${ }^{172}$, B. H. Smart ${ }^{46}$, L. Smestad ${ }^{117}$, S. Yu. Smirnov ${ }^{96}$, Y. Smirnov 96, L. N. Smirnova ${ }^{97}$, O. Smirnova ${ }^{79}$, B. C. Smith ${ }^{57}$, D. Smith ${ }^{143}$, K. M. Smith ${ }^{53}$, M. Smizanska ${ }^{71}$, K. Smolek ${ }^{127}$, A. A. Snesarev ${ }^{94}$, S. W. Snow ${ }^{82}$, J. Snow ${ }^{111}$, S. Snyder ${ }^{25}$, R. Sobie ${ }^{169, j}$, J. Sodomka ${ }^{127}$, A. Soffer ${ }^{153}$, C. A. Solans ${ }^{167}$, M. Solar ${ }^{127}$, J. Solc ${ }^{127}$, E. Yu. Soldatov ${ }^{96}$, U. Soldevila ${ }^{167}$, E. Solfaroli Camillocci ${ }^{132 a, 132 b}$, A. A. Solodkov ${ }^{128}$, O. V. Solovyanov ${ }^{128}$, V. Solovyev 121, N. Soni ${ }^{1}$, V. Sopko ${ }^{127}$, B. Sopko ${ }^{127}$, M. Sosebee ${ }^{8}$, R. Soualah ${ }^{164 \mathrm{a}, 164 \mathrm{c}}$, A. Soukharev ${ }^{107}$, S. Spagnolo ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, F. Spanò ${ }^{76}$, R. Spighi ${ }^{20 a}$, G. Spigo ${ }^{30}$, R. Spiwoks ${ }^{30}$, M. Spousta ${ }^{126, a f}$, T. Spreitzer ${ }^{158}$, B. Spurlock ${ }^{8}$, R. D. St. Denis ${ }^{53}$, J. Stahlman ${ }^{120}$, R. Stamen ${ }^{58 a}$, E. Stanecka ${ }^{39}$, R. W. Stanek ${ }^{6}$, C. Stanescu ${ }^{134 a}$, M. Stanescu-Bellu ${ }^{42}$, M. M. Stanitzki ${ }^{42}$, S. Stapnes ${ }^{117}$, E. A. Starchenko ${ }^{128}$, J. Stark ${ }^{55}$, P. Staroba ${ }^{125}$, P. Starovoitov ${ }^{42}$, R. Staszewski ${ }^{39}$, A. Staude ${ }^{98}$, P. Stavina ${ }^{144 a, *}$, G. Steele ${ }^{53}$, P. Steinbach ${ }^{44}$, P. Steinberg ${ }^{25}$, I. Stekl ${ }^{127}$, B. Stelzer ${ }^{142}$, H. J. Stelzer ${ }^{88}$, O. Stelzer-Chilton ${ }^{159 \text { a }}$, H. Stenzel ${ }^{52}$, S. Stern ${ }^{99}$, G. A. Stewart ${ }^{30}$, J. A. Stillings ${ }^{21}$, M. C. Stockton ${ }^{85}$, K. Stoerig ${ }^{48}$, G. Stoicea ${ }^{26 a}$, S. Stonjek ${ }^{99}$, P. Strachota ${ }^{126}$, A. R. Stradling ${ }^{8}$, A. Straessner ${ }^{44}$, J. Strandberg ${ }^{147}$, S. Strandberg ${ }^{146 a, 146 b}$, A. Strandlie ${ }^{117}$, M. Strang ${ }^{109}$, E. Strauss ${ }^{143}$, M. Strauss 111, P. Strizenec ${ }^{144 b}$, R. Ströhmer ${ }^{174}$, D. M. Strom ${ }^{114}$, J. A. Strong ${ }^{76, *}$, R. Stroynowski ${ }^{40}$, B. Stugu ${ }^{14}$, I. Stumer ${ }^{25, *}$, J. Stupak ${ }^{148}$, P. Sturm ${ }^{175}$, N. A. Styles ${ }^{42}$, D. A. Soh ${ }^{151, t}$, D. Su ${ }^{143}$, HS. Subramania ${ }^{3}$, R. Subramaniam ${ }^{25}$, A. Succurro ${ }^{12}$, Y. Sugaya 116, C. Suhr ${ }^{106}$, M. Suk ${ }^{126}$, V. V. Sulin ${ }^{94}$, S. Sultansoy ${ }^{4 d}$, T. Sumida ${ }^{67}$, X. Sun ${ }^{55}$, J. E. Sundermann ${ }^{48}$, K. Suruliz ${ }^{139}$, G. Susinno ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, M. R. Sutton ${ }^{149}$, Y. Suzuki ${ }^{65}$, Y. Suzuki ${ }^{66}$, M. Svatos ${ }^{125}$, S. Swedish ${ }^{168}$, I. Sykora ${ }^{144 a}$, T. Sykora ${ }^{126}$, J. Sánchez ${ }^{167}$, D. Ta ${ }^{105}$, K. Tackmann ${ }^{42}$, A. Taffard ${ }^{163}$, R. Tafirout ${ }^{159 a}$, N. Taiblum ${ }^{153}$, Y. Takahashi ${ }^{101}$, H. Takai ${ }^{25}$, R. Takashima ${ }^{68}$, H. Takeda ${ }^{66}$, T. Takeshita ${ }^{140}$, Y. Takubo ${ }^{65}$, M. Talby ${ }^{83}$, A. Talyshev ${ }^{107, f}$, M. C. Tamsett ${ }^{25}$, K. G. Tan ${ }^{86}$, J. Tanaka ${ }^{155}$, R. Tanaka ${ }^{115}$, S. Tanaka ${ }^{131}$, S. Tanaka ${ }^{65}$, A. J. Tanasijczuk ${ }^{142}$, K. Tani ${ }^{66}$, N. Tannoury ${ }^{83}$, S. Tapprogge ${ }^{81}$, D. Tardif ${ }^{158}$, S. Tarem ${ }^{152}$, F. Tarrade ${ }^{29}$, G. F. Tartarelli ${ }^{89 a}$, P. Tas ${ }^{126}$, M. Tasevsky ${ }^{125}$, E. Tassi ${ }^{37 \mathrm{a}}$, 37b , Y. Tayalati ${ }^{135 d}$, C. Taylor ${ }^{77}$, F. E. Taylor ${ }^{92}$, G. N. Taylor ${ }^{86}$, W. Taylor ${ }^{159 b}$, M. Teinturier ${ }^{115}$, F. A. Teischinger ${ }^{30}$, M. Teixeira Dias Castanheira ${ }^{75}$, P. Teixeira-Dias ${ }^{76}$, K. K. Temming ${ }^{48}$, H. Ten Kate ${ }^{30}$, P. K. Teng ${ }^{151}$, S. Terada ${ }^{65}$, K. Terashi ${ }^{155}$, J. Terron ${ }^{80}$, M. Testa ${ }^{47}$, R. J. Teuscher ${ }^{158, j}$, J. Therhaag ${ }^{21}$, T. Theveneaux-Pelzer ${ }^{78}$, S. Thoma ${ }^{48}$, J. P. Thomas ${ }^{18}$, E. N. Thompson ${ }^{35}$, P. D. Thompson ${ }^{18}$, P. D. Thompson ${ }^{158}$, A. S. Thompson ${ }^{53}$, L. A. Thomsen ${ }^{36}$, E. Thomson ${ }^{120}$, M. Thomson ${ }^{28}$, W. M. Thong ${ }^{86}$, R. P. Thun ${ }^{87}$, F. Tian 35, M. J. Tibbetts ${ }^{15}$, T. Tic ${ }^{125}$, V. O. Tikhomirov ${ }^{94}$, Y. A. Tikhonov ${ }^{107, f}$, S. Timoshenko ${ }^{96}$, E. Tiouchichine ${ }^{83}$, P. Tipton ${ }^{176}$, S. Tisserant ${ }^{83}$, T. Todorov ${ }^{5}$, S. Todorova-Nova ${ }^{161}$, B. Toggerson ${ }^{163}$, J. Tojo ${ }^{69}$, S. Tokár ${ }^{144 \mathrm{a}}$, K. Tokushuku ${ }^{65}$, K. Tollefson ${ }^{88}$, M. Tomoto ${ }^{101}$, L. Tompkins ${ }^{31}$, K. Toms ${ }^{103}$, A. Tonoyan ${ }^{14}$, C. Topfel ${ }^{17}$, N. D. Topilin ${ }^{64}$, E. Torrence ${ }^{114}$, H. Torres ${ }^{78}$, E. Torró Pastor ${ }^{167}$, J. Toth ${ }^{83, a b}$, F. Touchard ${ }^{83}$, D. R. Tovey ${ }^{139}$, T. Trefzger ${ }^{174}$, L. Tremblet ${ }^{30}$, A. Tricoli ${ }^{30}$, I. M. Trigger ${ }^{159 \mathrm{a}}$, S. Trincaz-Duvoid ${ }^{78}$, M. F. Tripiana ${ }^{70}$, N. Triplett ${ }^{25}$, W. Trischuk ${ }^{158}$, B. Trocmé ${ }^{55}$, C. Troncon ${ }^{89 a}$, M. Trottier-McDonald ${ }^{142}$, P. True 88, M. Trzebinski ${ }^{39}$, A. Trzupek ${ }^{39}$, C. Tsarouchas ${ }^{30}$, J. C-L. Tseng ${ }^{118}$, M. Tsiakiris ${ }^{105}$, P. V. Tsiareshka ${ }^{90}$, D. Tsionou ${ }^{5}$,ag , G. Tsipolitis ${ }^{10}$, S. Tsiskaridze ${ }^{12}$, V. Tsiskaridze ${ }^{48}$, E. G. Tskhadadze ${ }^{51 a}$, I. I. Tsukerman ${ }^{95}$, V. Tsulaia ${ }^{15}$, J.-W. Tsung ${ }^{21}$, S. Tsuno 65, D. Tsybychev ${ }^{148}$, A. Tua ${ }^{139}$, A. Tudorache ${ }^{26 a}$, V. Tudorache ${ }^{26 a}$, J. M. Tuggle ${ }^{31}$, M. Turala ${ }^{39}$, D. Turecek ${ }^{127}$, I. Turk Cakir ${ }^{4 \mathrm{e}}$, E. Turlay ${ }^{105}$, R. Turra ${ }^{89 \mathrm{a}, 89 \mathrm{~b}}$, P. M. Tuts ${ }^{35}$, A. Tykhonov ${ }^{74}$, M. Tylmad ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$, M. Tyndel ${ }^{129}$, G. Tzanakos ${ }^{9}$, K. Uchida 21, I. Ueda ${ }^{155}$, R. Ueno ${ }^{29}$, M. Ugland ${ }^{14}$, M. Uhlenbrock ${ }^{21}$, M. Uhrmacher ${ }^{54}$, F. Ukegawa ${ }^{160}$, G. Unal ${ }^{30}$, A. Undrus ${ }^{25}$, G. Unel ${ }^{163}$, Y. Unno ${ }^{65}$, D. Urbaniec ${ }^{35}$, P. Urquijo ${ }^{21}$, G. Usai ${ }^{8}$, M. Uslenghi ${ }^{119 a, 119 b}$, L. Vacavant ${ }^{83}$, V. Vacek ${ }^{127}$, B. Vachon ${ }^{85}$, S. Vahsen ${ }^{15}$, J. Valenta ${ }^{125}$, S. Valentinetti ${ }^{20 a, 20 b}$, A. Valero ${ }^{167}$, S. Valkar ${ }^{126}$, E. Valladolid Gallego ${ }^{167}$, S. Vallecorsa ${ }^{152}$, J. A. Valls Ferrer ${ }^{167}$, R. Van Berg ${ }^{120}$, P. C. Van Der Deij1 ${ }^{105}$, R. van der Geer ${ }^{105}$, H. van der Graaf ${ }^{105}$, R. Van Der Leeuw ${ }^{105}$, E. van der Poel ${ }^{105}$, D. van der Ster ${ }^{30}$, N. van Eldik ${ }^{30}$, P. van Gemmeren ${ }^{6}$, I. van Vulpen ${ }^{105}$, M. Vanadia ${ }^{99}$, W. Vandelli ${ }^{30}$, A. Vaniachine ${ }^{6}$, P. Vankov ${ }^{42}$, F. Vannucci ${ }^{78}$, R. Vari ${ }^{132 a}$, E. W. Varnes ${ }^{7}$, T. Varol ${ }^{84}$, D. Varouchas ${ }^{15}$, A. Vartapetian ${ }^{8}$, K. E. Varvell 150, V. I. Vassilakopoulos ${ }^{56}$, F. Vazeille ${ }^{34}$, T. Vazquez Schroeder ${ }^{54}$, G. Vegni ${ }^{89 a, 89 b}$, J. J. Veillet ${ }^{115}$, F. Veloso ${ }^{124 a}$, R.

