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Abstract. Semi-analytical solutions for the diffusive Lotka-Volterra predator-prey system
with delay are considered in one and two-dimensional domains. The Galerkin method is
applied, which approximates the spatial structure of both the predator and prey populations.
This approach is used to obtain a lower-order, ordinary differential delay equation model
for the system of governing delay partial differential equations. Steady-state and transient
solutions and the region of parameter space, in which Hopf bifurcations occur, are all found.
In some cases simple linear expressions are found as approximations, to describe steady-state
solutions and the Hopf parameter regions. An asymptotic analysis for the periodic solution
near the Hopf bifurcation point is performed for the one-dimensional domain. An excellent
agreement is shown in comparisons between semi-analytical and numerical solutions of the
governing equations.

Keywords. reaction-diffusion equations, Lotka-Volterra predator-prey model, Hopf bi-
furcations, semi-analytical solutions.

1 Introduction
Population models, which are used in a variety of biological and ecological applications, have
been studied extensively for many decades. It is often important that these models include
both time-delay and spatial diffusion to reflect the dynamic behavior of the models, based on
past history, and the trend of a species to migrate to the least densely populated areas. Delay
reaction-diffusion models, which display oscillatory solutions, can describe the lagged response
to past behaviour and the spatial structure of certain chemical, biological and ecological
systems. Some examples include the delayed logistic diffusion equation which represents the
general framework of the growth dynamics of a single species and the delayed diffusive Lotka-
Volterra predator-prey systems for multiple population models [4, 9, 21].

Alfred Lotka and Vito Volterra [15] proposed a model for predator-prey systems to describe
the population of sharks and fish in the Adriatic Sea during World War I. This model can
also be used to describe chemical reactions and physical systems such as resonantly coupled
lasers [11, 15]. Many theoretical and experimental studies have considered the stability of the
Lotka-Volterra predator-prey model. For example, Faria [8] considered the system with one
and two delays. They studied the effect of diffusion and obtained the stability of the positive
equilibrium and the location of Hopf bifurcation points. Yan and Chu [22] analyzed the
stability for a delayed Lotka-Volterra predator-prey system and found conditions for oscillatory
solutions to occur. They also examined the stability of the oscillatory solutions.

Chen et al. [5] considered the diffusive Lotka-Volterra predator-prey system with two
delays. By analyzing the characteristic equations, the authors investigated the stability of
Hopf bifurcations and the coexistence equilibrium. They found that the positive equilibrium
point of the system could be destabilized through a Hopf bifurcation as the delay increases
in magnitude. Shenghu [20] studied the dynamics of the diffusive Lotka-Volterra predator-
prey model with prey-stage structure. They showed the effect of large diffusion rates on the
existence of the positive steady states. A large diffusion rate for the prey species can lead to
the destruction of spatial patterns while a large diffusion rate for the predator species preserves
spatial patterns. Galiano et al. [10] examined the Lotka-Volterra predator-prey model with



cross-diffusion terms numerically and analytically. The authors proved the existence of a
global weak solution in any number of space dimensions. Also, the numerical results for the
1-D domain were shown, underlining the effects of segregation of the species. Zhang and
Zhao [23] considered a delayed diffusive three species Lotka-Volterra system and analysed
the Hopf bifurcations of the system. These also presented numerical solutions of stable and
oscillatory solutions to illustrate the effects of both delay and diffusion.

Usually, a system of ordinary differential equations (ODEs) can be analyzed by stan-
dard techniques. However reaction-diffusion equations are also important in many physically
relevant modelling scenarios and are not so easily analyzed. Marchant [16] considered semi-
analytical solutions for the Gray & Scott cubic autocatalytic model in a reaction-diffusion cell.
The governing partial differential equation (PDE) model was approximated by a lower-order
ODE model, using the Galerkin method of averaging. The ODE model was analyzed using
various techniques from combustion theory which allowed bifurcation diagrams and Hopf bi-
furcation parameter maps to be found. An excellent comparison between the results of the
semi-analytical method and the numerical solutions of the governing PDEs was found. The
Galerkin averaging method has been applied to various other problems including a class of
generalized diffusive logistic delay equations [2], the reversible Selkov model with feedback
delay [3] and extensions to the Gray-Scott model such as Michaelis-Menten decay [17].

Fagan et al. [7] explored the importance of habitat edge effects, or boundary conditions,
on species interactions and illustrated a number of scenarios using diffusive Lokta-Volterra
equations. They gave physical examples of the different types of boundary conditions and
related them to mathematical definitions. Scenarios considered included edge induced changes
to migration patterns and mortality, cross-boundary subsidies and new types of interactions.

In this paper, the Lotka-Volterra predator-prey model with two delays is examined in both
1-D and 2-D domains where the Galerkin method is used to develop semi-analytical solutions.
In §2 governing equations are presented and the Galerkin method is used to obtain the delay
differential equations (DDEs) which represent the semi-analytical model. In §3 the steady-
state concentration profiles and response diagrams are presented and described in detail. In §4
a local stability analysis of the semi-analytical model is performed. The Hopf points are found
and the parameter region in which Hopf bifurcations occur is identified. In §5 the periodic
solution near the Hopf bifurcation is developed for the semi-analytical DDE model for the 1-D
domain. Comparisons are made throughout the paper between the semi-analytical results and
numerical solutions of the governing PDEs.

2 The semi-analytical model

2.1 The governing equations
The Lotka-Volterra predator-prey model with two delays is considered in 1-D and 2-D domains.
The governing PDEs and boundary conditions in 2-D are

ut = D1(uxx + uyy) + u(α− γ1u− δ1v(t− τ1)),

vt = D2(vxx + vyy) + v(−β + γ2u(t− τ2)− δ2v), (1)

ux = vx = 0, at x = 0, uy = vy = 0, at y = 0, u = v = 0, at x = y = 1,

u = uφ, at − τ2 < t ≤ 0 and v = vφ at − τ1 < t ≤ 0. (2)

The system (1) is in non-dimensional form with the scaled concentrations of the prey pop-
ulation density, u, and the predator population density, v. The 1-D system is the natural
simplification of (1), where there are no y-variations. The boundary conditions at x = y = 0
are zero-flux Neumann boundary conditions while at x = y = 1 fixed population, Dirichlet
boundary conditions are applied. Hence, it is an open system which allows the existence of
steady-state solutions and sustained periodic oscillations. At x = y = 0 the zero-flux boundary
conditions can either be interpreted as an impermeable boundary, which the species cannot
cross or a simple symmetry condition. Fagan et al. [7] refers to this type of boundary condition
as a “fence effect” and gives an example of the edges between old growth forests and clear-cuts
as a boundary red-backed voles will not cross. As a fixed zero population boundary condition
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is applied at x = y = 1 the region beyond can be interpreted as lethal to the species. Fagan
et al. [7] gives examples of the applicability of Dirchelet boundary conditions such as Bison
crossing national park boundaries (outside of which they are shot) and beetles crossing into
cleared land (where they die of dessication).

