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The differentiated airway 
epithelium infected by influenza 
viruses maintains the barrier 
function despite a dramatic loss of 
ciliated cells
Nai-Huei Wu1, Wei Yang1, Andreas Beineke2, Ronald Dijkman3,4, Mikhail Matrosovich5, 

Wolfgang Baumgärtner2, Volker Thiel3,4, Peter Valentin-Weigand6, Fandan Meng1,* & 

Georg Herrler1,*

Virus-host interactions in the respiratory epithelium during long term influenza virus infection are not 
well characterized. Therefore, we developed an air-liquid interface culture system for differentiated 
porcine respiratory epithelial cells to study the effect of virus-induced cellular damage. In our well-
differentiated cells, α2,6-linked sialic acid is predominantly expressed on the apical surface and the 
basal cells mainly express α2,3-linked sialic acid. During the whole infection period, release of infectious 
virus was maintained at a high titre for more than seven days. The infected epithelial cells were subject 
to apoptosis resulting in the loss of ciliated cells together with a thinner thickness. Nevertheless, the 
airway epithelium maintained trans-epithelial electrical resistance and retained its barrier function. 
The loss of ciliated cells was compensated by the cells which contained the KRT5 basal cell marker but 
were not yet differentiated into ciliated cells. These specialized cells showed an increase of α2,3-linked 
sialic acid on the apical surface. In sum, our results help to explain the localized infection of the airway 
epithelium by influenza viruses. The impairment of mucociliary clearance in the epithelial cells provides 
an explanation why prior viral infection renders the host more susceptible to secondary co-infection by 
another pathogen.

�e airway epithelium is the primary barrier to infection by respiratory pathogens. Viruses have found di�erent 
ways to get across the epithelial barrier, such as transcytosis1 or via infected immune cells2,3. �e most straightfor-
ward strategy, however, is the infection of the epithelial cells. For this purpose, the pathogens have to overcome 
the mucociliary clearance system made up from mucins released by mucus-producing cells. Foreign material 
entrapped by the mucus is transported out of the respiratory tract by the ciliated cells4,5.

In�uenza A viruses (IAV) are rather e�cient in overcoming the defence mechanisms of the host using their 
two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA), which have sialic acid binding and 
neuraminidase activities6–8. Infection of the airway epithelial cells is initiated by the binding of the haemaggluti-
nin to cell surface glycoconjugates. Human and swine IAV (swIAV) preferentially bind to α 2,6-linked sialic acid, 
whereas most avian IAV have a preference for α 2,3-linked sialic acid9. To enter host cells by fusion of the viral and 
the cellular membrane, the haemagglutinins of mammalian IAV are activated in the respiratory tract by proteases 
like TMPRSS2 and HAT10.

Infections by human and swIAV usually remain restricted to the respiratory tract. �e distribution of activat-
ing proteases may in part explain the localized infection induced by these viruses11. However, the interactions 
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between IAV and airway epithelial cells that result in cellular damage on the one side and in the recovery of the 
respiratory epithelium on the other side are not well characterized.

�e primary target cells of mammalian IAV are the di�erentiated airway epithelial cells. Here we established 
a swine air-liquid interface (ALI) culture system for long term infection studies. �e well-di�erentiated primary 
porcine tracheal epithelial cells (PTEC) and porcine bronchial epithelial cells (PBEC) provide a suitable in vitro 
model to mimic in vivo conditions of the airway epithelium. We used these swine ALI cultures to monitor the 
changes in the respiratory epithelium associated with an IAV infection.

Results
An air-liquid interface culture system for differentiated porcine airway epithelial cells. To study 
the IAV infection in di�erentiated airway epithelial cells, we established an ALI culture system derived from the 
porcine airway. Primary PTEC and PBEC were isolated from the tracheae and bronchi, respectively, of swine 
that were shown by multiplex PCR to be negative for porcine respiratory tract pathogens. PTEC and PBEC were 
cultured under ALI conditions for four weeks. Histological staining of semi-thin sections indicated that both cul-
tures showed the characteristic appearance of a pseudostrati�ed ciliated columnar epithelium (Fig. 1A), similar 
to that obtained by H&E staining of tissue derived from the primary bronchus and trachea of swine (Fig. 1B). 
Examination by scanning electron microscopy revealed that the majority of cells contained cilia (Fig. 1C). 
Furthermore, PTEC and PBEC were shown by �uorescent staining to contain ciliated, mucus-producing cells 
and basal cells (Fig. 2A). �ese data indicate that the airway epithelial cells were well-di�erentiated. �ere were 
no major di�erences in the results obtained with PTEC and PBEC. �erefore, in the following part only results 
obtained with PBEC are shown.

