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what vague and complex subject, and to place certain definite features in
theoretical relation to one another, that the discussion here presented should
be judged. Some of the views expressed have been stated before in other
contexts,® and in a more detailed and complete memoir I hope to refer to
these and other theories on the subject. In this uccount I have mentioned,
very brietly, only those papers which I have had actual occasion to use in the
present discussion ; but it is hardly necessary to state how much such an
investigation must owe to the labours of others who have previously studied
the many-sided phenomena dealt with.

It is a pleasant duty to acknowledge the assistance which has been placed
at my disposal, in the execution of the computations necessary for this paper,
by the Government Grant Committee of the Royal Society and by the
Astronomer Royal.

The Diffraction of Electric Waves by the Earth.
By G. N. Warsox, Sc.D).,, D.Sc., Assistant Professor of Pure Mathematics at
University College, London.

(Communicated by Prof. J. W. Nicholson, F.R.S. Received May 29, 1918.)

During the last 15 years, the problem of determining the effect at a distant
point of the earth's surface due to a Hertzian oscillator emitting waves of a
definite frequency has been the suhject of numerouns theorédtical investigations.

When certain assmmptions of a physical character have been made, the
problem is of a definitely mathematical type; it is in fact reduced to the
problem of finding an approximate formula for the sum of a certain
complicated series of an oscillatory nature; we shall summarise the prineipal
methods which have been devised for dealing with this series.

The method of Poincarét and Nicholson} is to replace the series by an
integral and then to obtain an approximate value for the integral by
means of the caleulus of residues, The analysis employed by them, though

* Since writing this paper, for example, I have noticed that the symmetry of the
disturbance vaviation about the solar meridian plane (§6) had been remarked by
van Bemmelen in 1903 (‘Terrestrial Magnetism,’ vol. 8, p. 153), who also (ibid., vol. 5,
P 123) refers to a theory of “current-vortices” (¢f. § 11) by Schmidt (‘ Met. Zeitschrift,
1889, p. 385).

t “Palermo Rendiconti,’ vol. 29, pp. 169-260 (1910).

} * Phil. Mag.,” 1910, passim,
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substantially sound, seems to be lacking in rigour in some points of detail ;
it is, moreover, exceedingly elaborate and their approximations become invalid
in the neighbourhood of the antipodes of the transmitter. 3

The method employed by Macdonald* is to approximate to the terms of
the oscillatory series, and then to replace the modified series by an integral.
From the purely mathematical point of view this procedure seems open to
question, as the sum of the series is considerably smaller than the differences
between the larger terms in the original series and the corresponding terms
of the modified series. [t appears, however, that the sum of the differences
is of the same order of smallness as the sum of the series, and consequently,
as in many other physical problems, the end justifies the meaus. It should
be pointed out that the reason for the chief discrepancy between the form of
Macdonald’s result and the results obtained by Poincaré and Nicholson is
that Macdonald usest the approximation

P,(cos@) = Jo{(2n+1)sin 4 6}
when = is large: but it is obvious from Laplace’s approximation for
P,(cos @) that this formula ceases to be a valid approximation when @ is large
enough for n6° to be appreciable.

The problem has been treated in a directly arithmetical manner by Love}
whose memoir contains a complete bibliography.

A completely different mode of procedure is adopted by March§ followed
by Rybezynski || : these investigators work ab imitio with a definite integral
in place of a series ; but it has been pointed out by Love that the whole of
their analysis is fundamentally unsound, since the expression which they
assume for the magnetic force has a line of singularities along the negative
half of the axis of harmonics, and such an assumption is, of course, incorrect.
The initial error seems to lie in an “inversion formula” which somewhat
resembles Fourier’s integral formula; the formula in question, according to
March, is proved in his dissertation, but I have not succeeded in obtaining a
copy.

Further criticisms could also be made as to the manner in which they
approximate to the integral ; for instance, while they profess to approximate
to an integral involving a Legendre function of the first kind, it seems that
they really obtain an.approximation to an integral in which the function P,
is replaced by the function @Q,.

¥ “Roy. Soc. Proc.,,” A, vol. 90, pp. 50-61 (1914), and earlier papers.
t+ Ibid., p. bb.
I “Phil. Trans. A, vol. 215, pp. 105-131 (1915).

