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The differentially heated cavity 
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Abstract. This review discusses recent work dealing with natural 

convection flow in a differentially heated cavity. The emphasis is placed 

primarily on work dealing with the non-Boussinesq regime, transitional 

flow, and turbulent flow. Direction for future work in areas where 

additional effort is required is also provided. 
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1. Introduction 

Flow in rectangular enclosures are encountered in a variety of industrial applications. 

Because of their importance, such flows have been the subject of research for many 

decades. An attempt at a complete review and history of this subject is a formidable 

task which I will not attempt here. Instead, I Will discuss the more recent results that 

have some technological importance and also reflect my current interest. 

My discussion will deal exclusively with the study of natural convection flow within 

a vertical rectangular enclosure resulting from lateral heating in the presence of 

gravity. This is a prototypical problem that is relevant to many applications, such 

as thermal insulation of buildings, solar energy storage, crystal growth, and nuclear 

reactor core isolation. In many of these applications, direct modelling of the physical 

processes is rather complex. As a result, natural convection flow in this idealized 

configuration offers the opportunity for researchers to understand the more 

fundamental aspects of the resulting flows. In point of fact, this prototypical problem 

is considered as a benchmark in evaluating computational methods in the laminar 

(low Rayleigh number) regime. More importantly, this problem offers the opportunity 

to fully understand the transition mechanisms and gain substantial insight into natural 

convection turbulence. Since the flow is fully enclosed, boundary conditions are well 

defined. Ambient turbulent fluid fluctuations, that are difficult in general to 

characterize, do not enter in studies of flow transition and turbulence within the 

cavity. Furthermore, because the flow in fully bounded, no artificial (and generally 

incorrect) boundary conditions need be introduced in computational studies. 

Excellent reviews of the earlier works on this problem are given by Ostrach (1972, 

pp. 161-227, 1982, pp. 365-79), Catton (1978, pp. 13-30), and Yang (1987, pp. 

13.1-13.51, 1988). After discussing simplifying hypotheses that are often used in 

analyses of the problem, we will briefly review some of the earlier works, but more 
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emphasis is placed on more recent works dealing with non-Boussinesq effects, and 

studies that have shed some light on instabilities, transition, and turbulence within the 

cavity. 

2. Problem definition 

Consider a three-dimensional enclosure of width L, height H, and depth D containing 

a fluid as shown in figure 1. The fluid is initially quiescent and at a uniform temperature 

T* and pressure p*. The walls of the container are initially at the same temperature 

T*. The x*-coordinate is fixed on the left wall, and the y*-coordinate is positive in 

the upwards direction. At times larger than zero the two vertical walls located at 

x* = 0, L are maintained at temperatures T~ and T* respectively, where AT =- T* - h 
T* > 0. Asterisk superscripts denote dimensional quantities. 

We keep assumptions to a minimum at this stage and non-dimensionalize the 

problem with reference quantities for length, velocity, temperature, and thermodynamic 

pressure using the width L, the viscous diffusion speed ur=ct,/L, the 

average temperature T = (T* + T*)/2, and the initial pressure p, = p*, respectively, 

as follows: 

x*=Lxi ,  t*=(L/u)t ,  u * = u u  i, H*--p,u,ZH, 

p*=p,p,  T * = T , T ,  i0*=p, i6 , c* p ~- C p r C p ,  

fl*=fl, fl, #*=#,lZ, 2"=1z ,2 ,  k * = k , k ,  (1) 

where we have introduced a number of fluid properties, all of which are evaluated 

at the reference temperature and thermodynamic pressure. 

The resulting dimensionless governing equations, valid under low Math number 

conditions (generalized from those given by Paolucci 1982), but allowing for arbitrary 

density variations, are given as follows: 

t~p/Ot + OpuJt~X i = 0, (2a) 

Opus Opuju~ _ OH RaPr  
- + ~- - - p n ~  + Pr Ozi~, (2b) 
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Figure 1. Schematic view of the cavity. 
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exj\ Oxjl 

p = p (/5, T), 

(2c) 

(2d) 

where ui = (u, v, w) are velocity components in the xi = (x, y, z) directions respectively, 

I-I is the reduced pressure which accounts for the hydrostatic and hydrodynamic 

effect, n~ = (0, - 1, 0) is the unit vector in the direction of gravity, and z o is the viscous 

stress tensor given by 

/ c~u~ c~uj ~ tgUk 
rij= l a l ~  + + 23ij-- ,  (3) 3Xk \ox~ 

where 2 is the coefficient of bulk viscosity, and 3~j is the Kronecker  delta. 

The initial and boundary conditions expressed in dimensionless form are: 

u~=0, T = I  at t=0 ,  

u~=0, T = l + e  at x=O and % = 0 ,  T = l - e  at x = l ,  

u~ = O, dT/c~y = 0 at y = O,A n, and ui = 0, c~T/c~z = 0 at z = _ AD/2. 
(4) 

The spatially uniform pressure/5 =/5(0 appearing in the energy equation and the 

equation of state accounts for the change of static pressure with time. The separation 

of pressure components is essential in removing acoustic waves from the equations, 

however this splitting introduces/5 as an extra unknown. Now the general equation 

of state can be rewritten more explicitly as 

p=exp(--f~,dT'+f~xdp'). (5) 

where fl = - (dp/dT)/p is the coefficient of volume expansion, and x = (dp/d/5)r/p is 

the isothermal compressibility coefficient. Using the global mass conservation 

statement 

d 
| pdV= 0, (6) 

in conjunction with local continuity and energy equations, we obtain the following 

differential-integral equation for the static pressure, 

d[~ {fskC3Tds~+ f v U , ~ [ p % / ( f l _  fyOK " ~ ] d V }  + - - =  -~dp ) 
dt ~x~ 

{fv[PC.(x-f~dT')/(fl-J1~dp)-/"'" -"~ F]dV}. (7) 

where S and V are the surface area and volume of the cavity. This equation is 

complemented by the initial condition 

/5=1 at t=O.  (8) 
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The independent dimensionless parameters appearing in the problem are: 

1 Ra = fl,oATL3/v,o~,, Pr = v,/o~,, e = -ifl, AT, 

F = (1/a,T,)((y, - 1")/~,,), A H = H/L,  A o = D/L. (9) 

In the above definitions and non-dimensionalizations p is the density; ~ = k/pcp and 

v = I~/P are the kinematic viscosity and thermal diffusivity, while/~ and k are the 

dynamic viscosity and thermal conductivity; %, cv and ~, are the specific heats at 

constant pressure and volume-and their ratio; a = (O~/OT)p/O is the coefficient of 

tension; and lastly 9 is the magnitude of the gravitational field. 

We emphasize the fact that (2), (3), and (7) are applicable to the natural convection 

flow of any fluid within a fully enclosed cavity. No assumptions regarding property 

variations are made. Solutions of these equations account for all non-Boussinesq 

effects in natural convection, Most non-Boussinesq results to date are for air, whose 

flow may accurately be described by using the Stokes assumption 2 = - ~ #  and the a 
thermodynamic properties by the calorically perfect gas assumptions cp = 1, fl = 1/T, 
x = 1/0, and a = 1/T. Subsequently, we have F = (V, - 1)/V,, and (5) and (7) simplify to 

p =O/T, (10) 

dO_ f k OTdSj. (11) 

In addition, for air y,---7/5, Pr = 0.71, and the transport properties are accurately 

approximated by the Sutherland law models 

~ = T3/2{ 1 ~  S/t~ T 3 / 2 f l + S k )  
\ T + S-----~,]' k =  \ T - - ~ k  J ,  (12) 

where using T, = 300 K and normal pressure, the dimensionless Sutherland constants 

are S = S*/T,  = 0.368 and S h = S*/T,  = 0.648 (see White 1974). From the definition 

of e we note than 0 < e < 1 corresponds to the temperature difference range of 

0 <  AT < oo. Obviously the range of validity of the Sutherland law is considerably 

less. As a point of reference, note that e = 0"6 corresponds to T* = 480 K and 

T* = 120 K for T = 300 K, and represents a practical upper limit on the validity of 

the results for air resulting from increasing errors in the Sutherland law conductivity 

at the cold wall (see Chenoweth & Paolucci 1986). 