Sialic acid distribution on PBEC. The sialic acid distribution on well-differentiated PBEC (wdP-
BEC) cultures was determined by lectin staining. Both α 2,3-linked (red) and α 2,6-linked sialic acids (green) 
were expressed on the apical surface of PBEC cultures but the α 2,6-linkage type was predominant (Fig. 2B). 
Co-localization of Maackia amurensis agglutinin II (MAA II) and Sambucus nigra agglutinin (SNA) signals 
(Fig. 2B, arrows) indicates that some cells expressed sialic acids in both linkage types. When lectins were applied 
from the basal side, wdPBEC were primarily stained by MAA II and hardly by SNA (Fig. 2C). Strong MAA II 
staining is found in the same area that is stained by the basal cell marker (compare 2A and 2C) indicating that 
basal cells mainly contain α 2,3-linked sialic acids. �e distribution of sialic acids in wdPBEC was analyzed also 
by co-staining of sialic acids and cilia or mucus markers. Both α 2,3 and α 2,6-linked sialic acids (green) were 
detected on ciliated cells (red), while non-ciliated cells predominantly contained α 2,6-linked sialic acid (Fig. 2D). 
Mucin/mucus-producing cells (red) were found to have α 2,6-linked but not α 2,3-linked sialic acids (Fig. 2D).

Replication kinetics of human IAV. We used two recombinant human IAV, R1 and R2, to analyze the 
course of infection in ALI cultures. R1 is derived from the pandemic strain A/Hong Kong/1/68 (H3N2) and has 

Figure 1. Morphological examination of porcine well-di�erentiated airway epithelial cell cultures.  
(A) PTEC and PBEC cultures were grown under ALI conditions for more than 4 weeks. �e semi-thin sections 
followed by toluidine blue staining were performed. (B) Epithelia from porcine trachea and primary bronchus 
were collected, followed by histological sectioning and H&E staining for the morphological comparison. �e 
histological examination was evaluated by light microscopy and the representative histological sections (40x 
magni�cation) are shown. (C) �e micrograph of the scanning electron microscopy illustrates the apical surface 
of PTEC and PBEC. �e ciliated epithelial cells are the predominant cell type. Scale bars, 20 µ m (A,B), 5 µ m (C).
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a binding preference to α 2,6-linked sialic acids. R2 di�ers from R1 by two mutations in the haemagglutinin and 
prefers binding to α 2,3-linked sialic acid12. WdPBEC cultures on �lter supports were inoculated by R1 or R2 from 
the apical surface at an MOI of 0.25. At all time points analysed, the titre of R1 virus released from the apical side 
of wdPBEC was somewhat higher than that of R2 (Fig. 3A). �is result is consistent with the abundant presence of 
the α 2,6- linkage type on the apical surface, but it also shows that R2 is able to replicate to substantial titres despite 
the low amount of α 2,3-linked sialic acid detected by MAA staining (Fig. 2B). When IAV was applied from the 
basal side of wdPBEC, there was no signi�cant di�erence in the replication kinetics irrespective of the binding 
preference for α 2,3- or α 2,6-linked sialic acids (Fig. 3A).

Replication kinetics of swIAV. To analyze the replication of swIAV, wdPBEC cultures were infected by 
either of two swIAV strains (H1N1 or H3N2 subtype) from the apical side. Starting from 2 dpi, the titre of released 
swIAV H1N1 was signi�cantly higher than that of swIAV H3N2 (Fig. 3B). As shown in Fig. 4, swIAV antigen 
(green) was associated with β -tubulin-positive cells (red) and also with β -tubulin-negative cells (Fig. 4A), but not 
with mucin5AC-positive cells (red) at 1 dpi (Fig. 4B). �ese results demonstrate that both swIAV strains prefer-
entially infect ciliated cells and some non-ciliated cells di�erent from mucus-producing cells.