The system has ten other parameters; α and β represent the growth rate of the prey
species and the death rate of the predator species, respectively. The parameters γ1 and δ2
are the carrying capacity of the prey u and the predator v populations. δ1 is the decrease in
the population of the prey due to the predator presence, while γ2 denotes the growth in the
population of predator, due to the existence of the prey. The parameters τ1 and τ2 represent
the hunting and predator maturation delays. The parameters D1 and D2 are the diffusion
coefficients of the two species u and v. Note that all parameters are positive for physically
realistic population models.

Numerical solutions of (1) and (2) are found using a Crank-Nicholson finite-difference
scheme with accuracy of O(∆t,∆x2), while a fourth-order Runge-Kutta method is used to
solve the DDE models.

2.2 The Galerkin method
The Galerkin method is used to obtain the semi-analytical model for the Lotka-Volterra
predator-prey model (1) in 1-D and 2-D domains. This method assumes a spatial structure
of the population density profiles, allowing the governing PDEs (1) and boundary conditions
(2) to be approximated by a set of lower-order ODEs. The expansion

u(x, t) = u1(t) cos

(
1

2
πx

)
+ u2(t) cos

(
3

2
πx

)
, (3)

v(x, t) = v1(t) cos

(
1

2
πx

)
+ v2(t) cos

(
3

2
πx

)
,

is used which represents a two-term method in the 1-D spatial domain. Expansion (3) satisfies
the boundary conditions (2), but not the governing PDEs. The form of basis functions (3) also
has the property that the concentrations at the impermeable boundary x = 0 are u = u1 +u2
and v = v1 + v2. The free parameters in (3) are found by evaluating averaged versions of the
governing equations, weighted by the basis functions. This process gives the following DDEs

du1

dt
= −

π2D1u1

4
−

8γ1u21
3π

−
16γ1u1u2

15π
+ αu1 −

8δ1u1v1d

3π
−

8δ1u1v2d

15π

−
8δ1u2v1d

15π
−

72δ1u2v2d

35π
−

72γ1u22
35π

,

dv1

dt
= −

π2D2v1

4
−

8δ2v21
3π

−
16δ2v1v2

15π
− βv1 +

8γ2v1u1d

3π
+

8γ2v1u2d

15π

+
8γ2v2u1d

15π
+

72γ2v2u2d

35π
−

72δ2v22
35π

, (4)

du2

dt
= −

9π2D1u2

4
−

8γ1u21
15π

−
144γ1u1u2

35π
+ αu2 −

8δ1u1v1d

15π
+

8γ1u22
9π

−
72δ1u2v1d

35π
−

72δ1u1v2d

35π
+

8δ1u2v2d

9π
,

dv2

dt
= −

9π2D2v2

4
+

8δ2v22
9π

−
144δ2v1v2

35π
− βv2 +

72γ2v2u1d

35π
−

8δ2v21
15π

+
8γ2v1u1d

15π
+

72γ2v1u2d

35π
−

8γ2v2u2d

9π
,

where uid = ui(t − τ2) and vid = vi(t − τ1), i = 1, 2. The DDEs (4) are obtained by
truncating the series (3) after two terms. It is found that a two-term method produces superior
accuracy without excessive expression swell. The one-term solution (when u2 = v2 = 0) is also
calculated for comparison purposes. The accuracy of the one and two-term series solutions
can be estimated using Richardson extrapolation, see Nelson et al. [19] for an example of error
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estimation for a reaction-diffusion equation governing self-heating in compost piles. For the
2-D spatial domain, the expansion

u(x, y, t) = u1(t) cos

(
1

2
πx

)
cos

(
1

2
πy

)
+ u2(t) cos

(
3

2
πx

)
cos

(
1

2
πy

)
+ u2(t) cos

(
1

2
πx

)
cos

(
3

2
πy

)
,

v(x, y, t) = v1(t) cos

(
1

2
πx

)
cos

(
1

2
πy

)
+ v2(t) cos

(
3

2
πx

)
cos

(
1

2
πy

)
+ v2(t) cos

(
1

2
πx

)
cos

(
3

2
πy

)
, (5)

represent the two-term method which is used here. Note that two terms in each series have
the same coefficient (for the u series, the coefficient u2 appears twice). This is because the
solution is symmetric along the line y = x. The expansion (5) also satisfies the boundary
condition (2). The following DDE model, for the 2-D spatial domain,

du1

dt
= −

π2D1u1

2
−

64γ1u21
9π2

−
256γ1u1u2

45π2
+ αu1 −

64δ1u1v1d

9π2
−

128δ1u1v2d

45π2

−
128δ1u2v1d

45π2
−

18176δ1u2v2d

1575π2
−

18176γ1u22
1575π2

,

dv1

dt
= −

π2D2v1

2
−

64δ2v21
9π2

−
256δ2v1v2

45π2
− βv1 +

64γ2v1u1d

9π2
+

128γ2v1u2d

45π2

+
128γ2v2u1d

45π2
+

18175γ2v2u2d

1575π2
−

18176δ2v22
1575π2

, (6)

du2

dt
= −

5π2D1u2

2
−

64γ1u21
45π2

−
18176γ1u1u2

1575π2
+ αu2 −

64δ1u1v1d

45π2
−

4352γ1u22
4725π2

−
9088δ1u2v1d

1575π2
−

9088δ1u1v2d

1575π2
−

4352δ1u2v2d

4725π2
,

dv2

dt
= −

5π2D2v2

2
−

4352δ2v22
4725π2

−
18176δ2v1v2

1575π2
− βv2 +

9088γ2v2u1d

1575π2
−

64δ2v21
45π2

+
64γ2v1u1d

45π2
+

9088γ2v1u2d

1575π
+

4352γ2v2u2d

4725π2
,

is obtained by weighting the equations by the basis functions and averaging.

3 Steady-state solutions
The steady-state of both (4) and (6) (where the time derivative terms are all zero) represents
a set of four transcendental equations (fi = 0, i = 1, .., 4), which are solved numerically using
Maple. For the one term case, u2 = v2 = 0, so in this case two transcendental equations are
obtained.