It was shown by Paolucei (1982) that in the limit e << 1, we have 0 =1 ,  dO/dt = O, 
and subtracting out the hydrostatic components, (2), (3), and (5) reduce to the classical 

Boussinesq equations 

0u__ii = 0, 

Ox i 

Ou~ u. OU~ = OIId 

Ot + J Oxj Ox~ 

00 O0 0 2 0 

0--; + u j - -  = dx i dxjdx~ 

(13a) 

02 Ui 

RaPr0n~ + Pr OxjOxj (13b) 

(13c) 

where Hd is the dynamic component of pressure and 0 = ( T -  1)/2E. It is emphasized 
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that the Boussinesq equations will only yield relatively accurate solutions only for 

small temperature differences. For example, Gray & Giorgini (1976) show that the 

maximum temperature differences for air and water for which these equations are 

applicable are 28-6 ° and 1-25°C respectively. 

Solutions for the Boussinesq equations have been obtained for a large range of 

Prandtl numbers and primarily in a two-dimensional cavity where A D ~ .  

Furthermore, some solutions have been obtained using perfectly conducting top and 

bottom boundaries so that the thermal conditions at y = 0, An in (4) are replaced by 

T = 1 + e(1 - 2x). (14) 

The problem studied here is perhaps the simplest one possible involving convection 

heat transfer between two isothermal boundaries; in spite of this apparent simplicity, 

the physical nature of the resulting flow regions, even at steady-state, can be an 

incredibly complex function of the controlling independent dimensionless parameters. 

3. Numerical techniques 

The Boussinesq equations have been solved in both streamfunction-vorticity and 

primitive variable formulations. Since most of the recent results deal with 

non-Boussinesq effects, and since any computational scheme that one hopes to apply 

to transition and turbulence studies must be easily extendable to three-dimensions, 

most of the results that will be discussed have been obtained using a primitive variable 

formulation. 

The most accurate simulations to date have used a primitive variable formulation 

in conjunction with either a pseudo-spectral or a control-volume spatial approximation 

combined with a finite-difference time integration. 

The principle of pseudo-spectral methods is the expansion of a variable in a finite 

series of orthogonal trial solutions. For the present problem where we have rigid 

walls one may use Chebyshev polynomials. In the pseudo-spectral method the 

Chebyshev polynomials are evaluated at specific spatial locations called the Gauss-  

Lobatto points. The choice of these collocation points simplifies the computation of 

the nonlinear terms and allows the use of Fast Fourier Transforms. The main 

advantage of pseudo-spectral methods is their accurate approximation of sufficiently 

smooth functions. However, they a r e  restricted to simple geometries, the grid 

refinement distribution in the boundary layers is only trigonometric, and the 

construction of an efficient code is quite complicated. 

Therefore, finite-difference or finite-volume methods are preferred by most 

researchers. However, their application must meet strict requirements. The scheme 

must be able to resolve accurately all scales of motion down to the size of a few grid 

cells. Moreover, there must be none or little numerical diffusion. These requirements 

rule out standard upwind schemes, which are first order and have strong numerical 

diffusion. Therefore, numerical schemes with at least second-order accuracy,, are 

mandatory. These schemes are usually applied on a staggered grid located on or 

within a finite control volume. The velocity components are defined at the centre of 

the sides whose normals point in the corresponding component directions, while 

scalar quantities are defined at the centre of the volume. For the finite difference 

formulation of the nonlinear convective terms one should adopt an energy conserving 
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scheme to avoid nonlinear instability (see Arakawa 1966, and Piacsek & Williams 

1970). The time advancement is frequently calculated by either the Euler or the 

Adams-Bashforth method. 

To enforce the condition of incompressibility in the Boussinesq limit, the continuity 

equation is reformulated in the form of a Poisson equation for the dynamic pressure 

(see Peyret & Taylor 1983), 

~X i dX i dX i dt ~x dXi/I 

in which R i contains the contributions of the nonlinear terms, To calculate the pressure 

at time step n the last term on the right-hand side of (15) is approximated by 

o (o., l , 

The first term on the right-hand side is set equal to zero in agreement with continuity. 

The second term is kept as a correction in order to force the solution to a divergence- 

free flow field (see Deardorff 1973, pp. 271-311). 

For details of analogous algorithms applied to the non-Boussinesq equations the 

reader is referred to Chenoweth & Paolucci (1986) for the control volume formulation 

and to Le Qu6r6 et al (1992) for the pseudo-spectral formulation. 

Next we consider the boundary conditions. On the fixed walls one must use the 

no-slip condition for the velocity and the appropriate temperature conditions. In 

solving the discretized form of the Poisson equation, knowledge of the pressure 

gradient normal to the walls is required. A simple and popular choice is to set this 

gradient to zero similar to boundary layer flows. For physical reasons no boundary 

conditions for the pressure ought to be prescribed at the walls. A zero gradient normal 

to the walls, however, is not a bad approximation as long as 'the Rayleigh number 

is high so that boundary layers exist, and as long as the boundary layers are neither 

separated nor leaving the surface. Such is not the case in all wall regions of the cavity. 

A consistent and correct solution for the pressure gradient is obtained by evaluating 

the momentum equations at the walls. 

In a direct simulation of the transition or turbulent flow, the flow field must remain 

completely resolved up to the wall. This sets important restrictions on the grid spacing. 

Therefore, one must resort to a non-uniform grid near the wails. 

To conclude this section we briefly discuss the initial conditions. Most simulations 

of laminar convection are started from the quiescent isothermal conditions expressed 

in (4) (and (8) in solving the non-Boussinesq equations). However, to expedite 

calculations, a different approach is used in transition studies. In this case, the initial 

conditions of an integration for a certain value of the Rayleigh number is obtained 

from the solution corresponding to a Rayleigh number which is close to it. 

4. Cavities with AH>~ 1 

Although gas gaps between vertical parallel walls have been used for many decades 

to reduce heat transfer, their use with large horizontal temperature differences has 

become increasingly important during the last two decades. Examples of typical 

applications include insulation using double-pane windows or double wails, nuclear 
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reactors, fire in buildings, solar collectors, and electronic components in enclosures. 

Still the majority of the published investigations involve small temperature differences 

where gas properties are taken to be constant and the Boussinesq limiting equations 

are valid. Here .we briefly describe some of the known non-Boussinesq analytical, 

experimental, and numerical results in the laminar regime. 

The first model of the flow in the cavity was proposed by Batchelor (1954) for 

small values of Rayleigh number. This model is not very valuable since these small 

values are well below values of practical significance. Gill (1966) subsequently 

proposed a boundary layer model in a two-dimensional cavity having large aspect 

ratios (A n >> 1) and containing a fluid of large Prandtl number. Bejan (1979) completed 

Gill's boundary layer model by imposing adiabatic boundary conditions (and zero 

global heat flux) on the top and bottom boundaries, even though the boundary layer 

is not valid on these horizontal walls. The experimental studies of Eckert & Carlson 

(1961) using air and Elder (1965) using silicone oil (Pr ~ 103) contributed a great deal 

to understanding the flow in cavities whose vertical aspect ratios varied between 2"1 

and 46.7 and the Rayleigh numbers between 2 x 102 and 2 x 105. The work of Gill 

(1966) modified by Bejan (1979), was extended by Graebel (1981) who examined the 

influence of the Prandtl number. He demonstrated that the flow is only weakly 

influenced when the Prandtl number is of order unity. 

Hara (1958), and Sparrow & Gregg (1958) gave analytical results for a vertical flat 

plate with large temp.erature differences. In general their results are not applicable 

to the vertical slot; however, Chenoweth & Paolucci (1986) have shown how their 

heat transfer results can be adapted to the differentially heated cavity. Polezhaev 

(1967) used equal Sutherland laws for dynamic viscosity/~ and thermal conductivity 

k (constant Prandtl number when the heat capacity at constant pressure is constant) 

in his numerical solution of the compressible Navier-Stokes equations; he used a 

relatively small temperature difference parameter of e = 0.2 and slot aspect ratios of 

unity. Rubel & Landis (1970, pp. 1-11) made an expansion in terms of e to obtain 

first-order corrections to the zeroth-order Boussinesq results. They included fluid 

property variation by means of temperature power-law expressions and they assumed 

that the pressure was independent of the temperature difference as well as other 

parameters. Leonardi & Reizes (1979, pp. 297-306, 1981, pp. 387-412) also 

numerically solved the compressible Navier-Stokes equations using equal Sutherland 

laws for # and k; however they did examine cases where larger temperature differences 

were involved (e ~< 0.6), and they studied only aspect ratios of 1 and 2, although some 

of their results are suspect (see Chenoweth & Paolucci 1986). 

