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Abstract

Jones and Dzhafarov (2014) claim that several current models of speeded decision making in 

cognitive tasks, including the diffusion model, can be viewed as special cases of other general 

models or model classes. The general models can be made to match any set of response time (RT) 

distribution and accuracy data exactly by a suitable choice of parameters and so are unfalsifiable. 

The implication of their claim is that models like the diffusion model are empirically testable only 

by artificially restricting them to exclude unfalsifiable instances of the general model. We show 

that Jones and Dzhafarov’s argument depends on enlarging the class of “diffusion” models to 

include models in which there is little or no diffusion. The unfalsifiable models are deterministic 

or near-deterministic growth models, from which the effects of within-trial variability have been 

removed or in which they are constrained to be negligible. These models attribute most or all of 

the variability in RT and accuracy to across-trial variability in the rate of evidence growth, which 

is permitted to be distributed arbitrarily and to vary freely across experimental conditions. In 

contrast, in the standard diffusion model, within-trial variability in evidence is the primary 

determinant of variability in RT. Across-trial variability, which determines the relative speed of 

correct responses and errors, is theoretically and empirically constrained. Jones and Dzhafarov’s 

attempt to include the diffusion model in a class of models that also includes deterministic growth 

models misrepresents and trivializes it and conveys a misleading picture of cognitive decision-

making research.
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Currently, successful models of speeded, two-choice decision making in cognitive tasks 

assume that decisions are based on the cumulative evidence obtained from processing a 
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stimulus and that the amount of evidence needed to choose between the alternatives is 

determined by a response criterion. The time taken to make a decision and the decision that 

is made depend jointly on the rate at which evidence grows and the settings of the response 

criteria. The models attribute trial-to-trial variability in response time (RT) and accuracy 

either to moment-to-moment variability in the evidence, trial-to-trial variability in decision 

criteria, the rate of evidence growth, or some combination of these sources of variability.

Historically, the largest and most important class of cognitive decision-making models has 

been the class of sequential-sampling models (Luce, 1986; Townsend & Ashby, 1983; 

Vickers, 1979). These models assume that there are noisy, moment-to-moment fluctuations 

in the evidence entering the decision process over the course of a trial, which are modeled 

mathematically as a stochastic process. Decisions are made by accumulating successive 

samples of noisy evidence to a criterion. This class of models includes the diffusion model 

(Ratcliff, 1978; Ratcliff & McKoon, 2008), the random-walk models (Laming, 1968; Link 

& Heath, 1975), the Ornstein-Uhlenbeck model (Busemeyer & Townsend, 1992, 1993), the 

recruitment or simple accumulator model (Audley & Pike, 1965; LaBerge, 1962), the 

Vickers or strength accumulator model (Smith & Vickers, 1988; Vickers, 1970), the Poisson 

counter model (Townsend & Ashby, 1983), the leaky competing accumulator model (Usher 

& McClelland, 2001), and others. A smaller class of models assumes that evidence growth is 

deterministic and that variability enters the process only on a trial-to-trial basis, either in the 

rate of evidence growth, or the settings of the decision criteria, or the starting point for 

evidence growth. This class includes the Grice model (Grice, 1968, 1972; Grice, Nullmeyer, 

& Spiker, 1982) and the linear ballistic accumulator (LBA) model (Brown & Heathcote, 

2008).

One of the most successful and widely studied models of two-choice decision making is 

Ratcliff’s diffusion model (Ratcliff, 1978; Ratcliff & McKoon, 2008). This model assumes 

that the decision process accumulates successive estimates of the relative strength of 

evidence for the two choices until the cumulative difference in evidence favoring one 

alternative over the other reaches a criterion. The accumulating evidence is modeled as a 

Wiener, or Brownian motion, diffusion process (Cox & Miller, 1965; Karlin & Taylor, 

1981), and the criteria are modeled as upper and lower boundaries on the cumulative 

evidence. The rate of evidence growth is represented by the drift of the diffusion process. In 

the diffusion model, variability in RTs and choice probabilities across conditions is 

attributed to moment-to-moment variability in the accumulation of evidence (within-trial 

variability) and to trial-to-trial variability in the starting point for evidence growth and the 

rate of evidence growth. The model explains how choice probabilities and the location, 

dispersion, and shape of RT distributions for correct responses and errors vary with stimulus 

discriminability, response bias, and speed–accuracy tradeoff settings (Ratcliff, 1978; Ratcliff 

& McKoon, 2008; Ratcliff & Rouder, 1998; Ratcliff & Smith, 2004).

Jones and Dzhafarov (2014) argue that several current cognitive decision-making models, 

including the diffusion model, the LBA model, and the Grice model, can be viewed as 

special cases of other, general models or model classes. General models are obtained by 

discarding all of the assumptions about sources of variability in the models and how 

variability is constrained across experimental conditions, and retaining only assumptions 
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about model architecture. The main result in Jones and Dzhafarov’s article is that the general 

models are unfalsifiable, in the sense that unfalsifiable instances of them can always be 

found. Rather than being viewed as empirically testable and falsifiable, Jones and Dzhafarov 

argue that the general models should be viewed as “universal modeling languages” for 

describing data. A universal modeling language for a cognitive decision-making model is 

simply a redescription of the observed data in the language of evidence growth and response 

criteria, as these constructs are represented in the architecture of the particular model. In the 

absence of any a priori theoretical constraints on how evidence and criteria are distributed 

within and across trials, it is always possible to find a description of performance in these 

terms that matches the data exactly and, moreover, it is possible to translate freely from one 

such description to another.