Figures 1(a) and 1(b) show steady-state population density profiles u and v versus x, for
the 1-D spatial domain. The parameters are α = 0.4, γ1 = 0.1, D1 = D2 = 0.05, δ1 = 0.2,
γ2 = 0.7, δ2 = 0.5, β = 0.4 and τ1 = τ2 = 0. The one and two-term semi-analytical and
numerical solutions of (1) and (2) are shown. The prey and predator densities are both highest
in the centre of the domain as movement of both species occurs across the domain boundaries,
to maintain the fixed population densities of zero there. The one-term solutions have a density
of (u, v) = (1.51, 0.876) at x = 0. The two-term density peaks are (u, v) = (1.44, 0.926) at
x = 0, while the numerical densities are (u, v) = (1.45, 0.922). It can be seen that the two-term
expression produces an excellent approximation when compared with the numerical solution
of the governing PDEs (1) and (2). The errors are less than 1% for the u and v population
density. For the one-term approximation, the errors are slightly larger, but no greater than
about 5%. The two-term solutions are superior to the one-term profile as they model flat u
and v population density profiles more accurately.
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Figure 1: Steady-state prey, u (a), and predator, v (b), population density
profiles versus x for the 1-D spatial domain. The parameters are α = 0.4,
γ1 = 0.1, D1 = D2 = 0.05, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5, β = 0.4 and
τ1 = τ2 = 0. The one-term (black solid line), two-term (blue dashed line)
semi-analytical solutions and the numerical solution of (1) and (2) (red dotted
line) are shown.
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Figure 2: Steady-state prey, u (a), and predator, v (b), population density
profiles versus x for the 2-D spatial domain. The parameters are α = 0.65,
γ1 = 0.1, D1 = D2 = 0.02, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5, β = 0.4 and
τ1 = τ2 = 0. The one-term (black solid line), two-term (blue dashed line)
semi-analytical solutions and the numerical solution of (1) and (2) (red dotted
line) are shown.
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Figure 3: Steady-state population densities, u (a), and v (b), versus α for
the 1-D spatial domain. The population densities are shown at x = 0. The
parameters are γ1 = 0.1, D1 = D2 = 0.1, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5, β = 0.4
and τ1 = τ2 = 0. The one-term (black solid line), two-term (blue dashed line)
semi-analytical solutions and the numerical solution of (1) and (2) (red dotted
line) are shown.
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Figure 4: Steady-state population densities, u (a), and v (b), versus α for the
2-D spatial domain . The population densities are shown at x = y = 0. The
parameters are γ1 = 0.1, D1 = D2 = 0.02, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5, β = 0.4
and τ1 = τ2 = 0. The one-term (black solid line), two-term (blue dashed line)
semi-analytical solutions and the numerical solution of (1) and (2) (red dotted
line) are shown.
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Figures 2(a) and 2(b) show steady-state population profiles u and v versus x, for the
2-D spatial domain respectively. The parameters are α = 0.65, γ1 = 0.1, D1 = D2 = 0.02,
δ1 = 0.2, γ2 = 0.7, δ2 = 0.5, β = 0.4 and τ1 = τ2 = 0. The one and two-term semi-analytical
and numerical solutions of (1) and (2) are shown. The figures also show the profile through
the centre of the domain, at y = 0. Moreover, at x = 0 the one and two-term solutions have
densities of (u, v) = (2.74, 2.46) and (u, v) = (1.92, 2.18) respectively, while the numerical
density is (u, v) = (2.15, 2.08). For the one-term model, the errors are quite large at 28%
and 18% for the u and v population density respectively. The two-term model gives a better
comparison with the numerical solution. The errors are less than 11% and 5% for the u and
v population densities. The numerical prey population density is very flat in the center of the
domain and series solutions have difficult in modelling such profiles, hence the oscillatory two
term profile. More series terms are needed to model flat profiles better.

Figures 3(a) and 3(b) show steady-state population densities u and v versus the bifurcation
parameter α, for the 1-D spatial domain. The population densities are shown at x = 0.
The parameters are γ1 = 0.1, D1 = D2 = 0.1, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5, β = 0.4,
τ1 = τ2 = 0. The steady state population densities increase in a near linear manner as α
increases. The steady state two-term solutions can be approximated by u = 2.92α + 0.090
and v = 4.49α− 1.51. The solution v becomes positive at α = 0.34 hence physically realistic
solutions only exist for α ≥ 0.34. The two-term solution is very close to the numerical solution
of the PDEs. At α = 1 the numerical solutions are (u, v) = (2.99, 2.92) while the one and two-
term semi-analytical solutions are (u, v) = (3.14, 2.87) and (u, v) = (2.95, 2.89) respectively.
The errors between the numerical and two-term semi-analytical solutions less than 2% for
both the u and v population densities. While the one-term errors are no greater than about
5%.

Figures 4(a) and 4(b) show steady-state population densities u and v versus α, for the 2-D
spatial domain respectively. The population densities are shown at x = y = 0. The parameters
are γ1 = 0.1, D1 = D2 = 0.02, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5, β = 0.4, τ1 = τ2 = 0. The one
and two-term semi-analytical solutions and numerical solutions of the governing PDEs are
shown. Again there is a near linear relationship between u, v and α. The one-term steady-
state solution can be described by u = 3.65α + 0.368, v = 5.11α − 0.869. Here, the solution
v is physically realistic solutions for α ≥ 0.17. At α = 0.6, the errors between numerical and
two-term semi-analytical solutions l are about 9% and 7%, for the u and v population density
respectively.

4 Local stability, bifurcation diagrams and os-
cillatory solutions

A Hopf bifurcation occurs when oscillatory solutions exist in the neighborhood of a steady state
whose stability is lost because of the crossing of a pair of complex conjugate eigenvalues over
the imaginary axis. The Hopf bifurcation theory is explained in standard texts on bifurcation
theory and dynamical systems [6, 12]. Here the stability of the semi-analytical model is
analyzed and used to explore the effects of the two delays in altering the stability of the
system (1) and (2), for both 1-D and 2-D spatial domains. The Hopf degeneracy points are
calculated to find a semi-analytical map in which Hopf bifurcations occur and this prediction
is compared with numerical results. Also bifurcation diagrams are drawn with two-term
semi-analytical and numerical solutions compared. The bifurcations diagrams exhibit the
steady-state amplitude solution branch and the maximum and minimum amplitudes of the
oscillatory solutions. The amplitudes at x = 0, for the 1-D spatial domain, and at x = y = 0
for the 2-D spatial domain are shown.