SwIAV-induced apoptosis and damage of the mucociliary clearance system. To analyze the det-
rimental e�ect of IAV infection on airway epithelial cells, we performed immuno�uorescent staining to detect 
apoptotic signals and monitor the morphological changes. At 2 dpi, cells positive for activated caspase-3 (green) 
were present in swIAV-infected wdPBEC (Fig. 5). Moreover, co-localization of cleaved caspase-3, β -tubulin and 
viral nucleoprotein (NP) is shown in Fig. 5A (arrows), and co-localization of caspase-3 and NP in Fig. 5B indicat-
ing that swIAV infection induces apoptosis in ciliated cells.

To get more information on the long term in�uence caused by IAV infection, we performed quantitative anal-
yses of the levels of ciliated cells and epithelial thickness. At 8 dpi, a loss of cilia was observed in all virus-infected 
wdPBEC compared to the mock-infected cultures. �e swIAV-infected wdPBEC lost more cilia compared to R1- 
and R2-infected samples as determined from the area covered by cilia (Fig. 6A and 6B). DAPI-staining of nuclei 
(Fig. 6A, insets) indicated that the virus-infected PBEC were still present as a con�uent cell layer. Moreover, the 
loss of cilia in swIAV-infected wdPBEC was con�rmed by Western blot analysis (Fig. 6C). Despite of the failure 

Figure 2. Characterization of porcine well-di�erentiated airway epithelial cell cultures. PTEC and  
PBEC were cultured under ALI conditions for at least 4 weeks and analyzed by immuno�uorescence.  
(A) Immuno�uorescent staining of whole-�lter cultures (top and middle panels) or cryosections (lower panels) 
of PTEC and PBEC. �e cilia are stained in red by using anti-β -tubulin antibody (top panels in horizontal 
sections and middle panels in vertical sections). More than half of the PTEC and PBEC surface was covered 
by cilia. �e positive staining of mucus (green, mucin 5AC monoclonal antibody, middle panels in vertical 
sections) indicated the presence of mucus-producing cells. �e basal cells were stained by antibody against 
cytokeratin 5 (KRT 5, green, lower panels) and were located above the �lter support. (B) Detection of sialic acid 
on the apical surface of wdPBEC. Antibodies against SNA (green) and MAA II (red) were used to recognize 
α 2,6- and α 2,3-linked sialic acids, respectively. �e images are shown in horizontal (top) or vertical (lower) 
sections. (C) Detection of sialic acids on basal cells in wdPBEC. Cryosections of PBEC cultures were stained by 
SNA (green) and MAA II (red). (D) �e distribution of sialic acids in wdPBEC. PBEC stained for SNA or MAA 
II (green) were co-stained for the presence of cilia or mucus (red). �e images are shown in vertical (middle 
panels) or horizontal (others) sections. �e pseudo-colour was applied in red (mucin 5AC) and green (MAA II) 
by using LAS AF Lite so�ware for image comparison (lower le� panel). �e arrows show co-localization. Scale 
bars, 50 µ m (A, top), 25 µ m (others).
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to detect infection of mucus-producing cells at 1 dpi (Fig. 4B), co-localization of mucin and NP was observed at 
8 dpi (Fig. 6D, arrow). Furthermore, the thickness of swIAV-infected cultures was reduced by about 50% at 8 dpi 
(Fig. 7); in R1- or R2-infected PBEC, the epithelial thickness was not signi�cantly reduced (Fig. 7C).

Maintenance of the barrier function of virus-infected PBEC. In order to determine whether or not 
the barrier function of PBEC is a�ected by the virus infection, we analyzed the cell–cell junctions and the transe-
pithelial electrical resistance (TEER) values. �e patterns of tight junctions (ZO-1, Fig. 8A) and adherens junc-
tions (β -catenin, Fig. 7A) between individual cells were observed both at 2 and 8 dpi. During the whole infection 
period analyzed, the TEER values of wdPBEC (Fig. 8B) were not decreased a�er swIAV infection up to 8 dpi. 
�ese results indicate that the tight junctions were maintained in wdPBEC infected by swIAV.