§ “Ann. der Physik,’ vol. 37, pp. 29-50 (1912).
| ¢Ann. der Physik,’ vol. 41, pp. 191-208 (1913).
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In view of the discrepancies between the results obtained by different
investigators, Dr. van der Pol has asked me to make a further examination
of the problem, and to determine the magnetic force at the autipodes of the
transmitter. This paper is the outcome of the analysis, and it appears to
show that the physical assumptions do not account for the observed amount
of diffraction. It therefore seems that further physical facts, such as the
ionisation of the upper regions of the atmosphere, play a dominating part.

I must not omit to acknowledge gratefully the help which Dr. van der Pol
has given me in connection with the physical aspects of the problem.

2. The essential advance in this paper is closely conunected with the funda-
mental error of March and Rybezynski which was pointed out by Love.

In dealing with an oscillator on the positive half of the axis of harmonies,
those writers express a Hertzian function by an integral of P,(cos@). the
integration being carried out with regard to the degree s of the Legendre
function ; such an integral has a line of singularities along the line 6 = 7,
and is regular along the line 8 = 0.

The fact is that, when harmonics of non-integral degree are introduced,
the appropriate function to use is not P, (cos ), but P;(—cos 6); this
fundamental point is somewhat obscured by the equation

Pp(—cos8) = (—)" P, (cos 6),
which lolds between the functions whose degrees are integers. The failure
of convergence of an integral involving P,( —cos ) along the line 8 = 0
(when an oseillator is placed on the positive half of the axis of harmonics)
is strietly analogous to the failure of convergence of the series 1 424224 ...,
all round the circle [z|=1 on account of the single singularity of the
function 1/(1—=2) at the point = =

A simple electrostatic example is afforded by the potential of a unit
charge at distance « from the origin. The potential near the origin is

¥=(1l/a) go(7°/¢‘¢)" P, (eos 8)

-

= (1/a) z= (=) (@rfay P, (—cos 8)

s
sin s

= éal—n[ (r]a)y Py(—cos 6)

where the contour starts from +o and returns to + o after encircling the
points s = 0, 1, 2, ..., which are poles of the integrand.
On swinging round the contour* so as to surround the other poles of the

* COf. Barnes, ‘Lond. Math. Soc. Proc. (2), vol. 6, pp. 141-177 (1908). Laplace’s

formula for P,, valid when [s] is large, has to be used to prove the convergence of the
integral,
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integrand, and evaluating the residues, we find the series for Vin descending
powers of 7, valid when » >a.

3. We now give an outline of the analysis which leads to. the series for
the magnetic force, and with the aid of the calculus of residues we shall
transform the series into a rapidly convergent series well adapted for
numerical computation. The analysis of Poincaré leads to an approximation
to the dominant term in this series, while the more powerful contour integrals
of this paper give the complete series. The analysis is made more compact
by using the Hertzian function and Bessel functions of the types employed
by March rather than the functions previously used by English analysts.

It is supposed that the Karth is a homogeneous imperfectly conducting
sphere of radius « surrounded by homogeneous dielectric. The sending
apparatus is a Hertzian oscillator at distance b (> «) from the centre of the
sphere, its axis is along a radius of the sphere and is taken to be the axis
of harmonies. The oscillator emits simple harmonic waves of period 27 [0
and the electric and magnetic forces at any point are the real parts of the
vectors Eewt, He ; B and H are connected by Maxwell’s equations

yH = —»t E, BE = rot H,

-where 3,y are constants of the medium transmitting the waves,

The spherical-polar co-ordinates are (7, @, ¢), the components of E are
(E,, Ey, E;), and the components of H are (H,, Hy Hy); we also write
cos 0 =

Then the components of E and H, in the case of symmetry about the
axis of harmonics, are expressible in terms of the single Hertzian function II
by the equations®

orl . 182 (rH) ‘ et
B=-p{g-ant Beg%Ee Be0
B8
’ ~hae

',-=O, 0= - H:

and IT satisfies the wave equation

(V2 +743)11 = 0,
where /* = — 8.
Now the Hertzian function due to an oscillator in homogeneous infinite
space is
Hy = e~ SBIR

* This function differs from March’s function by the factor b; it is identical with
Love's function in the case of an oscillator surrounded by infinite homogeneous dielectyic ;
the presence of the factor 4 in the equations is explained by the equivalence of the
operators 0/Cp, 0/b0@ so far as functions of #2— 2by cos 8+ 42 are concerned if (p, ®, 2) are
cylindrical co-ordinates.
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where R denotes the distance of (7, €, ¢) from (4, 0, 0) ; and this function is
expansible in the forms

1
n()= R

=5 (Zu-l-—l) & (RD) rw (Jer) Py, (),

" 143

o= —75 = (20+1) 6 () () Py ),

according as » < b or » > b, where*

Y (@) = Gmaef Jugy @), G@) = (G Hay @ (2),
the symbol H,® denoting the second of the two Hankel-Nielsen functions
(which are sometimes called Bessel functions of the third kind).