Veness 30, S. Veneziano ${ }^{132 \mathrm{a}}$, A. Ventura ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, D. Ventura ${ }^{84}$, M. Venturi ${ }^{48}$, N. Venturi ${ }^{158}$, V. Vercesi ${ }^{119 \mathrm{a}}$, M. Verducci ${ }^{138}$, W. Verkerke 105, J. C. Vermeulen ${ }^{105}$, A. Vest ${ }^{44}$, M. C. Vetterli ${ }^{142, d}$, I. Vichou ${ }^{165}$, T. Vickey ${ }^{145 b, \text { ah }}$, O. E. Vickey Boeriu ${ }^{145 b}$, G. H. A. Viehhauser ${ }^{118}$, S. Viel ${ }^{168}$, M. Villa ${ }^{20 a}$,20b , M. Villaplana Perez ${ }^{167}$, E. Vilucchi ${ }^{47}$, M. G. Vincter ${ }^{29}$, E. Vinek ${ }^{30}$, V. B. Vinogradov ${ }^{64}$, M. Virchaux ${ }^{136, *}$, J. Virzi ${ }^{15}$, O. Vitells ${ }^{172}$, M. Viti ${ }^{42}$, I. Vivarelli ${ }^{48}$, F. Vives Vaque ${ }^{3}$, S. Vlachos ${ }^{10}$, D. Vladoiu ${ }^{98}$, M. Vlasak ${ }^{127}$, A. Vogel ${ }^{21}$, P. Vokac ${ }^{127}$, G. Volpi ${ }^{47}$, M. Volpi ${ }^{86}$, G. Volpini ${ }^{89 \text { a }}$, H. von der Schmitt ${ }^{99}$, H. von Radziewski ${ }^{48}$, E. von Toerne ${ }^{21}$, V. Vorobel ${ }^{126}$, V. Vorwerk ${ }^{12}$, M. Vos ${ }^{167}$, R. Voss ${ }^{30}$, T. T. Voss ${ }^{175}$, J. H. Vossebeld ${ }^{73}$, N. Vranjes ${ }^{136}$, M. Vranjes Milosavljevic ${ }^{105}$, V. Vrba ${ }^{125}$, M. Vreeswijk ${ }^{105}$, T. Vu Anh ${ }^{48}$, R. Vuillermet ${ }^{30}$, I. Vukotic ${ }^{31}$, W. Wagner ${ }^{175}$, P. Wagner ${ }^{120}$, H. Wahlen ${ }^{175}$, S. Wahrmund ${ }^{44}$, J. Wakabayashi ${ }^{101}$, S. Walch ${ }^{87}$, J. Walder ${ }^{71}$, R. Walker ${ }^{98}$, W. Walkowiak ${ }^{141}$, R. Wall ${ }^{176}$, P. Waller 73, B. Walsh ${ }^{176}$, C. Wang ${ }^{45}$, H. Wang ${ }^{173}$, H. Wang ${ }^{40}$, J. Wang ${ }^{151}$, J. Wang ${ }^{55}$, R. Wang ${ }^{103}$, S. M. Wang ${ }^{151}$, T. Wang ${ }^{21}$, A. Warburton ${ }^{85}$, C. P. Ward ${ }^{28}$, D. R. Wardrope ${ }^{77}$, M. Warsinsky ${ }^{48}$, A. Washbrook ${ }^{46}$, C. Wasicki ${ }^{42}$, I. Watanabe ${ }^{66}$, P. M. Watkins 18, A. T. Watson ${ }^{18}$, I. J. Watson ${ }^{150}$, M. F. Watson ${ }^{18}$, G. Watts ${ }^{138}$, S. Watts ${ }^{82}$, A. T. Waugh ${ }^{150}$, B. M. Waugh ${ }^{77}$, M. S. Weber ${ }^{17}$, J. S. Webster ${ }^{31}$, A. R. Weidberg ${ }^{118}$, P. Weigell ${ }^{99}$, J. Weingarten ${ }^{54}$, C. Weiser ${ }^{48}$, P. S. Wells ${ }^{30}$, T. Wenaus ${ }^{25}$, D. Wendland 16, Z. Weng ${ }^{151, \mathrm{t}}$, T. Wengler ${ }^{30}$, S. Wenig ${ }^{30}$, N. Wermes ${ }^{21}$, M. Werner ${ }^{48}$, P. Werner ${ }^{30}$, M. Werth ${ }^{163}$, M. Wessels ${ }^{58 \mathrm{a}}$, J. Wetter ${ }^{161}$, C. Weydert ${ }^{55}$, K. Whalen ${ }^{29}$, A. White ${ }^{8}$, M. J. White ${ }^{86}$, S. White ${ }^{122 a, 122 b}$, S. R. Whitehead ${ }^{118}$, D. Whiteson ${ }^{163}$, D. Whittington ${ }^{60}$, F. Wicek ${ }^{115}$, D. Wicke ${ }^{175}$, F. J. Wickens ${ }^{129}$, W. Wiedenmann ${ }^{173}$, M. Wielers ${ }^{129}$, P. Wienemann ${ }^{21}$, C. Wiglesworth 75, L. A. M. Wiik-Fuchs ${ }^{21}$, P. A. Wijeratne ${ }^{77}$, A. Wildauer ${ }^{99}$, M. A. Wildt ${ }^{42, \text { q }}$, I. Wilhelm ${ }^{126}$, H. G. Wilkens ${ }^{30}$, J. Z. Will ${ }^{98}$, E. Williams ${ }^{35}$, H. H. Williams ${ }^{120}$, W. Willis ${ }^{35}$, S. Willocq ${ }^{84}$, J. A. Wilson ${ }^{18}$, M. G. Wilson ${ }^{143}$, A. Wilson ${ }^{87}$, I. Wingerter-Seez 5, S. Winkelmann ${ }^{48}$, F. Winklmeier ${ }^{30}$, M. Wittgen ${ }^{143}$, S. J. Wollstadt ${ }^{81}$, M. W. Wolter ${ }^{39}$, H. Wolters ${ }^{124 a, g}$, W. C. Wong ${ }^{41}$, G. Wooden ${ }^{87}$, B. K. Wosiek ${ }^{39}$, J. Wotschack ${ }^{30}$, M. J. Woudstra ${ }^{82}$, K. W. Wozniak ${ }^{39}$, K. Wraight ${ }^{53}$, M. Wright ${ }^{53}$, B. Wrona ${ }^{73}$, S. L. Wu ${ }^{173}$, X. Wu ${ }^{49}$, Y. Wu ${ }^{33 b, a i}$, E. Wulf ${ }^{35}$, B. M. Wynne ${ }^{46}$, S. Xella ${ }^{36}$, M. Xiao ${ }^{136}$, S. Xie ${ }^{48}$, C. Xu ${ }^{33 b, x}$, D. Xu^{139}, L. Xu ${ }^{33 \mathrm{~b}}$, B. Yabsley ${ }^{150}$, S. Yacoob ${ }^{145 \mathrm{a}, \mathrm{aj}}$, M. Yamada ${ }^{65}$, H. Yamaguchi ${ }^{155}$, A. Yamamoto ${ }^{65}$, K. Yamamoto ${ }^{63}$, S. Yamamoto 155, T. Yamamura ${ }^{155}$, T. Yamanaka ${ }^{155}$, T. Yamazaki ${ }^{155}$, Y. Yamazaki ${ }^{66}$, Z. Yan ${ }^{22}$, H. Yang ${ }^{87}$, U. K. Yang ${ }^{82}$, Y. Yang ${ }^{109}$, Z. Yang ${ }^{146 a, 146 \mathrm{~b}}$, S. Yanush ${ }^{91}$, L. Yao ${ }^{33 \mathrm{a}}$, Y. Yao ${ }^{15}$, Y. Yasu ${ }^{65}$, G. V. Ybeles Smit ${ }^{130}$, J. Ye ${ }^{40}$, S. Ye ${ }^{25}$, M. Yilmaz ${ }^{4 \mathrm{c}}$, R. Yoosoofmiya ${ }^{123}$, K. Yorita ${ }^{171}$, R. Yoshida ${ }^{6}$, K. Yoshihara ${ }^{155}$, C. Young ${ }^{143}$, C. J. Young ${ }^{118}$, S. Youssef ${ }^{22}$, D. Yu^{25}, J. Yu ${ }^{8}$, J. Yu ${ }^{112}$, L. Yuan ${ }^{66}$, A. Yurkewicz ${ }^{106}$, B. Zabinski ${ }^{39}$, R. Zaidan ${ }^{62}$, A. M. Zaitsev ${ }^{128}$, Z. Zajacova ${ }^{30}$, L. Zanello ${ }^{132 a, 132 b}$, D. Zanzi 99, A. Zaytsev ${ }^{25}$, C. Zeitnitz ${ }^{175}$, M. Zeman ${ }^{125}$, A. Zemla ${ }^{39}$, C. Zendler ${ }^{21}$, O. Zenin ${ }^{128}$, T. Ženiš ${ }^{144 \mathrm{a}}$, Z. Zinonos ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, D. Zerwas ${ }^{115}$, G. Zevi della Porta ${ }^{57}$, D. Zhang ${ }^{33 b}$,ak , H. Zhang ${ }^{88}$, J. Zhang ${ }^{6}$, X. Zhang ${ }^{33 d}$, Z. Zhang ${ }^{115}$, L. Zhao ${ }^{108}$, Z. Zhao ${ }^{33 b}$, A. Zhemchugov ${ }^{64}$, J. Zhong ${ }^{118}$, B. Zhou ${ }^{87}$, N. Zhou ${ }^{163}$, Y. Zhou ${ }^{151}$, C. G. Zhu ${ }^{33 \mathrm{~d}}$, H. Zhu ${ }^{42}$, J. Zhu ${ }^{87}$, Y. Zhu ${ }^{33 b}$, X. Zhuang ${ }^{98}$, V. Zhuravlov ${ }^{99}$, A. Zibell ${ }^{98}$, D. Zieminska ${ }^{60}$, N. I. Zimin ${ }^{64}$, R. Zimmermann ${ }^{21}$, S. Zimmermann ${ }^{21}$, S. Zimmermann ${ }^{48}$, M. Ziolkowski ${ }^{141}$, R. Zitoun ${ }^{5}$, L. Živković ${ }^{35}$, V. V. Zmouchko ${ }^{128, *}$, G. Zobernig ${ }^{173}$, A. Zoccoli ${ }^{20 a}{ }^{20 b}$, M. zur Nedden ${ }^{16}$, V. Zutshi ${ }^{106}$, L. Zwalinski ${ }^{30}$
${ }^{1}$ School of Chemistry and Physics, University of Adelaide, Adelaide, Australia
${ }^{2}$ Physics Department, SUNY Albany, Albany, NY, USA
${ }^{3}$ Department of Physics, University of Alberta, Edmonton, AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; ${ }^{(b)}$ Department of Physics, Dumlupinar University, Kutahya; (c) Department of Physics, Gazi University, Ankara; ${ }^{(d)}$ Division of Physics, TOBB University of Economics and
Technology, Ankara; ${ }^{(e)}$ Turkish Atomic Energy Authority, Ankara, Turkey
${ }^{5}$ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
${ }^{6}$ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA
${ }^{7}$ Department of Physics, University of Arizona, Tucson, AZ, USA
${ }^{8}$ Department of Physics, The University of Texas at Arlington, Arlington, TX, USA
${ }^{9}$ Physics Department, University of Athens, Athens, Greece
${ }^{10}$ Physics Department, National Technical University of Athens, Zografou, Greece
${ }^{11}$ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{12}$ Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
13 (a) Institute of Physics, University of Belgrade, Belgrade; ${ }^{\text {(b) }}$ Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
${ }^{14}$ Department for Physics and Technology, University of Bergen, Bergen, Norway
${ }^{15}$ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA
${ }^{16}$ Department of Physics, Humboldt University, Berlin, Germany
${ }^{17}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
${ }^{18}$ School of Physics and Astronomy, University of Birmingham, Birmingham, UK
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
20 (a) INFN Sezione di Bologna; ${ }^{(b)}$ Dipartimento di Fisica, Università di Bologna, Bologna, Italy
${ }^{21}$ Physikalisches Institut, University of Bonn, Bonn, Germany
${ }^{22}$ Department of Physics, Boston University, Boston, MA, USA
${ }^{23}$ Department of Physics, Brandeis University, Waltham, MA, USA
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; ${ }^{(c)}$ Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; ${ }^{(d)}$ Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
${ }^{25}$ Physics Department, Brookhaven National Laboratory, Upton, NY, USA
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; ${ }^{(b)}$ University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
${ }^{27}$ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{28}$ Cavendish Laboratory, University of Cambridge, Cambridge, UK
${ }^{29}$ Department of Physics, Carleton University, Ottawa, ON, Canada
${ }^{30}$ CERN, Geneva, Switzerland
${ }^{31}$ Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; ${ }^{(b)}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong, China
${ }^{34}$ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
${ }^{35}$ Nevis Laboratory, Columbia University, Irvington, NY, USA
