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The digital all-pass filter is a computationally efficient signal pro- 
cessing building block which is quite useful in many signal pm- 
cessing applications. In this tutorial paper we review the properties 
of digital all-pass filters, and provide a broad overview of the diver- 
sity of applications in digital filtering. Starting with the definition 
and basic properties of a scalar all-pass function, a variety zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof struc- 
tures satisfying the all-pass property are assembled, with emphasis 
placed on the concept of structural losslessness. Applications are 
then outlined in notch filtering, complementary filtering and filter 
banks, multirate filtering, spectrum and group-delay equalization, 
Hilbert transformations, and so on. In all cases, the structural loss- 
lessness property induces very robust performance in the face of 
multiplier coefficient quantization. Finally, the state-space mani- 
festations of the all-pass property are explored, and it is shown that 
many all-pass filter structures are devoid of limit cycle behavior 
and feature very low roundoff noise gain. 

I .  INTRODUCTION 

In many signal processing applications, thedesigner must 
determine the transfer function of a digital filter subject to 
constraints on the frequency selectivity andlor phase 
response which are dictated by the application at hand. 
Once a suitable transfer function i s  found, the designer 
must select a filter structure from the numerous choices 
available. Ultimately, finite precision arithmetic i s  used in 
any digital filter computation, and traditionally the round- 
off noise and coefficient sensitivity characteristics have 
formed the basis of selecting one filter structure in favor 
of another. 

In the quest for low coefficient sensitivityand low round- 
off noise, an elegant theory of losslessness and passivity in 
the discrete-time domain has evolved [I], (21. Although this 
theory has been motivated by the desire to obtain digital 
filters with predictable behavior under finite word-length 
conditions, many useful by-products have emerged which 
have contributed to a better understanding of computa- 
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tionally efficient filter structures, tunable filters, filter bank 
analysis/synthesis systems, multirate filtering, and stability 
under linear and nonlinear (i.e., quantized) environments. 

This paper considersa basic scalar lossless building block, 
which i s  a stable all-pass function. The interconnections of 
such lossless building blocksform useful solutions to many 
practical filtering problems. The many results presented 
here can be derived by appealing to elegant theoretical 
forms; however, in maintaining a tutorial tone it i s  our aim 
to expose the salient features using direct discrete-time 
concepts, in the hope that the references cited will further 
aid both thedesigner and researcher alike. Weshould point 
out that many of the results which are developed in terms 
of scalar all-pass functions in one dimension can be gen- 
eralized tovector or matrixall-pass functions [3]and to mul- 
tidimensional filtering zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4], though for the present we restrict 
our attention to the one-dimensional scalar case. 

We begin in Section I I  by defining a scalar all-pass func- 
tion and reviewing some basic properties. Section Ill 

assembles avariety of all-pass filter structures, with empha- 
sis placed on the concept of structurallosslessness. Section 
IV outlines applications to notch filtering, Section V to com- 
plementary filters and filter banks, Section VI to multirate 
signal processing, SectionVII to tunablefilters, and Section 
Vl l l  togroupdelay equalization. Finally, Section IX explores 
state-space representations of lossless transfer functions, 
and the implications of losslessness in obtainingvery robust 
performance under finite word-length constraints. 

II. DEFINITIONS AND PROPERTIES 

The frequency responseA(ei'") of an all-pass filter exhibits 
unit magnitude at all frequencies, i.e., 

JA(e'")(* = 1, for all U. (2.1) 

The transfer function of such a filter has all poles and zeros 
occurring in conjugate reciprocal pairs, and takes the form 

(2.2) 

For stability reasons we assume (Ykl < 1 for all k to place 
all the poles insidethe unit circle. Now, ifA(z) isconstrained 
to be a real function, we must have 0 = 0 or 0 = T ,  and any 
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complex pole at z = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYk must be accompanied by a complex 
conjugate pole atz = 7:. In this caseA(z) can be expressed 
in the form 

(2.3) 

In effect, the numerator polynomial is obtained from the 
denominator polynomial by reversing the order of the coef- 
ficients. For example, 

a2 + alz-l + z - ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I + alz-' + a 2 2 - 2  

A(z) = 

isasecond-order all-pass functionoftheform of(2.3)above, 
since the numerator coefficients appear in the reverse order 
ofthose in thedenominator. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthiscase,thenumeratorand 

denominator polynomials are said to form a mirror-image 
pair. 

If we lift the restriction that A(z) be a real function, then 
A(z) takes the more general form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

z - M  D*(l/z*) 

D(z) 
A(z) = (2.5) 

The numerator and denominator polynomials now form a 
Hermitian mirror-image pair. For example, 

with0 = arg(a;/ao), isrecognizedasacomplexall-passfunc- 

tion due to the Hermitian mirror-image relation between 
the numerator and denominator polynomials. 

Properties 

A(z) = Y(z)/U(z) reveals 
From the definition of an all-pass function in (2.1), setting 

1 y(eju)12 = I u(eju)12, for all w. (2.7) 

Upon integrating both sides from w = --a to rand applying 
Parseval's relation [I], we obtain 

m m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c I y(n)12 = ldn)l2. (2.8) 

It i s  convenient to interpret the two sides of (2.8) as the out- 
put energy and input energy of the digital filter, respec- 
tively [I], [5]. Thus an all-pass filter is lossless, since the out- 
put energy equals the input energy for all finite energy 
inputs. If the all-pass filter i s  stable as well, it i s  termed Loss- 
less Bounded Real (LBR) [2], or more generally Lossless 
Bounded Complex [6] if the coefficients are not all real. 

Another useful property follows from (2.1) with the aid 
of the maximum modulus theorem. In particular, since a 
stableall-pass function hasall i ts  poles insidethe unitcircle, 
all i t s  zeros outside, and exhibits unit magnitude along the 

" = -m 

This relation i s  useful in verifying stability in lattice real- 
izations of all-pass filters. 

The last property of interest is the change in phase for 
real all-pass filter over the frequency range w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[0, TI. We 
start with the group delay function T(W)  of an all-pass filter, 
which is usually defined as 

d 
dw 

7(w) = - - [arg A(e/")]. (2.10) 

Note that the phase function must be taken as continuous 
or "unwrapped" [5] if 7(w) i s  to be well-behaved. Since an 
all-pass function i s  devoid of zeros on the unit circle accord- 
ing to (2.1), the phase function arg A(ei") can always be 
unwrapped with no ambiguities. Now, the phase response 
of a stable all-pass function i s  a monotonically decreasing 
function of w, so that T ( W )  i s  everywhere positive. An Mth- 
order real all-pass function, in fact, satisfies the property 

lou 7(w) dw = Mr. (2.11) 

The interpretation of (2.11) i s  that the change in phase of 
the all-phase function as w goes from 0 to r is -MT radians. 

1 1 1 .  ALL-PASS FILTER STRUCTURES 

The (Hermitian) mirror-image symmetry relation between 
the numerator and denominator polynomials of an all-pass 
transfer function can be exploited to obtain a computa- 
tionally efficient filter realization with a minimum number 
of multipliers. To see this, consider the second-order all- 
pass function of (2.4) which, upon expressing A(z) = 

Y(z)/U(z), corresponds to the second-order difference equa- 
tion 

y(n) = -32[u(n) - y(n - 2)1 

+ al[u(n - 1) - y(n - I ) ]  + u(n - 2) (3.1) 

in which terms have been grouped in such a way that only 
two multiplications are required. A similar strategy can be 
applied to an arbitrary Mth-order all-pass filter, such that 
only M multiplications are required to compute each out- 
put sample. On the other hand, a direct-form filter real- 
ization would in general require 2M + 1 multiplications to 
computeeach output sample. In this sense,an all-pass filter 
represents a computationally efficient structure. 