Experimental studies using gases with large temperature differences have been 

equally sparse. Eckert & Carlson (1961) did investigate the high aspect ratio problem, 

but they only examined cases where c~< 0.13, so that the Boussinesq solution is 

approximately valid for their results. Similarly, all of the Mordchelles-Regnier & 

Kaplan (1963, pp. 94-111) experiments in the laminar region were in the Boussinesq 

regime, although they did obtain some turbulent non-Boussinesq results for a single 

flat plate. More recently, Duxbury (1979) obtained experimental results covering a 

wide parameter range in the steady laminar regime, but with e ~< 0-15. It is not clear 

to what extent the' above experimental studies were affected by heat losses from the 

ends. 

Chenoweth & Paolucci (1985) investigated the steady-state fully developed 

boundary-layer region for large temperature differences between vertical isothermal 

walls. They derived some exact laminar solutions to the Navier-Stokes equations 
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for perfect gases with the properties described by unequal Sutherland laws. They 

produced variable Prandtl number results for 0 < ~ < 1 using air As an example, 

although the accuracy of the Sutherland law conductivity degrades rapidly above 

e = 0"6. 

Varying amounts of theoretical and experimental information relating to flow 

region classification in the Boussinesq limit and near Boussinesq limit can be found 

in Batchelor (1954), Bergholz (1978), Duxbury (1979), Eckert & Carlson (1961 ), Lauriat 

(1980), Lee & Korpela (1983), Mordcholles-Regnior & Kaplan (1963, pp. 94-111), 

Polezhaev (1968), and Yin e t  a l  (1978). Much of the difference in the flow region 

bounds often can be related to the use of different criteria for the classification, 

although in some cases poor numerical resolution or experimental difficulties are 

responsible for the differences. A somewhat different picture will emerge if velocity 

field rather than thermal field or heat transfer information is used. Chenoweth & 

Paolucci (1986) present results for air using the ideal gas law and Sutherland law 

transport properties. Numerical solutions of the transient Navier-Stokes equations 

are used to generate laminar steady-state results primarily in the independent 

boundary layer region and the developing merged boundary layer region. However, 

other flow regions are also covered to the extent necessary to construct a bettor 

understanding of the entire laminar parameter range for all aspect ratios greater than 

or equal to unity. The velocity field behaviour is used to classify the different flow 

regions. The need to construct a map of flow regions in parameter space, which 

includes stationary and oscillatory stability boundaries, necessitated the use of the 

transient form of the equations. Wide ranges of aspect ratio, Rayloigh number, and 

temperature-difference parameters are examined. The results are compared in detail 

to the exact solution in the conduction and fully developed merged boundary layer 

limits for arbitrary temperature difference, and to the well-established Boussinesq 

limit for small temperature difference. 

Figure 2 presents the flow region maps for Pr = 0.71 obtained from their extensive 

computations. The solid lines for the Boussinesq limit e << 1 and the dashed lines for 

= 0.6, which bound some of the regions, denote lines of stability. The limits of the 

boundary layer regimes are given by the dot-dash and the dotted lines, for t << 1 and 

e=0.6,  respectively. The shaded region represents the unsteady transition to 

I0 s . 
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turbulence for 5 << 1. Correlations defining boundaries of the regions shown in figure 2 

are given by Chenoweth & Paolucci (1986) and are discussed below. 

The most familiar flow region, often called the boundary-layer region, is 

characterized by independent (non-interacting) boundary layers on the hot and cold 

walls; here the boundary layers are separated by a nearly stagnant core which always 

displays an approximately linear vertical thermal stratification. The boundary layer 

region exists primarily (although not exclusively) for low aspect ratios, 

1 <~ A n <~ 12(1 + 45)/Ra °'25~, (17) 

and for Rayleigh numbers in the range 

( 1_0,  
7 x 103(AH - 0"6) < Ra < IO'*A n 1.5 + A4,/, (18) 

for e << 1, and 

4.5 x 103(A, - 0-6) < Ra  < 8 x 1 0 6 A t e * 7  + 5 × 103(An/12) 6 

1 + (An/12) 6 
(19) 

for 5 = 0.6. The upper limits in (18) and (19) represent critical Rayleigh numbers, since 

above those limits the flow no longer reaches a steady-state. When Ra is increased 

significantly above these critical values, the flow becomes increasingly unsteady and 

eventually becomes turbulent. 

Below the lower limit of the independent boundary-layer region and for 

400[A.(1 - e 3) - 2] < Ra < 7 x 103(1 - 5 2 ) ( A / ~  - 0 " 6 ) ,  (2o) 

and aspect ratios approximately in the range (17), the velocity boundary layers are 

interacting to an increasing degree as the value of Ra is decreased. Finally for 

Ra < 400[A.(I - 53) - 2], (21) 

fully developed merged boundary layers exist near the mid-height of the slot. At that 

point both velocity and temperature are within 3% of universal profiles which are 

independent of the vertical coordinate. As the aspect ratio is increased further, the 

fully developed profiles exist in a region whose size is proportional to A , ,  since the 

development regions near each end remain nearly fixed in size for given Ra and 5. 

The fully developed region is centred about An/2 for small Ra, but for non-Boussinesq 

cases, when Ra is near the critical value of 5760 (1 + 0.4345) -3 and A N > 11, it may 

be centred significantly below An/2, since near that limit the bottom development 

region is approximately half that found at the top of the slot. For aspect ratios greater 

than 12-15, if the critical Rayleigh number of 5760 (1 + 0.4345)-3 is exceeded, another 

type of instability can appear. This instability is characterized by standing waves and 

gives rise to multicellular flow inside the primary roll. Then combinations of large 

and small cells cover the entire slot and increase in strength with increasing Ra. The 

number and size of these cells depend on A, ,  Ra and 5. We note that in the Boussinesq 

limit these cells are approximately the same size, their number depends only on the 

aspect ratio, and their strength increases with increasing Ra (Lee & Korpela 1983). 

This multicellular motion is completely steady. 

In the Boussinesq limit, as the Rayleigh number is further increased, a region of 
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reverse transition from multicellular to unicellular flow exists. This region is bounded 

by the multicellular region described by 

A n > 4"2 x 10- 3 Ral.3x (Ra - 5760)- t/z, (22) 

and by a thin boundary layer region containing steady secondary motion described by 

4 x 10'*A~/'*(1 + 10-2A~/'*) < Ra < 10'*An(I-5 + (104/A~)). (23) 

Above the upper limit of (23), unsteady motion exists. The region of secondary motion 

described by (23) is in fact also valid for relatively low aspect ratios as shown in 

figure 2 and occupies most of the boundary layer region defined by (18). This is also 

true for e = 0-6 since for An  < 8 the lower limit of (23) is then replaced by 

Ra > 3.5 x 104A~/a. (24) 

The reverse transition region, whose boundaries merge as A n ~ ~ for e << 1, does 

not exist for e = 0.6 since in this case the boundaries merge near the upper limit of 

(17) as shown in figure 2. In fact, in this case, the approximate expression (22) and 

the lower limit of (23) are now replaced by 

Ra > 2880 + (40/An) 6"67, (25) 

so that strong multicellular motion is now present in this entire region. This large 

change for An  >> 1 and for e = 0-6 is accompanied by a greatly reduced critical Rayleigh 

number for unsteady motion as indicated by the upper limit of (19). The steady 

multicellular region is now confined to a narrow region between (25) and the upper 

limit of (19). 