${ }^{36}$ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza; ${ }^{\text {(b) }}$ Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
${ }^{38}$ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
${ }^{39}$ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
${ }^{40}$ Physics Department, Southern Methodist University, Dallas, TX, USA
${ }^{41}$ Physics Department, University of Texas at Dallas, Richardson, TX, USA
${ }^{42}$ DESY, Hamburg and Zeuthen, Germany
${ }^{43}$ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{44}$ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
${ }^{45}$ Department of Physics, Duke University, Durham, NC, USA
${ }^{46}$ SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
${ }^{47}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{48}$ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
${ }^{49}$ Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; ${ }^{(b)}$ Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; ${ }^{(b)}$ High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
${ }^{52}$ II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
${ }^{53}$ SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, UK
${ }^{54}$ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
${ }^{55}$ Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
${ }^{56}$ Department of Physics, Hampton University, Hampton, VA, USA
${ }^{57}$ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA

58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
${ }^{59}$ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
${ }^{60}$ Department of Physics, Indiana University, Bloomington, IN, USA
${ }^{61}$ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
${ }^{62}$ University of Iowa, Iowa City, IA, USA
${ }^{63}$ Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
${ }^{65}$ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
${ }^{66}$ Graduate School of Science, Kobe University, Kobe, Japan
${ }^{67}$ Faculty of Science, Kyoto University, Kyoto, Japan
${ }^{68}$ Kyoto University of Education, Kyoto, Japan
${ }^{69}$ Department of Physics, Kyushu University, Fukuoka, Japan
${ }^{70}$ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
${ }^{71}$ Physics Department, Lancaster University, Lancaster, UK
72 (a) INFN Sezione di Lecce; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
${ }^{73}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
${ }^{74}$ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
${ }^{75}$ School of Physics and Astronomy, Queen Mary University of London, London, UK
${ }^{76}$ Department of Physics, Royal Holloway University of London, Surrey, UK
${ }^{77}$ Department of Physics and Astronomy, University College London, London, UK
${ }^{78}$ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
${ }^{79}$ Fysiska institutionen, Lunds universitet, Lund, Sweden
${ }^{80}$ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
${ }^{81}$ Institut für Physik, Universität Mainz, Mainz, Germany
${ }^{82}$ School of Physics and Astronomy, University of Manchester, Manchester, UK
${ }^{83}$ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
${ }^{84}$ Department of Physics, University of Massachusetts, Amherst, MA, USA
${ }^{85}$ Department of Physics, McGill University, Montreal, QC, Canada
${ }^{86}$ School of Physics, University of Melbourne, Victoria, Australia
${ }^{87}$ Department of Physics, The University of Michigan, Ann Arbor, MI, USA
${ }^{88}$ Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
89 (a) INFN Sezione di Milano; ${ }^{(b)}$ Dipartimento di Fisica, Università di Milano, Milano, Italy
${ }^{90}$ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
${ }^{91}$ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
${ }^{92}$ Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
${ }^{93}$ Group of Particle Physics, University of Montreal, Montreal, QC, Canada
${ }^{94}$ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
${ }^{95}$ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{96}$ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
${ }^{97}$ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
${ }^{98}$ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
${ }^{99}$ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
${ }^{100}$ Nagasaki Institute of Applied Science, Nagasaki, Japan
${ }^{101}$ Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