Jones and Dzhafarov (2014) argue that the only real content possessed by cognitive 

decision-making models is contained in their “technical” assumptions about the sources of 

variability and how they are distributed, together with their assumptions about selective 

influence, that is, how the model’s parameters are constrained across experimental 

conditions. They argue that it is the combination of technical assumptions and selective 

influence assumptions, not the model architecture, that serves to define classes of falsifiable 

models, because it is these assumptions that distinguish falsifiable instances of the general 

models from unfalsifiable instances. According to them, the falsifiability of the models 

depends wholly on a set of assumptions that are auxiliary to, and logically independent of, a 

model, rather than being part of its essential structure.

Jones and Dzhafarov (2014) are also critical of the technical and selective influence 

assumptions that have been used to fit models in the literature, arguing that neither set of 

assumptions is well-motivated theoretically. The implication of their argument is that the 

apparent testability and falsifiability of current models may be little more than an artifact of 

the restrictions that have been imposed on the general models in order to exclude their 

unfalsifiable instances. Because the general models are essentially interchangeable as 

descriptions of data, the further implication of their argument is that any debate about 

competing model architectures is, at least within the set of models considered in their article, 

simply an argument about language, rather than about psychological processes. A 

researcher’s choice of model becomes essentially an arbitrary one, with no more scientific 

content than, say, the decision to talk about a scientific phenomenon in English rather than 

French or German. Under these circumstances, fits of models to data can provide little 

insight into the processes that are actually involved in decision making.

In this comment, we focus specifically on Jones and Dzhafarov’s (2014) claims about the 

diffusion model. The diffusion model is a sequential-sampling model and so differs from 

both the Grice model and the LBA model in its assumption of within-trial variability in 

evidence accumulation. Importantly, unlike the Grice model and LBA model, the stochastic 

properties of this variability are the basis of the diffusion model’s predictions about RT 

distributions. Although the model also assumes across-trial variability in drift rates and 

starting points, the predicted shapes of RT distributions in the model are determined 

primarily by within-trial variability. Consequently, the properties of the model can only be 
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understood by understanding the particular way in which within-trial variability in 

accumulating evidence predicts trial-to-trial variability in speed and accuracy.

We show that Jones and Dzhafarov’s (2014) claims about the unfalsifiability of diffusion 

models depend on enlarging the class of “diffusion” models to include models in which 

there is, in fact, no diffusion. Jones and Dzhafarov denote this enlarged class by gDM, for 

general diffusion model. The unfalsifiable instances of gDM are models in which there is 

little or no within-trial variability and in which all of the variability in RT and accuracy is 

attributed to across-trial variability in the rate of evidence accumulation. Although gDM has 

the same architecture as Ratcliff’s diffusion model (two decision boundaries and a single 

evidence total), the use of the term “diffusion model” to describe models from which 

diffusive variability has been largely or wholly eliminated is likely to mislead all but the 

most attentive reader. Nevertheless, to help readers relate our comments to the arguments in 

Jones and Dzhafarov’s article we have retained their gDM terminology to denote the 

enlarged class of models.

In this comment, we make seven points and then expand on them in later sections:

1. Jones and Dzhafarov’s (2014) “universal modeling language” for diffusion models 

is unrelated to either the physical theory or the mathematical analysis of diffusion 

processes. It is, rather, just a restatement of the elementary law of kinematics 

relating distance, velocity, and time. This law describes a deterministic linear 

growth process from which within-trial stochastic variability in evidence 

accumulation has been excluded. Consequently, it is unable to characterize the 

properties of models with stochastic evidence growth. The unfalsifiable members 

of gDM are deterministic linear growth models and a subset of models that are 

close to it in parameter space. We refer to the deterministic growth model as 

detDM, for “deterministic diffusion model.” We emphasize that, unlike the 

standard diffusion model and other members of gDM, deterministic growth models 

have no within-trial variability.1

2. In detDM, all of the trial-to-trial variability in RT and accuracy depends on the 

distributions of across-trial variability in the rate of evidence growth. The model is 

universal and unfalsifiable, because without within-trial variability, the 

distributions of evidence growth, that is, the drift rates, can be chosen arbitrarily to 

match the data exactly.

3. The analysis of RT distributions and accuracy using detDM leads to implausibly 

complex, bimodal, across-trial distributions of drift rates. We characterize the 

1The linear growth equation, Equation 1, applies to the deterministic “diffusion” model, the LBA model, and the linear Grice model 
(Grice, 1968). In later publications, Grice assumed that evidence growth was negatively accelerating and exponential rather than 
linear. None of the main ideas in Jones and Dzhafarov’s (2014) analysis are altered by assuming nonlinear growth, so we have 
restricted our remarks to the linear case. Jones and Dzhafarov also argue that a psychological model based on the OU diffusion 
process (Busemeyer & Townsend, 1992, 1993) is an unfalsifiable, universal modeling language. The OU model, like the Wiener 
diffusion model, represents evidence growth as a stochastic process, but unlike the Wiener model, it assumes there is leakage or decay 
in the accumulation process. Jones and Dzhafarov’s universal modeling language for the OU model involves a deterministic, 
negatively accelerating, exponential growth function, similar to the nonlinear Grice model, but whose specific, parametric form is the 
mean function for the OU process (Smith, 2000, Equation 20). We have restricted our remarks to the Wiener diffusion model, but their 
substance applies equally to models based on the OU process, and they should be read in that light.
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properties of detDM in detail in order to show the ways in which it differs 

fundamentally from the standard diffusion model.

4. Jones and Dzhafarov (2014) show that, even with nonzero within-trial variability, 

gDM is still either universal and unfalsifiable, or else minimally constraining. This 

result depend on setting the amount of within-trial variability to be sufficiently 

small that the model’s predictions differ in only minor ways from those of detDM.

5. Whereas detDM with arbitrary drift rate distributions is universal and unfalsifiable, 

the standard diffusion model is highly constrained by the effects of within-trial 

variability and predicts RT distributions that have a particular characteristic form. 