Thedifferenceequation as expressed in (3.1) requiresfour 
delay (or storage) elements to be realized as a filter struc- 
ture. Since the difference equation i s  of second order, this 
does not represent a canonic realization. However, mini- 
mum multiplier delay-canonic all-pass filter structures can 
be developed using the multiplier extraction approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[q, 
[8]. For example, consider the digital two-pair network of 
Fig. 1, which has a constraining multiplier b, at the second 
"port": U2(z) = bl Y2(z). The transfer function as seen from 
the remaining port is constrained to be a first-order all-pass 

unit circle, one can deduce 

<I, for Iz( > 1 

(2.9) 
Fig. 1. Digital two-pair network constrained with a multi. 

>I, for IzI < 1. plier of value b,. 
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function 

(3.2) 

This allows one to solve for the internal parameters of the 
digital two-pair. By following this and similar strategies, 
numerous first-order and second-order all-pass filter struc- 
tures have been catalogued [7-[10], many with roundoff 
noise expressions as functions of the pole locations, and 
with the minimum multiplier property. Such filter struc- 
tures have the property that, upon quantizing the multi- 
plier coefficients, the numerator polynomial and denom- 
inator polynomial retain a mirror-image relationship, and 
thus the all-pass characteristic i s  independent of any mul- 
tiplier quantization. Filter structures with this property are 
termed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstructurally lossless or structurally LBR [2]. 

Another useful structure for realizing all-pass functions 
is the Gray and Markel lattice filter [Ill. The synthesis pro- 
cedure uses the following recursion [12]: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m = M, M - 1, * , 1 (3.3a) 

where 

k, = A,(=). (3.3b) 

Now, with AJz) a stable all-pass function, it can be verified 
using(2.lO)that 1 k,( < l,andthatA,-l(z) isastableall-pass 
function of one order lower. The structural interpretation 
of (3.3) for the first step in the recursion appears as Fig. 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A&) 

A,( F - +  2) 

Fig. 2. Two multiplier lattice interpretation of all-passfunc- 
tion order reduction process. 

where AMWl(z) i s  an (M - Vth-order all-pass function. The 
recursion of (3.3) then continues on AM-l(z), and so on, 
which leads to the cascaded lattice realization of Fig. 3, 

,m-*,mAo 

A&) A&) A,(d 

Fig. 3. The cascaded lattice implementation of the all-pass 
function A,(z). 

where the constraining multiplier A,, has unit magnitude. 
Each lattice two-pair i s  realized as in Fig. 2, although the 
overall transfer function i s  unaltered if each lattice two-pair 
i s  implemented as per Fig. 4(a) or (b). Fig. 4(a) is the single 
multiplier form [Ill, which requires the fewest number of 
multipliers. Fig. 4(b) is  the normalized form [13], which has 
the advantage that all internal nodes are automatically 
scaled in the f2 sense [14]. Although more multipliers are 
required, the four multiplications can be performed simul- 
taneously using CORDlC processor techniques zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[15]. 

With all the lattice structures above, stability of the filter 

(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/ I  - Ik 1' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(b) 
Fig. 4. (a) The single multiplier lattice two-pair. (b) The nor- 
malized lattice two-pair. 

i s  equivalent to the condition that I k,J < 1 for all m. As 
such, the all-pass lattice filters form a useful model for 
checking stability of transfer functions; the connection of 
these lattice filters with system stability tests is explained 
in [12]. In addition, the mirror-image relation between the 
numerator and denominator polynomials holds in spite of 
coefficient quantization (except for the normalized form). 
Accordingly, the all-pass property for these lattice filters i s  
structurally induced. These structures, in fact, have other 
favorable finite word-length properties which are explored 
in greater detail in Section IX. 

The above discussion has assumed that AM(z) is  a real all- 
pass function, although the lattice filter i s  easily general- 
ized for complex all-pass functions as well [6], 1161. In this 
case, the recursion of (3.3) becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

rn = M, M - 1, * , 1 (3.4a) 

where now 

k, = A:(=). (3.4b) 

The complex lattice two-pair now appears as Fig. 5. As in 
the real coefficient case, stability of AM(z) i s  equivalent to 

Fig. 5. Lattice filter interpretation of order reduction pro- 
cess for complex all-pass functions. The signals at all nodes 
are assumed to be complex-valued. 

the condition I k,l < 1 for all rn. The complex general- 
izationsof thestructuresof Fig.4appearas Fig.6,with prop- 
erties similar to those of their real arithmetic counterparts. 

An alternate method of realizing complex all-pass func- 
tions i s  to cascade first-order complex all-pass filters. Refer- 
ring to (2.21, each term in the product corresponds to the 
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(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 6. Complex generalizations of the "single multiplier" 
lattice two-pair (a), and the normalized two-pair zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b). The sig- 
nals at all nodes are in general complex valued. 

first-order difference equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y(n) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY k y h  - 1) + Y;u(n) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(n - 1) (3.5) 

which may be arranged as 

y(n) = Re { y k }  [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy(n - 1) + u(n)l 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj Im { yk }  [ y(n - 1) - u(n)l - u(n - 1). (3.6) 

plex all-pass filter has a pole and zero on the imaginary axis. 
As shown in Section VI, such structures form useful build- 
ing blocks in certain multirate filtering systems. 

The structures presented here have emphasized the con- 
cept of losslessness in the discrete-timedomain. We should 
point out that the connection between discrete-time loss- 
lessness (and passivity) and continuous-time lossless (and 
passive) networks i s  well established [I]. Thus many of the 
all-pass filter structures above can be developed as the wave 
digital counterpart of the appropriate lossless electrical 
networks. Indeed, a great body of literature has been 
devoted to this subject; the interested reader i s  referred to 
the overview in [19]. 

IV. DIGITAL NOTCH FILTERS 

The first filtering application of the all-pass filter we will 
investigate is the design of a digital notch filter, which is 
useful for removing a single-frequency component from a 
signal, such as an unmodulated carrier in communication 
systems, or power supply hum from a sampled analog sig- 
nal, etc. This i s  easily implemented using the circuit of Fig. 
8, where the transfer function realized i s  

G(z) = ;[I + A(z)]. 

Fig. 7. Implementation of structurally lossless first-order 
complex all-pass filter. The signals at all nodes are in general 
complex-valued. 

multiplication) and offering again the structurally induced 
all-pass property. 

Finally, a complex all-pass function can be obtained from 
a real all-pass function using the frequency transformation 
[17l, [I81 

(3.7) z - '  -+ eimz-' = (cos + + j sin 4)z-l. 

(4.1) 

The all-pass function is chosen as second-order, so that the 
change in phase of A(ei") as w goes from 0 to x i s  -2x radi- 
ans. As such, from (4.1) it follows that 

G(eiw) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo (4.2) 

where coo is the angular frequency at which the all-pass filter 
provides a phase shift of A radians. The notch character- 
istics of (4.2) are structurally induced provided A(z) i s  real- 
ized in a structurally lossless form. Design procedures and 
a catalogue of minimum-multiplier structures are detailed 
in [20]. A particularly useful choice for the second-order all- 
pass filter i s  the lattice filter, shown in minimum multiplier 
form for convenience in Fig. 9, where 

k2 + kl(l + k2)z-' + z- '  
1 + kl(l + k2)z-l  + k2z-2' A(z) = (4.3) 

This transformation rotates the pole-zero plot of a real all- 
pass filter by + radians in the z-plane. In practice though, 
the multipliers which implement cos + and sin + cannot, 
in general, be quantized such that their squares sum to 
unity. As such, if the transformation of (3.7) is applied to a 
minimum multiplier real all-pass filter, the structurally 
induced lossless property may not be preserved. one use- 
ful exception i s  with + = 

z - l  - k jz- ' .  (3.8) 

Fig. 9. The second-order all-pass filter A(z) realized using 
a cascade of single multiplier lattice two-pairs. 