The location of the unsteady transition, displayed in figure 2, is defined by the 

upper limit of (18). The results of Mordchelles-Regnier & Kaplan (1963, pp. 94-111) 

for A n < 12 and extending down to aspect ratios as low as 1.67, predict that the 

critical Rayleigh number varies with Aft t/2. Most of the disagreement with the results 

of Chenoweth & Paolucci (1986) is at the lower aspect ratios where they show an 

Aft 3 dependence. We note that as the aspect ratio is decreased, heat losses from the 

ends become more and more important and cause instabilities to occur at a lower 

value of Rayleigh number. Apparently, these end losses are responsible for the 

Mordchelles-Regnier & Kaplan (1963, pp. 94-111) weaker dependence on aspect 

ratio. Quantitative agreement is much better with results obtained by linear stability 

analysis by Bergholz (1978). In making this comparison, use is made of the fact that 

the temperature in the core is approximately linearly stratified with a stratification 

parameter which is near unity in this region. Bergholz's results do show that the 

critical Rayleigh number varies approximately with aspect ratio as Aft 3 for A u < 6. 

The result obtained from Bergholz's analysis arises from a travelling wave instability 

along the side walls. However, Chenoweth & Paolucci (1986) offer another possible 

explanation for the A~ 3 behaviour due to a "hydraulic" jump instability on the end 

walls. The experimental results of Ivey (1984) for Pr = 7.1 and Au = 1 dearly indicate 

the presence of a "hydraulic" jump and a stationary wavetrain downstream of it 

when the Rayleigh number is above the critical internal Froude number. His 

observations are in complete agreement with those of Paolucci & Chenoweth (1989). 

Bergholz's (1978) results also show that there is a minimum critical Rayleigh 

number for oscillatory instability, occurring at 1"15 x 10 ~ at an aspect ratio near 12. 
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This compares well with the minimum of Ra = 2.4 × l0 s also occurring near AH = 12 

shown in figure 2. At aspect ratios larger than 12 the results of Chenoweth & Paolucci 

(1986) show that the stratification parameter is nearer 0.5, and the critical Rayleigh 

number is approximately linear with A X. This picture is in good agreement with the 

travelling wave instability from steady to unsteady motion given by Bergholz (1978), 

and consistent with experimental data of Mordchelles-Regnier & Kaplan (1963, 

pp. 94-111) for 12 ~< An ~< 25. 

Results of Lee & Korpela (1983), and Lauriat (1980) show that in the Boussinesq 

limit, for Ra ~ 104 the flow changes from unicellular to multicellular motion as the 

aspect ratio is increased. They observe the transition occurring near An = 11 - 12, 

in agreement with the minimum aspect ratio shown in figure 2. 

Still in the Boussinesq regime, Bergholz (1978) also obtained the critical Rayleigh 

number corresponding to the standing wave or stationary transition from fully 

developed merged boundary layers to steady multicellular motion. He obtained this 

value as approximately 5740, which again compares very well with the results, 

for 

Ra < Ra c = 5760(1 + 0-4345)-3, 

An > And = (2 + Ra/400)/(1 -- e3), 

(26) 

(27) 

given by Chenoweth & Paolucci (1986) in the limit e ~0 .  However, Lee & Korpela 

(1983), using 17 grid points in the horizontal direction, obtain this transition between 

7100 and 7810 for A n = 20, which is much higher than the result shown in the figure 

and Bergholz's result. They explain this disagreement by noting that for large but 

finite aspect ratios of order 20, there is a small positive vertical stratification through 

the cavity, since the boundary layers are not yet completely developed, and Bergholz 

shows that the flow is stabilized with increasing stratification. Even though this 

argument correctly explains why the critical Rayleigh should increase for lower aspect 

ratios, figure 2 does not show a substantial increase until A H < 20. In fact, the 

calculations of Chenoweth & Paolucci (1986) for Ra = 7100 and An = 20 show 

multicellular motion, in agreement with the results of Roux et al (1980) obtained by 

using a higher order scheme. A better explanation for the disagreement is that Lee 

& Korpela (1983) lacked sufficient horizontal resolution. The lower bound on the 

fully developed boundary layer region A n > Ra/500 given by Batchelor (1954) agrees 

with figure 2 for large Ra but differs substantially at low Ra since fully developed 

boundary layers at the mid-height plane cannot be developed for A n < 2 even if Ra 

and t approach zero. 

Polezhaev (1968) constructed a somewhat complete picture of the flow regions for 

the same A n and Ra ranges as shown on figure 2. In spite of the very coarse grids 

used, the regions where calculations were made and those where he used data from 

Eckert & Carlson (1961) as well as Elder (1965a) are in qualitative agreement with 

figure 2. However, in the regions where he extrapolated the bounds, there is substantial 

disagreement, particularly where both An and Ra are large and where both are small. 

The same statement applies to the regions plot given by Yin et al (1978), since only 

a band of results extending from low Ra and high An to high Ra and low A n were 

used to locate lines which were then extrapolated across the other regions. 

Roux et al (1980) found, in the Boussinesq limit, that a small region of reverse 

transition from multicellular to unicellular flow exists within the lower right corner 

of the region defined by An >t 12 and 104~< Ra ~< 105. We note that this region 
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corresponds to the narrow region separating stationary and oscillatory stability 

branches, for a narrow range of stratification parameter, as given in figure 3 of 

Bergholz (1978). Chenoweth & Paolucci (1986) have verified the existence of this 

narrow region for ~ << 1. However, as t increases, this region quickly disappears, and 

as suggested by the dashed line in figure 2, it does not exist for 8 = 0"6. 

The influence of the Prandtl number is found to be minor when Pr > 1. For Pr < 1, 

however, the velocity field and heat transfer rates have a strong dependence on Pr. 

Quon (1972) performed finite difference calculations for the boundary layer regime 

in a square cavity in the Boussinesq limit. Consistent with the results of MacGregor 

& Emery (1969) he showed that the flow in this regime is insensitive to the magnitude 

of the Prandtl number for 7"14 < Pr < 900. Korpela et al (1973) report that when the 

Rayleigh number reaches the critical value, the conduction regime may become 

unstable in two ways. For Pr < 12.7, the instability sets in as vertical stationary cells, 

with the critical Rayleigh number nearly independent of Pr. When Pr > 12-7, the 

instability is manifested in the form of travelling waves. More recently, Lee & Korpela 

(1983) carried out extensive numerical computations of multiceUular flows in cavities 

of aspect ratios as large as 40 for a wide range of Prandtl numbers in the Boussinesq 

limit. They found that for low Prandtl number fluids (Pr << 1) such as liquid metals, 

multicellular flows can develop when the aspect ratio is as low as 6. For air (Pr = 0.71), 

the aspect ratio must be at least 12 before the flow becomes more complex as a result 

of instability. These results are consistent with the stability results of Bergholz (1978). 

Very few numerical calculations have been performed in three-dimensional cavities. 

Of these we note the works of Mallinson & de Vahl Davis (1977) and Lee et al (1988) 

with cavities having A~ = 1 and A v  varying from 2 to 4, and the most recent results 

of Fusegi et al (1991) with A u = A v  = 1. Because of the large computational costs, 

all such calculations have been limited to Ra <~ 106. The exception is the work of 

Lankhorst & Hoogendoorn (1988) who computed the flow in enclosures with A u  = 1 

and A v = 1 and 2 for Rayleigh numbers as large as 101°. However, we note that their 

finite difference meshes were very coarse (45 × 45 x 20) and they made use of a k - 8 

turbulence model. As will be seen later, it appears highly unlikely that such models, 

which were developed for high Reynolds number flows, are applicable to low Reynolds 

number natural convection turbulence. Comparisons obtained from resolved 

(Ra < 106) laminar results at the symmetry, plane (z = 0) show that peak minimum 

and maximum velocities and heat transfer rates are within 10% of values obtained 

from two-dimensional calculations. Average values of the Nusselt number actually 

agree within 2%. In general the agreement is better at the larger values of Rayleigh 

numbers. Thus the major conclusion is that at high Rayleigh numbers, three- 

dimensional effects are insignificant in the bulk of the flow field. The exceptions are 

the regions near the end walls. 

5. Cavities with Au <~ 1 

Cavities with small aspect ratios have not received as much attention as those with 

aspect ratios larger than unity. Furthermore, most analytical and experimental studies 

conducted to date on this problem have been in the Boussinesq or near-Boussinesq 

limit. 

