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Assi M. The differential role of reactive oxygen species in early and late stages
of cancer. Am J Physiol Regul Integr Comp Physiol 313: R646–R653, 2017. First
published August 23, 2017; doi:10.1152/ajpregu.00247.2017.—The large doses of
vitamins C and E and �-carotene used to reduce reactive oxygen species (ROS)
production and oxidative damages in cancerous tissue have produced disappointing
and contradictory results. This therapeutic conundrum was attributed to the double-
faced role of ROS, notably, their ability to induce either proliferation or apoptosis
of cancer cells. However, for a ROS-inhibitory approach to be effective, it must
target ROS when they induce proliferation rather than apoptosis. On the basis of
recent advances in redox biology, this review underlined a differential regulation of
prooxidant and antioxidant system, respective to the stage of cancer. At early
precancerous and neoplastic stages, antioxidant activity decreases and ROS appear
to promote cancer initiation via inducing oxidative damage and base pair substi-
tution mutations in prooncogenes and tumor suppressor genes, such as RAS and
TP53, respectively. Whereas in late stages of cancer progression, tumor cells escape
apoptosis by producing high levels of intracellular antioxidants, like NADPH and
GSH, via the pentose phosphate pathway to buffer the excessive production of ROS
and related intratumor oxidative injuries. Therefore, antioxidants should be pro-
hibited in patients with advanced stages of cancer and/or undergoing anticancer
therapies. Interestingly, the biochemical and biophysical properties of some poly-
phenols allow them to selectively recognize tumor cells. This characteristic was
exploited to design and deliver nanoparticles coated with low doses of polyphenols
and containing chemotherapeutic drugs into tumor-bearing animals. First results are
encouraging, which may revolutionize the conventional use of antioxidants in
cancer.

cancer stages; reactive oxygen species; metabolism; genetic mutations; antioxidants

DURING THE AEROBIC METABOLISM, mitochondria splits 95% of

oxygen (O2) into water, leaving 5% of free anion superoxide

(O2
·�) in the cell, thereby, initiating the generation of a panel

of reactive oxygen species (ROS) (8). The term reactive

species encompasses O2, nitrogen, chlorine, bromine, and sul-

furic species. They include O2
·�, hydrogen peroxide (H2O2),

hydroxyl radical (·OH), and nitric oxide (NO·) (23). ROS have

been thought of as unstable, highly reactive, and short-living

species that indiscriminantly react with proteins, lipids, and

DNA to cause oxidative damages. Our current view is that

ROS cannot be considered as a single entity, since each species

has inherent chemical properties and is produced in different

conditions (13, 22). For example, in the presence of ferrous

iron (Fe2�), H2O2 generates ·OH radicals (Fenton reaction) that

interact with any biological target to induce oxidative damage.

Whereas in physiological conditions in which intracellular

Fe2� levels are kept low, H2O2 selectively reacts with cysteine

and selenocysteine residues of different transcriptional factors

(e.g., NF-�B and AP-1) (39), without affecting reduced gluta-

thione (GSH) pool (13), which allows redox biology signaling

rather than oxidative damage. H2O2 is present in nanomolar

range in living cells, its relatively stable structure and its

cellular compartmentalization (e.g., plasma membrane and

mitochondria) confer to it a determinant role in the activation

of signaling pathways controlling proliferation, differentiation,

migration and, even, apoptosis (50). This natural balance

between life and death response is maintained by the presence

of antioxidant enzymes (e.g., superoxide dismutase, catalase,

and glutathione peroxidase) and low-molecular-weight an-

tioxidants (e.g., vitamins, polyphenols, and oligo-elements)

that buffer the intracellular milieu and maintain ROS at a

physiological level. The disruption in the prooxidant/anti-

oxidant balance has been reported in more than 200 clinical

disorders (33).