One can show that this choice of all-pass filter allows inde- 

7r12, whence (3.7) becomes 

pendent tuning of the notch frequency wo and the 3-dB 
attenuation bandwidth i? according to 

k l  = -COS WO (4.4a) 

This transformation requires no explicit multipliers, and 
retains the structurally induced all-pass property. If (3.8) is 
applied to a first-order real all-pass filter, the resulting com- 
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1 - tan (6212) 
- I + tan (6212)' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk -  (4.4b) 

Note from (4.3) that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk2 = r2 ,  wherer is the pole radius. Some 
frequency response examples are shown in Fig. I O .  Fig. 10(a) 
shows how the 3-dB attenuation bandwidth 62 can be 
changed by adjusting only the multiplier k,, while Fig. 10(b) 

I " " I " " I " " I " " ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.5 

0.0 
0.0 0.1 0.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.3 0.4 0.5 

Normalized Frequency 

(a) 

k, = 0.875 

0.0 0.1 0.2 0.3 0.4 0.5 
Normalized Frequency 

(b) 

Fig. 10. The "orthogonal" tuning of the notch filter: (a) 
illustrates how the rejection bandwidth can be adjusted by 
varying a single coefficient k,, while (b) illustrates how the 
notch frequency can be tuned by varying only k,. 

illustrates howthenotch frequencywocan bechangedwith- 
out affecting the 3-dB attenuation bandwidth by adjusting 
only kl. In view of the "orthogonal" tuning obtained 
accordingto(4.4),and thefactthat stability istrivial toensure 
inaquantizedenvironment,thestructure isseen to bequite 
amenable to adaptive notch filter applications. 

An interesting modification to the circuit,of Fig. 8 results 
by replacing the delay variable z -' byz-N. The circuit then 
provides N complex-conjugate zero pairs along the unit cir- 
cle, located at angles of 

2 m  & wo 

N 
radians, n = 0,1, , N - 1, (4.5) 

with coo given by (4.4a). Equation (4.4b) holds once 62 is taken 
as the total 3-dB attenuation bandwidth; the 3-dB atten- 
uation band about each notch frequency has width 62lN. 

One very useful alignment results with kl = 0 in (4.4a),which 
sets w0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 2  and places 2N zeros spaced equally along the 
unit circle. In this case, the frequency w = r12N and all its 
odd harmonics are filtered out, which allows the removal 
of symmetric periodic signals with period 7 = 4N of oth- 
erwise arbitrary waveshape. 

Greater flexibility in the notch characteristic can be 
gained by using a first-order complex all-pass filter, with 
transfer function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

y* - z - l  

1 - yz-1 
A(z) = e'' ~ 

where y = a + jb. We begin by writing (4.6) in the form 

A(z) = e''[GI(z) + jHl(z)l (4.7) 

where 
f ( z )  
D(z) 

a - (1 + a2 - b2)z-' + az-2  
1 - 2az-' + (a2 + b2)z-2 

G1(z) = - = (4.8a) 

(4.8b) 
Q(z)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb - 2abz-' + 
D(z) 

H,(z) = - = 
I - 2az-1 + (a2 + b2)z-2' 

From (4.8) the following observations are noted. First, both 
Gl(z) and Hl(z) are second-order real transfer functions with 
a complex-conjugate pole pair at z = a f jb, and second, 
both pEz) and Q(z)  are symmetric polynomials, with the 
zeros of these polynomials determined by the pole loca- 
tions. Symmetry of f ( z )  and Q(z)  implies the zeros of either 
polynomial occur as a complex-conjugate pair on the unit 
circleorasareciprocal pair on the realaxis. Now, byabsorb- 
ing the factor e'' in (4.7) we obtain 

(4.9) A(z) = Gz(z) + ~Hz(z) 

where now 

(4.10b) 

By varying 8, the zeros of G2(2) and H2(z) can be moved along 
the unit circle (or along the real axis) without affecting the 
pole locations. As such, low-pass ribtch and high-pass notch 
characteristics can be realized. In particular, given a pair of 
poles at z = a & jb (which then determines D(z), f ( z ) ,  and 
Q(z)) ,  the zeros of G2(z) can be placed at z = e *lwo provided 
that 

(4.11) 

Since both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(z) and Q(z)arf symmetric polynomials, the left- 
hand side of (4.11) i s  real for anywo, which implies a solution 
for B always exists. The filtering function G2(z) i s  realized by 
feeding a real input sequence to the complex all-pass filter 
A(z) and retaining the real component of the output 
sequence. The application of such filters in low-sensitivity 
cascade realizations of elliptic transfer functions can be 
found in [21]. 

V. DOUBLY COMPLEMENTARY FILTERS 

Two filters are said to be complementary if the passbands 
of one match the stopbands of the other. Complementary 
filters find applications in various signal processing sys- 
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tems where different frequency bands are to be processed 
separately to measure signal strengths in each band or to 
achieve, for example, compression or noise reduction. In 
this section we consider two stable transfer functions which 
are all-pass complementary 

IG(e/") + H(e/")J = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw (5.1) 

as well as power complementary 

I C(e/")I2 + 1 H(e/w)12 = I, for all w. (5.2) 

Transfer function pairs which satisfy both complementary 
properties in (5.1) and (5.2) are termed doubly complemen- 
tary[22]. We shall see that all-pass filters play a natural role 
in doubly complementary filters. 

First, by combining (5.1) and (5.2) we obtain 

I G(e/") + H(e'")l2 = 1 G(e/")I2 + I H(elW)l2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, 

for all w. (5.3) 

Now, by interpreting G(e/") and H(e/") as phasors in the 
complex plane, application of the law of cosines to the left 
equality of (5.3) reveals that G(e/") and /+(e/") must exhibit 
phase quadrature with respect to each other for all w. As 
such, the phasors [G(e/") + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH(e/")] and [G(e/") - H(e/")] must 
exhibit the same magnitude, namely unity, for all W .  By ana- 
lytic continuation we thus obtain 

G(z) + H(z) = Al(z) 

G(z) - H(z) = A ~ ( z )  (5.4) 

where Al(z) and A2(z) are stable all-pass functions. Solving 
for G(z) and H(z) results in 

H(z) = ;[Ai(z) - A~(z)]. (5.5) 

A structural implementation of (5.5) appears as Fig. 11, in 
the form of the sum and difference of two all-pass filters. 
Referring to Fig. 11, it is seen that, as G(z) is the sum of two 
all-pass functions, the passband (respectively, stopband) of 
G(e/") occurs for frequencies for which the two all-pass 
functions are in phase (respectively, out of phase) with each 
other. Since H(z) i s  the difference of the two all-pass filters, 
H(el") has a stopband where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(e/") has a passband, and vice 
versa, in accordance with (5.2). 