In exemplary studies, the problem was treated by Cormack et al (1974a, I974b) 

and Imberger (1974) analytically, numerically, and experimentally, respectively. 
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Cormack et al (1974a) presented an asymptotic solution to the laminar problem. This 

solution is valid in the aspect ratio limit of An ~ 0 for fixed, though arbitrary values 

of the Rayleigh and Prandtl numbers, and is assumed to consist of two distinct 

regions: a parallel flow in the central core (first obtained by Hart 1972) and a 

non-parallel flow confined within a distance of order H from the end walls. Cormack 

et al (1974b) developed an algorithm for the numerical solution of the flow in the 

cavity. They found their results to be in good agreement with the parallel flow solution 

obtained by Cormack et al (1974a) provided A n ~< 0"1 and Ra2A 3 ~< 105. In addition, 

the solutions show a parallel flow transition between the asymptotic limit of Cormack 

et al (1974a) and the boundary layer limit (A n fixed and R a ~  oo) of Gill (1966). 

Imberger (1974) presented experimental results for water with AH = 0.01 and 0.019 

in the range 1.31 x 10 6 ~< Ra ~< 1.11 x 10 a. Most of the flow features indicated by the 

numerical work were qualitatively observed in the experimental work. When Ra 2 A~ 

becomes nearly 1011 , experiments indicate that the mid-height of the cavity becomes 

an isotherm and there is a slow central circulation throughout the entire shallow 

cavity. We note that while An can be decreased by increasing the length of the cavity 

without varying the Rayleigh number, often to change the aspect ratio in an 

experiment the height is decreased thus forcing a large increase in temperature 

difference to keep the Rayleigh number fixed. Use of this experimental procedure to 

verify numerical Boussinesq results has limited validity since the numerical solutions 

do not account for property variations. 

Bejan & Tien (1978) and Bejan (1980) extended the asymptotic analysis of Cormack 

et al (1974a) to include both Ra--.0, A n finite, and A n ~ O ,  Ra finite. They also 

developed a Nusselt number correlation in the boundary layer regime and an empirical 

correlation including both limits. Bejan et al (1981) presented experimental results 

for water with A n = 0.0625 and 2 x 108 < Ra < 2 x 109. They showed that, contrary 

to the assumption ofBejan & Tien (1978), for Ral/4An > 1, the core flow is non-parallel 

and is dominated by horizontal intrusions flowing along the two insulated horizontal 

walls and embracing a practically stagnant and thermally stratified fluid. In addition 

they observed weak counterflow. Finally, by statistically analysing previously 

published experimental work, Ostrach (1982), in a recent review paper, shows that 

the heat transfer varies with Ra °3 for An < 0-1 and Ra > 5 x 105. He notes that the 

variation with Ra °'2 obtained by Bejan & Tien (1978) is incorrect since they assumed 

that the core flow was parallel in matching with the boundary layers in the end regions. 

Paolucci & Chenoweth (1988) improved the understanding of the small aspect 

ratio problem. They emphasize non-Boussinesq effects arising from property 

variations due to large temperature differences. In addition, they extend the numerical 

solution in the Boussinesq regime to Rayleigh numbers larger than those previously 

available. Numerical solutions of the transient Navier-Stokes equations are used to 

generate laminar steady-state results. The use of the transient form of the equations 

was necessary to obtain oscillatory stability results. Their results are summarized in 

figure 3 where the various flow regions are classified according to different velocity 

field behaviours. This figure is the result of many calculations and is given in An - Ra 

space for Pr = 0.71 and two values of e; the solid lines are for e--,0 and the dashed 

line is for e = 0.6. The numbered solid lines bound the different flow regions. 

To the left of I the core flow is parallel. Cormack et al (1974a), and Hart (1972) give 

the exact solution for this flow. It can be easily shown that in this region the maximum 

horizontal velocity is u m = + Ra/72v/3 and its location is at y,, = (1 ~ 1/x/~)/2. In 

the region between I and II, parallel flow still exists in the core, but the magnitude 



632 S Paolucci 

AI~ 

4_ 

::i!:.i:-!i! !il;!:.i: i::i;w~ 

"10' ...... i t  . . . . .  . . . . . .  ib"" 
Ra 

Figure 3. Flow regions depen- 
dence on An, Ra and e for 
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of the maximum velocity decreases below Urn, even though its location remains the 

same. Cormack et al (1974a) as well as Bejan & Tien (1978) give formulas for the 

variation of Um which depend on aspect ratio and Rayleigh number. The flow remains 

unicellular between II and III, but the core flow becomes non-parallel and boundary 

layers exist next to the active walls. Thus all regions to the right of II are considered 

to be in the boundary layer regime. In the region between III and IV, secondary 

flows develop in the top-left and bottom-right (emerging) corner regions. These 

secondary flows separate and elongate as the Rayleigh number is increased and 

eventually grow to occupy most of the core region. The flow remains steady in the 

region between IV and V, but a weak tertiary flow develops in the centre of the core 

region. The rotation of this cell is the same as those of the primary and secondary 

flows. Finally to the right of V the flow becomes unsteady and eventually becomes 

turbulent to the right of VI. The unsteady flow is in. the form of oscillations near the 

active walls. These oscillations, and resulting turbulence, are localized near the 

endwalls and emerging cerners, and do not penetrate the central core region. We 

remark that throughout the entire boundary layer regime, the temperature in the 

central core region is approximately linearly stratified with horizontal isolines. 

For e = 0-6 the flow is unicellular approximately up to line III. However, in contrast 

to the Boussinesq limit, no parallel flow was observed for this case which has the 

character of either that to the left or right of I. Due to property variations, the flow 

on the cold wall enters the boundary layer regime long before II, while that at the 

hot wall makes the transition significantly to the right of II. Similarly, secondary 

flows develop near the emerging corners at the cold end significantly before III and 

at the hot end much later than III. A most important result is that at the dashed 

line the cold wall boundary layer becomes unsteady. This same transition corresponds 

to line V in the Boussinesq limit. Note that there is very large reduction in the critical 

Rayleigh number with increasing e. In contrast, the hot wall layer remains steady 

well past line V. Similarly, there is a large Ra range where the flow at the cold wall 

end becomes turbulent, but the hot wall region and the core flow remain laminar 

since the turbulence is localized and does not penetrate very far into the central core. 



The differentially heated cavity 633 

Contrary to the results of Shiralkar et al (1981), and Tichy & Gadgil (1982), Paolucci 

& Chenoweth (1988) find the presence of weak reverse flows in the core region for 

high Ra in the boundary layer regime, in agreement with the experimental results of 

Bejan et al (1981) and AI-Homoud & Bejan (1979). In addition, for still higher Ra, 

Paolucci & Chenoweth (1988) observe this flow bifurcating and leading to a tertiary 

flow consisting of a central cell having the same rotation as the primary and secondary 

cells. This last result has not been previously observed either experimentally or 

numerically. 

In the non-Boussinesq regime, the velocity and temperature fields results of Paolucci 

& Chenoweth (1988) ~how significant dependence on e especially near the side walls. 

As a result the well-known parallel flow solution, accurate in the core of the cavity 

for e << 1, does not exist. For higher Rayleigh numbers, Paolucci & Chenoweth (1988) 

generalize the well-known analytical boundary layer solution of Gill (1966) to the 

case of arbitrary e. Their solution and numerical results show that the cold-waU 

boundary layer is much thinner than the corresponding layer in the Boussinesq limit. 

As a result, the critical Rayleigh numbers for stationary and oscillatory instabilities 

are lowered with increasing temperature difference and are governed by the cold wall. 

In contrast to the high aspect ratio problem (see Chenoweth & Paolucci 1986), they 

find that the heat transfer and pressure also depend strongly on e. Although the 

average Nusselt number is almost independent of e in the boundary layer regime, 

this is not the ease for lower Rayleigh numbers. Furthermore, the largest pressure 

change occurs in this same low Rayleigh number region. Both effects are physically 

related to the large departures from the parallel flow solution valid in the Boussinesq 

limit. These results show that there can be considerable risk if results obtained from 

the well-established Boussinesq limit are extrapolated for use where large temperature 

differences exist. 