We now have to take into account the fact that B, v, & have not the same
values wheu » < @ as when » > a: we accordingly denote the values of these
constants for the interior of the Earth by the symbols B, v, ki

We assume that the disturbance in the Hertzian function outside the
sphere » = a is Tlg, and that the disturbed function inside the sphere is T,
The appropriate series for H,g and TI; are

Iy = ——

o b ( 1)y & (hr) Py (),

" Mu

Ti= —p S @0+ 1) by (k) Pa ),

where the coefficients a,, 4, are constants.
The boundary conditions are effectively

-1 d
Blo+1Hy) = Billy, = {1Tly+r1l) = 5—7 {rIL},

when # = a.  On substitution we find the value of «, by solving two linear
equations ; the valune is

G (R) [ ) Ve ()= B, () o (k) (Bik)]
\Pn(]h"l) CI (/L'l) Bl'l\lfn (/ ”) :n (](’)/(Bl/‘ g

and we deduce that the value of IT just outside the surface of the earth is
given hy

Thid; 0y e S (204 1) Py () Yrn (Jict) & (K)
/wb w =0 Yon (ki) & (k) — Blear,” (Teaa) G (k) [(Biley

provided that we make use of the relation
Yo (k) & (k) =&, (ka) ¥y’ (ka) = —i.
We first discuss the limiting case in which Ii/ B¢ is mnegligible compared

* : . o
deno::::;“‘:ibe noticed that this function ¥, differs from the function which Love
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with %/@; this assumption is equivalent to supposing that the earth is a

perfect conductor.
The value of TT to be considered is now simply

M ) =~ S @+ 1) Pa () Gu (/& ()

To examine the couvergence of this series we observe that [P, (x)[=1 and,
as n —e o0 while &, «, b remain fixed,

& (k)] & (k) ~ —ka(afb)*[n,
and so the series converges, since b > «.

Further, since* | P,/ (u)|=#2 it is easy to see that the series obtained by
differentiating term-by-term is uniformly convergent with regard to u, and
0 no difficulties oceur in obtaining H, and E, from IT so long as & > a.

4, I we notice that (2u41)P,(u)& (kD)/& (ka) is the residue at

s =n+% of
23#'1).55(_—/2 ~_$:,—9 (/-‘[l),
cossm . &—y (ka)

we are led to the study of the integral
t Poy (=) . Gy (BB)

cos sm . &' (ka)

taken round a suitable contour.

Since Py—y (—p) = F(d—s 5+s; 15 $+3p) it is obvious that Pe—3(—p)
is an even integral function of s when w has any assigned value such that
—1=p<1. Also from the equation

H®@ ("‘,') — __1._ ro—m p—0+zsinh 6 J0
) -
it is evident that H,® (z) is an integral function of s when R (#) is positive,
and the relation
H-_®* () = ¢=H,® (2)
shows that §—; (kb)/ &~ (ka) is an even function of s.

The integrand is therefore an odd function of s, whose only poles are at
the zeros of the functions cos s, &-;’ (ka).

We assume for the moment (see § 5) that &-;'(ka), qua function of s, has
no zeros on the positive half of the real axis or on the imaginary axis, and
then we take the contour of integration to be formed by a semicircle of large
radius R, whose centre is at the origin which lies on the right of the
imaginary axis, together with that part of the imaginary axis which joins the

* This follows without difficulty by induction from the equation

Pus1' (p) = Pu—1'(p) = (2n+1) Py (p).
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points +Ri. Tt is going to be supposed that R —+eo through such values
that no poles of the integrand ever lie on the contour.
Since the integrand is an odd function of s, the integral along the part of

the imaginary axis vanishes.
Next, consider the integral along the semicircle; so long as @ = 7, we may

use Laplace’s approximation
R {s(vr—())-f— $mr}
V/ {Lsmsin 6}
which is valid when |s| is large and R(s)=0; also the dominant terms of
H® (x) are