The cells maintaining the barrier function at 8 dpi were therefore analyzed by staining the cultures for 
the basal cell marker KRT5 and for the presence of sialic acids. Despite the loss of cilia on the apical surface, 
swIAV-H1N1-infected PBEC that had survived infection were positive for KRT5 (Fig. 9A). Some of the cells were 
infected by swIAV as indicated by staining for NP. Furthermore, lectin staining indicated that the KRT5-postive 
cells contained both α 2,3- or α 2,6-linked sialic acids (Fig. 9B). By contrast, in mock-infected samples, MAA II 
staining was mainly detected in the basal portion of the cell layer whereas SNA preferentially stained the apical 
portion. �ese results are consistent with the conclusion that the cells maintained at 8 dpi are derived from basal 
cells that are in the process of di�erentiating into specialized cells.

Discussion
�e airway epithelium is equipped with the mucociliary clearance system to prevent the detrimental e�ect of 
foreign substances including infection by microorganisms. �is defence mechanism is based on the mucins pro-
duced by mucus-producing cells and the ciliary activity of specialized epithelial cells that transport the mucus 
out of the respiratory tract4,5. To understand the infection of airway epithelial cells, it is necessary to use culture 
systems that comprise mucus-producing cells and ciliated cells. To this end, we and others studied IAV infec-
tion in di�erentiated ALI cultures of human airway epithelial cells which contain all major cell types present in 
human airway epithelium in vivo, namely, ciliated cells, secretory cells and basal cells12–15. Here we developed and 
employed swine ALI (swALI) cultures that can be used to analyze the infection by both human and swine IAV16,17. 
Compared to the human counterpart, swALI cells have the advantage that the source of cells is well-de�ned and 

Figure 3. Replication of in�uenza A viruses in porcine well-di�erentiated airway epithelial cell cultures. 
(A) Replication kinetics of R1 and R2 viruses in wdPBEC. (B) Replication kinetics of swIAV in wdPBEC. 
WdPBEC were inoculated with IAV from apical (le� panels) or basolateral (right panels) sides at an MOI of 
0.25. Viruses released from the apical side were harvested at di�erent time points and titrated by focus-forming 
assay in MDCK cells. �e results were shown as means ±  SEM of nine PBECs from three independent donors 
(swIAV) or six PBECs from two donors (R1 and R2). Each sample was processed with two technical replicates. 
It should be noted that some error bars are too small to be printed. Statistical analysis was performed with two-
tailed unpaired Student’s t-test (***P <  0.001, **P <  0.01, *P <  0.05).
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reproducible as far as the age and genetic background of the animals. �e growth conditions of swALI cultures 
were di�erent from those described for human ALI cultures. �e di�culty in establishing this system may explain 
why so far only few reports about di�erentiated respiratory epithelial cells of swine are available16–18. �e novel 
feature in our study is that we analysed events occurring late a�er infection not addressed in previous analyses 
with swine or human ALI cultures.

By histological examination, our well di�erentiated PBEC and PTEC were shown to resemble a pseudostrati-
�ed ciliated epithelium as it is present in the respective portions of the swine respiratory tract. We found that the 
apical surface of di�erentiated epithelial cells predominantly contains α 2,6-linked sialic acid which is consistent 
with other reports16,19. Although α 2,3-linked sialic acids have been reported to be present on subepithelial cells of 
swALI cultures16, sialic acids of swine basal cells have not been analysed before. Here, we demonstrated that the 
KRT5 positive basal cells contain α 2,3-linked sialic acids. When the sialic acid distribution of di�erent species is 
compared, the porcine airway epithelium shows a sialic acid distribution pattern similar to that of human cells 
indicating that the PBEC cultures are more suitable to investigate human IAV infection than murine and ferret 
airway epithelial cells20,21.

�e ALI culture system revealed characteristics of the IAV infection that were di�erent from those obtained 
with immortalized cells. �e amount of infectious virus released from the apical surface remained high during 
the whole infection period analyzed, i.e. up to eight dpi. �is long period of virus release may be related to the ALI 
culture conditions. As in�uenza virions are released from the apical side of the polarized epithelial cells, spread 
of infection is expected not to be as e�cient as in the case of immortalized cells which are covered by medium. 
Interaction with mucins may further hamper the spread of infection, because the viral binding to sialic acids has 
to be counteracted by the viral neuraminidase22.