The model is unable to predict distributions that do not have this form.

6. In the standard diffusion model, there is across-trial variability in drift rate and in 

the starting point for evidence accumulation relative to the decision boundaries. 

The distributions of drift rates and starting points have specific, theoretically 

constrained forms. This variability leads to differences in the relative speeds of 

correct responses and errors but leaves the shapes of the predicted RT distributions 

largely unchanged.

7. In the standard diffusion model, drift rates are assumed to be unaffected by 

manipulations that affect decision boundaries, such as speed/accuracy instructions 

or bias manipulations. Decision boundaries are assumed to be unaffected by 

manipulations that affect drift rate, like stimulus discriminability. These 

assumptions about parameter invariance are criticized by Jones and Dzhafarov 

(2014) as being overly restrictive. We argue instead that they are theoretically 

principled and therefore possess explanatory power. They also provide powerful 

constraints for model testing, but they are (of course) amenable to revision or 

modification if warranted by data.

We expand on these points in the following sections.

1. The Universal Modeling Language for Diffusion Models Describes a 

Deterministic Evidence Growth Process

Jones and Dzhafarov’s (2014) “universal modeling language” for diffusion models, which 

defines the model detDM and which is characterized in their Theorem 10, is just a 

restatement of the elementary law of kinematics relating distance (a), velocity (v), and time 

(T),

(1)

The unfalsifiable (and hence universal) members of gDM are the model detDM and models 

that are close to it in parameter space.2 In Jones and Dzhafarov’s application of Equation 1, 

velocity becomes drift rate or rate of evidence growth and distance becomes the distance 

from the starting point to a boundary or criterion. If the starting-point-to-boundary distance 

is a and the drift rate is v, then the response time is a/v. Because evidence growth is 

deterministic, there is a one-to-one correspondence between drift rates (v) and RTs (T): 
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Every different drift rate results in a different RT and, conversely, if two RTs are different 

then their drift rates must have been different, as shown in the top panel of Figure 1. If the 

RT (or more precisely, the decision time) is T, then the drift rate, v, must have been a/T. The 

distance traveled or the speed of travel or both may vary randomly from trial to trial, but 

there is no moment-to-moment variability in the process itself.3 Jones and Dzhafarov’s 

argument about the unfalsifiability of the class gDM relies on the possibility of enlarging the 

class of diffusion models to include detDM.

The model detDM has the same architecture as the diffusion model but has no within-trial 

variability. Like the diffusion model, drift rates can be positive or negative: positive rates 

represent evidence for one alternative; negative rates represent evidence for the other 

alternative. Also like the diffusion model, a response is made when the cumulative evidence 

reaches either an upper or lower boundary. In detDM, however, the evidence only increases 

or decreases, but it does not do both, because there is no stochastic variability during a trial. 

Because there is a one-to-one correspondence between drift rates and RTs in detDM, the 

predicted probability of a response at the upper boundary is equal to the probability that the 

drift rate on a trial is positive. In the universal modeling language for diffusion models, this 

probability can be chosen to match the data exactly.

2. The Model detDM Misrepresents the Diffusion Model

In the standard diffusion model, the accumulated evidence on any trial depends jointly on 

the drift rate, v, which varies from trial to trial, and the within-trial, stochastic variability in 

the evidence process, which varies from moment to moment. The amount of within-trial 

variability is controlled by the infinitesimal standard deviation of the diffusion process, s. 

The square of the infinitesimal standard deviation, s2, is termed the diffusion coefficient. In 

Jones and Dzhafarov’s (2014) article, drift is denoted k, and the diffusion coefficient is 

denoted σ2. Their claim that gDM is universal and unfalsifiable is based on the properties of 

the deterministic growth model detDM, as described in the previous section and expressed in 

their Equation 2.12. Apart from differences in notation, this equation is just Equation 1 

above.

Mathematically, a straight line with no moment-to-moment stochastic variability is not a 

diffusion process—except in the trivial sense that a constant function is a stochastic process. 

Karlin and Taylor (1981, p. 166), for example, stated that, for the purposes of applications 

(i.e., excluding special or degenerate cases), a diffusion process is a continuous-time, 

continuous-state Markov process with σ2 > 0, that is, with a strictly positive diffusion 

coefficient. Most of the theoretically interesting properties of diffusion processes as models 

2Jones and Dzhafarov (2014) use the term “universal modeling language” to refer to the general diffusion model gDM, rather than its 
special case detDM. The general model may include within-trial variability, whereas detDM does not. We have identified the term 
“universal modeling language” more narrowly with detDM, because it is specifically detDM and models sharing its properties that 
Jones and Dzhafarov have shown to be unfalsifiable. The unfalsifiability of detDM, unaugmented by within-trial variability, means 
that detDM in itself represents a universal modeling language, in the sense in which Jones and Dzhafarov use the term. The 
universality of gDM is inherited from detDM, rather than the converse. We therefore do not think it misrepresents their argument to 
characterize Equation 1 as “Jones and Dzhafarov’s universal modeling language for diffusion models.”
3In Jones and Dzhafarov (2014), many of the figures are presented in terms of decision time. Because there is no way in the 
deterministic framework to separate decision time and nondecision time, we present examples with drift rate distributions derived 
from total RT.
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of decision making are not shared by the deterministic model. The most basic of these 

properties is that the diffusion model predicts trial-to-trial variability in RTs and errors 

through within-trial variability in the evidence accumulation process for single values of 

drift rate. Mean drift rate is the only parameter of the model that changes across conditions 

with varying stimulus strength or discriminability. In contrast, the deterministic model 

predicts the same response and the same RT on every trial. Consequently, all of the 

predictive work in the deterministic model is done by trial-to-trial variability in drift rate or 

by other components of processing that vary across trials.