As in the case where An > 1, when the Prandtl number is of order unity or larger, 

the above results change little (see Quon 1972). However, when the Prandtl number 

is small, substantial changes appear. Hart (1983) and more recently Drummond & 

Korpela (1987) show that for Pr < 0.12, and aspect ratios less than the same value, 

a parallel flow core will exist up to Gr ~ 8000 where secondary flow in the form of 

stationary transverse cells is seen to appear. These cells propagate out from the ends 

as an imperfect bifurcation. Spacing of the cells in the cavity has been Shown to 

depend on Gr, Pr and An. Cases were found for which new cells form and grow 

between existing cells as the space permitted. Other cases show cells merging and 

splitting. The effect of increasing Pr is to stabilize the flow so that for Pr > 0.12 with 

A n = 1/8 and 1/10 no secondary motions were found. 

6. Transition of boundary layer flow 

The majority of the work dealing with differentially heated cavities has been concerned 

with steady-state laminar flow. Yet in many of the fields of application, the flow is 

unsteady and possibly turbulent. Since many variables of engineering interest depend 

strongly on the flow regime, it is essential to understand the different physical processes 

responsible for the conversion of an initially laminar flow to a turbulent one. With 

increasing Rayleigh number the problem becomes stiff owing to a decrease in 

boundary layer thickness. As a result, there has been very little numerical work 

performed in this area. 
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The study of stability of the natural convection flow in the differentially heated 

cavity presents a major difficulty: the non-existence of an exact analytical solution 

in the general case. Studies have proceeded by extrapolating results obtained in 

studying limiting cases where solutions can be obtained. These are cases that we have 

encountered earlier and are known as the conduction limit, the buoyancy layer, and 

the separate boundary layer regime. The latter case is characterized by the presence 

of a stable vertical temperature stratification. Such stability studies have been 

conducted by Gill & Davey (1969) for the buoyancy layer and Vest & Arpaci (1969) 

and Bergholz (1978) for separated boundary layers, on assuming two-dimensional 

perturbations. In these studies, the fluid is assumed to be linearly stratified. It was 

found that below a certain stratification level the instability was stationary, while 

above this critical stratification level it was oscillatory. Korpela (1974) studied the 

influence of the Prandtl number on the stability of the conduction regime. We note 

here that in order to relate these results to the closed cavity, the stratification level 

needs to be empirically related to A n and Ra. Furthermore, the stratification is applied 

uniformly in the width of the cavity up to and including the active walls. Obviously 

this represents an approximation to the actual situation, and the extent of applicability 

to the differentially heated cavity can only be judged by comparison to full numerical 

studies of stability. In addition, Paolucci & Chenoweth (1989) show that their results 

applied to finite cavities (using a thermal stratification parameter near unity) yield a 

critical wavelength of the vertical wall boundary layer 2~-,,~ A n / P r  n, where n ~< 1/2; 

thus the applicability of their results to finite cavities is questionable for small Prandtl 

numbers since Paolucci & Chenoweth (1989) find 2c ,~ 0-3An for Pr = 0.71, where 

n ~ 0. Lastly, these analyses cannot yield any possible instabilities due to the presence 

of the horizontal walls. Iyer (1973) showed that two-dimensional transverse waves 

are the most unstable in the buoyancy layer, thus indicating that a two-dimensional 

assumption is not unreasonable. However, it is not clear that this assumption will 

remain valid in the nonlinear regime. Patterson & Imberger (1980) were the first to 

propose a classification of types of transition regimes that one could encounter within 

the cavity.~Depending on whether the Prandtl number is larger or smaller than unity, 

the authors discuss th~ time to establish steady solutions, when they exist, and the 

diverse states in which the flows evolve to the stationary solutions. They also give 

conditions for the existence of the separate boundary layer regime. Patterson & 

Imberger (1980) and Patterson (1984) gave a criterion for the presence of internal 

gravity waves that are observed in the core of the cavity when Pr >/1 and A n <~ 1. 

The presence of these gravity waves in the cavity is also discussed by Yewell et al 

(1982), Ivey (1984), and Thorpe (1968) who studied stationary gravity waves in fluids 

in the presence of continuous and discontinuous stratifications. Patterson & Imberger 

(1980) concluded that cavity-scale internal wave activity is due to a "pile up" of the 

horizontal intrusions at the far ends. Ivey (1984) performed experiments in a square 

cavity at Rayleigh numbers of theorder of 109 using water as the working fluid. He 

emphasized the importance of the inertial effect of the flow and his results show that 

damped oscillations arise from internal hydraulic jumps caused by the turning of the 

vertical boundary layers. Since the source is localized, he further concludes that due 

to rapid attenuation, their presence could not be felt throughout the cavity as 

Patterson & Imberger (1980) suggest. The numerical results of Chenoweth & Paolucci 

(1986) seem to be in agreement with Ivey's (1984) conclusions; furthermore, they also 

suggest that for low aspect ratios the "hydraulic" jumps are responsible for the first 

transition to time-dependent flow. 
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Le Qurr6 & Alziary de Roquefort (1985) used a semi-implicit Chebyshev pseudo- 

spectral method to examine the oscillatory approach to steady-state of the average 

Nusselt number for A = 1, Pr = 0-71, and Ra = 10  7 and 4 x 10  7. For Ra = 4 x 107 

they note the presence of detached regions near the departing corners at steady-state. 

These regions were also present at Ra = 107, but in this case they did not persist to 

steady-state. Subsequently, Le Qurr6 & Alziary de Roquefort (1986, pp. 1532-37) 

computed the first transition to periodic flow for A n as low as 2 and concluded that 

in all cases the time-dependent periodic motion is a result of wall boundary layer 

instability. However, for An < 3  they did note the presence of separated flow regions 

along the horizontal walls which remained when the flow was observed to be 

statistically stationary. Haldenwang (1986), also using a semi-implicit Chebyshev 

pSeudo-spectral method, computed the solution for A H = 1, Pr = 0.71, and Ra = 10  6, 

106"5, 107, 107"5, 108, and 108"5. He concluded that: regions of reverse flow on the 

horizontal walls are present for Ra >/107'5; the flow becomes oscillatory for Ra 

between l0 s, and 108s where two fundamental frequencies were observed; and that 

these two frequencies, neither of which is in continuity with the one observed at 

smaller Rayleigh numbers, are first observed in the stable solution at Ra = 108. 

Paolucci & Chenoweth (1989) address the oscillatory approach to steady-state and 

the transitions from steady-state to turbulence via two-dimensional direct numerical 

simulations. Their results clarify the basic mechanism of steady and unsteady 

oscillatory motion. Simulations are performed for a Boussinesq fluid with Pr = 0"71, 

1/2 ~< A n ~< 3, and a wide range of Rayleigh numbers. The resulting accuracy of their 

results is demonstrated by the excellent agreement with the results of Le Qurr6 & 

Alziary de Roquefort (1986), and Haldenwang (1986). Their restriction to two spatial 

dimensions precludes possibly important three-dimensional nonlinear effects due to 

vortex stretching. But even within their limitations, imposed by present day computers, 

the simpler model is of interest in providing insight into the physical mechanisms 

which drive the convective dynamics from laminar to turbulent flows. Furthermore, 

while it is an accepted fact that the laminar flow is inherently two-dimensional (see 

Eckert & Carlson 1961), some experiments indicate that even the resulting turbulent 

flow is dominated by two-dimensional structures (e.g. Elder 1965b). The goal behind 

their numerical experiments was to study the transitions to various time-dependent 

flows. With increasing Rayleigh number the onset of periodic flow is calculated for 

various aspect ratios. Power spectra of the temperature and velocity components are 

examined, and their dependence on the location probed is discussed. They are 

primarily concerned with instabilities that precede turbulence rather than strongly 

turbulent flows, although they also look at the oscillatory approach to steady-state 

for high Rayleigh numbers. The study of the loss of stability to time-dependent flow 

by direct numerical simulation allows them to obtain solutions for large supercritical 

values of the Rayleigh number. All their simulations satisfy a criterion for the presence 

of internal wave activity similar to that of Patterson & Imberger (1980), but for Pr <~ 1 

and arbitrary A n . 