Thestructureof Fig. 11 was first recognized in digital filter 
design in terms of wave digital lattice filters [23], whereby 
bilinearly transformed versions of G(z) and H(z) are inter- 
preted as the reflection and transmission coefficients, 
respectively, of a real symmetric lossless two-port network 
with equal resistiveterminations. Byexploitingcertain anal- 
ogies with classical network theory, Gazsi [24] has devel- 
oped explicit formulas for the multiplier coefficients of the 
all-pass filters to implement odd-ordered classical low-pass 
filter approximations. 

The structure of Fig. 11 can also be examined in terms of 
direct z-domain design techniques [IO], [22], [25]. For exam- 
ple, Liu and Ansari [IO] have shown optimized bandpass 
filter designs which cannot be derived from classical low- 
pass filter approximations. We briefly review some design 
considerations in what follows. 

Let Al(z) be an Mlth real order all-pass function. Let A2(z) 

be an M2th real order all-pass function, and in phasor 

Fig. 11. Implementation of the doubly complementary fil- 
ter pair as the sum and difference of all-pass functions. 

notation let 
A,(e/") = e/@?(") 

A2(e/") = e/@2(w) (5.6) 

where +l(w) and @2(w) are monotone decreasing functions 
of U,  with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ , ( O )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA42(0) = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+,(a) = -M1a, and +2(a) = - M2a. 
Note that this implies for the dc values of the transfer func- 
tions G(e/') = 1 and H(e1') = 0. Then from (5.5) we obtain 

I G(e/")l = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (e/[6l(w)-+2(~)1 + 1 1  

In particular, at w = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 

I H(e/")l = 1 le/[M1-M21* - 1 I (5.8) 

which shows that a low-pass-high-pass complementary pair 
requires 

(5.9) 

But if m i s  nonzero, this leads to multiple passbands, and 
so for a low-pass-high-pass pair 

Mi M2 = +I. (5.10) 

M1 - M2 = 2m + 1, m = integer. 

Similarly, for a bandpass-bandstop pair 

Mi M2 = +2.  (5.11) 

In general, the condition 

M1 - M2 = + L  (5.12) 

leads to a total of at least L + 1 passbands (counting those 
of G(e9 plus those of Me'")). From (5.5) it i s  clear that G(z) 

will have the poles of both Al(z) and A2(z), and thus i ts  order 
will be M1 + M2. In view of (5.10) then, it is clear that M1 + 
M2 must be an odd integer if a low-pass-high-pass com- 
plementary pair i s  desired. 

By lifting the restriction that the all-pass filters be real, 
even-ordered low-pass-high-pass complementary filters 
can be realized as well [16]. Thus let Al(z) be a complex all- 
pass function such that complex poles appear without their 
conjugates, and let A2(2) be obtained from A,(z) by replac- 
ing each coefficient with i t s  complex conjugate. Accord- 
ingly, we have 

A2(z) = A;(z*). (5.13) 

Two real transfer functions C(z) and H(z) can then be 
defined according to 

G(z) = $[A(z) + A*(z*)] 

jH(z) = i[A(z) - A*(z*)] (5.14) 
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where the numbered subscript has been dropped from the 
complex all-pass function. A(z) contains one pole from each 
complex conjugate pair of G(z), and so its order i s  half that 
of G(z). The terms G(z) andjH(z) in (5.14) above can be inter- 
preted as the conjugate symmetric and conjugate antisym- 
metric parts, respectively, of the complex function A(z) [5]. 
As such, only one complex all-pass function need be imple- 
mented; the real and imaginary parts of the complex output 
sequence are identified as the outputs of the filters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(z)  and 
H(z), respectively, (Fig. 12). In effect, when processing a real zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i n p u t j T p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(z) 

(real) I imag ' - + H(z) 

Fig. 12. Separating the real and imaginary outputs of a 
complex all-pass filter to realize an even-ordered comple- 
mentary filter pair. 

input sequence, the outputs of the filters A(z) and A*(z*) are 
complex conjugates of each other, and thus implementing 
both complex all-pass filters in (5.14) is redundant. By invert- 
ing (5.14) we obtain 

G(z) + jH(z) = A(z) 

G(z) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjH(2) = A*(z*) (5.15) 

which shows thecomplex all-pass complementary property 
of G(z) and jH(z). With the power complementary relation 
of (5.2) left intact, C(z) and jH(z) are seen to form a doubly 
complementary pair. 

The realization scheme of Fig. 12 has important practical 
significance, as one can show that all even order Butter- 
worth, Chebyshev, and elliptic low-pass (and high-pass) 
transfer functions can be decomposed as per (5.14) [26]. 

Asan illustration, supposewedesireafilterwith less that 
0.025-dB attenuation for frequencies less than 0.14 rad/s 
(normalized frequency), and greater than 45-dB attenuation 
forfrequenciesgreaterthan 0.2 rad1s. Itturnsoutthatasixth- 
order elliptic transfer function will satisfy these specifica- 
tions, with the poles of the transfer function located at 

0.468823 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 10.221266 

z = 0.475711 -+ j0.575375 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 0.501533 f j0.780218 

and three zero pairs on the unit circle. Following design 
procedures in [16], the desired transfer function G(z)  can be 
decomposed into complex all-pass functions as per (5.14), 
where A(z) i s  in the form of (2.2) with M = 3 and 

7, = 0.468823 + 10.221266 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 2  = 0.475711 - j0.575375 

7 3  = 0.501533 + j0.780218 

e = 0.510542. 

A realization ofA(z) can be obtained by cascading first order 
complex all-pass filters as in Fig. 7. A frequency response 
plot for G(z) appears as Fig. 13. Included on the plot i s  the 
frequency response of the transfer function H(z) obtained 
from the imaginary part of the complex output, which i s  
power complementary to that of G(z), as expected. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 13. Frequency responses of the sixth-order cornple- k 

mentary filter pair. 

Low Sensitivity Properties 

Let usexaminethefiltersof Figs. 11 and 12 ingreaterdetail. 
With respect to Fig. 11, recall that with A,(z) and A2(z) an 
Mjth- and M2th-order all-pass function, respectively, G(z)  
has an order N = M, + M2. Now, with the all-pass filters 
realized in a minimum multiplier form, the overall filter 
requires only N multiplications to compute each output 
sample, and so i s  canonic with respect to the number of 
multiplications. Recall that a direct-form realization would 
require typically 2N + 1 multiplications to compute each 
output sample. But the structureof Fig. 11 in fact makes two 
complementary transfer functions available, and so tep- 
resents an optimum in terms of computational efficiency. 

The structure of Fig. 12 has similar Computational econ- 
omies. With G(z) an Nth-order transfer function, A(z) 
becomes an N12th-order complex all-pass function. This 
allows a filter realization using no more that N12 + 1 com- 
plex multiplications to compute each (complex) output 
sample. If the complex all-pass filter processes a real input 
sequence, this can be configured as 2N + 2 real multipli- 
cationsfor each complexoutput sample, but requiring only 
N + 2 distinct (real) coefficient values. The number of mul- 
tiplications is comparable to that of a direct-form realiza- 
tion, and slightly better than that df a cascade realization 
if the filter order i s  larger than four. But, as above, a com- 
plementary transfer function i s  made available at no extra 
cost. 

Let us now turn to the sensitivity properties. Referring to 
(5.5) or (5.14), if the all-pass filters are realized in structurally 
lossless form, it i s  clear that I G(e/")l can never exceed unity 
for any value of W. That is, the magnitude function 1 G ( e 9 )  
i s  structurally bounded above by one. Suppose now that 
G(z) i s  designed such that at specific frequencies, to be 
denoted W k ,  the passband amplitude achieves the upper 
bound of unity, i.e., I G(e"')l = 1. Regardless of the sign of 
any multiplier perturbation (due to quantization) the mag- 
nitude of the transfer function at w = W k  can only decrease. 
We can thus apply Orchard's argument [27J at these fre- 
quencies (the so-called points of maximum power transfer) 
to establish the low-passband sensitivity behavior. 