The Hopf points are obtained by expanding in a Taylor series about the steady-state
solution,

ui(t) = uis + εgie
−λt, vi(t) = vis + εhie

−λt, i = 1, 2. (7)

We substitute (7) into the DDEs (4) (1-D domain) and (6) (2-D domain) and linearize around
the steady state. The eigenvalues of the Jacobian matrix characterizes the perturbation in
the system and we obtain a characteristic equation for λ. We set λ= iω in the characteristic
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Figure 5: The regions of the α-β plane in which Hopf bifurcation can occur for
the 1-D spatial domain. The one-term (black solid line), the two-term (blue,
dashes) regions and the numerical solution (red, squares) are shown. The other
parameters are γ1 = 0.1, D1 = D2 = 0.1, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5 and
τ1 = τ2 = 4.

equation and separate the real q1 and imaginary q2 parts. The Hopf bifurcation points occur
at points where λ is purely imaginary, for more details see [18]. Here, the Hopf bifurcation
points are found by solving the following conditions

f1 = f2 = f3 = f4 = q1 = q2 = 0. (8)

Figure 5 shows the region in the α-β plane in which Hopf bifurcation occur for the 1-D
spatial domain. Shown are the one and two-term semi-analytical solutions plus numerical
solutions. The other parameters are γ1 = 0.1, D1 = D2 = 0.1, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5
and τ1 = τ2 = 4. The semi-analytical solutions are found by solving (8). The Hopf curves
break the plane into two regions. To the right of the curves Hopf bifurcation points occur
while to the left only stable solutions occur. Generally speaking, a higher growth rate α
destabilizes the system while a higher death rate β stabilizes it. The curve has a turning
point at (α, β) = (0.410, 0.334) so Hopf bifurcations can only occur for α ≥ 0.410. The
comparisons between the semi-analytical estimates and the numerical solutions, of the PDE
model, are excellent. For example, at α = 0.6, the numerical value at which Hopf bifurcations
can occur is β = 2 while the one and two-term semi-analytical values are β = 1.91 and 1.98
respectively, which represents the errors of 5% and 2%.

Figure 6 shows the region in the α-β plane in which Hopf bifurcation occur for the 2-D
spatial domain. Shown are the one and two-term semi-analytical solutions plus the numerical
solution. The other parameters are the same as figure 5. Again to the right of the Hopf curves
Hopf bifurcation points occur while to the left only stable solutions occur. Here, the turning
point here is (α, β) = (0.657, 0.106) so Hopf bifurcations only occur for α ≥ 0.657. The errors
are less than 5% and 2% for the one and two-term analytical solutions.

Figure 7 shows the regions in the τ1-τ2 plane in which Hopf bifurcation occur for the 1-D
spatial domain. Shown are the one and two-term semi-analytical solutions and the numerical
solution. The other parameters are α = 0.8, β = 0.4, γ1 = 0.1, D1 = D2 = 0.1, δ1 = 0.2,
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Figure 6: The regions of the α-β plane in which Hopf bifurcation can occur for
the 2-D spatial domain. The one-term (black solid line), the two-term (blue,
dashes) regions and the numerical solution (red, squares) are shown. The other
parameters are γ1 = 0.1, D1 = D2 = 0.1, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5 and
τ1 = τ2 = 4.

γ2 = 0.7 and δ2 = 0.5. The curves divide the plane into upper and lower regions. Above
these curves limit cycles can occur while under the curves only stable solutions occur and
there are no Hopf bifurcation points. In general, small values of the delay parameters leads
to a stable solution while large delays, which implies feedback from the distant past, leads
to instabilities [1, 2]. The Hopf curve of Hopf bifurcations can be described by the linear
equations τ2 = −0.994τ1 + 3.11 and τ2 = −τ1 + 3.23 for one and two-term semi-analytical
solutions respectively. Given the computational difficulty in obtaining estimates for arbitrary
choices of the delay parameters, the linear equation approximations represent a simple and
useful method for predicting the occurrence of Hopf bifurcations for this PDE system. At
τ1 = 1.60, the one and two-term semi-analytical values are τ2 = 1.51 and τ2 = 1.63 while the
numerical value is τ2 = 1.60. The errors are less than 6% and 2% respectively.

Figure 8 shows the regions in the τ1-τ2 plane in which Hopf bifurcation occur for the
2-D spatial domain. Shown are the one and two-term solutions and the numerical solution.
The other parameters are the same as figure 5. The curves divide the plane into upper and
lower regions. Above these curves limit cycles can occur while under the curves only stable
solutions occur and there are no Hopf bifurcation points. The curve of Hopf bifurcations can
be described by τ2 = −τ1 + 4.28 and τ2 = −τ1 + 4.52 for one and two-term semi-analytical
solutions respectively. At τ1 = 2.20, the one and two-term semi-analytical values are τ2 = 2.08
and 2.32 while the numerical value is τ2 = 2.20. The errors in these estimates are less than
6%.

Figure 9(a) shows a limit cycle solution in the u versus v phase plane for x = 0, 0.33 and
0.66, while (b) and (c) show the evolution of u versus t, at x = 0 and 0.66 respectively, for
the 1-D spatial domain. The parameters are α = 0.8, β = 0.4, γ1 = 0.1, D1 = D2 = 0.1,
δ1 = 0.2, γ2 = 0.7, δ2 = 0.5 and τ1 = τ2 = 2. Shown are the one and two-term semi-
analytical and numerical solutions. The parameters lie above the Hopf curve in figure 7 so a
limit cycle is possible. The figure illustrates the variations in the oscillatory solution as the
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Figure 7: The regions of the τ1-τ2 plane in which Hopf bifurcation can occur
for the 1-D spatial domain. The one-term (black solid line), the two-term (blue,
dashes) regions and the numerical solution (red, squares) are shown. The other
parameters are α = 0.8, β = 0.4, γ1 = 0.1, D1 = D2 = 0.1, δ1 = 0.2, γ2 = 0.7
and δ2 = 0.5.

predator and prey populations are not uniform but vary through the domain. (3) represents
the assumed spatial structure for the semi-analytical model. The period of the limit cycle
is constant throughout the domain but the populations vary from a maximum at x = 0 to
zero at the x = 1 boundary. The numerical period of the limit cycle is 1.72, while the one
and two-term semi-analytical periods are 1.77 and 1.73. At x = 0 the limit cycle amplitudes
are (u, v) = (4.74, 5.85) (numerical), (u, v) = (5.13, 6.09) (one-term) and (u, v) = (4.76, 5.88)
(two-term). At x = 0 the errors in the one and two-term semi-analytical values, are less than
8% and 1%. At intermediate locations in the domain the two-term semi-analytical solution
is also very accurate. For x = 0.33 the comparisons are (u, v) = (4.26, 5.03) (numerical)
and (u, v) = (4.30, 5.08) (two-term) while for x = 0.66 (u, v) = (2.77, 2.98) (numerical) and
(u, v) = (2.80, 3.01) (two-term). Also, the time evolution curves for x = 0 and x = 0.66 show
that the locations of the peaks and troughs do not depend on the location in the domain.
Moreover the locations of the first few peaks, as predicted by the two-term semi-analytical
solution, are very close to the corresponding numerical values.