Figure 4. Di�erences in tropism of swIAV to distinct types of di�erentiated airway cells. WdPBECs were 
infected with swIAV H1N1 or H3N2 from the apical surface at an MOI of 0.25 and �xed at 1 dpi, followed 
by immuno�uorescent staining to detect viral nucleoprotein (green), cilia (A, red) and mucus (B, red). 
Magni�cations of squared areas are presented in the lower panels of A. Scale bars, 25 µ m.
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�e infection by IAV was detrimental for the airway epithelial cells as indicated by the detection of apoptotic 
cells. Another e�ect of the infection was a signi�cant reduction in the amount of cilia detected on infected airway 
epithelial cells. �e reduction was more pronounced in swIAV-infected cultures compared to cells infected by 
either of the two human IAV. �e di�erence is consistent with a more e�cient infection by swIAV as indicated 
by the 10-fold increased amount of virus released into the supernatant. �e reduced staining of β -tubulin can 
be explained by the loss of ciliated cells, probably due to the apoptotic e�ect of the infection mentioned above. 
�is conclusion is based on the reduced thickness of the epithelial cell layer at late times of infection that was 
observed in parallel to the loss of cilia staining. �e loss of cilia and the reduction in epithelial thickness were also 
observed in swIAV-infected porcine trachea tissue explants23. �e loss of ciliated cells was clearly detected with 
cultures infected by swIAV. In the case of human IAV, where the foci of infected cells were not as large as those of 
swIAV-infected ALI cultures, the thickness of the epithelial layer was not signi�cantly reduced. Our results are 
consistent with data from IAV infections in swine. Airways infected by swIAV have been reported to be lined by 
�attened epithelial layers24.

Despite the detrimental e�ect of the infection by IAV, the TEER of the epithelial layer and the tight junc-
tion protein expression were retained during the whole infection period. A recent study reported IAV infection 
interrupts the tight junction formation in an in vitro alveolar culture model comprising immortalized epithelial 

Figure 5. Immuno�uorescent staining of apoptotic cells in PBEC at 2 days post infection. WdPBECs were 
infected by swIAV from the apical surface at an MOI of 0.25 and �xed at 2 dpi. �e cilia (red) and the viral 
nucleoprotein (A, cyan or B, magenta) were stained. �e apoptotic cells were detected by visualizing cleaved 
caspase-3 (green). Confocal images are shown in horizontal (top panels) or vertical (lower panels) sections. 
Magni�cations of squared areas are presented on the top-right corner (A). �e pseudo-colour was applied in 
magenta (viral nucleoprotein) by using LAS AF Lite so�ware for image comparison (B). �e arrows show co-
localization, and the dashed lines indicate the location of the supporting membrane. Scale bars: 25 µ m.
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cells25. In our study, however, the well di�erentiated tracheal and bronchial epithelia retain their barrier function. 
�e �nding of epithelial cells with tight junctions indicates that the lost ciliated cells were replaced by polarized 
cells that were able to maintain the barrier function of the epithelium. It appears that basal cells had started to 
di�erentiate into specialized cells. �is process had not yet proceeded to the appearance of ciliated cells and 
mucus-producing cells, or other non-ciliated cells, but the di�erentiation had resulted in polarized epithelial cells 
that were su�cient to maintain the barrier function as indicated by the TEER. �e reorganization of the epithelial 
cells has also been observed in a report, where mice were infected by IAV in vivo26. �e intermediate position of 
the polarized cells is shown by our lectin staining data, which may indicate that the cells are in a di�erentiation 
process. Undi�erentiated human airway epithelial cells have been shown to contain α 2,3-linked sialic acids and 
the expression of α 2,6-linked sialic acids is increasing over time during the di�erentiation phase27. Whereas α 
2,6-linked sialic acids are abundantly present on well-di�erentiated cells, basal cells mainly contained α 2,3-linked 
sialic acids. Both linkage types of sialic acids were detected in polarized cells at late times of infection indicating 
an increased amount of α 2,3-linked sialic acid on the apical surface of the epithelium compared to the uninfected 
state.