Returning to the design example above, Fig. 14(a) shows 
the passband response obtained for G(z) using an &bit 
binary representation for each multiplier coefficient of the 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR2 i s  two-point DFT matrix. This formulation naturally 
suggests the following generalization [29]: 

(5.18a) 
1 
N 

g(z) = - R,a(z) 

g(z) = [Gdz) GAZ) . . . GN(Z)IT 

where now 

a(z) = [A&) A~(z) . . . AN(z)IT (5.18 b) 

and RN is an N-point DFT matrix. The doubly complemen- 
tary definitions of (5.1) and (5.2) can now be extended to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 
transfer functions. In particular, the application of Parse- 
Val's relation [5] to (5.18) reveals2 

I G,(e/")12 = gel") g(e/") = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ii(e/w) a(el") 

= - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc IA,(el")12 = 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI = '  N 

(5.19) 

which shows the power complementary property of the N 
transfer functions. Also, by exploiting the properties of DFT 
matrices, it i s  easily verified that 

I N  

N I = '  

-0.20 
0.00 0 05 0.10 0.15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 14. Effects of coefficient quantization on I C(e'")( using 
a complex all-pass-based realization and a cascade real- 
ization. (a) Passband details and (b) stopband performance. 

complex all-pass filter.' Shown for comparison purposes i s  
a conventional cascade realization of G(z) using again 8 bits 
per multiplier coefficient. The complex all-pass scheme is 
seen to exhibit much better passband performance. The 
stopband behavior i s  superior for the cascade realization 
though (Fig. 14(b)), as it i s  known that the cascade structure 
has very good stopband sensitivity characteristics (281. 

Filter Bank Extensions 

Let us rewrite the doubly complementary filter pair of 
(5.5) as 

In matrix form this becomes 

where 

'The quantization is such that the mantissa of a floating-point 
representation is  rounded to the specified number of bits, so that 
the relativecoefficient accuracy does not depend on i ts  magnitude. 

(5.20) 

which shows the all-pass complementary property. More- 
over, the low-passband sensitivity argument above remains 
intact. 

One attractive design strategy i s  to obtain the all-pass 
function elements of a(z) from a polyphase decomposition 
of an Nth-band low-pass filter [30]-[32]. In this case,a(z) takes 
the form 

a(z) = [Al(zN) z-'A2(zN) z -~A , (z~ )  . . . z-~+'AN(z~)] ' .  

(5.21) 

The transfer functions elements of g(z) in (5.18a) can be 
shown to form a uniform filter bank [33] (i.e., the frequency 
response for each band i s  a frequency shifted version of 
that for the adjacent band). Such filter banks are compu- 
tationally efficient in applications requiring the output sig- 
nals to be decimated [32]. In addition, computer-aided 
design procedures for choosing the all-pass functions in 
(5.21) have been reported [31], [32]. 

Although in (5.16) we have interpreted R2 as a DFT matrix, 
other unitary matrix families reduce to the same R2 in the 
2 x 2 case [34], [35]. As such, using the N-band extension 
of (5.18), doubly complementary filter banks can be devel- 
oped for RN chosen as virtually any N x N unitary matrix. 

VI. MULTIRATE APPLICATIONS 

In the coding and transmission of signals, it is often con- 
venient to split a signal into i ts  various subband compo- 
nents so that perceptual and statistical properties which 
differ in each frequency band can be exploited separately. 
Thistechnique istermed subband coding[33],[36].The basic 
two-band system is depicted in Fig. 15, where the filters G(z) 
and H(z) are chosen typically as half-band low-pass and high- 
pass filters, respectively. Since the signal at each analysis 
filter bank output occupies only half the available digital 

'The tilde notation indicates the conjugate transpose operation. 
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________-______. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
analysis codjng zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand synthesis 

fdter bank traosmission fdter bank zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 15. Basic two-channel maximally decimated subband 
coding system. 

bandwidth, every other sample may bediscarded at the out- 
put, thereby minimizing the system bit rate. The signals are 
then coded, transmitted to the receiver, and decoded. In 
the synthesis filter bank stage, the signals are up-sampled, 
filtered, and summed into a composite output. 

In a practical system, the nonperfect frequency separa- 
tion of the analysis bank filter pair results in aliasing dis- 
tortion upon discarding every other sample. This aliasing 
distortion then propagates through the remainder of the 
system, and i s  considered a rather objectionable by-prod- 
uct of the decimation operation. In the absence of coding 
or transmission errors, straightforward analysis reveals the 
composite output may be expressed as 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ U ( - Z ) [ G ( Z )  C( -Z)  - H(z) H(-z) ] .  (6.1) 

The first term on the right-hand side of (6.1) i s  a filtered ver- 
sion of the desired signal, while the second term represents 
the aliasing distortion. Consider now the following choice 
of filtering functions: 

G(z) = + z-lA2(z2)1 

H(z) = - z-'A2(z2)] (6.2) 

where A,( - )  and A2(. )  are real all-pass functions. Note that 
(6.2) implies H(z) = C(-z) ,  so that the frequency responses 
of the filter pair form a "mirror image" about w = d2. This, 
combined with the phasequadrature condition pointed out 
in Section V, leads to the name Quadrature Mirror Filters 
(QMF) [36], [37l. Butterworth and symmetric elliptic half- 
band filter pairs, for example, can be decomposed as per 
(6.2), and thus belong to the class of quadrature mirror fil- 
ters. 

This choice of filter pair has the following significance. 
First, using H(z) = G(-z)  it follows that 

G(z) G(-z)  - H(z) H( -z )  

= G(z) G(-z) - G(-z)  G(z) = 0. (6.3) 

As such, the aliased signal term in (6.1) vanishes. This result 
is important because, despite critical subsampling of the 
analysis filter bank outputs, the synthesis bank output sig- 
nal is completely free of aliasing effects. Note also that this 
result makes no assumption as to the quality of frequency 
selectivity provided by the analysis bank filter pair.3 

Next, with the aliasing effects removed, the overall sys- 
tem becomes linear and shift-invariant with transfer 

31n practice though, any reduction in the transmitted bit rate via 
the coding stage is very dependent on adequate frequency selec- 
tivity of the analysis bank filter pair. 

function 

1 
2 

1 
2 

= - [G(z) + H(z)l[G(z) - H(z)l 

(6.4) 

The last substitution in (6.4) is easilyverified using (6.2). The 
overall transfer function of the multirate system is thus an 
all-pass function (save for the scale factor error of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi), which 
indicates perfect magnitude reconstruction of the original 
signal from i ts critically sampled subbands. Moreover, with 
the alLpassfilters realized in a structurally lossless form, the 
aliasing cancellation and perfect magnitude reconstruction 
properties become structurally induced. 

The resulting system may be redrawn as Fig. 16(a). Note 
that the terms A1(z2) and A2(z2) are even functions of z. As 
such, multirate identities [33] allow the decimators and 
interpolators to be passed through the all-pass filters, while 
replacingz2 by z (Fig. 16(b)), which leads finally to the poly- 
phase arrangement of Fig. 16(c). The polyphase structure 

= - z - 'A,(z2) A2(z2). 