The behavior of the deterministic model of Equation 1 is shown in Figure 1. As shown in the 

top panel, the deterministic model attributes different decision times, T1 and T2, to 

differences in drift or growth rates, v1 and v1. (Essentially the same argument can be made 

with a single drift rate and trial-to-trial variation in the distance to the boundaries.) Unlike 

the diffusion model, a different value of v is needed for every response/RT combination. 

Indeed, as Jones and Dzhafarov (2014) recognize, in detDM the distance to the boundaries 

can be set to unity with the other parameters scaled appropriately. Their “universal modeling 

language” then reduces to the theoretically empty statement that speed is proportional to the 

reciprocal of time and that distributions of RTs can also be described as distributions of 

response speeds. In essence, their unfalsifiable “diffusion” model—which is the 

theoretically important member of the model class gDM for their argument—is a model 

from which all of the within-trial variability has been stripped out and its effects replaced by 

between-trial variability, chosen in such a way as to match the data. Unlike the LBA and 

Grice models, in which evidence growth actually is deterministic, the detDM 

characterization of the diffusion model bears little relationship to the standard model.

3. The Deterministic Model detDM Leads to Implausibly Complex Drift Rate 

Distributions

Point 2 emphasized that all the predictive work in detDM must be done by across-trial 

variability in drift rate or other components of processing, because within-trial variability is 

eliminated from the model. The bottom panel of Figure 1 shows the implications of this 

aspect of the model. The figure shows the results of applying detDM to RT distributions and 

choice probabilities generated by a standard diffusion model with parameters representative 

of fits to empirical data. The distributions plotted on the upper and lower decision 

boundaries are the joint distributions of correct responses and errors, respectively. The 

probability mass in each member of a joint distribution pair is the probability of the 

associated response, so the joint distributions carry information about both RT and choice 

probabilities. The oblique rays projecting from the starting point at t = 0 to points on the 

boundaries represent the cumulative evidence for different values of positive and negative v 

predicted by the deterministic model and the RTs that result. The smoothed drift rate 

distributions on the vertical (evidence) axis are the drift rate distributions needed to obtain 

the observed RT distributions for the boundary separation shown. As described in Point 1, a 

different v is needed for every different RT in each of the two distributions.

As the figure shows, detDM provides no insight into the processes that underlie RT and 

accuracy, because it is simply a redescription of the data in different language. As a result, it 
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leads to distributions of drift rates that are as complex as the original data. The implied 

distribution of drift rates is bimodal with a pair of lobes that are roughly mirror images of 

each other. The lobes have the opposite skew to the distributions of RT: Right-skewed RT 

distributions produce distributions whose positive and negative lobes are both skewed 

toward zero. The probability masses in the positive and negative lobes are equal to the 

observed probabilities of correct responses and errors, respectively. To prove the 

universality of detDM, Jones and Dzhafarov (2014) allow the properties of the drift rate 

distribution and the probability masses in its two lobes to differ freely between each 

condition of the experiment, because they view any constraints on the drift rate as 

“technical” assumptions that are not a core part of the model architecture.

Figure 2 shows three different (smoothed) distributions of evidence from application of 

detDM to data simulated from a standard diffusion model with drift rates 0, 0.2, and 0.4. 

Empirically, these three pairs correspond to experimental conditions with low, medium, and 

high accuracy. The lobes on the left are the drift rates for errors; the lobes on the right are 

the drift rates for correct responses. As the previous paragraph pointed out, different drift 

rate distributions with different probability masses in their pairs of lobes are required to 

describe the RT distributions in each of the three conditions. Because the deterministic 

model is atheoretical, it provides no insight into why the distributions should be so complex 

or why they should vary in shape in the ways they are required to vary across conditions.

Even as a purely empirical description of performance, the model provides no parsimony or 

data reduction, because it requires as many free parameters to describe the distributions of 

evidence as are needed to describe the original data. An exact description of the data would 

need as many parameters as there are data points because every different RT requires a 

different value of v. A description that does not seek to characterize the data exactly, but 

only to provide a smoothed approximation to them using standard, goodness-of-fit criteria 

(e.g., maximum likelihood or minimum chi-square) would need as many parameters as are 

required to provide a description of a pair of distributions with varying location, dispersion, 

shape, and probability mass in each condition. Moreover, the claimed universality of the 

model breaks down whenever there is a requirement that the distributions of drift rates be 

the same in two or more conditions: for example, if the same stimulus is presented under 

both speed and accuracy instructions.

For Jones and Dzhafarov (2014), the lack of theoretical content in detDM is not an issue. 

Indeed, they would probably argue that it is precisely their point, because the theoretical 

emptiness of detDM that we have emphasized here follows from its universality, which they 

proved. Jones and Dzhafarov seek to establish detDM as a legitimate special case of gDM 

that has been excluded from the class of diffusion models only by virtue of the latter’s 

arbitrary and poorly motivated constraints on the distributions of evidence growth. The 

implication of this line of argument is, of course, that the diffusion model is preserved from 

triviality only by virtue of its arbitrary evidence growth and selective influence assumptions.

Our purpose here in highlighting the properties of the deterministic model detDM is to 

illustrate for the reader just how different its properties are to those of the standard diffusion 

model, despite the models sharing a name and a common architecture and purportedly 
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belonging to the same general model class. Unlike Jones and Dzhafarov (2014), we view the 

theoretical emptiness of detDM as an object lesson in the hazards of attempting to identify a 

model with only a restricted subset of its defining assumptions. As we discuss in more detail 

subsequently, we believe that assumptions about sources of variability and how they are 

constrained across conditions need to be viewed as integral parts of a model and not as, in 

effect, afterthoughts. The fact that one may wish selectively to relax or modify some of the 

assumptions in order to help understand some particular data set should not be viewed as a 

violation of this principle.