Our results provide a deeper insight into IAV infection. On the one side, there is the detrimental e�ect that 
can result in disease. On the other side, the loss of well-di�erentiated cells is compensated by the generation of 

Figure 6. Immuno�uorescent staining of porcine well-di�erentiated airway epithelial cells at 8 days post 
infection. WdPBECs were inoculated with IAV from the apical side at an MOI of 0.25 and �xed at 8 dpi.  
(A) PBEC cultures were stained for viral nucleoprotein (green) and cilia (red). (B) Quanti�cation of the ciliated 
area at 8 dpi. Results are shown as percentages (means ±  SEM) compared to mock-infected cultures. For each 
infection, six PBECs from three independent donors were measured, and three �elds per culture were evaluated 
as technical replicates. (C) Western blot analysis of β -tubulin expression level in PBECs a�er swIAV infection. 
�e relative expression level of β -tubulin was normalized to actin expression. �e viral NP could be detected 
in the infected culture. (D) Immuno�uorescent staining for viral nucleoprotein (green) and mucin (red). �e 
nuclei were stained by DAPI (blue) (A and D). �e arrows show co-localization. Scale bars, 25 µ m.
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Figure 7. Decreased thickness of porcine well-di�erentiated airway epithelial cell cultures a�er IAV 
infection. WdPBECs were inoculated by IAV from the apical (middle panels of A; B and C) or basolateral side 
(right panels of A) at an MOI of 0.25. (A) wdPBEC were inoculated with swIAV H1N1 and �xed at 2 or 8 dpi, 
followed by immuno�uorescent staining with antibody against the adherens junction protein β -catenin (green at 
2 dpi; red at 8 dpi). Confocal images are shown in vertical sections. (B) WdPBECs were �xed at 8 dpi and stained 
for viral nucleoprotein (green) and cilia (red) (vertical sections). To measure the thickness accurately, the vertical 
image stacks of 5 planes (distance of 1.0 µ m per plane) were merged. It should be noted that the epithelium 
forms a pseudostrati�ed layer in the single plane image. �e nuclei were stained by DAPI (blue) (A&B). (C) 
Quanti�cation of wdPBEC thickness at 8 dpi. Results are shown as percentages (means ±  SEM) compared to 
mock-infected ALI cultures. For each infection, numbers of six PBECs from three independent donors were 
measured. Additionally, three �elds per culture were evaluated as technical replicates. Scale bars, 25 µ m.

Figure 8. Porcine well-di�erentiated airway epithelial cell cultures preserve tight junctions a�er swIAV 
infection. (A) WdPBECs were inoculated with swIAV H1N1 from the apical (middle panels) or basolateral 
(right panels) side at an MOI of 0.25. ALI cultures were �xed at 2 dpi (top panels) and 8 dpi (lower panels), 
followed by staining with anti-ZO-1 antibody (red in top panels; green in lower panels) to detect tight junction. 
Scale bars, 25 µ m. (B) WdPBECs were inoculated by swIAV from the apical or basolateral side. �e trans-
epithelial electrical resistance (TEER) values of mock-infected and swIAV-infected PBEC were determined at 
the indicated time points. �e results are shown as three PBECs from three independent donors. Each sample 
was performed with 3 technical replicates.
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polarized cells that maintain the barrier function of the epithelial cell layer which may contribute to the restric-
tion of the infection to the respiratory tract. �us, the localized infection by IAV is not only a matter of the avail-
ability of proteases required for proteolytic activation of virus infectivity but is also the result of the maintenance 
of the barrier function of the airway epithelium.

As the cells that replace the well-di�erentiated cells are not yet ciliated, the infected areas of the epithelium 
may for a certain time not contribute to the mucociliary clearance system. �is provides an explanation why prior 
virus infection renders the host more susceptible to the co-infection by another viral or bacterial pathogen. In 
this context it is interesting to note that the above mentioned increase of the α 2,3-linked sialic acids on the apical 
surface indicates an increased abundance of receptors for avian in�uenza viruses. �erefore, it is intriguing to 
speculate that swIAV infection renders epithelial cell more susceptible to infection by avian IAV and thus facil-
itates co-infection and the appearance of reassortant viruses. Such events are assumed to be responsible for the 
generation of pandemic viruses.

In sum, we have established an ALI culture system from porcine airway cells to analyze the long term virus 
infection of di�erentiated respiratory epithelial cells. In addition, our results not only provide new insights into 
the infection of the airway epithelium by IAV, they also show an experimental access to questions related to the 
recovery from infection, e.g. the re-di�erentiation of the epithelium and the susceptibility to co-infections.