Fig. 16. (a) Two-band maximally decimated quadrature- 
mirror filter system using all-pass filters. (b) Equivalent sys- 
tem obtained by passing the decimators and interpolators 
through the all-pass functions. (c) The polyphase imple- 
mentation. 

i s  attractive because it allows the all-pass filters to operate 
at the reduced sampling rate. Further design considera- 
tions may be found in [381. 

Recall from Section V that low-pass-high-pass filter pairs 
must be of odd order to be realized as per (5.5) (or (6.2)). For 
the sake of completeness, it i s  of interest to develop a cor- 
responding result for even ordered low-pass-high-pass 
pairs. To this end, consider the modified twochannel mul- 
tirate scheme of Fig. 17 [39], where the analysis filter bank 
output signals are now subsampled alternately. For this sys- 

- . 
Fig. 17. Modified two-band multirate system using even- 
ordered filters G(z) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH(z) .  
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tem, the output signal is found as 

O(z) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA;U(Z)[G2(Z) + H2(z)1 

+ iU(-z) [G(z)  G(-z)  - H(z) H(-z) ] .  (6.5) 

In this case, G(z) and H(z) are chosen according to [I61 

1 
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(z) = - [A(z) + A*(z*)] 

H(z) = - [A(z) - A*(z*)] 

where A(z) i s  a complex all-pass function which satisfies 

(6.6) 
2) 

A(-z) = &/A*(z*). (6.7) 

The constraint of (6.7) ensures that H(z) = 7 G(-z), so that 
the aliasing term of (6.5) vanishes. The transfer function of 
the overall system then becomes 

which represents a real all-pass function. As above, aliasing 
distortion i s  eliminated and the system provides perfect 
magnitude reconstruction of the critically sampled sub- 
bands. A realization scheme incorporating (6.6) i s  shown as 
Fig. 18. 

Fig. 18. Implementation of Fig. 17 using complex all-pass 
filters. 

An illustrative example can be developed with the aid of 
design procedures contained in [16]. In particular, a sixth- 
order symmetric elliptic transfer function pair i s  chosen for 
the analysis filter bank. The transfer function pair C(z) and 
H(z) are obtained via (6.6) where 

z - ’  + j0.261935 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 - jO.261935~-’ 

A ( ~ )  = ei*/4 

z - ’  - j0.674524 z - ’  + j0.912402 
1 + jO.674524~-’ 1 - jO.9124022-’’ 

(6.9) 

The frequency response for this symmetric elliptic filter pair 
is shown as Fig. 19. 

Note that the poles of A(z) lie along the imaginary axis, 
which can be shown to be a necessary consequence of the 
QMF conditions [16]. Each term in the product of (6.9) can 
be implemented using a first-order real all-pass function 
upon applying the frequency transformation z - ’  +jz- ’o f  
(3.8) [40]. A complex signal flowgraph of the analysis filter 
bank appears as Fig. 20. To save on multipliers, the factor 
e’*’4 = (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+/)/A is implemented in a multiplierless “denor- 
malized” form. The resulting analysis filter bank requires 
only three multipliers to compute each complex output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.0 0.1 0.2 0.3 0.4 0.5 
Normalized Frequency ( w / 2 n )  

Fig. 19. Frequency responses of a sixth-order symmetric 
elliptic half-band filter pair. 

Fig. 20. Implementation of the half-band filter pair as the 
cascade of three first-order complex all-pass filters. The sig- 
nals at all nodes are in general complex valued. 

sample. Each coefficient i s  real valued and operates on com- 
plex data, and so G(z) and H(z)  are simultaneously imple- 
mented using only six real multiplications. The correspond- 
ing synthesis filter bank can be obtained from the analysis 
filter bank by replacing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj everywhere with -j. 

Multirate Hilbert Transform Systems 

Suppose nowthatwe have a real half-band filter pair [G(z) 
H(z)],  to which we apply the frequency transformation of 
(3.8) 

- 
G(z) = G(-jz) 
- 
H(z) = H(-jz). (6.10) 

If G(z) i s  a half-band low-pass filter with its passband on the 
“right half” of the unit circle, c ( z )  in (6.10) becomes a com- 
plex half-band filter with its passband on the upper half of 
the unit circle. Such a filter satisfies the frequency-domain 
constraintsof a Hilbert transform system [5]. If G(z) and H(z)  
form a real half-band filter pair as per (6.2), we obtain for 
G(z) and n ( z )  
- 

- 
G(z) = ; [A1(-z2) + /z - ’A2(-z2) ]  

- 
H(z) = i [A1(-z2)  - jz- ’A,(-z2)] (6.11) 

where A,(-z2) and A2(-z2) remain real all-pass functions. 
A real-equivalent signal flowgraph for the complexfiIterG(z) 
appears as Fig. 21. If the input signal i s  real-valued, Fig. 21 
reduces to a pair of all-pass filters which exhibit phase quad- 
rature over the passband region of the complex transfer 
function C(eju). 

Note that the filter pair of (6.11) inherits the propertyq(z) 
= G(-z). Hence, if the filter pair is configured into the mul- 
tirate system of Fig. 15, aliasing distortion i s  absent from the 
output according to (6.3) (upon replacing C(z) and H(z) with 
their barred versions). The overall transfer function for the 

- 
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Fig. 21. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAImplementation of acomplex half-band filter using 
real all-pass filters. If the input signal i s  real-valued, the sys- 
tem reduces to a parallel all-pass network Hilbert transform 
system. 

system becomes 

(6.12) I . -1 
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT / Z  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,(-z’) A ~ ( - z ’ )  

which is an all-pass function as expected. 

sible, as (6.11) reveals 
If the input signal is real, further simplifications are pos- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H(z) = C*(z*). (6.13) 

As such, the two channels of Fig. 15 process signals which, 
at each stage, share a complex conjugate relation, with the 
output formed from the difference of these two channels. 
This allows one channel of the complex multirate system 
to bediscarded, with the imaginary output from the remain- 
ing channel retained as the desired (real) output signal. 
Using Fig. 21 as the model for c(z), the real-equivalent sig- 
nal flowgraph of Fig. 22(a) is obtained. The analysis bank 
output signals may be interpreted as the real and imaginary 
parts of a complex ”analytic” sequence with only positive 
frequency components. A polyphase arrangement i s  read- 
ily obtained as Fig. 22(b). This example thus reaffirms the 
feasibility of downsampling complex analytic signals [41], 

- 

- 

1421. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+@+Re G(n) 

(b) 

Fig. 22. (a) Multirate Hilbert transform system offering no 
aliasing distortion and perfect magnitude reconstruction of 
the input spectrum. (b) Equivalent polyphase system. 

Although we have derived a Hilbert transform system 
from a real half-band filter pair, it should be pointed out that 
the all-pass functions in the filter pair of (6.11) can also be 
obtained using the design formulas in [43]. Several other 
authors have also discussed design techniques for obtain- 
ing Hilbert transform systems using all-pass sections [44]- 
[46]. As explained in [42], many of these designs can be iden- 
tically obtained by applying the transformation z-’ -+ 

- j z - ’  to known real half-band filter designs. This i s  an 

extension of a result by Jackson [47] showing that the 
approximation problem for Hilbert transformers is closely 
related to that for half-band low-pass filters. This has been 
exemplified in (6.10) for half-band filters obtained as the 
sum and differenceof real all-passfunctions, although anal- 
ogous results can be developed for those obtained from 
complex all-pass functions as per (6.6), as well as half-band 
designs obtained from approximately linear phase filters (to 
be introduced in Section VIII). The resulting designs have 
passbands which are symmetric about o = d4, and mul- 
tirate results in each case can be developed [42]. Finally, we 
point out that Hilbert transform systems with passbands 
that are not symmetric about o = 1~/4 can be obtained from 
the above-mentioned designs by using standard frequency 
transformations [a]. To such systems, however, multirate 
results are not applicable. 