102 (a) INFN Sezione di Napoli; ${ }^{\text {(b) }}$ Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
${ }^{103}$ Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
${ }^{104}$ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
${ }^{105}$ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
${ }^{106}$ Department of Physics, Northern Illinois University, DeKalb, IL, USA
${ }^{107}$ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
${ }^{108}$ Department of Physics, New York University, New York, NY, USA
109 Ohio State University, Columbus, OH, USA
${ }^{110}$ Faculty of Science, Okayama University, Okayama, Japan
${ }^{111}$ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
${ }^{112}$ Department of Physics, Oklahoma State University, Stillwater, OK, USA
${ }_{113}$ Palacký University, RCPTM, Olomouc, Czech Republic
${ }^{114}$ Center for High Energy Physics, University of Oregon, Eugene, OR, USA
${ }^{115}$ LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
${ }^{116}$ Graduate School of Science, Osaka University, Osaka, Japan
${ }^{117}$ Department of Physics, University of Oslo, Oslo, Norway
${ }^{118}$ Department of Physics, Oxford University, Oxford, UK
119 (a) INFN Sezione di Pavia; ${ }^{\text {(b) }}$ Dipartimento di Fisica, Università di Pavia, Pavia, Italy
${ }^{120}$ Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
${ }^{121}$ Petersburg Nuclear Physics Institute, Gatchina, Russia
122 (a) INFN Sezione di Pisa; ${ }^{\text {(b) }}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
${ }^{123}$ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
124 (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas, LIP, Lisboa, Portugal; ${ }^{(b)}$ Departamento de Fisica
Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
${ }^{125}$ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
${ }^{126}$ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
${ }^{127}$ Czech Technical University in Prague, Praha, Czech Republic
${ }^{128}$ State Research Center Institute for High Energy Physics, Protvino, Russia
${ }^{129}$ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
${ }^{130}$ Physics Department, University of Regina, Regina, SK, Canada
${ }^{131}$ Ritsumeikan University, Kusatsu, Shiga, Japan
132 (a) INFN Sezione di Roma I; ${ }^{(b)}$ Dipartimento di Fisica, Università La Sapienza, Roma, Italy
133 (a) INFN Sezione di Roma Tor Vergata; ${ }^{(b)}$ Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a) INFN Sezione di Roma Tre; ${ }^{\text {(b) }}$ Dipartimento di Fisica, Università Roma Tre, Roma, Italy
135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies, Université Hassan II,
Casablanca; ${ }^{(b)}$ Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; ${ }^{(c)}$ Faculté des Sciences
Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and
LPTPM, Oujda; ${ }^{(e)}$ Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
${ }^{136}$ DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
${ }^{137}$ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
138 Department of Physics, University of Washington, Seattle, WA, USA
${ }^{139}$ Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
${ }^{140}$ Department of Physics, Shinshu University, Nagano, Japan
${ }^{141}$ Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
${ }^{143}$ SLAC National Accelerator Laboratory, Stanford, CA, USA
144 (a) Faculty of Mathematics, Physics \& Informatics, Comenius University, Bratislava; ${ }^{(b)}$ Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145 (a) Department of Physics, University of Johannesburg, Johannesburg; ${ }^{(b)}$ School of Physics, University of the Witwatersrand, Johannesburg, South Africa
146 (a) Department of Physics, Stockholm University; ${ }^{\text {(b) }}$ The Oskar Klein Centre, Stockholm, Sweden
${ }^{147}$ Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Departments of Physics \& Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA
${ }^{149}$ Department of Physics and Astronomy, University of Sussex, Brighton, UK
${ }^{150}$ School of Physics, University of Sydney, Sydney, Australia
${ }^{151}$ Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{152}$ Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
${ }^{153}$ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
${ }^{154}$ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
${ }^{155}$ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
${ }^{156}$ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