4. The Claimed Universality of the General Diffusion Model gDM Depends 

on Making Within-Trial Variability Negligible

Jones and Dzhafarov (2014) also claim that, even with nonzero within-trial variability, the 

diffusion model is either universal or else minimally constraining and offer two arguments 

to support their claim. Both of these arguments, although they ostensibly involve fixing the 

diffusion coefficient to some specified, nonzero value, actually involve rescaling the other 

parameters of the model in order to make the effects of within-trial variability negligible or 

else comparatively small. Consequently, their universal diffusion model with nonzero 

within-trial variability does not differ in any theoretically meaningful way from the 

deterministic model detDM, whose properties we have already characterized. The conditions 

needed to reduce the diffusion model with nonzero within-trial variability to the 

deterministic model are prohibited in the standard diffusion model, which precludes bimodal 

distributions of drift, but Jones and Dzhafarov relegate these constraints to the category of 

“technical assumptions.”

Jones and Dzhafarov’s (2014) first argument is contained in their Theorem 12, which asserts 

that the joint distributions of RT predicted by a diffusion model with a fixed, strictly positive 

diffusion coefficient (σ2 > 0) can be made to agree arbitrarily closely with any pair of 

empirical, joint RT distributions, by a suitable choice of parameters. The substance of Jones 

and Dzhafarov’s theorem is simply that the predictions of the diffusion model can be made 

indistinguishable from those of a deterministic model by setting the effects of within-trial 

variability to be negligible. The across-trial distributions of drift can then be chosen 

arbitrarily, as they are in the deterministic model, to match the data exactly. The effects of 

within-trial variability can be made negligible either by setting the diffusion coefficient to be 

very small or by setting the other parameters to be very large. Within-trial variability is 

controlled by the value of σ and becomes negligible as σ approaches zero. By setting σ to 

some small, but nonzero, value the effects of within-trial variability can be almost 

completely eliminated from the model.

Exactly the same result can be obtained by fixing σ to some arbitrary, not necessarily small, 

value and allowing the other parameters in the model to become very large. Like other 

decision models, the parameters of the diffusion model cannot all be independently 

estimated from data: The parameters are said to be identified only to the level of a ratio. In 

order to fit the model to data, it is necessary to assign one of its parameters an arbitrary 

value and to express the other parameters as multiples of this value. For the diffusion model, 

the usual practice is to fix σ and to express drift rates and their standard deviations (denoted 
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η) and the decision boundaries as multiples of σ Because the parameters are not uniquely 

identified, a model with σ = 0.001, v = 0.1, η = 0.1, and a = 0.1 will make exactly the same 

predictions as one with σ = 0.1, v = 10.0, η = 10.0, and a = 10.0. As a result, it is possible to 

fix σ to a specified value and to scale the other parameters in such a way that its effect is 

nevertheless negligible. The properties of the model then differ in only minor ways from 

those of the deterministic model.

Jones and Dzhafarov’s (2014) second argument is contained in the discussion surrounding 

their Figure 3A. In Figure 3A, they fix both the infinitesimal standard deviation and the 

boundary separation to unity and parametrize the time scale of the process to treat the 

mapping from model time to real time as a free parameter. Their Figure 3A appears to show 

that the model can generate a wide variety of distributions of RT as drift is varied, even 

when the infinitesimal standard deviation and the boundary separation are constrained to be 

equal. They argue that such a model, while not unfalsifiable, is minimally constraining, 

especially at small values of t, because the predicted RT distributions are probability 

mixtures of distributions like the ones shown in their figure, which have very different 

location and scale properties.

What their reparametrization of the time scale obscures, however, is that the example 

distributions in their Figure 3A have again been drawn from a part of the parameter space in 

which the effect of within-trial variability is minimal. Although a and σ were both fixed to 

unity, the time axis in the figure is not t, the time scale of the data, but τ the reparametrized 

time axis. The relationship between t and τ depends on the ratio a2/σ2, the squared boundary 

separation divided by the diffusion coefficient,

(2)

Mapping the distributions in Jones and Dzhafarov’s (2014); Figure 3A to real time—in 

which mean RTs are typically 350–500 ms or longer—requires an expansion of the time 

scale by a factor of 10 or more.4 This would require that σ2 be reduced by a factor of at least 

10 relative to a2. When σ2 is adjusted in this way, the effects of within-trial variability again 

become minimal. As expected when there is minimal within-trial variability, the error 

probabilities for the majority of the distribution pairs in Jones and Dzhafarov’s figure are 

zero or near-zero. Except for the smallest values of drift, the model needs to assume bimodal 

distributions of drift (k = ±1, ±2, ±4…) to predict RT distributions in which the probability 

4Technically, the change of time scale needed to relate the predictions of Jones and Dzhafarov’s (2014); Figure 3A to empirical data is 
a mapping, rather than an expansion, because unlike real time, model time, τ, is dimensionless; that is, it has no units. This is because 
τ = θt = (σ2/a2)t, where θ is a new parameter that maps real time to model time. If the units of time, t, are seconds (s), then the units of 
σ2 are squared (arbitrary) evidence units (u) per second, u2s−1, and the units of a2 are squared evidence units, u2. Consequently, is 
u2s−1 · u−2 · s = 1, which is dimensionless. Jones and Dzhafarov’s footnote 8 clarifies that in fixing the diffusion rate to unity to 
generate their Figure 3A, they used seconds as their time unit, that is, σ = 1.0 us−1/2. Then, as stated in the text, mapping the 
predictions in their Figure 3A to an experimentally plausible range of response times (expressed in seconds) would require an 
expansion of the time scale by a factor of around 10. This can only be done by reducing σ2 or by increasing a2, contrary to the claim 
that both of these quantities can be fixed at unity. Indeed, if the scaling of τ were the lower of the two time scales in their Figure 3B 

and τ was equal to 0.01 then for a decision time of 1 s, the ratio of a to σ would need to be  to map the model to the duration of 
the decision process in real time. This means that the ratio of a to σ would need to be 10 times smaller than typical values obtained 
from fits of the model to data (e.g., Figure 4A of Jones and Dzhafarov). This makes the process essentially deterministic.
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masses are not equal to 1.0 or zero, that is, to generate a range of accuracy values like those 

found in empirical data. As the caption to their Figure 3 indicates, Jones and Dzhafarov used 

drifts of + k to generate the RT distributions at the upper boundary and drifts of − k to 

generate the RT distributions at the lower boundary. The fact that the model predicts error-

free performance for most of the drift rates depicted in the figure is obscured by the fact that 

the distributions have been generated using bimodal distributions of drift and that the RT 

distributions have been normalized to have the same height.