VII. TUNABLE FILTERS AND GENERALIZED COMPLEMENTARY 
FILTERS 

Let us return to the doubly complementary filter of Fig. 
11, and consider the filter pair which results from choosing 

A&) = 1 

(7.1) 
k2 + kl(l + k2)z-’ + z-’ 

= 1 + kl(l + k2) z- ’  + k2z-” 

The transfer function G(z) is recognized as the digital notch 
filter of Section IV. In view of the power complementary 
relation of (5.2), H(z) must be a bandpass filter with center 
frequency oo = cos-‘ (-kl). Consider now fhe transfer 
function formed with the following linear combination: 

F(z) = G(z) + KH(z). (7.2) 

A realization i s  sketched in Fig. 23. Due to the phase quad- 
rature relationship between G(ej”) and H(ej”9, it is easily 

1 

+TjJ?&+ 
- 
2 

Fig. 23. Tunable frequency response equalization filter. 

shown that 

In view of the filter type realized for G(z) and H(z), (7.3) shows 
that the frequency response F(ej9 modifies the gain about 
the center frequency of /-/(e’”) while leaving the remainder 
of the spectrum unaffected. Such a filter is ideally suited 
as a magnitude equalization filter [49], and finds extensive 
application in digital audio systems [50]-[52] to compensate 
for frequency response deficiencies in an acoustic playback 
environment. 

Design equations can be developed as an extension of 
those presented in (4.4). Thus let coo be the frequency about 
which boost or cut in the magnitude response is desired, 
and let 0 be the 3-dB notch bandwidth obtained for K = 0. 
The design equations become 

kl = -COS WO 
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1 - tan (012) 
- I + tan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( ~ 1 2 )  

k -  

K = F(e/"O). (7.4) 

It can also be shown that with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK > 0, the circuit provides 
minimum phase equalization [49]. Some frequency 
response examples are shown in Fig. 24, which demon- 
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Fig. 24. Illustrating the parametric adjustment of the fre- 
quency response. (a) Variable gain at the center frequency, 
(b) adjusting the modification bandwidth, and (c) tuning the 
center frequency. 

strate the true parametric tuning ability of the circuit. By 
cascading a few such circuits, a complete parametrically 
adjustable digital frequency response equalizer may be 
realized. By comparison, the designs in [50]-[52] require 
precomputing the multiplier coefficient values for all 
desired equalizer settings. This does not represent a tun- 
able design, and as such has the drawback of requiring 
excessive coefficient storage. 

More general tunable filters can be realized by using a 
less trivial choice than (7.1) for the all-pass functions. Such 
a tunable filter realization i s  attractive since it allows both 
the poles and zeros of an Nth-order transfer function G(z) 
to be tuned by varying only N coefficients in the all-pass 
filters. If the all-pass filters are realized in lattice form, sta- 
bility i s  trivial to ensure simply by constraining the lattice 
parameters to have magnitudes less than unity. Moreover, 
the frequency response type (i.e., low-pass, high-pass, 
bandpass, etc.) i s  related to the orders of the all-pass filters 
in view of the discussion surrounding (5.10)-(5.12). If, for 
example, Al(z) and A2(z) have orders which differ by one, 
then we are guaranteed in some sense a low-pass char- 
acteristic (though not always optimal) for any choice of the 
all-pass filter parameters, assuming of course that stability 
is not impaired. 

The next problem i s  to determine the tuning algorithms 
for the all-pass filter coefficients to achieve the desired tun- 
ability of G(z). Suppose that Al(z) and A2(z) in (5.2) are deter- 
mined so that their sum G(z) i s  a satisfactory low-pass filter 
with cutoff frequency wl. A new low-pass filter with a dif- 
ferent cutoff frequencycan beobtained from G(z) using the 
frequency transformations of Constantinides [48] 

z -1  -+ P(z) (7.5) 

where P(z) i s  a stable all-pass function, so that the unit circle 
in thez-plane maps to the unit circle in the P(z)-plane. Thus 
by writing @(el") = e- Io("), the transformation of (7.5) may be 
understood as the frequency mapping 

-+ +). (7.6) 

Procedures for selecting P(z) can be found in many texts on 
digital fiIters[5],[28].The important point for ourdiscussion 
i s  that the transformation of (7.5) maps an all-pass function 
to an all-pass function. Hence if G(z) i s  the sum of two all- 
pass functions, G(p(z-')) i s  also the sum of two all-pass 
functions. Thus the problem of tunability i s  "solved" by 
implementing the all-pass functions Al(P(z -I)) and 
Az(/3(z-')) in (5.5). In practice though, the direct imple- 
mentation of (7.5) may lead to delay-free loops if P(z) does 
not contain a pure delay factor. For example, a low-pass-to- 
low-pass transformation results for [48] 

z -1  - ff, 
1 - ff1z-I 

z -1  + P(z) = 

with 

(7.7a) 

(7.7b) 

where w2 i s  the new desired cutoff frequency. Substituting 
(7.7a) directlyfor each delay element inAl(z) andA,(z) would 
introduce delay-free loops. One remedy is to express the 
coefficients of A1(P(z-')) and A2(p(z-l)) as functions of the 
variableal. The resultingcoefficientscan each beexpanded 
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as a Taylor series in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. If a, i s  small (corresponding to a 
small shift in the cutoff frequency), each series expansion 
may be truncated afterthe linear term toobtain a simplified 
expression for the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[53]. For example, with 

(7.8) 

we find 

By expanding the coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ao + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal)/(l + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalao) in a Taylor 
series in a, and truncating after the linear term, we obtain 
the approximation 

which can be realized using any all-pass implementation 
scheme by adding to the multiplier branch of value a. the 
parallel tuning branch of value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAba,, where b = 1 - ai.  Like- 
wise, if A2(z) i s  a second-order all-pass function 

(7.11) 

a similar procedure results in 

Az(B(z 

[a2 + a,al(l - a,)] - [al + a1(2 + 2a2 - a:)lz-' + z- '  
I - [a, + a1(2 + 2a2 - a:)] z - l  + [a2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,al(l - a,)]z-" 

(7.12) 

Noteagain that thetransfer function coefficients haveatun- 
ing branch ofthetypebial,i= 1,2, in parallelwith thenom- 
inal multiplier values a, and a,. Higher order all-pass func- 
tions can be factored into first-order and second-order 
factors, with the results of (7.10) and (7.12) immediately 
applicable. Although the derivation of (7.10) and (7.12) 
assumes a small tuning variation for al, tuning ranges of 
several octaves have been reported for narrow-band low- 
pass filters [53]. 

Another useful choice for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(z) i s  the following low-pass- 
to-band-pass transformation: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 

with CY, = -cos (a3), where w3 is the desired center fre- 
quency of the band-pass filter. Note that (7.13) can be 
directlysubstituted for each delay element inA,(z) andA2(z) 
without introducingdelay-free loops. This results in a band- 
pass filter G(B(z-')) whose center frequency may be tuned 
by adjusting a single parameter a2. 