Figure 10 shows the evolution of u versus t, for (a) x = 0, (b) x = 0.33 and (c) x = 0.66,
for the 1-D domain. The parameters are α = 0.8, β = 0.4, γ1 = 0.1, D1 = D2 = 0.1,
δ1 = 0.2, γ2 = 0.7, δ2 = 0.5 and τ1 = τ2 = 1. Shown are one and two-term semi-analytical
and numerical solutions. These parameters lie under the curve of figure 7 so a stable solution
occurs. The figures shows that the transient behaviour is qualitatively similar at all locations in
the domain, with the amplitude of the population oscillations decreasing as the x = 1 boundary
is approached. When the time becomes large, the solution evolves to a steady-state. At x = 0
this steady-state solution is given by (u, v) ' (2.52, 2.00) (one-term), (u, v) ' (2.42, 2.07)
(two-term) and (u, v) ' (2.42, 2.07) (numerical). It can be seen that the two-term semi-
analytical solution gives a good approximation, when compared with the numerical solution
of the governing PDEs, of the steady-state values and of the relaxation oscillations, with only
a 1% error for both population densities.
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Figure 8: The regions of the τ1-τ2 plane in which Hopf bifurcation can occur
for the 2-D spatial domain. The one-term (black solid line), the two-term (blue,
dashes) regions and the numerical solution (red, squares) are shown. The other
parameters are α = 0.8, β = 0.4, γ1 = 0.1, D1 = D2 = 0.1, δ1 = 0.2, γ2 = 0.7
and δ2 = 0.5.

Figures 11(a) and (b) shows the bifurcation diagrams of population densities u and v,
versus α , at x = 0, for the 1-D spatial domain. The parameters are β = 0.4, γ1 = 0.1,
D1 = D2 = 0.1, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5 and τ1 = τ2 = 4. Shown are the one
and two-term semi-analytical and numerical solutions. The Hopf bifurcation point occurs at
α = 0.410 for both the one and two-term semi-analytical models, while the numerical value is
α = 0.413. The stable solution branch occurs for α less than the Hopf point value while the
periodic solutions occur for larger α. Also, the values of v are non-negative for α ≥ 0.34 so
physically realistic steady-state solutions occur for α ∈ [0.34, 0.41]. The maximum amplitudes
of the oscillations increases as α increases, while the minimum amplitudes of the oscillations
become very small. It can be seen that the two-term semi-analytical solution gives an excellent
approximation, when compared with the numerical solution of the governing PDEs, for both
the stable and oscillatory solutions of the bifurcation diagram. The error in the one-term semi-
analytical is no greater than 4%, while the two-term solution is the same as the numerical
solution, to graphical accuracy.

Figures 12(a) and 12(b) show the bifurcation diagrams of population densities u and v,
versus α , at x = y = 0, in the 2-D spatial domain. The parameter values are the same as
figure 11. The one and two-term semi-analytical and numerical solutions are shown. For both
one and two-term semi-analytical models the Hopf bifurcation point occurs at α = 0.679 and
α = 0.678 respectively, while the numerical value is α = 0.677. The errors for the 2-D domain
are slightly larger than those for the 1-D case but are less than 15%.

Figure 13 shows the limit cycle curve u versus v at x = 0 for α = 1 (inner curves),
α = 1.25 (middle curves) and α = 1.5 (outer curves), for the 1-D domain. Shown is the
two-term semi-analytical and numerical solutions. The parameters are β = 0.4, γ1 = 0.1,
D1 = D2 = 0.1, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5 and τ1 = τ2 = 2. This figure illustrates the
nature of the limit cycle for larger α, well beyond the Hopf bifurcation point. Many biological
systems, such as the Nicholsons blowflies equation (see, for example, Alfifi et al. [1]) exhibit
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Figure 9: (a) The limit cycle curve u versus v, for x = 0 (outer curves) , x = 0.33
(middle curves) and x = 0.66 (inner curves) and the evolution of u versus t for
(b) x = 0 and (c) x = 0.66, for the 1-D domain. Shown is the one-term semi-
analytical solution (black, solid line), two-term semi-analytical solution (blue,
dashed lines) and the numerical solution (red, dotted lines). The parameters
are α = 0.8, β = 0.4, γ1 = 0.1, D1 = D2 = 0.1, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5 and
τ1 = τ2 = 2.
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Figure 10: The evolution of u versus t, for (a) x = 0, (b) x = 0.33 (c) x = 0.66,
for the 1-D domain. The one-term semi-analytical solution (black, solid line),
the two-term semi-analytical solution (blue, dashed lines) and the numerical
solution (red, dotted lines) are shown. The parameters are α = 0.8, β = 0.4,
γ1 = 0.1, D1 = D2 = 0.1, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5 and τ1 = τ2 = 1.
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Figure 11: The bifurcation diagrams of u (a), and v (b), at x = 0, versus α
for the 1-D spatial domain. The one-term semi-analytical solution (black solid
line), the two-term semi-analytical solution (blue dashed line) and the numerical
solution (red dotted line) are shown. The parameters are β = 0.4, γ1 = 0.1,
D1 = D2 = 0.1, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5 and τ1 = τ2 = 4.
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Figure 12: The bifurcation diagrams of u, (a), and v, (b), at x = 0, versus α
for the 2-D spatial domain. The one-term semi-analytical solution (black solid
line), the two-term semi-analytical solution (blue dashed line) and the numerical
solution (red dotted line) are shown. The parameters are β = 0.4, γ1 = 0.1,
D1 = D2 = 0.1, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5 and τ1 = τ2 = 4.
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Figure 13: The limit cycle curve u versus v at x = 0 for α = 1 (inner curves),
α = 1.25 (middle curves) and α = 1.5 (outer curves), for the 1-D domain.
Shown is the two-term semi-analytical solution (blue, dashed lines) and the
numerical solution (red, dotted lines). The parameters are β = 0.4, γ1 = 0.1,
D1 = D2 = 0.1, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5 and τ1 = τ2 = 2.

period doubling and chaotic solutions. This behaviour does not occur for the classical two
species Lokta-Volterra ode system without delay, as a minimum of three species is required
for chaotic solutions, see Kozlov and Vakulenko [13]. An extensive numerical search of the
parameter space for the diffusive delayed Loktka-Volerra system in 1-D and 2-D domains, (1)
and (2), only yielded limit cycle solutions, beyond the relevant Hopf point, with no chaotic
behaviour found. This figure shows that the amplitude of the oscillations continues to increase
as α increases and that the limit cycle curve takes a near rectangular shape. The amplitudes
of the oscillations are, for α = 1, (u, v) = (7.70, 9.87) (two-term) and (u, v) = (7.79, 9.77)
(numerical), for α = 1.25, (u, v) = (10.8, 14.1) (two-term) and (u, v) = (10.9, 14.1) (numerical)
and for α = 1.5, (u, v) = (13.6, 18.1) (two-term) and (u, v) = (13.7, 18.2) (numerical). The
two-term solution is extremely accurate, even for large α, with errors less than 1%.