Over the last two decades, the scientific progress has

stressed a prominent role for ROS in the pathogenesis of
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neurodegenerative diseases, inflammatory bowel diseases, and
cancer (21). Particularly, in cancer, which is the focus of this
review, the excessive production of ROS and related oxidative
stress (OS), are considered as important molecular hallmarks
(38). Indeed, H2O2 production is elevated in tumor tissues
compared with adjacent normal ones (65). Additionally, high
levels of 4-hydroxynonenal (4-HNE) (lipid peroxidation) and
8-oxoguanine (8-oxoG) (oxidative DNA damage) are usually
present in the blood and urine of cancer patients and correlate
with poor prognosis (61, 73). For more than 20 years, large
doses of vitamins C and E and �-carotene have been used as a
therapeutic approach to counteract OS- and ROS-dependent
mechanisms in cancer. Unfortunately, most of these studies
failed and produced very contradictive results that detracted
from our attention to the main goal of generating effective ROS
inhibitors that work in vivo (4, 5). This controversy could be
attributed to the double-faced role of ROS in driving both
proliferation and apoptosis in cancer cells (3, 58). However, for
an antioxidant strategy to be effective, it must target ROS when
they promote proliferation rather than apoptosis. From this
point of view, the notion of “cancer stage” should be taken into
account, as the concentrations of ROS and, therefore, their role
may change with the evolution of the disease (18). This review
distinguishes a different role for ROS between early and late
stages of cancer, which could improve our understanding of the
underpinning molecular mechanisms and help to develop more
effective anticancer strategies.

Early Stages of Cancer: a Prooncogenic Role for ROS

Oxidative DNA damage and reprogramming of cell metabolism.
·OH-induced mutations in purines, pyrimidines, and chromatin
proteins affect genome stability and dynamics of gene expres-
sion and are widely accepted as a cause for cancer initiation
(69). One major oxidative DNA damage product is 8-oxoG,
well known for inducing adjacent DNA base mutations (67).
Most mutations target GC bases and are usually base pair
substitutions rather than deletions or insertions (67). A well-
understood mechanism is the G-to-T conversion found in the
tumor-suppressor gene TP53 (67). Exciting research found that
p53 can act as a stress-sensor protein, and its antioxidant role
emerges from its ability to enhance DNA repair and to regulate
the expression of a subset of antioxidant genes; thus, loss-of-
function mutations in p53 induce a further increase in intracel-
lular ROS, provoke abnormal mitosis, and promote cancer
development (52). Additionally, end products of lipid peroxi-
dation like 4-HNE can compromise DNA repair by interfering
with cysteine, lysine, and histidine residues of proteins in-
volved in the nucleotide excision repair system (15). The
accumulation of 8-oxoG and the deficiency in DNA repair
induce mutations in other genes like RAS. The oncogenic
activation of Ras commonly found in cancer increases the
dependency on the Krebs cycle within mitochondria to produce
ATP and amino acids, as well as O2

·� and H2O2 as main
by-products (16). Particularly, glutamine catabolism during the
Krebs cycle is essential for tumor cell growth in the presence
or absence of glucose (70). As a direct consequence, ATP and
ROS are generated by oxidative phosphorylation and the mi-
tochondrial respiratory chain complexes I, II, and III, respec-
tively (70). The regular exposure of mitochondrial DNA
(mDNA) to O2

·� and H2O2 induces oxidative lesions in genes

encoding for complex I, III, IV, and V (47). Accordingly,
previous research reported that mutations in complex I, which
cause a high production of ROS, enhanced cell proliferation
(28), whereas cells null from mDNA did not produce ROS and
failed to grow (70). In the same way, MitoQ, an analog of the
endogenous mitochondrial antioxidant coenzyme Q10, ham-
pered the proliferation of premalignant mammary cells (48).
These observations indicate that ROS-induced nucleic/mito-
chondrial DNA damage, and metabolic adaptations are crucial
for cancer initiation and promotion. Therefore, inhibition of
ROS may slow and/or increase the latency of early-stage tumor
development (52). As depicted in Table 1, recent preclinical
evidence shows beneficial effects of synthetic and dietary
antioxidant compounds on colon, liver, lung, and prostate
cancer initiation and growth (9, 20, 32, 54, 63).