${ }^{158}$ Department of Physics, University of Toronto, Toronto, ON, Canada
159 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
${ }^{160}$ Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
${ }^{161}$ Department of Physics and Astronomy, Tufts University, Medford, MA, USA
${ }^{162}$ Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
${ }^{163}$ Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
164 (a) INFN Gruppo Collegato di Udine; ${ }^{(b)}$ ICTP, Trieste; ${ }^{(c)}$ Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
${ }^{165}$ Department of Physics, University of Illinois, Urbana, IL, USA
${ }^{166}$ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
${ }^{167}$ Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
${ }^{168}$ Department of Physics, University of British Columbia, Vancouver, BC, Canada
${ }^{169}$ Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
${ }^{170}$ Department of Physics, University of Warwick, Coventry, UK
${ }^{171}$ Waseda University, Tokyo, Japan
172 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
${ }^{173}$ Department of Physics, University of Wisconsin, Madison, WI, USA
${ }^{174}$ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
${ }^{175}$ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
${ }^{176}$ Department of Physics, Yale University, New Haven, CT, USA
177 Yerevan Physics Institute, Yerevan, Armenia
${ }^{178}$ Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
${ }^{\text {a }}$ Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas, LIP, Lisboa, Portugal
${ }^{\mathrm{b}}$ Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
${ }^{\text {c }}$ Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
${ }^{\mathrm{d}}$ Also at TRIUMF, Vancouver BC, Canada
${ }^{\mathrm{e}}$ Also at Department of Physics, California State University, Fresno CA, USA
${ }^{\text {f }}$ Also at Novosibirsk State University, Novosibirsk, Russia
${ }^{\mathrm{g}}$ Also at Department of Physics, University of Coimbra, Coimbra, Portugal
${ }^{\text {h }}$ Also at Department of Physics, UASLP, San Luis Potosi, Mexico
${ }^{i}$ Also at Università di Napoli Parthenope, Napoli, Italy
${ }^{j}$ Also at Institute of Particle Physics (IPP), Canada
${ }^{k}$ Also at Department of Physics, Middle East Technical University, Ankara, Turkey
${ }^{1}$ Also at Louisiana Tech University, Ruston LA, USA
${ }^{m}$ Also at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
${ }^{n}$ Also at Department of Physics and Astronomy, University College London, London, UK
${ }^{\text {o }}$ Also at Department of Physics, University of Cape Town, Cape Town, South Africa
${ }^{p}$ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{q}$ Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
${ }^{r}$ Also at Manhattan College, New York NY, USA
${ }^{\text {s }}$ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
${ }^{t}$ Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
${ }^{\mathrm{u}}$ Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{\mathrm{v}}$ Also at School of Physics, Shandong University, Shandong, China
${ }^{w}$ Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy
${ }^{x}$ Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
${ }^{\text {y }}$ Also at Section de Physique, Université de Genève, Geneva, Switzerland
${ }^{\text {z }}$ Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal
${ }^{\text {aa }}$ Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, USA
${ }^{\text {ab }}$ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
${ }^{\text {ac }}$ Also at California Institute of Technology, Pasadena CA, USA
${ }^{\text {ad }}$ Also at Institute of Physics, Jagiellonian University, Krakow, Poland
${ }^{\text {ae }}$ Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
${ }^{\text {af }}$ Also at Nevis Laboratory, Columbia University, Irvington NY, USA
${ }^{\text {ag }}$ Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
${ }^{\text {ah }}$ Also at Department of Physics, Oxford University, Oxford, UK
${ }^{\text {ai }}$ Also at Department of Physics, The University of Michigan, Ann Arbor MI, USA
${ }^{\text {aj }}$ Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
${ }^{\text {ak }}$ Also at Institute of Physics, Academia Sinica, Taipei, Taiwan

* Deceased

[^0]: *e-mail: atlas.publications@cern.ch

[^1]: 1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ with respect to the beamline as $\eta=-\ln [\tan (\theta / 2)]$.