5 Periodic solutions near the Hopf bifurcation
point

An asymptotic analysis of the periodic solution of the semi-analytical DDEs model for the
delayed Lotka-Volterra PDEs system (1) and (2) is developed for the 1-D domain. The
Hopf perturbation technique, also called the Lindstedt-Poincaré method, is used to construct
asymptotic limit cycle solutions of both the one- and two-term semi-analytical DDE models [6].
The power series method assumes that the oscillation amplitude ε is small and determines
corrections to the frequency and bifurcation parameters by eliminating secular terms that
appear in the expansion, at higher-order [14].
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5.1 One-term solution
The one-term semi-analytical system is given by following DDEs

du1

dt
= −

π2D1u1

4
−

8γ1u21
3π

−
8δ1u1v1d

3π
+ αu1, (9)

dv1

dt
= −

π2D2v1

4
−

8δ2v21
3π

− βv1 +
8γ2v1u1d

3π
.

We assume a 2π-periodic solution of (9), of the form,

u1(s) = ms + εm1(s) + ε2m2(s) + ε3m3(s) + ..., (10)

v1(s) = ηs + εη1(s) + ε2η2(s) + ε3η3(s) + ...,

where s = ωt is the scaled time variable and the parameter ε is the amplitude of the oscillation.
This can be determined by a normalization condition as

ε =
1

2π

∫ 2π

0
m(s, ε)e−is ds,

1

2π

∫ 2π

0
m1(s)e−is ds = 1, (11)

1

2π

∫ 2π

0
mi(s)e

−is ds = 0, ∀i 6= 1.

We expand both the bifurcation parameter α and the frequency ω by using a power series

α = α0 + ε2α2 + ..., ω = ω0 + ε2ω2 + ..., (12)

where α0 and ω0 are the values of the parameters at the Hopf bifurcation point. The cor-
rections α2 and ω2 are obtained by using solvability conditions at the third order of the
perturbation analysis. Substituting equations (10) and (12) into (9), we obtain governing
equations at the first three orders of ε, which are

O(ε) : ω0ḿ1 = α0m1 −
16γ1msm1

3π
−

8δ1ηsm1

3π
−

8δ1msη1d

3π
−

1

4
D1π

2m1,

ω0ή1 = −
16δ2ηsη1

3π
−

8γ2msη1

3π
+

8γ2ηsm1d

3π
−

1

4
D2π

2η1 − βη1, (13)

O(ε2) : ω0ḿ2 = α0m2 −
16γ1msm2

3π
−

8δ1ηsm2

3π
−

8δ1msη2d

3π
−

1

4
D1π

2η2

−
8δ1m1η1d

3π
−

8γ1m2
1

3π
,

ω0ή2 =
8γ2msη2

3π
−

16δ2ηsη2

3π
+

8γ2ηsm2d

3π
−

1

4
D2π

2η2 − βη2 (14)

+
8γ2η1m1d

3π
−

8δ2η21
3π

,

O(ε3) : ω0ḿ3 =
8γ1msω2 ´η1d

3π
−

16γ1msm3

3π
−

8δ1ηsm3

3π
−

8δ1msη3d

3π

−
1

4
D1π

2m3 + α0m3 − ω2ḿ1 −
8δ1m1η2d

3π
+ α2m1 −

16γ1m1m2

3π
−

8δ1m2η1d

3π
,

ω0ή3 =
8γ2msη3

3π
−

16δ2ηsη3

3π
−

16δ2η1η2

3π
+

8γ2ηsm3d

3π
−

1

4
D2π

2η3 (15)

−βη3 −
8δ2ηsω2ḿ1d

3π
− ω2ή1 +

8δ2η1m2d

3π
+

8δ2η2m1d

3π
.

At the first two orders the solution of (13) and (14) are

m1(s) = eis + c.c., η1(s) = Aeis + c.c., (16)

m2(s) = B1e2is + c.c., η2(s) = B2e2is + c.c.,

where c.c. is the complex conjugate. To find the amplitudes A, B1 and B2 of the oscillations
in (16) we substitute (16) into (13) and (14) and separate into real and imaginary parts, see
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(25) in the Appendix. At third-order we substitute the solutions (16) into (15) and obtain

ω0ḿ3 +
16γ1msm3

3π
+

8δ1ηsm3

3π
+

8δ1msη3d

3π
+

1

4
D1π

2m3 − α0m3 = (17)

eis(α2 +
8iδ1msω2Ae−iω0

3π
− iω2 −

16γ1B1

3π
−

8δ1B2e−2iω0

3π
−

8δ1B1Aeiω0

3π
) + c.c.,

ω0ή3 +
16δ2ηsη3

3π
−

8γ2msη3

3π
−

8γ2ηsm3d

3π
+

1

4
D2π

2η3 + βη3 =

eis(
8iγ2AB1e−2iω0

3π
+

8iγ2ηsω2e−iω0

3π
− iω2A−

16δ2B2A

3π
−

8γ2B2eiω0

3π
) + c.c.,

where only the secular e±is terms are shown on the r.h.s. of (17). The homogeneous form
of the equations have the solution (m3,η3)=ce±is(1, A)T which can not be used to eliminate
secular terms at O(ε3). However, a choice orthogonal to this, such as (m3,η3)=ce±is(1, 0)T is
not a solution to the homogeneous equations. Thus, an appropriate choice of c together with
α2 and ω2 eliminates the secular terms at O(ε3), see (26) in the Appendix.

The solution is now complete and we explain the special case τ1 = τ2 = 4 in detail. The
solution is given by

(α0, ω0,ms, ηs) = (0.410, 0.161, 1.310, 0.305), (18)

A = 0.033− 0.879i, B1 = −0.158− 0.462i,

B2 = −1.130− 0.279i, α2 = 0.133, ω2 = −0.371.

The leading-order limit cycle and its period is given by

u1(s) ' ms + ε cos(ωt), v1(s) ' ηs + ε<(Aeis + Āe−is), (19)

ε '
√

7.51α− 3.08, ω ' 1.30− 2.79α,

where the extrema of the oscillatory solutions are u = ms ± 2ε and v = ηs ± 1.76ε. The limit
cycle (19) shows the classical square root behaviour near the Hopf point α = 0.410. Also the
frequency decreases linearly with α.