Methods
Differentiated porcine airway epithelial cell cultures. Primary porcine airway epithelial cells were iso-
lated from pigs of a local slaughterhouse. PTEC and PBEC were obtained from swine trachea and bronchi, respec-
tively. Primary cells were harvested as previously described18 and were seeded on type I collagen (Sigma)-coated 
�asks with bronchial epithelial cell serum-free growth medium (BEGM). �e BEGM was modi�ed from previous 
studies28,29 and contained the BEBM basal medium (Lonza) supplemented with the required additives. PTEC 
and PBEC were transferred to type IV collagen-coated Transwell® polycarbonate membrane (24 well, 0.4 µ m  
pore size, Corning Costar) at a density of 2.5 ×  105 cells per �lter support with the air-liquid interface (ALI) 
medium consisting of a mixture of DMEM (Gibco) and BEBM basal medium (1:1) with additives described 
previously28. A�er PTEC and PBEC reached con�uence, the cells were maintained under ALI conditions for at 
least 4 weeks at 37 °C in a humidi�ed 5% CO2 atmosphere. Both cultures were validated for porcine speci�c res-
piratory tract pathogens including porcine circovirus-2, porcine reproductive and respiratory syndrome virus, 
porcine cytomegalovirus, porcine in�uenza A virus, porcine respiratory coronavirus, Mycoplasma hyorhinis and 
Mycoplasma hyopneumoniae by multiplex Polymerase Chain Reaction (PCR)30. All PTEC and PBEC used in this 
study were free from the above mentioned pathogens.

Histological examination. Porcine tracheae and bronchi were obtained from a local slaughterhouse and 
�xed in 10% paraformaldehyde (PFA), processed routinely, embedded in para�n, sectioned at 5 µ m, and stained 
with hematoxylin and eosin (H&E).

Semi-thin sections. Staining of semi-thin sections was performed as described previously31. Brie�y, cul-
tured cells were �xed in 5% glutaraldehyde/cacodylate bu�er for 24 hours and subsequently post-�xated with 1% 
osmium tetroxide. Following dehydration in a graded series of ethanol, sections were embedded in epoxy resin. 
�e 1-µ m-thick semithin sections were stained with toluidine blue and evaluated by light microscopy.

Scanning electron microscopy. Scanning electron microscopy was performed as described previously32. 
Brie�y, cultured cells were pre�xed in glutaraldehyde (2.5%) for 24 hours and subsequently treated with osmium 
tetroxide (1%) for 2 hours. Following dehydration in an ascending series of ethanol, samples were dried under 

Figure 9. Sialic acid expression on PBEC a�er swIAV infection. WdPBECs were inoculated by swIAV 
H1N1 from the apical (middle panels) or basolateral (right panels) side at an MOI of 0.25. Cryosections were 
prepared at 8 dpi. (A) Immuno�uorescent staining for KRT 5 (red, basal cells) and viral nucleoprotein (green). 
(B) Immuno�uorescent staining to detect α 2,3- and α 2,6-linked sialic acid using MAA II and SNA lectins, 
respectively. �e nuclei were stained by DAPI (blue) (A&B). Scale bars: 25 µ m.
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critical point drying using the E 3000 device (Polaron, USA), stuck to stubs, sputter-coated and examined under 
a scanning electron microscope (DSM940, Zeiss, Germany).

Influenza viruses. Two swIAV, A/sw/Bad Griesbach/IDT5604/2006 (H1N1) and A/sw/Herford/
IDT5932/2007 (H3N2), and two recombinant human IAV, R1 and R2, were used in this study. �ey have been 
described in previous reports12,33,34.

Measurement of trans-epithelial electrical resistance (TEER). �e TEER developed by PTEC and 
PBEC cultures was measured by using the Millicell® ERS-2 Voltohmmeter (Millipore) according to the manu-
facturer’s instructions.

Virus infection of differentiated epithelial cells. Well-di�erentiated PTEC and PBEC were washed �ve 
times with PBS and inoculated with IAV from the apical or basal side at an MOI (multiplicity of infection) of 0.25; 
the cell number per �lter support was approximately 5 ×  105. A�er 2 h of incubation at 37 °C, PTEC and PBEC 
were rinsed with PBS twice to remove unbound viral particles and fresh ALI medium was added. Infected PTEC 
and PBEC were further maintained under ALI conditions at 37 °C in a 5% CO2. At di�erent time points, 100 µ L 
of DMEM were added to the apical surface and the cultures were incubated for 30 min at 37 °C. �e harvests were 
collected at di�erent times post virus-infection and the viruses were titrated by focus forming assay on MDCK 
cells. For immuno�uorescence analysis, infected PTEC and PBEC were �xed with 3% PFA or used to generate 
cryosections, 20 µ m thick35.