Inflammation and ROS-dependent prooncogenic signaling
pathways. A sustained cellular proliferation in a microenviron-
ment rich in inflammatory cytokines and growth factors pro-
motes cancer development (12). This process is not indepen-
dent of ROS. Indeed, TNF-� and EGF induce H2O2 production
from NADPH oxidase located at the plasma membrane (40).
Phosphoinositide-3 kinase (PI3K)/Akt is one of the major
routes that maintain cancer cell survival via turning on the
protein synthesis machinery. H2O2 activates the PI3K/Akt
pathway, resulting in the phosphorylation and inactivation of
Forkhead box3a (FOXO3a) (56). This abolishes the sustained
inhibition exerted by FOXO3a on AP-1, leading to its nuclear
accumulation (56). AP-1 is a transcriptional factor for miR-21
that promotes carcinogenesis by targeting various tumor sup-
pressors (66). Indeed, AP-1 upregulates the expression of
miR21, which, in turn, decreases the levels of numerous tumor
suppressors, including phosphatase TENsin homolog and Von
Hippel-Lindau (49, 56), well known to induce apoptosis and
control cell migration and cytoskeleton remodeling. H2O2 may
also induce the activation of the MAPK and ERK1/2, which, in
turn, provoke NF-�B nuclear accumulation and expression of
genes involved in inflammation and extracellular matrix (7).
Recent research indicates that under hypoxic conditions, ROS
activate hypoxia-inducible factor-1� and related angiogenic
gene expression, like vascular endothelial growth factor (10).
Therefore, there is a substantial body of evidence indicating
that tumor cells redefine a new intracellular level of ROS,
superior to normal cells, sufficient to induce proximal signaling
that promote proliferation, survival and, subsequent, cancer
growth (Fig. 1).

Late Stages of Cancer: a Potential Tumor-Suppressor Role
for ROS

Excessive ROS production and metabolic shift toward intra-
cellular antioxidant synthesis. The evolution from a neoplastic
state into in situ carcinoma and invasive carcinoma is, respec-
tively, associated with moderate, high, and excessive increase
in ROS levels (18). This is particularly due to the increased
need of energy blocks that enhances tumor metabolism and the
subsequent ROS production (44). Even though ROS are crucial
for normal-to-cancerous cell transformation and cancer devel-
opment, the accumulation of oxidative insults promotes the
death of cancer cells (71). For this reason, cancer cells have
implemented a mechanism through which some derivatives of
the glycolysis circuit are shuttled to the pentose phosphate
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pathway to synthesize NADPH and regenerate GSH (51).
Consequently, NADPH and GSH buffer OS and allow cells to
survive. Mechanistically, malignant cancer cells produce ex-
cessive levels of H2O2 near the toxicity threshold; thus, giving
an antioxidant like N-acetylcysteine (NAC) reduces OS and
promotes proliferation (35). Panieri and Santoro (44) have
recently reviewed and listed the impact of some agents target-
ing the tumor antioxidant defense. They found that depleting
NADPH and GSH enhanced the susceptibility of the malignant
colon, ovarian, and lung cancer cells to ROS-mediated apopto-
sis (44). This is in line with our research and that of other
laboratories, showing that vitamins C and E, NAC, and quer-
cetin accelerated cancer progression, metastasis, and cachexia
development in rodents, while inhibitors of thioredoxin and
GSH induced tumor regression (2, 25, 36, 45, 57, 64) (Table 1).

Clinically, the expression and activity of antioxidant en-
zymes, as well as GSH content, are increased in malignant
tumors comparing to adjacent normal tissue (30, 46), and a
higher ratio of both levels (malignant/normal) is associated
with poor survival (30). Interestingly, in melanoma, breast, and
ovary cancers, the expression and activity of antioxidant en-

zymes in tumor tissue appear to decrease during neoplastic
stages but increase in more advanced and malignant stages (6,
17, 27, 34, 53, 55) (Table 2). Similarly, inflamed tissue, a
precursor condition for cancer development, exhibits a de-
crease in antioxidant capacities comparing to cancerous tissue
in which antioxidants are highly present (60). Globally, clinical
observations and preclinical data suggest a tumor-protective
role for antioxidants in late stages of cancer.