7 (32)~* _emi(da)y
sinsw LT'(1—s) I'(1+s))’

of which the latter part is negligible except near the ends of the semicircle ;
it follows that, since the path of integration avoids the infinities of
G-y (kD) [ &~y (ka), the value of this fraction on the contour has its modulus
comparable with (k/a)(b/a)}~*[(4—s) and so, by an application of Jordan’s
Lemma, the integral round the semicircle tends to zero as the radius tends to
infinity. Hence the sum of the residues of the integrand at its poles on the
right of the imaginary axis is zevo. If we assume (see § 6) that the zeros of
&~y (ka) are all stmple, and if we call them »,, v, ..., we get

, ) 0 7 TR v Py (=p) &y (kb)
2+ D PG, (kb) [ &' (fea)+ zvr§cos o 06y (k)T = 0,

and so we lind that when 4;/8; is neglected

IS

"

_2r s wP,_y(—pn)& (kD)
Hils, £)= g5 ),,' cos var [08,—" (ha)[0s], =,

- and this’equation expresses the transformation of the series for the Hertzian

function which the object of this paper is to obtain.

It will be found later (§ 7) that this series converges very rapidly except
when @ is quite small, and that term-by-term differentiation with respect to
@ is permissible, since the test for uniformity of convergence is satisfied.

Further, it will be shown in §7 that convergence is uniform with respect
to b when b=a; and so, by Abel's theorem, we may write a for & in the
series when we wish to find the effect due to an oscillator placed on the
Earth's surface. y

The investigation which lies immediately before us consists of an intensive
study of the zeros of ¢}’ (ka) qua function of s.

The investigation is simplified by the fact that 4 is real but is complicated
by the fact that ke is large, so that asymptotic expansions for Bessel

functions of large variables have to be employed. It may be stated here
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that for waves whose length is 5 kilom., Za is 8000 : if the wave-length is
10 kilom. (about the greatest length which is practically realisable), ka is
4000.

5. We first prove two resnlts stated in § 4, namely, that &' (ka) does not
vanish when s is positive or when s is a pure imaginary. To prove them, we
write

Ne-3 (®) = (3 )t H O (2),
where  is written for brevity in place of e, and use the relation
Moy’ (@) G-y (2) =Gy (@) ey (2) = 20.

When s and @ are positive, n,—y'(#) and -,"(») are conjugate complex
numbers, and so if one vanishes the other also vanishes; and this is
impossible in view of the above relation.

If s is a pure imaginary, the complex conjugate to &-."(2) is p—,—;" (2), and
this is equal to e™'y,-;" (z); hence if &-,'(#) vanishes, so does 7,-,'(z), and
this is also impossible. Hence &' () never vanishes for positive values of
s or for purely imaginary values.

6. We shall now examine the behaviour of the functions & (ka), &' (ha) by
means of the method of steepest descents. On recalling Sommerfeld’s
integrals for Bessel functions of the third kind,

& ol o =i

Hn(l) (,) — l [ et sinhw—nw dw, H"(z) (3)) — _#i’ grsinh w—nw d,w,

7"7'., -0 —m

we see that we shall have to study contour integrals in which the integrand
ig ¢#sinlie=ne the contours passing through stationary points of & sinhw—nw.

In the electrical problem under consideration, 2 is large and positive, while
n is an unrestricted complex variable. We write®

n = wxcosh (a+18) = 2 coshvy,

where «, 8 are real. In view of the fact that asymptotic expansions fail
when n > @ or n < —i, we suppose that 0 < B < 7, while « assumes all real
values ; the requisite cuts in the n-plane are effected by this hypothesis.