Lectin staining. Lectin staining was performed with Sambucus nigra agglutinin (SNA) or Maackia amuren-
sis agglutinin II (MAAII)34. �e binding of biotinylated lectins was visualized by �uorescence microscopy using 
streptavidin-Cy3 (Sigma) or streptavidin-DyLight 488 (Vector laboratories).

Immunofluorescence analysis (IFA). Whole-�lter cultures or cryosections of PTEC and PBEC were �xed 
with 3% PFA and permeabilized with 0.5% Triton X-100. Cells and sections were further blocked with 5% goat 
serum and incubated with primary antibody, followed by incubation with Alexa Fluor® conjugated secondary 
antibody. �e nuclei were stained by DAPI (4′ ,6-diamidino-2-phenylindole) and were embedded with ProLong® 
Gold Mountant (Life Technologies).

�e primary antibodies used in this study were as follows: anti-in�uenza A virus nucleoprotein (NP) anti-
body (AbDSeroTec), anti-mucin-5AC antibody (Acris), anti-cytokeratin 5 (KRT5) antibody (Abcam), anti-ZO-1 
antibody (Life Technologies), anti-β -catenin antibody (Sigma), cleaved caspase-3 antibody (Cell Signaling) and 
Cy3-labeled antibody against β -tubulin (Sigma). Secondary antibodies were Alexa Fluor® 488, 568 or 633 con-
jugated antibodies (Life Technologies). All antibodies were diluted in 1% bovine serum albumin and incubated 
in RT for 1 h. IFA was performed by using a Leica TCS SP5 AOBS confocal laser scanning microscope. For the 
processing and analyses of confocal images, LAS AF Lite so�ware (Leica) and ImageJ/Fuji so�ware (National 
Institutes of Health) were used. �e image stacks with a z- or y-distance of 1.0 µ m per plane were merged. �e 
images were generated by ImageJ/Fuji so�ware using maximum intensity projection �lter. �e results were 
repeated at least with six PBECs from three independent donors, three �elds per culture were examined by con-
focal laser scanning microscopy.

Virus titration. �e infectivity of the viruses was evaluated by focus forming assay on MDCK cells36 with 
modi�cations. Infected cells were detected with an antibody directed against in�uenza A virus NP and a horse-
radish peroxidase (HRP)-conjugated anti-mouse IgG (H +  L) secondary antibody (KPL). �e calculated virus 
titre is indicated in foci-forming units per ml (FFU/ml).

Preparation of cell lysates and Western blot analysis. At day 8 p.i., each PTEC or PBEC was washed 
with PBS and lysed on ice using 50 µ L RIPA bu�er supplemented with protease inhibitor cocktail (�ermo 
Scienti�c). Laemmli sample bu�er and 0.2 M dithiothreitol (DTT) were added to the collected samples and incu-
bated at 96 °C for 10 min. A�er electrophoresis in SDS-PAGE and transfer to a nitrocellulose membrane, the 
samples were subjected to Western blot analysis. Anti-β -tubulin antibody (mouse, Sigma), anti-actin antibody 
(housekeeping control, mouse, Sigma) and anti-in�uenza A antibody (goat, ViroStat) served as primary antibod-
ies and anti-mouse or anti-goat horseradish peroxidase (HRP, Dako) antibodies were used as secondary antibod-
ies. �e primary antibodies were incubated at 4 °C overnight, and the secondary antibodies were applied for 1 h 
at 4 °C. �e speci�c proteins were visualized by Super Signal West Dura extended duration substrate (�ermo 
Scienti�c) and quanti�ed by so�ware Quantity One (Bio-Rad) and ImageJ/Fuji (National Institutes of Health). 
�e relative protein expression levels were normalized to actin.

Statistical analyses. Data are shown as means ±  SEM. All statistical analyses were done by using Prism 5 
so�ware (GraphPad So�ware).
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