ROS-mediated tumor suppression routes. Mitochondrial
dysfunction and ROS accumulation are important proapoptotic
events occurring in cancer cells (71). They lead to the expres-
sion of the cell cycle inhibitor p53, cell cycle arrest at the
G2/M phase, DNA fragmentation, and subsequent apoptosis
induction (71). Early in vivo observations demonstrated that
ROS can trigger apoptosis through increasing lipid, protein,
and DNA oxidation within the tumor itself (72). Recent studies
have confirmed that chemotherapeutic agents, like cyclophos-
phamide, increase ROS-induced lipid peroxidation and apopto-
sis in sarcoma-180 tumor tissues (29). Mitochondria-dependent
apoptosis is the most studied path. Excessive levels of ROS
induce the oxidation of cardiolipin (phospholipids), which, in

Fig. 1. The double-faced role of reactive oxygen
species (ROS) in cancer. Figure summarizes main
data cited in the text. High levels of ROS, resulting
from abnormal cellular metabolism and inflamma-
tion, promote tumor proliferation, vascularization,
and metastasis, while an excessive amount of ROS
is likely to induce senescence and/or apoptosis.

Table 2. Clinical studies demonstrating that the expression/activity of antioxidant enzymes and GSH content increase in
malignant tumors comparing to benign hyperplasia or precursor lesions

Type of Cancer

Patient

Number Malignant Versus Benign or Precursor Events Antioxidant Defense Detection Method

Thyroid (51) 34 Carcinoma vs. adenoma 1 SOD, CAT, and GPx activity Colorimetric method
Ovary (17) 26 Malignant vs. benign 1 GSH content Colorimetric method
Breast (17) 26 Malignant vs. benign 1 GSH and GPx activity Colorimetric method
Prostate (6) 27 Cancerous vs. neoplastic 1 CuZnSOD expression IHC
Breast (34) 50 Stage III vs. stage I/II 1 SOD, CAT, and GPx activity Colorimetric method
Skin (53) 36 Melanoma vs. actinic keratosis precancerous lesions 1 CuZnSOD, MnSOD, and CAT expression IHC
Pancreas (58) 13 Cancerous vs. pancreatitis 1 MnSOD expression WB
Ovary (27) 29 Carcinoma vs. benign cystadenoma 1 CuZnSOD and MnSOD expression WB and IHC

GSH, glutathione; IHC, immunohistochemistry; WB, Western blot.
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turn, constitute a docking platform for the formation of tBid/
Bax pore at the outer mitochondria membrane, allowing mito-
chondria-to-cytoplasm exit of cytochrome c (31). Then, cyto-
chrome c forms with apoptotic protease activating factor 1 and
procaspase-9 a complex called “apoptosome,” which once acti-
vated, cleaves executioner caspases 3 and 7 to promote DNA
fragmentation and apoptosis induction (11). Senescence consti-
tutes another form of tumor regression, as it disables the
proliferating capacity of cancer cells without inducing cell
death (1). Indeed, the increase in ROS amounts induces the
activation of MKK3/6 and its downstream p38-MAPK, which,
in turn, phosphorylates p53 at three different serine residues
Ser-33, Ser-37, and Ser-46 (24). Activated p53 then promotes
the expression and stabilization of p16INK4�, p14/p19ARF, and
p21 to induce replicative senescence and irreversible cell cycle
arrest at phase G1 (14, 59). Additionally, ROS are able to
maintain cancer cells in a senescent state through the acti-
vation of NF-�B and subsequent release of IL-6/IL-8, a
phenomenon known as senescence-associated secretory
phenotype (68). To date, research in this field indicates that
MKK/p38-MAPK is the main ROS-dependent pathway trig-
gering senescence (Fig. 1).