The effect of progressively reducing within-trial variability by decreasing the diffusion 

coefficient in the standard model is shown in our Figure 3. For clarity, the predictions of the 

model are shown in real time (i.e., the time scale of experimental data) rather than in Jones 

and Dzhafarov’s (2014) reparametrized time scale. This figure shows distributions of RTs 

for correct responses for a diffusion model generated using parameters typical of those 

found from fitting empirical data. The error distributions are similar in location and spread 

to the correct distributions except that their probability masses are smaller (correct and error 

probability masses must sum to 1). The range of drifts in the standard model was chosen to 

span a range of accuracy from chance to near-ceiling, and the distributions have been right-

shifted by an amount equal to a typical estimate of the nondecision time, Ter. In the standard 

diffusion model, RT is assumed to be the sum of the decision time, which is the first-

passage-time of the diffusion process through a decision boundary, and the time for stimulus 

encoding, mapping from a stimulus representation to a decision-related representation, 

response selection, and response execution processes. The value of Ter collectively 

represents the durations of these other processes.5

The families of distributions in the top, middle, and bottom panels of Figure 3 were 

generated using values of σ of 0.10,0.05, 0.02, respectively, and a boundary separation of a 

= .12. The value σ = 0.10 is the scaling convention commonly used to fit the model in the 

cognitive literature. With this choice of σ and a, the model predicts families of distributions 

like those shown in the upper panel. The accuracy and mean RT associated with each of the 

distributions in the figure are shown in the insets. The important points to note are, first, that 

the model is able to predict a full range of accuracy values without variability in drift across 

trials. Variability in drift is needed only to predict slow errors. Second, the RT distributions 

it predicts are highly constrained in form. There is little change in the leading edge (the time 

at which the function first lifts off from zero) or in the mode. The main effect of reducing 

drift is to increase the concentration of probability mass in the right tail of the distribution, 

which determines the frequency of slow responses. The invariance of the early part of the 

RT distribution is shown in the inset to the top panel in Figure 3, in which the RT 

distributions for σ = 0.10 have been rescaled to all have the same height. The distributions 

have almost identical modes and left tails; only the right tails differ. This pattern has been 

found experimentally in numerous applications.

5In some applications of the diffusion model, a third source of across-trial variability, in the nondecision time, Ter, is assumed. 
Typically, Ter is assumed to be uniformly distributed with range st. The assumption that the nondecision time is uniformly distributed 
is made for convenience and its precise form has little effect on the predictions of the model, providing its variability is small relative 
to the variability in decision time. Ratcliff (2013) showed that changing the distribution of Ter had little effect on parameter recovery 
by the standard model.

Smith et al. Page 11

Psychol Rev. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The middle and bottom panels of Figure 3 show the effects of reducing σ to 0.05 and then to 

0.02. For σ = 0.05, the invariance of the leading edge and the mode begins to break down 

and for σ = 0.02 it breaks down completely. The distributions for σ = 0.02 resemble those in 

Jones and Dzhafarov’s (2014); Figure 3A: Accuracy is at ceiling for all values of drift 

except v = 0, and there are large shifts in the distribution’s leading edge with increases in 

drift. In this part of the parameter space the influence of within-trial variability on 

performance is again minimal and the model approaches the limiting deterministic case. 

Although such a model can arguably still be called a “diffusion” model, it is not the model 

in the literature.

5. The Diffusion Model Is Highly Constrained by the Effects of Within-Trial 

Variability

In Points 1, 2, 3, and 4 we showed that Jones and Dzhafarov’s (2014) claims about the 

unfalsifiability of gDM rely on them being able to remove within-trial variability from the 

model and to replace it by arbitrary across-trial distributions in drift. We now show that, 

unlike the unfalsifiable members of gDM, the standard diffusion model is both highly 

constrained and highly falsifiable. As we stated earlier, the core assumption of the model, 

from which its other properties follow, is that within-trial variability in evidence 

accumulation accounts for both the shapes of RT distributions and the occurrence of errors. 

Unlike Jones and Dzhafarov’s unfalsifiable universal model, the predicted families of RT 

distributions for the standard diffusion model are highly constrained (Ratcliff, 2002; 

Wagenmakers & Brown, 2007). The distribution means and variances and the predicted 

proportions of correct responses change systematically with changes in drift rate, but the 

distribution shapes are relatively invariant. This invariance is revealed in quantile-quantile 

(Q–Q) plots, in which distribution quantiles for processes with different drift rates are 

plotted against one another. The Q–Q plots for the standard diffusion model are highly linear 

(Ratcliff & McKoon, 2008; Ratcliff & Smith, 2010), showing that there is relatively little 

change in distribution shape with changes in drift rate and accuracy, as illustrated by the 

inset to Figure 3.

Ratcliff (2002) showed that the standard diffusion model was able to fit data from real 

experiments but could not fit a number of plausible-looking sets of artificial data. His 

analysis highlighted that the families of RT distributions predicted by the model occupy only 

a small region of a much larger space of possible experimental outcomes. The model 

predicts families of RT distributions like those found empirically and, to a large extent, it 

only predicts these families. This is unlike detDM: Not only does it predict the 

experimentally observed outcomes, but it also predicts every other outcome as well.