5.2 Two-term solution
The two-term semi-analytical equations are found from (4). The procedure for obtaining
periodic solutions near the Hopf bifurcation point is similar to the one-term case. We assume
a solution of (4) of the form

u1(s) = ms1 + εm1(s) + ε2m2(s) + ε3m3(s),

v1(s) = ηs1 + εη1(s) + ε2η2(s) + ε3η3(s),

u2(s) = ξs + εξ1(s) + ε2ξ2(s) + ε3ξ3(s), (20)

v2(s) = ρs + ερ1(s) + ε2ρ2(s) + ε3ρ3(s).

The governing equations at the first three orders of ε are obtained by substituting (20) and
(12) into (4). These perturbation equations are excessively long so are not presented here.
Note that there are four equations at each order of ε. The first order solution has the form

m1(s) = eis + c.c., η1(s) = A1eis + c.c., (21)

ξ1(s) = A2eis + c.c., ρ1(s) = A3eis + c.c..

By substituting (21) into the O(ε) equations, three complex equations are obtained for the
complex amplitudes A1, A2 and A3. At O(ε2), the solution has the following form

m2(s) = B1e2is + c.c., η2(s) = B2e2is + c.c., (22)

ξ2(s) = B3e2is + c.c., ρ2(s) = B4e2is + c.c..

Again, by substituting (21) and (22) into the O(ε2) equations, four complex equations are
obtained for complex amplitudes B1, B2, B3 and B4. At the third order, the equations have
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Figure 14: The bifurcation diagrams of u, (a), and v, (b), versus α. The one-
term semi-analytical solution (red dotted lines) and the perturbation solution
(blue dashed lines) are shown, for the 1-D domain The parameters are β = 0.4,
γ1 = 0.1, D1 = D2 = 0.1, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5 and τ1 = τ2 = 4.
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Figure 15: The bifurcation diagrams of u, (a), and v, (b), versus α. The two-
term semi-analytical solution (red dotted lines) and the perturbation solution
(blue dashed lines) are shown, for the 1-D domain. The parameters are β = 0.4,
γ1 = 0.1, D1 = D2 = 0.1, δ1 = 0.2, γ2 = 0.7, δ2 = 0.5 and τ1 = τ2 = 4.
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e±is terms on the r.h.s, which are secular terms. We let (m3, η3, ξ3, ρ3) = c1e±is(1, 1, 1, 0)T

and choose c1, α2 and ω0 to eliminate the secular terms at O(ε3).
We illustrate the special case τ1 = τ2 = 4. The Hopf bifurcation solution is

(α0, ω0,ms1, ηs1, ξs, ρs) = (0.410, 0.162, 1.310, 0.311,−0.023, 0.017), (23)

A1 = 0.047− 0.882i, A2 = −0.014 + 0.198i, A3 = 0.015− 0.044i,

B1 = −0.131− 0.462i, B2 = −1.112− 0.323i, B3 = 0.021 + .0.003i,

B4 = −0.042− 0.048i, α2 = 0.118, ω2 = −0.366.

The leading-order limit cycle solution is

u(s) ' ms1 + ξs + ε(2 cos(ωt) + <{A2eis + Ā2e−is}),
v(s) ' ηs1 + ρs + ε(<{A1eis + Ā1e−is +A3eis + Ā3e−is}), (24)

ε '
√

8.48α− 3.48, ω ' 1.43− 3.10α,

where the extrema of the oscillatory solutions are u = 1.28± 1.98ε and v = 0.327± 1.857ε.
Figures 14 show the bifurcation diagram for u and v, for the one-term solution while

figure 15 shows the two-term solution, both for the 1-D domain. Shown are semi analytical
and perturbation solutions. The parameters are β = 0.4, γ1 = 0.1, D1 = D2 = 0.1, δ1 = 0.2,
γ2 = 0.7, δ2 = 0.5 and τ1 = τ2 = 4. The solution loses stability at the Hopf point, α = 0.410
for both the one- and two-term cases. The branches of oscillatory solutions form a near right
angle with the steady state solution branch.These angles deviate slightly from the theoretically
expected right angle due to the plotting of a finite number of points in the figures. Both figures
show a good comparison between perturbation solutions and semi-analytical results for the
interval α = [0.410, 0.413]. The range of validity is limited by the fast growth of oscillatory
amplitude, with respect to increasing α, and the limited range of accuracy for the Taylor-series
expansion.

6 Conclusion
Semi-analytical DDE models have been developed for the diffusive Lotka-Volterra predator-
prey system with delay in the 1-D and 2-D spatial domains. The DDE models are obtained as
approximations to the governing PDEs. Bifurcation diagrams and Hopf bifurcation points are
obtained for both the 1-D and 2-D domains and an asymptotic limit cycle solution developed,
for the 1-D spatial domain. The method used here has proved to be highly effective in
generating accurate approximate solutions and is applicable to a wide range of reaction-
diffusion equations, both with and without delay terms.

A Equations associated with the one-term peri-
odic solution

The transcendental equations for the amplitudes A = Ar + iAi, B1 = B1r + iB1i and B2 =
B2r + iB2i are

α0 −
16

3π
γ1ms −

8

3π
δ1ηs −

8

3π
δ1msAr cos(ω0τ1)−

8

3π
δ1msAi sin(ω0τ1)−

1

4
D1π

2 = 0,

ω0 −
8

3π
δ1msAr sin(ω0τ1) +

8

3π
δ1msAi cos(ω0τ1) = 0,

ω0Ai −
16

3π
δ2ηsAr +

8

3π
γ2msAr +

8

3π
γ2ηs cos(ω0τ2)−

1

4
D2π

2Ar − βAr = 0,

ω0Ar +
16

3π
δ2ηsAi −

8

3π
γ2msAi +

8

3π
γ2ηs sin(ω0τ2) +

1

4
D2π

2Ai + βAi = 0, (25)

2ω0B1i −
16

3π
γ1msB1r −

8

3π
δ1ηsB1r −

8

3π
δ1msB2r cos(2ω0τ1)−

8

3π
γ1
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−
8

3π
δ1Ar cos(ω0τ1)−

8

3π
δ1msB2i sin(2ω0τ1)−

8

3π
δ1Ai sin(ω0τ1)

+α0B1r −
1

4
D1π

2B1r = 0,

α0B1i − 2ω0B1r −
16

3π
γ1msB1i −

8

3π
δ1ηsB1i −

8

3π
δ1msB2i cos(2ω0)

−
1

4
D1π

2B1i +
8

3π
δ1Ar sin(ω0τ1)−

8

3π
δ1Ai cos(ωτ1) +

8

3π
δ1msB2r sin(2ω0τ1) = 0,

2iω0B2i +
8

3π
γ2Ar cos(ω0τ2) +

8

3π
γ2Ai sin(ω0τ2)−

8

3π
γ2ηsB1i sin(2ω0τ2)−

16

3π
δ2ηsB2r

+
8

3π
γ2msB2r −

8

3π
γ2ηsB1r cos(2ω0τ2)− βB2r −

8

3π
δ2A

2
r −

1

4
D2π

2B2r = 0,

−2ω0B2r −
8

3π
γ2Ar sin(ω0τ2) +

8

3π
γ2Ai cos(ω0τ2) +

8

3π
γ2ηsB1r sin(2ω0τ2)−

16

3π
δ2ηsB2i

+
8

3π
γ2msB2i −

16

3π
δ2AiAr −

1

4
D2π

2B2i − βB2i −
8

3π
γ2ηsB1i cos(2ω0τ2) = 0.