Nanoformulation of Polyphenols in the Development of
Potential Drug Carriers for Selective Tumor Targeting

Naturally, the above-mentioned mechanisms underline the
need for a therapeutic approach that substitutes the simple
antioxidant treatment and allows a “smart” targeting of a
tumor. Besides the classical role of polyphenols in the activa-
tion of the Keap1-Nrf2 system, their ability to modulate im-
portant signaling pathways and, subsequent, cellular growth
has raised the question about their utility in cancer therapy
(41). However, like other nutritional and antioxidant com-
pounds, the use of polyphenols in a supplementation setting is
not without risk, as there is a clear dose-dependent function-
ality. For example, low doses of green tea extracts are benefi-
cial, while high doses are likely to aggravate carcinogenesis
and hepatotoxicity (42). Additionally, past clinical studies have
taught us that unspecific systemic supplementation is complex
to control and predict its outcomes, because of a multitude of

factors like, the optimal dose, bioavailability, comorbidity,
self-prescription, and patient’s responsiveness (4). For these
reasons, this paragraph focuses on the biochemical and bio-
physical features of a green tea extract called, epigallocatechin
gallate (EGCG), which could be exploited in a new context to
increase the effectiveness of standard anticancer therapies.
EGCG is an interesting candidate, as it possesses hydrophobic
characteristics that facilitate the interaction with lipid rafts on
the plasma membrane to promote endocytosis (43). Addition-
ally, EGCG may interact with specific membrane receptors
highly expressed by tumor cells, such as the laminin receptor,
which confers to it a higher affinity for cancerous cells com-
pared with normal ones (37). These observations have intro-
duced EGCG to nanomedicine with the hope that it will
provide a more selective drug delivery system in cancer.
Indeed, gold and polymeric nanoparticles (approved by the
U.S. Food and Drug Administration), as well as liposomes,
have been coated with low levels of EGCG and injected into
animals bearing melanoma and bladder and prostate tumors
(19). EGCG provoked increased cellular uptake and subse-
quent accumulation of EGCG-coated nanoparticles in tumor
tissue (19, 37). More interestingly, EGCG nanoparticles en-
hanced the ability of the chemotherapeutic agent cisplatin to
induce tumor regression and prolong lifespan in animals with
malignancy (62). Therefore, chemotherapeutic agents encap-
sulated in EGCG-coated nanoparticles may represent a prom-
ising option to increase treatment efficiency and reduce related
side effects.

Perspectives and Significance

The biological functions exerted by ROS appear to be
dependent on the stage of tumor. As depicted in Fig. 2,
precancerous stages, especially in melanoma and ovary and
breast cancer, are associated with a decrease in antioxidant
defense. The subsequent accumulation of intracellular ROS
leads to oxidative DNA damage and mutations into proonco-
genes and tumor-suppressor genes, which promote cancer
development. Systematic reviews and meta-analysis are still
needed to confirm that the decrease in antioxidant activity
occurs in a general manner during the initiation of different

Fig. 2. Antioxidants reduce cancer initiation but
enhance progression/invasiveness during carci-
nogenesis. Precancerous conditions, like in-
flamed or neoplastic tissue, are associated with a
decrease in antioxidant response, allowing ROS
to induce further DNA damage/mutations and
tumor development. Whereas in later stages,
antioxidant activity increases to limit excessive
intratumor oxidative damage and help cancer
cells to escape apoptosis. In both cases, intracel-
lular antioxidants are modulated to promote tu-
mor cells’ survival.
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types of cancer. In later stages, when cancer acquires a malig-
nant and invasive phenotype, the activity of antioxidant en-
zymes and the intracellular pool of NADPH and GSH increase
to limit oxidative damage caused by excessive ROS genera-
tion; thus, antioxidants at late stages of cancer are likely to help
tumor cells in escaping ROS-induced oxidative insults and
apoptosis. These molecular explanations are in line with the
current literature, indicating that antioxidants should be
avoided in patients with advanced stages of cancer and/or
undergoing radiotherapy (26). After the completion of antican-
cer treatments, nutritional support could be useful for patients
with systemic deficiencies to alleviate symptoms like mucosi-
tis, fibrosis, nephrotoxicity, and ototoxicity.
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