The stationary points of sinhw—w coshy are the points + o+ 2mmri,
where 7 assumes all integral values; we therefore study the contours formed
by parts of the curves

[(sinh w—wecoshy) = + I (sinhy—rq coshy).
The curve on which

[ (sinh w—w cosh ) = + I (sinh y—ry cosh )

* There is no risk of confusing these variables 3, y with the physical constants 3,y
introduced in § 3.
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has a double point at w = v and the inelination of one of its branches there

is jw+4% tan™? (tanh « cot B).
This branch will be called C,, and the other branch through the double

point will be called 'y,
We shall write
S"(l) (J) = 1< ‘. prsinhw—ne oo, .
Y m ],

it is known* that, when « = 0, the functions S,® (») and H,® () are equal
and that €, passes from —oo to o3 +7ri.
1f = is defined by the equation

ginh w—w coshy = —r+sinhy—ycosh vy,

then 7 increases from 0 to s as w moves along C in either direction from .
Similarly the curve

I (sinh w—wcoshy) = —I(sinhy—rv coshy)

has & double point at w = —« : the branch of the curve which has inclination

i

- 77‘[

Fig. 1.

* Cf. *Camb, Phil. Soc. Proc,,’ vol. 19, p, 104 (1917).
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— 7 +4 tan~" (tanh « cot B) at that point will be called Cs and the other
branch through this double point will be called Cy".
We shall write

8,® (z) = _l.j g sinhie=nie o
: i o,
and, when « = 0, S, () = H,® ().

Now, if we vary v continuously from a value for which « = 0, the curve C,
continues to pass from —co to oo 47, until the, curve changes its form by a
process of bifurcation ; such a change can.only occur when the curve has a
second double point ; and so bifurcation can oceur intwo ways* according as
the second double point on C; (or C;') is the point w = —q or the point
w = 2mi—r. We consider the two types of bifurcation in turn,

Nos ¢

Fig. 2.

The first type occurs when I (sinh v—rcoshy) = 0; and it can be shown
that if « > 0 the branch C; bifurcates, while if « < 0 the branch ¢y bifur-

* In ﬁg.. | the contours are shown just before bifurcation takes place ; the various
uodes of bifurcation are studied in detail by Debye, ‘ Miinchen Sitz.,” Abh. 5 (1910).
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cates. In the latter case the bifurcation does not affect the form of C,, but
in the former case, after bifurcation, the curve C, starts at oo —mi and, after
passing through v, ends at o + i, so that the value of S," () has changed
abruptly to s
L T P
T o —m
These bifurcations occur when z is on the curves shown in fig. 2 by
continuous lines starting from the point n = .
The second type of bifurcation occurs when
I {sinhy—(y—mi)coshy} =0,
i.e. when 2 is on the curves shown in fig, 2 by continuous lines starting from
—z. If « > 0 the bifurcation does not affect C,, but if « < 0 the value of
S,® (z) becomes

org/ on 09 August 2022

1 - 4 2mi
. ;j eninh\a-nw d?l.’,

-

and this is equal to 2e="" J_, (2).

Similar arguments apply to S, (z), but it seems unnecessary to give them
in detail. The following Tables give the expressions for 5,® (), S, (z), in
terms of H,™ (z), H,® (), for each of the regions of the n-plane numbered
1-7 in fig. 2 :—

ing

8,0 (2). | 5.9 (@).
. H,,(l) (;) 1, 3, 4 H"(ﬂ) (1') ; 1, 2, 5 |
1LY (#) + 1.9 (2) 2,6 B @) + 5,2 (2) B3 |
|
B @ mD @ | 57 etnr H,M (z) + 1P () 4, 6
|

Throughout the plane the following are the dominant terms of the asymptotic
expansions given by Debye when 2 is large and |y| is not small :—

s”(n (.7:) ~ ¢ (sinhy—y cosh y)—{mi = \/ {}.‘ ara Sin ( —i'y) }’
S,.(B) (x) ~ g—zisinhy—yecoshy)+imi \/{%,mv sin (—z'y)} .
and term-by-term differentiations of these expansions are permissible,

Downloaded from https://royalsocietypublish

whence we find that, if 7 and « are regarded as the independent variables,  *
08, (M S @ (2
S~ 80, B ~ 80 @),
08,M (2 ‘ 2
% ~ sinhy . 8.0 (), Q%_ac(“’) ~ —ginhy . 8.9(2),
*8,m § @
D ~—ysinhy . 80, TEE@ gy 5,0 @)

VOL. XOV.—A. 1
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It follows that the large zeros of H,™ (#), H,® (z) and their derivates are
near the curve on which
R (sinh y—vycoshy) = 0.
The portions of this curve near which zeros of H,® (2) and its derivates
lie are shown in fig. 2 by broken lines.