6. The Assumptions About Across-Trial Variability Have Little Effect on the 

Shapes of the Predicted RT Distributions

It is not correct to suggest, as Jones and Dzhafarov (2014) do, that all of the predictive work 

in the standard diffusion model is done by auxiliary “technical” assumptions. The standard 

diffusion model includes one or more sources of across-trial variability, in addition to 
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within-trial variability in the evidence accumulation process, but these sources of variability 

have little effect on the shapes of the predicted RT distributions. Drift is assumed to be 

normally distributed with mean ν and standard deviation η; starting point is assumed to be 

uniformly distributed with mean z and range sz. The normality of drift rates across trials is 

similar to the normal distributions of sensory effect of Thurstonian psychophysics and signal 

detection theory (Green & Swets, 1966; Thurstone, 1927) and can be motivated theoretically 

in a similar way. Variability in drift rates allows the model to predict errors that are slower 

than correct responses; variability in starting points allows it to predict errors that are faster 

than correct responses. Both of these sources of variability express clear theoretical 

principles. Variability in drift rates expresses the idea that the information from nominally 

equivalent stimuli differs in quality. Variability in starting points express the idea that the 

setting of the decision process change from trial to trial.

The same assumptions about the specific forms of across-trial variability are used in most 

applications of the diffusion model, but these assumptions are not critical to its performance. 

Ratcliff (2013) showed that the model’s predictions were robust to variations in assumptions 

about the distributions of drift rates and starting points (see also Ratcliff, 1978, Figure 16). 

He compared a number of alternative distributions of drift rate and starting point variability 

and showed that, providing the properties of these distributions were not too extreme, their 

means and variances were recovered with reasonable accuracy when data simulated from 

them were fitted with the usual model. Ratcliff’s results further demonstrate that the RT 

distributions predicted by the model are primarily a function of noisy, within-trial variability 

in evidence accumulation. Across-trial variability allows it to account for fast errors and/or 

slow errors but has little effect on the shapes of the predicted RT distributions. Providing 

that theoretically reasonable constraints are imposed on the distributions of across-trial 

variability (i.e., symmetry and unimodality), their precise forms are relatively unimportant.

7. Parameter Invariance in the Diffusion Model Follows From Clear 

Theoretical Principles

Jones and Dzhafarov (2014) are critical of the parameter invariance assumptions made by 

the diffusion model and the LBA, which they refer to as “selective influence” assumptions. 

Loosely, these are (a) decision boundaries are not affected by stimulus properties, (b) 

stimulus or memory processes are not affected by speed–accuracy instructions or bias 

manipulations, and (c) nondecision times are not affected by either stimulus properties or 

decision boundaries. Jones and Dzhafarov argue that these assumptions are overly restrictive 

and suggest reasons for why they might not be expected to hold.

We agree that there are situations in which parameter invariance might not hold. 

Assumptions about parameter invariance are not inviolable and are not treated as such by 

researchers in the area; rather, they represent a set of working hypotheses about the 

processes of speeded decision making. Pragmatically, they represent a powerful set of 

constraints on a model, which, as a matter of fact, have been satisfied empirically in 

numerous experimental settings. There are, however, also instances in the literature in which 

diffusion models making the standard assumptions have failed (Ratcliff & Frank, 2012; 

Ratcliff & McKoon, 2008, p. 895; Ratcliff & Smith, 2010; Smith & Ratcliff, 2009; Smith, 
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Ratcliff, & Sewell, 2014; Starns, Ratcliff, & McKoon, 2012). In these instances, violation of 

the assumptions did not lead to a wholesale abandonment of the model but, rather, to a 

search for new theoretical insights that might explain performance in these particular 

settings.

This being so, we are puzzled by Jones and Dzhafarov’s (2014) insistence that the standard 

parameter invariance assumptions are, a priori, inappropriate. We suspect that it is because 

their claims about universality and unfalsifiability would fail if parameter invariance is 

assumed, because their results apply only to single experimental conditions; they do not hold 

when the same set of parameters is required to account for multiple conditions 

simultaneously.

The Relationship Between gDM, detDM, and the Diffusion Model

In previous sections we have provided a detailed characterization of Jones and Dzhafarov’s 

model gDM and its distinguished special case, detDM, in which the diffusion coefficient is 

set to zero. We have emphasized that detDM is unfalsifiable because it is just a redescription 

of the data in kinematic growth terms. In its most general sense, detDM can simply be 

viewed as a restatement of the elementary physical fact that speed is proportional to the 

reciprocal of time. The other unfalsifiable instances of gDM are models that are close to 

detDM in parameter space and so differ from it in only minor ways. We have provided a 

detailed characterization of detDM in order to emphasize how fundamentally its properties 

differ from those of the standard diffusion model—Jones and Dzhafarov’s (2014) “general 

diffusion model” terminology notwithstanding.

At this point, the reader may be motivated to ask the question: When fitting the diffusion 

model to data, what ensures that the model you estimate will be a proper diffusion model, 

with non-negligible within-trial variability, rather than the deterministic model, detDM? To 

phrase the question in another way, what prevents the free parameters of the model from 

growing so large that the contributions of the diffusion coefficient become negligible? The 

most straightforward answer is that these outcomes are prevented by the constraint that the 

distributions of drift cannot be bimodal. The standard diffusion model makes specific, 

parametric assumptions about the across-trial distributions of drift, namely, that drift is 

normally distributed with variance independent of the mean. However, as Ratcliff (2013) 

showed, it suffices to impose the weaker constraint that the distributions of drift must be 

unimodal in order to recover model parameters reliably and to exclude deviant special cases 

like detDM.