As a result of the numerous computations for various values of A n and Ra, Paolucci 

& Chenoweth (1989) obtain the stability map displayed in figure 4. This figure is a 

more detailed and accurate stability map of the lower right corner of figure 2. The 

solid and dashed lines in the figure represent the critical Rayleigh numbers Rat due 

to internal waves and Raw due to the wall boundary layers respectively. To the left 

of the curves, perturbations are damped, while to the right they are amplified leading 

to oscillatory flow. With increasing Rayleigh number, the steady convection flow 
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becomes unstable with respect to time-dependent disturbances. In general, for 

A n ~ 1/2 and A H >/3 the first time-dependent instability is due to the boundary layers 

along the vertical walls. However, for 1/2 < A n < 3 they first find periodic motion 

due to internal waves near the departing comers, then quasi-periodic motion (arising 

from wall boundary layers), aperiodic motion with complex regularity, and finally 

turbulent motion. They discuss at length the physical mechanisms responsible for 

the dynamic behaviours. Their results clearly show that for ~--,0, Pr=0"71 and 

1/2 < A n < 3 internal waves near the departing corners are indeed the source of low 

frequency oscillations as suggested by Ivey (1984), and not caused by a "pile up" of 

the horizontal intrusions at the far ends as argued by Patterson & Imberger (1980). 

While the high frequency oscillations are rapidly attenuated, the low frequency ones 

are not, so that their presence is felt throughout the cavity. The low frequency 

attenuation however is not in general as rapid as suggested by Ivey's (1984) experiment 

with water since their presence is felt throughout the cavity. In the range 1/2 < A a < 2 

the curves in figure 4 are described to a good approximation by 

and 

Rat = 1-93 x 10SA~ 3"1s, 

Raw = 2.70 x 108A~/TM. 

(28) 

(29) 

They also show that (28) and (29) are consistent with estimates obtained by the use 

of simple arguments and previous analyses. 

In accord with Patterson & Imberger (1980) they show that within this region of 

parameter space the flow approaches steady-state conditions in an oscillatory fashion, 

although the source of the oscillations is different from that suggested by them. In 

agreement with Ivey's (1984) experimental results they find that the oscillatory 

behaviour is due to the inertia of the flow entering the interior of the cavity from 

the sidewall boundary layers (departing corners), which leads to a form of internal 

"hydraulic" jump when the Rayleigh number is sufficiently large. The onset and 

frequencies of the oscillatory instabilities are calculated and compared with available 

data. They present numerical experiments which exhibit repeated supercritical 
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branching leading to chaotic flow after a finite number of bifurcations. A sequence 

of instabilities quite similar to that described in their paper has been observed by 

Gollub & Benson (1980) in a laser-Doppler velocimetry study of Rayleigh-Brnard 

convection and also by Fenstermacher et al (1979) and Gorman & Swinney (1982) 

in the Couette-Taylor system. In particular, as seen in figure 5, with increasing 

Rayleigh number the time history and spectra show a periodic regime with a single 

fundamental frequency followed by a quasiperiodic regime with two fundamental 

frequencies, and then broadband noise components appear in the spectra; finally the 

amplitude of the sharp frequency components decrease. This particular sequence of 

bifurcations into chaos is further illustrated by the phase-space trajectories shown in 

figure 6. Thus, one principal finding of this work is that periodic flow is followed by 

only one additional distinct dynamical regime (quasi-periodic flow with two 

incommensurate frequencies) prior to the appearance of a chaotic regime. This result 

is consistent with the predictions of Newhouse et al (1978). In addition, even though 

they restricted the simulations to two spatial dimensions, their results compare 

favorably with the experimental results of Ivey (1984), and analytical/experimental 

studies of Thorpe (1968), and Keunecke (1970). 

Briggs & Jones (1985) were the first to demonstrate experimentally different flows 

for the same values of parameters in a closed cavity having conducting horizontal 

walls. They demonstrated that in the Rayleigh number interval between 6 x 106 and 

8 x 106 a hysteresis is present and a temporally oscillatory flow having one of three 

different frequencies can occur. 

We remark that for An=O(1)  and small Prandtl numbers, it becomes 

experimentally difficult to maintain adiabatic boundary conditions on the horizontal 

walls as Ra becomes large. Furthermore, in a physical experiment, often the Rayleigh 

number is increased by increasing the temperature difference across the cavity. It has 

been shown that both of these effects greatly modify the stability of the flow 

(Chenoweth & Paolucci 1986; Le Qurr6 & Alziary de Roquefort 1986). 

7. Turbulence 

While there has been substantial work devoted to the study of turbulent natural 

convection in the Rayleigh-B~nard problem where the gravitational vector is parallel 

to an imposed thermal gradient, relatively minor attention has been given to the case 

where gravity is orthogonal to the gradient. There are only a few publications on 

this subject and primarily in the Boussinesq regime. Furthermore, the published 

experimental data are insufficient to fully characterize the mechanisms responsible 

for momentum and heat transport in the thermal layers. In contrast, theoretical and 

experimental studies for the same problem but in the laminar regime are abundant. 

For example, see Elder (1965a), Cormack et al (1974a), De Vahl Davis & Jones (1983), 

Chenoweth & Paolucci (1986), and references therein. 

In a vertical layer that is bounded by vertical isothermal surfaces having different 

temperatures and is thermally insulated at the ends, a circulatory flow is set up, 

ascending against the hot surface and descending at the cold surface. The flow in the 

cavity passes through several stages as the fluid flows along the active vertical walls. 

The flow near the entry corners of the boundary layers is initially laminar. It then 

passes through a transition region, and finally becomes turbulent. When statistical 

steady-state obtains, the space between the vertical boundary layers is filled by a 
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virtually immobile stably stratified fluid executing low-frequency, low-velocity 

oscillations. The temperature away from the boundary layers increases linearly over 

a large part of the height of the layer. 

One of the earliest experimental studies of this problem was performed by Mull and 

Reiher and has been discussed by Jakob (1949) and Batchelor (1954). Subsequently 

Mordchelles-Regnier & Kaplan (1963, pp. 94-111) have obtained some measurements 

and visualizations up to Rayleigh numbers of order 1012. These early works were 

followed by the classic experimental work of Elder (1965b), who measured primarily 

the temperature and velocity in the cavity using several fluids of high Prandtl number. 

He concluded that the occurrence of the turbulent wall layers in the cavity is 

independent of the aspect ratio and occurs in a similar manner to that on an isolated 

vertical plate. Subsequently, MacGregor & Emery (1969) experimentally obtained 

heat-transfer data for different Prandtl numbers and aspect ratios; Kutateladze et al 
(1972a, 1977, 1978) measured heat transfer, velocity and temperature means, their 

fluctuations, as well as the probability density distribution of temperature fluctuations; 

Cowan et al (1982, pp. 195-203) obtained overall and local heat-transfer data for 

different aspect ratios; Kirdyashkin et al (1983) and Kirdyashkin & Semenov (1984) 

measured the temperature means, fluctuations and their frequency spectra, the 

temperature kurtosis and skewness parameters, as well as other turbulence quantities; 

and Giel & Schmidt (1986, pp. 1459-64) obtained velocity and temperature means 

and fluctuations, as well as frequency spectra of temperature fluctuations. 

Eckert & Carlson (1961), and Kutateladze et al (1972b, 1977) noted that the inner 

structure of the thermal boundary layer is locally similar to that of an isolated plate. 

More recently George & Capp (1979), using classical scaling arguments, presented a 

theory for turbulent natural-convection boundary layers next to heated vertical 

surfaces. They showed that the boundary layer must be treated in two parts: an outer 

region, in which the viscous and conduction effects are negligible, and an inner region, 

in which the mean convection terms are negligible. The inner layer, which is identified 

as a constant heat-flux layer in the sense that the total heat flux across the layer is 

independent of the distance from the wall, consists of two regions: a conductive and 

viscous sublayer, in which the temperature is linear and the velocity approximately 

linear next to the wall, and a buoyant sublayer outside of it, where the mean velocity 

and temperature profiles depend on the cube root and inverse cube root of distance 

from the wall, respectively. 

Paolucci (1990) considers the nonlinear physics of turbulence numerically. More 

specifically, he performs a direct numerical simulation of the free convective flow in 

the cavity for A u -- 1, e--, 0, Pr = 0.71, and Ra = 101°. Although the initial conditions 

he used are non-random (quiescent and isothermal fluid), due to strong buoyancy 

the flow breaks up into an apparently random one. In general a flow which exhibits 

temporal as well as spatial randomness is identified as being turbulent. 