Since &3’ (2) ~ (ma)t %H,,m (), we see that the large zeros of &y’ (%)
3 7

are given approximately by the equation

px(sinhy—ycoshy)—}mi — __ p—*(sinhy—y cosh y)+in‘,

L.e. a (sinh y—¢ycoshy) =} 7i = —(m+}) mi
where m is an integer large compared with z; and the corresponding value
(vm) of v which makes &’ (z) have a simple zero is

v ~ —(m+1)miflogm.

[A closer approximation shows that R (va) > 0].

7. We can now discuss the nature of the convergence of the series for
I, (e, @) obtained in §4. It is obvious from the asymptotic expansion of
S,@ (z) given in § 6 that &,—,’ () does not vanish when = lies in any of the
regions of fig. 2 in which H,® (z) is represented by a single series except
when |y| is quite small; and so all the terms of high rank in the series for
11, (a, 6) are comprised in the expression

vP,—y (—p) G-y (kD) sec v [0,y (k) [05] =,
where v ~ —(m+1})mwiflog m.

Also, at the large zeros of &, («), it is found that the real parts of the

exponents occurring in the asympiotic expansion of &—j(kb), &3 (%) do not

differ appreciably when b/e is nearly equal to unity; and so the general
term in the series for II, («, @) is roughly equal to

VP, 3 (—p)
Vv (P —=a2) . cosvrr . logv’

and this is comparable with »%~%¢[[, / (v*—2?) . log »] except when @ is small.
It is obvious from the last expression that the convergence properties stated
at the end of § 4 are deducible from the test of Weierstrass for uniformity
of convergence.

8. In order to obtain results of a numerical nature it is necessary to
investigate those terms in the series for TI, (a, #) for which I (v)is com-
paratively small ; and to do this we shall require approximate formule for
&y () when |vy| is small.
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It has been shown* that, when «= 0, f w=+y+¢ and if
+ 4T? sinhy +§T° coshy = — 7, then |d (t=T)/dr| is a bounded function of
7 and y when 0=8 =}m and 7 is positive. But the fact that this function is
bounded is obviously not connected with the fact of 7y being real, but must
depend on the fact that, with the exception of == 0, there is no stationary
point of 7, qua function either of ¢ or of T, which is in the neighbourhood of
the curves in the ¢-plane, and in the T-plane on which 7 is positive (= 0).

Suppose now that we confine our attention to those values of v for which
|y|=4. The values of = for which C; has a second double pom.t are repre-
2 sented by the curves which separate the region 3 from the regions 1 and 2
Z'in fig. 2. The values of n for which the corresponding curve in the T-plane
o has a second double point are represented by the real axis on the right of
Cé «, and the curve passing from z to the origin (shown by the dotted line in
-3 fig. 2). The latter curve touches the boundary of the region 1 at z, and
5 so, if we exclude from consideration the sectors which are shaded in fig. 2,
%bt.hen |d (t=T) [dr| is a bounded function of , y and 7 so long as |y|=4.

Hence, when |y|=} and the shaded sectors are excluded from consideration,
we find that

| | e‘"dt—j e~2rdT | < 7A/z,
where A is a constant depending only on the angles of the sectors. Hence
we havet
S, (2) = ¢~*(sinhy-yeosh ) (3=} tanh o , eI+ T3 (§) + Abza™1},

where £ = } iz sinh®y sech?y, the phase of £ vanishing with «; the value
of 3@ (§) is H;® () when n lies in the regions 1 and 2, and it is
H,® (§) 4 ¢t= H® (£) when = lies in the region 3, the transition taking place
as n crosses the dotted curve (the equation of the dotted curve may be
written arg £ = 4w); and, finally, |6s]|=1.

In a similar manner

8,0 () = ¢*@inhy—yeoshy) {3-d tanhy , e~ Im-% 8,0 (£)+ Abra—1}

Downloaded from https://royalsocietypublishi

8o long as |y|=4% an(i, in addition, # lies in the regions 1 and 3, and is not
too close to the boundary which separates them from the region 2; and
|01|51.

To discuss the approximate value of H,® (z) we examine the function

w (n) = eCinhy=—yooshy) O () — 3~ tanh oy . e~ 3" +# H, ().