The transcendental equations for c = cr + ici, α2 and ω2 are

ω0ci −
16

3π
δ1 sin (ω0τ1) cos (ω0τ1) B2i −

8

3π
δ1msscr −

1

4
π2D1 cr −

8

3π
δ1B1rA2r cos (ω0τ1)

−
8

3π
δ1B1rA2i sin (ω0τ1) + α0cr +

8

3π
δ1B1iA2r sin (ω0τ1)−

8

3π
δ1B1iA2i cos (ω0τ1)

−
16

3π
γ1B2r −

16

3π
δ1 cos (ω0τ1)2 B2r +

8

3π
δ1msω2 sin (ω0τ1) A2r + α2 −

16

3π
γ1mscr

−
8

3π
δ1msω2 cos (ω0τ1) A2i +

8

3π
δ1B2r = 0,

−ω0cr −
16

3π
γ1msci −

8

3π
δ1mssci −

16

3π
δ1 cos (ω0τ1)2 B2i −

1

4
π2D1ci −

16

3π
γ1B1i

+
8

3π
δ1msω2 cos (ω0τ1) A2r +

8

3π
δ1msω2 sin (ω0τ1) A2i −

8

3π
δ1B1iA2r cos (ω0τ1)

−
8

3π
δ1B1rA2r sin (ω0τ1) + α0ci − ω2 +

16

3π
δ1 sin (ω0τ1) cos (ω0τ1) B2r

−
8

3π
δ1B1iA2i sin (ω0τ1) +

8

3π
δ1B2i +

8

3π
δ1B1rA2i cos (ω0τ1) = 0, (26)

ω2A2i +
8

3π
γ2mss cos (ω0τ2) cr +

8

3π
γ2mss sin (ω0τ2) ci −

16

3π
δ2A2iB2i +

16

3π
γ2 cos (ω0τ2)2 A2iB1i

−
8

3π
γ2mssω2 sin (ω0τ2)−

8

3π
γ2B1rA2r −

16

3π
γ2 sin (ω0τ2) cos (ω0τ2) A2iB1r −

16

3π
δ2A2rB2r

−
8

3π
γ2B1iA2i +

16

3π
γ2 sin (ω0τ2) cos (ω0τ2) A2rB1i +

8

3π
γ2B2r cos (ω0τ2) +

16

3π
γ2 cos (ω0τ2)2 A2rB1r

−
8

3π
γ2B2i sin (ω0τ2) = 0,

−ω2A2r −
16

3π
γ2 sin (ω0τ2) cos (ω0τ2) A2rB1r +

16

3π
γ2 cos (ω0τ2)2 A2rB1i +

8

3π
γ2B2r sin (ω0τ2)

+
8

3π
γ2B2i cos (ω0τ2)−

16

3π
δ2A2rB2i −

8

3π
γ2B1iA2r −

8

3π
γ2mssω2 cos (ω0τ2)

+
8

3π
γ2mss cos (ω0τ2) ci −

8

3π
γ2mss sin (ω0τ2) cr −

16

3π
γ2 sin (ω0τ2) cos (ω0τ2) A2iB1i

−
16

3π
γ2 cos (ω0τ2)2 A2iB1r +

16

3π
δ2A2iB2r +

8

3π
γ2A2iB1r = 0.
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[10] G. Galiano, M.L. Garzón and A. Jüngel, Analysis and numerical solution of a nonlinear
cross-diffusion system arising in population dynamics, Rev. Real Acad. Ciencias, Serie
A. Mat. 95 (2001) 281–295.

[11] A. S. Hacinliyan, I. Kusbeyzi and O. O. Aybar, Approximate solutions of Maxwell Bloch
equations and possible Lotka-Volterra type behavior, Nonlinear Dynamics 62 (2010)
17–26.

[12] J. Hale, Theory of Functional Differential Equations, Springer Verlag, New York, (1977).

[13] V. Kozlov and S. Vakulenko, On chaos in Lokta-Volterra systems: an analytical approach,
Nonlinearity 26 (2013) 2299-2314.

[14] G. looss and D. D. Joseph, Elementary Stability and Bifurcation Theory, New
York:Springer, (1990).

[15] A. Lotka, Elements Of Physical Biology, Williams & Wilkins Company, Baltimore
(1925).

[16] T. R. Marchant, Cubic autocatalytic reaction-diffusion equations: semi-analytical solu-
tions, Proc. Roy. Soc. Lond A 458 (2002) 873-888.

[17] T. R. Marchant, Cubic autocatalysis with Michaelis-Menten kinetics: semi-analytical
solutions for the reaction-diffusion cell, Chem. Engng. Sci. 59 (2004) 3433–3440.

[18] K. Miroslav, Delay Compensation for Nonlinear, Adaptive, and PDE Systems,
Birkhauser Boston Inc, (2009).

[19] M.I. Nelson, T. R. Marchant, G.C. Wakeb, E. Balakrishnan and X.D. Chen, Self-heating
in compost piles due to biological effects, Chem. Engng. Sci. 62 (2007) 4612-4619.

[20] X. Shenghu, Dynamics of a general prey-predator model with prey-stage structure and
diffusive effects, Comput. Math. Appl. 68 (2014) 405–423.

25



[21] Y. Wang, Asymptotic behavior of solutions for a class of predator-prey reaction-diffusion
systems with time delays, Math. Anal. Appl. 328 (2007) 137–150.

[22] X.-P. Yan and Y.-D. Chu, Stability and bifurcation analysis for a delayed Lotka-Volterra
predator-prey system, Comput. Appl. Math. 196 (2006) 198–210.

[23] X. Zhang and H. Zhao, Bifurcation and optimal harvetsing of a diffusive predator-prey
system with delays and interval biological parameters, J. Theor. Biol. 363 (2014) 390-
403.

26


	The diffusive Lotka-Volterra predator-prey system with delay
	Recommended Citation

	The diffusive Lotka-Volterra predator-prey system with delay
	Abstract
	Disciplines
	Publication Details

	tmp.1470351901.pdf.NAN2y