The flow is again assumed to be two-dimensional. Although physical flows are 

three-dimensional, two-dimensional turbulence is often considered as a first 

approximation in many cases (e.g. turbulent flows submitted to a stable stratification). 

Furthermore, it appears from numerous experiments dealing with this problem (e.g., 

Giel & Schmidt 1986, pp. 1459-64), and the related problem of natural convection 

from a heated vertical plate (e.g., Lochet et al 1983), that three-dimensionality in this 

class of flows has a very small influence if the depth dimension is not too small. In 

this connection, it is noted that the inertial sub-range of two-dimensional turbulence 

is quite different from that in three-dimensions (Kraichnan 1967; Lilly 1969). In 
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particular, in inviscid isothermal flow the cascade of energy in two dimensions is 

mainly toward low wave number in the inertial range, and becomes weak or non- 

existent at higher wave numbers where only vorticity variance or enstrophy is cascaded 

in the usual sense in the inertial range. 

Paolucci's (1990) results show that convection flow in a vertical layer for Rayleigh 

numbers in the turbulent regime passes through several stages. In the lower part of 

the cavity, next to the heated wall, the boundary layer flow has laminar character. 

This region is followed by transition and finally by a turbulent boundary layer. The 

space between the vertical boundary layers is filled by a virtually immobile stably 

stratified fluid executing low-frequency, low-velocity oscillations. This central core is 

continually stirred by random buoyant elements of finite energy which are discharged 

into it. 

In accord with the picture of George & Capp (1979), the simulation shows that 

the thermal and momentum boundary layers can each be characterized by three 

regions. Directly against the wall there are the conductive and viscous sublayers, 

where the heat flux is constant but the shear stress is not. Defining the time averaged 

inner-region temperature and vertical velocity at the mid-height of the cavity 

(y = A , / 2 )  as 

0 = ( T -  ~ . ) / ( rh  - ~'.), V, = ~ ,  (30) 

where r/= (fl, gA T_m L3/~ 2 )- 1/3 is a dimensionless thermal inner scale, T m = T(1/2, y), 

and ATm = Th- Tin, these regions are then given by 

and 

0=  1 -0.118(x/r/) for 0~<x/~/<3-3, (31) 

V, = P r -  1 [3"89(x/~/) - ½(x/~l) 2 + (0.118/6)(x/~1)3], for  0 ~< x/~l < 1.5. 

(32) 

In these regions a monotonic rise in the intensity of fluctuations is seen. These regions 

are followed by the thermal and momentum buoyant sublayers whose variations 

with distance from the wall are given by 

and 

0 = 2-406(x/~/)- 1/a _ 0-943, for 3-3 < x/rl < 13, (33) 

V, = 13"63(x/rl) 1/3 - 8.77, for 1-5 < x/~l < 3.3. (34) 

Thermal energy transferred by conduction accumulates in the thermal sublayer giving 

rise to fluctuations which constitute a considerable part of the heat transfer. Note 

that for Pr = 0-71 the momentum buoyant sublayer is fully within the conductive 

sublayer. Exterior to the mean vertical velocity maximum the simulation results shows 

that the velocity distribution is self-similar and given by 

f/f~ = e x p [ -  0"947 [(x - xm)/dia)] 1.43~], (35) 

where fm= 2-159 x 104 and xm = 4.649 x 10 -a are the maximum vertical velocity at 

the mid-height and the location away from the hot wall at which the maximum is 

found, and 5 ~ = S ~ / 2 ( ~ / ~ ) d x =  1-214 x 10 -2 is the momentum boundary layer 

thickness. In this strong mixing region, wave-like structures are superimposed on the 

mean motion. As elements of these structures accelerate out of the region, a local 

reduction of the thermal energy is observed. The elements move sufficiently rapidly 
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out of this highly intermittent region for molecular processes to be negligible. The 

external part of the thermal boundary layer is characterized by a small value of excess 

mean temperature. 

It is seen that the stable stratification of the fluid outside the boundary layers 

significantly affects the nature of the flow, but has no effect on the heat transfer and 

momentum in the conductive and viscous sublayers. In the core of the cavity it is 

found that the temperature is approximately linearly stratified with a slope of 

S = (An/2e)(d 7"/dy) = 0.3 8. (36) 

This result appears to be independent of A H, Pr, and most surprisingly Ra since it is 

in good agreement with the experimental results obtained over a wide range of 

Rayleigh numbers by Elder (1965) who obtained S = 0-3 - 0"4, for 10 < AH < 30, and 

Pr = 7, Kutateladze et al (1972a) who obtained S = 0.33 for A u  = 22 and Pr = 13.2, 

and Kutateladze et al (1977, 1978) who obtained S = 0.36 + 0.04 for 8 < A n < 26 and 

Pr ,~ 16. In addition, using the statistically steady mean temperature gradient and 

averaging over the height of the cavity, he showed that the average Nusselt number 

can be written as 

Nu = 0"046 Ral/3. (37) 

The agreement with the experimental values of Elder (1965b), MacGregor & Emery 

(1969), Kutateladze et al (1977), Cowan et al (1982), and Kirdyashkin et al (1983), is 

excellent, and, as with the value of S in (37), the constant 0.046 appears to be 

independent of the Prandtl number and aspect ratio, since the experimental results 

were obtained for 1 ~< Pr ~< 103 over the aspect ratio range 1 < Au < 61. 

In comparing his predictions with available experimental evidence, many of 

Paolucci's (1990) results could be substantiated either directly or upon replotting 

data available in the literature. In particular, the heat-transfer law, the vertical 

stratification in the core, the viseous and conducting sublayers, the existence of 

momentum and thermal buoyant sublayers, and the self-similar distribution of the 

outer boundary layer region are in good quantitative agreement with available data. 

Many of the features observed in the flow such as the sinusoidal mode of instability, 

the internal jumps in the departing corners, and the "hook" like structures have been 

observed experimentally. However, the validity of many other results can only be 

verified when more experimental data become available. 

Two important points can be made from the direct simulation results. First, there 

is now strong evidence that the prevailing theories of heat and mass transfer which 

assume relationships for friction and heat transfer, similar to those in forced boundary 

layer flow, are not applicable to natural-convection turbulence. Second, the results 

should be helpful in constructing simplified turbulence models for natural-convection 

flows in the future. 

8. Conclusions 

We have presented a brief review of recent work on the natural convection flow in 

enclosures. The prototypical configuration used in studying these flows is that of a 

vertical rectangular enclosure with lateral heating. The buoyancy forces in this review 

are considered to result exclusively from temperature differences applied across two 
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vertical walls. The natural convection flows discussed have been primarily in 

enclosures in which AD ~ oo, and for both large and small vertical aspect ratios/l x. 

It is apparent from our discussion that the subject of natural convection in two- 

dimensional large and small vertical aspect ratios and in the Boussinesq limit has a 

rather long history. Most of the elementary aspects of these flows in the laminar 

regime are now fairly well understood. More research is needed in the following areas. 

(1) Laminar and transitional flows in cavities where A H = O(1), and A~ = O(1) in 

both the Boussinesq and non-Boussinesq regimes. Very limited work has been 

done in this area computationaUy by Mallinson & De Vahl Davis (1977) and 

Fusegi et al (1991), and experimentally by N'Dame (1992) who recently gave 

evidence of a possible low-frequency three-dimensional instability for Ao/> 1.37. 

(2) More complete study of the multiple solution regimes first found by Briggs & 

Jones (1985). Some of this work has been started by Briggs & Jones (1989), Le 

Qu~r~ & Alziary de Roquefort (i988), Le Qu~r~ (1990), and Penot et al (1990, 

pp. 417-22). 

(3) A more accurate and complete study of natural convection turbulence. This should 

be done using a more accurate method than that used by Paolucci (1990) to verify 

many of his results, should be extended to three-dimensions to eliminate many 

of the questions that have been raised about that work, and should be further 

extended to the full non-Boussinesq regime. In addition, and most importantly, 

these direct simulation results should be used to generate simple models to replace 

current models that are fundamentally based on high Reynolds number forced 

convection theories that assume classical relationships between friction and heat 

transfer. 
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