* “Camb, Phil. Sce. Proc.,” vol. 19, pp. 103-110 (1917); in stating the following
results, the notation has been modified by taking x and y (instead of » and y) as
independent variables.

t 7. “Camb. Phil. Soc. Proc.,” vol. 19, p. 110 (1817).
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Consider the value of  (n) on the boundary of the shaded sector which
separates the region 1 from the region 3. _

On the arm of the sector which lies in the region 1, we have e(n) = A8y,

On the arm of the sector which lies in the region 3, we have
o (n) = Az~ (03— G2 Cinbhy—yeoshyy L 2. /3 | tanhey , elri+z(siuby—ycoshy)

x sinh {2 (sinh oy —ry cosh o -+ % sinh® oy sech? ) } H{® ().

Now, on this arm of the sector, R{z(sinhy—«ycoshy)}=0, and hence, using -
the appropriate approximation when |£| is small or large (say less than } or
more than 8) for H,® (§) and using the fact that it is bounded for inter-
mediate values, we find that |w(n)| <Bz~!, where B is an absolute constant.

On the part of the arc |y| =4 which forms part of the boundary of the
shaded region, by using the asymptotic expansions of H,®(2), H;@ (&), we find
the same inequality for w(n).

Now w(n) is analytic throughout the interior of the shaded region and so
its real and imaginary parts have no true maxima or minima in the shaded
region. Hence in the shaded region |w(n)|<By/2 .27

Hence in the region 1 and in that part of the region 3 for which
R(sinhey—ycoshy)=0, by using equations already given for w(n), we find
ha
e ¢*Ginhy=ycoshy) H () () = 3~3tanh vy , e-i"+E H,® (£)+ 0 (1/2)
while, in the rest* of the region (3), the function O (1/2) has to be replaced
by ¢*@Ginhy=ycoshy) () (1/z), the constant implied in the symbol O being
independent of vy so long as |y|=1.

It may be shown by purely formal analysis (involving a use of Cauchy’s
theorem) that it is permissible to differentiate this approximate formula with
regard to # or 2 ; and we find that

L (A, @)

~ —(3x)"¥exp{ —3mi—z (sinh y—ry cosh y) + i€} sech y cosech ¢

x [H\® (&) + 3EdH,® (&) [dE].

The function on the right vanishes when H_;®(§) vanishes. The three
smallest zeros of this function have been calculated by Macdonald ;}+ their
values are .

em x 006854, ™ x 3:90, e x 705 ;
and from what is known concerning the zeros of Bessel functions of the first
kind of high order, it is in the highest degree improbable that, when = has any

* The shaded area near the real axis has to be omitted, but it can easily be discussed

in a similar manner.
t ‘Roy. Soc. Proc.,’ A, vol. 90, p. 54 (1914).



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

e . e T s

The Diffraction of Electric Waves by the Earth. 97

assigned value exceeding 4000 (this is the smallest value of # which is of
practical importance), the zeros of d {##H,®(z)}/dx, qua function of £, differ
from these values by more than about 1 per cent. at most.

The three most important values of # are therefore

@+ pade i,
where p = 08083, 2577, 383
Also, to a first approximation,
AH,® (a;)/ BTat-f;; {3 H,® ()} ~ —cosh?y cosech®y
~=—}ated[p.

Hence each of the dominant terms in the series for the Hertzian function
is given by the formula

_mwd™ yP 4 (—w)
ap (ka)t  cosymr

If A be the wave-length (measured in kilometres) these terms may be
written '
3674a "N tedmp=1P,_, (— p) sec v,
approximately ; and » takes the values
400001 +(13:82 = 23:944) A 73,
400001+ (4393 =76:324) A4,
4000014 (655 —1134) A4,

Hence by Laplace’s approximation when @ is not nearly equal to 0 or ,
and by Mehler’s approximation® when @ is nearly equal to 7, we find that
the order of magnitude of the dominant term is exp (—23'94A736), and,
compared with this, the other terms are negligible. This result is in
substantial agreement with the approximations obtained by Nicholson and
Macdonald. It would be easy to construct a table of values of the dominant
term for various wave-lengths.

It is to be observed that in this theory there is not a “focus” at the
antipodes of the oscillator ; in fact the magnetic force vanishes at 6 = 7.