We agree with Jones and Dzhafarov (2014) that a diffusion model with arbitrary bimodal 

distributions of drift would be difficult to falsify. Falsification under these circumstances 

would depend largely on the constraints imposed by the selective influence assumptions, as 

they assert. Arguably, then, a contribution of their article is that they have highlighted that 

the falsifiability of the diffusion model relies on a set of assumptions that must be strong 

enough to preclude arbitrary bimodal distributions of drift. Although it is potentially useful 

to have made this requirement explicit, the general point is hardly a novel one, as it is known 

that the predictions of sequential-sampling models can be significantly altered by changing 

their assumptions about the across-trials components of processing. We (Ratcliff & Smith, 
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2004; Smith, 1989) have previously shown this in relation to the Vickers accumulator 

model.

The accumulator model predicts RT distributions that become less skewed and more 

symmetric as stimulus discriminability is reduced and response criteria are increased (Smith 

& Vickers, 1988), contrary to what most experimental data imply (Ratcliff & Smith, 2004). 

However, these predictions can be substantially altered by choosing the distributions of 

decision criteria in a suitable way. Specifically, long-tailed (exponential or similar) 

distributions of decision criteria yield RT distributions whose dispersions and shapes match 

much more closely those found in experimental data.6 The appropriate inference from this 

finding is not, we believe, to conclude that the accumulator model is an unfalsifiable, or 

near-unfalsifiable, universal modeling language for RT. It is, rather, to recognize that the 

model’s shortcomings might be rectified by combining it with a plausible theory of 

criterion-setting that predicts long-tailed distributions of criteria. In the absence of such a 

theory, however, the model’s shortcomings remain unaddressed. Much the same point could 

be made about bimodal distributions of drift and the diffusion model: In the absence of a 

theory predicting bimodally distributed drift rates, the fact that a diffusion model with such 

distributions might be difficult to falsify is useful to know but has no real implications for 

current practice.

Conclusion

In this comment we have sought to provide a detailed characterization of the basis of Jones 

and Dzhafarov’s (2014) claims about the unfalsifiability of diffusion models. We have 

shown that these claims rest on the possibility of enlarging the class of diffusion models to 

include the deterministic growth model detDM. Within the general model class, gDM, an 

unfalsifiable model can be obtained from a falsifiable model by allowing the diffusion 

coefficient to go to zero and the distributions of drift to become wholly unconstrained and 

arbitrarily complex. We regard this construction as something of an intellectual sleight-of-

hand, as it turns the model into a completely different model in which the physical 

properties of diffusion play little or no part, even though the name “diffusion model” is 

retained. The benefits of this questionable gambit, such as they are, appear to be rhetorical 

rather than scientific. By replacing the diffusion model with a caricature of itself, Jones and 

Dzhafarov call into question the achievements in this area and suggest that researchers in the 

area have not understood their models properly.

We believe that Jones and Dzhafarov’s (2014) article not only misrepresents the diffusion 

model but also misrepresents the way in which modeling in decision making and, indeed, in 

any cognitive domain, proceeds: A model has some claim on our attention to the extent that 

it embodies a clear set of theoretical principles, expressed as a set of assumptions about 

psychological processes, and those principles are able to account for the findings of multiple 

experiments in a parsimonious way. By common consensus, an interesting model is one that 

explains a large body of data using a highly constrained set of assumptions. An 

6For the sake of completeness, we should note that an accumulator model with long-tailed distributions of criteria can predict RT 
distributions like those found in empirical data but has difficulties predicting fast errors. Further details can be found in Ratcliff and 
Smith (2004).
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unconstrained model, especially one whose parametric complexity approaches that of the 

data, is usually regarded as being of little theoretical interest. These principles are so widely 

accepted that most researchers would feel it unnecessary to belabor them. To the extent that 

they are not obvious, however, Jones and Dzhafarov’s article might be read as a salutary 

reminder of the hazards of poorly constrained theorizing.
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Figure 1. 
The top panel illustrates the deterministic growth model of Equation 1, including the one-to-

one correspondence between time and velocity (drift rate). The distribution of velocities is 

fixed by the distribution of times because each time, T1 and T2, is uniquely associated with a 

particular velocity, v1 and v2. The bottom panel shows an example of correct and error 

response time (RT) distributions generated by the standard diffusion model (horizontal axes) 

and the distribution of drift rates in the deterministic model needed to produce them (vertical 

axis). The parameters of the diffusion model used to generate the simulated RT distributions 

were a = 0.12, Ter = 0.4, z = 0.06, η = 0.12, sz = 0.02, st = 0.1, and v = 0.2.
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Figure 2. 
Examples of the drift rate distributions for the deterministic model derived from response 

time (RT) distributions for the diffusion model. The drift rates for the diffusion model were 

0.0, 0.2, and 0.4; the other parameters were the same as in Figure 1. The positive lobes of 

the drift rate distributions describe the distributions of correct responses and the negative 

lobes describe the distributions of errors. The proportions of probability mass in the positive 

lobes are the proportions of correct responses. Separate drift rate distributions, with different 

shapes and different proportions of mass in their positive and negative lobes, are needed for 

each value of drift rate.
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Figure 3. 
Examples of response time (RT) distributions for correct responses for the standard 

diffusion model as a function of drift rate (varying from 0 to 0.3 in steps of 0.06) and as a 

function of the infinitesimal standard deviation (σ = 0.10, 0.05, and 0.02 for the top, middle, 

and bottom panels, respectively). The inset in the top panel shows the distributions scaled to 

the same peak value for σ = 0.10. The inset tables show values of accuracy (acc.) and mean 
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RT as a function of drift rate. Only for σ = 0.10 do processes with drift rate greater than zero 

produce a non-negligible proportion of errors.
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