For purposes of comparison it should be noticed that if the Earth were
replaced by dielectric the Hertzian function at any point of the Earth’s
surface would be exp{ —2ika sin 68} /(2a sin 16):

9. We shall now discuss the value of the Hertzian function on the
hypothesis that the earth is not a perfect conductor.

* (. a forthcoming paper by the present writer in the ¢ Messenger of Mathematics.’
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The contour integral to be discussed is

_2m( Pa(=m) &y (b)) Aoy (Rt dls
’“‘b[ cossm " Yr—y (ki) &y’ (k) —Bhinre—y’ (ki) & ,(lea)/(ﬁ.k)

The sum of the residues at the poles s =14, s=§, ..., is II(a, 0); the
integral along the large semicircle vanishes as before; and so we find that

2 vPv_;(—-#) &3 (kD) 1
Tab > son o [06,¢ (RS ([N as T kabz'j_ )}

where ¢ (s) denotes
1— Bl {¥rumi’ (ki) ey (kit)} { Gy (k)] =y’ (R)} [ (BR),
and the summation applies to the zeros of ¢ (s) for which R (s) > 0.
Now the values of the constants 2 and v are
= (oc+iew)fc, vy =tpwle, I? = — By,
where u is the permeability, e the dielectric constant, o the conducfivity,

and ¢ is the velocity of light, all measured in rational units.
The values of the constants are as follows :—

10 (a,0) =

Forair,e=u=1,0 = 0.
For sea-water, e = 81, u = 1, o = 4'26 x 10,
For dry earth,e = 4, p = 1, ¢ = 10".

It follows that for sea-water 4?/k* = —6000i+81 at least, and that for
dry earth %72/k* varies between —26i+4 and —52/+4, while Bk;/Bik
is kf k.

These values indicate that ¢ (s) differs little from unity in the case of
sea-water when s is nearly equal to ke, while, even in the case of dry earth,
the difference is not great. It appears that the series for II(a, d) is not
much affected. We have, however, to consider the integral, which may be
written in the form

1 s SP,- (_ﬂ') :g— (kb) "
keabi ]'o COS S7r ¢ci(s)|¢( —3) 2‘_*/ (ka) {p(—5)—¢ ()} ds.

Now

-~ =k &y(ka) [Ar—oy’ (ki) Yoy’ (ki)
d(—=9)—o(s) = o4 ;’,4: ) \P‘—,_:(k,a) %—: o

_k & y(ka) 2 sin s
ki &y’ (ka) I, (fsa) I -5 (ki)

Now when s is a pure imaginary and less than %, this is approximately

_i‘.(l_i’)" __ 2sinsm
i\ 22 T Je(ka) I - (laa)”
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The approximate value of |J, (k) J _s (ki) | when s = 0 is
exp {2R (k) a} +(2r|a|),

and the exponent is 80000 A1 R (ki/k); by using the complete system of
asymptotic expansions when s 5 0, we find that the integral is convergent
and is of order of magnitude exp {—80000A~" R (%i/k)}. Tt follows by easy
arithmetic that the integral is negligible compared with the series. The
effect of the waves which pass through the Earth is therefore trivial com-
pared with that of the waves which travel round the Earth.

10. It we take the series for TI.(a, @) and expand sec v into the series
(o —g=Ywi g p~dwwi_ ) and multiply the result by e* =% ¢=*(==0% which
are the exponential factors in Laplace’s approximation for P, (—p), the
separate terms in the product denote the disturbances produced by waves
travelling from the oscillator in either direction round the Earth after
passing completely round 0, 1, 2, ..., times. There seems to be no
similar physical significance for the separate terms corresponding to different
values of ».

Note on the Effect of Wind Pressure on the Pitch of Organ Pipes.
By A. Marrock, F.R.S.

(Received May 30, 1918.)

In books on acousties the pitch of organ pipes is treated as being dependent
solely on the length of the pipe, while at the same time it is recognised that,
as a consequence of the conditions existing at the open end or ends, the
length in question is somewhat greater than that of the pipe itself. The
“correction for open ends” has been calculated for particular cases, and for
the open end of a pipe of circular section amounts to an addition to its
length of about 082 times the radius. The conditions at the base, or
speaking end, are more complex, and for this (as far as I am aware) no
gimilar correction has been worked out. For these reasons the natural
pitch of an organ pipe cannot be accurately determined from its material
dimensions, but only by experiment; such, for instance, as noting the
frequency of an exterior source of sound which produces the maximum
resonance in the pipe.

When an organ pipe is made to “speak” in the ordinary way, it is a
matter of common knowledge that the pitch of note produced is to some