Generalized Complementary Filters 

Let us remove any constraints from the all-pass functions, 
and consider now the transfer function pair which results 
from 

F~(z) = KlG(z) + K,H(z) 

F~(z) = K~C(Z) - K,H(z). (7.14) 

By exploiting the phase quadrature relationship between 
G(e/") and /-/(e/") we obtain 

I Fl(e/")I2 = K: 1 G(e/")(' + K $ l  H(e"91' 

I F,(e/"))' = K: I G(e/")I2 + K: I (7.15) 

Using the fact that C(e/") and H(e'") are power comple- 
mentary, we find 

I Fl(e'")12 + I F2(e/")1' = K: + K$.  (7.16) 

Such filter pairs may be termed generalized complemen- 
tary filters. Now, substituting (5.5) into (7.14) results in 

where 

e = tan-' - (2 J 3. 

(7.17) 

Note that with 0 = 1r/4 and r = Il&, the doubly comple- 
mentary filters of Section V result, save for a minus sign in 
the second transfer function. Using (7.15) the following is  
easily inferred: 

(7.18) 

Equation (7.18) holds true upon replacing "max" every- 
where with "min." As such, if neither K1 nor K, iszero, then 
the transfer function pair provides no stopband per se. 
However, such filters find application in multi-level pass- 
band filters [54], [55], and generalized magnitude equal- 
ization [52]. 

max, I Fl(e/")l = max, I Fz(el")l = max (1 K1(, 1 K2( ) .  

VI II. GROUP-DELAY EQUALIZATION 

Thus far we have overlooked the obvious implication of 
(2.1): An all-pass filter can be cascaded with another filter 
to alter the phase response while leaving the magnitude 
response unaffected. In this section, we provide an over- 
view of applications to group delay equalization, and call 
attention to a class of I IR filters which has intrinsically good 
phase response properties. 

Recall from (2.13) that the group-delay response T ~ ( w )  of 
a given filter F(z) i s  defined as the negative of the derivative 
of i ts  phase response 

With the transfer function F(z) expressed in rational form 

(8.2) 

one can show [56] that the group-delay response becomes 

where the prime denotes differentiation with respect to z. 
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Applying (8.3) to an all-pass function 

we obtain the result 

Our goal then i s  to choose A(z) such that, when cascaded 
with F(z), the resulting group-delay function approximates 
some desired response zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA€(U) over the passband interval($ 
of F(e/"). Recalling that the group-delay response i s  additive 
in a cascade connection, our problem i s  equivalent to min- 
imizing the magnitude of the error function 

(8.6) 

over the passband interval($ of F(el") with proper choice of 
7A(w). Typically, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA€(U) is chosen as a constant over the pass- 
band interval(s) of F(e/"). 

If a minimax approximation to a constant group delay i s  
desired, then one is tempted to appeal tothe powerful alter- 
nation theorem for rational functions [57. Roughly stated, 
this theorem asserts that the unique best optimum 7A(w) 

approximating €(U) - ~ ~ ( w )  in a Chebyshev (or minimax) 
sense is found when the error function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE(W) in (8.6) alter- 
nates in sign from extremum to extremum with equal mag- 
nitude. However, as pointed out by Deczky[58], group-delay 
functions do not satisfy the conditions of the alternation 
theorem, and as such an equiripple error function does not 
ensure a minimax solution. 

Nonetheless, an equiripple approximation to a constant 
group delay is attractive in applications where waveform 
distortion i s  to be avoided. Unfortunately, the optimization 
of 7A(w) imposes nonlinear constraints on the parameters 
of the all-pass function A(z), and closed-form solutions for 
the all-pass filter parameters are not generally available. As 
such, one must resort to iterative computer approximation 
methods. An early report of all-pass filter design for group- 
delay equalization using the Fletcher-Powell algorithm was 
given by Deczky [59]. An improvement in speed using a 
modified Remez-type exchange algorithm was subse- 
quently reported in [58]. 

Design procedures for all-pole filters offering an equi- 
ripple group-delay response have also been reported in the 
literature [60]-[62]. These methods can be used for group- 
delay equalization following a minor reformulation of the 
problem. Consider the all-pole counterpart to the all-pass 
function of (8.4) 

= [(a) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7F(w) + 7A(w)] 

(8.7) 

The group-delay response zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7&) corresponding to B(e/") can 
be found with the aid of (8.3) 

Thus let the error function of (8.6) be rewritten as 

;€(U) = ;[€(U) - 7F(w) - M ]  - 7B(w). (8.9) 

We can thus take ; [€(U) - 7 F ( W )  - MI as the "ideal" group- 
delay response, and search for the all-pole filter B(z) = 

I/D(z) with the best group-delay approximation, using the 
methods in [60]-[62]. The all-pass function A(z) obtained 
from (8.4) then achieves the desired group-delay equal- 
ization of F(z). 

Consider now one filter from the doubly complementary 
pair of (5.5) 

G(Z) ;[A~(z) + A2(~)1. (8.10) 

if we let 7,(w) and ~ ~ ( w )  denote, respectively, the group-delay 
responses of A,(e/") and A,(e'"), then using (8.3) reveals, fol- 
lowing some algebra, that the group-delay response 7c(w)  

for G(e/") becomes 

(8.11) 

Recall that the passband(s) for G(e/") occur whereA,(el") and 
A2(e'") are in-phase. Hence, by equalizing the passband 
group delay of G(e/"), we approximatelyequalize the group- 
delay functions 7,(w)  and ~ ~ ( w )  over this same frequency 
range. This suggests that good magnitude and group-delay 
responses can be simultaneously achieved by choosingA,(z) 
such that its group-delay response i s  favorable over the 
desired passband region, and then choosingA,(z) such that 
it phase response i s  in-phase and out-of-phase with respect 
to A,(z) over the passband and stopband regions, respec- 
tively. 

A slight variation to this strategy results if we consider the 
phase response, rather than the group-delay response, to 
be important. Thus let us choose one all-pass function as 
a pure delay 

A,(z) = z - ~  (8.12) 

and choose A2(z) to be in-phase and out-of-phase with 
respect to the delay over the passband and stopband 
regions, respectively. The passband magnitude and phase 
characteristics of G(e/") are simultaneously optimized by 
forcing A2(e/") to approximate a linear phase characteristic 
over the passband region of G(e/"). Such filters are termed 
approximately linearphase [63], [64]. Although the order of 
these filters i s  typically higher than that of an elliptic filter 
(with nonlinear phasecharacteristics) meeting the samefre- 
quency-selective specifications [64], the signal delay i s  typ- 
ically less than that obtained using an FIR filter. These filters 
are thus attractive in applications requiring low waveform 
distortion with small delay. 

Ix. STATE-SPACE MANIFESTATIONS OF THE ALL-PASS PROPERTY 

The state-space description provides a powerful frame- 
work whereby many concepts of system theory can be 
addressed in a unified manner. The losslessness property 
satisifed by all-pass functions induces some elegant prop- 
erties on a state-space description, which we summarize 
below in the discrete-time lossless bounded real lemma [65]. 
Some applications of this lemma to finite word-length 
effects in digital filters are outlined. 

We consider a single-input/single-output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(SISO) state- 
space description 

x(n + 1) = Ax(n) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbu(n) 

y(n) = c'x(n) + du(n) (9.1) 

where A is  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx N, b and care N x 1, d is 1 x 1, and x(n) 
= [x,(n) . . . xN(n)] '  i s  the state vector. The transfer function 
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Y(z)IU(z) is given by the orthogonality of R i s  in turn equivalent to 

y'(n) y(n) + x'(n + I) x(n + I) 
- x'(n) x(n) = u'(n) u(n). (9.10) 

Equation (9.10) states that, at time n, the instantaneous out- 
put energy y'(n)y(n) plus the instantaneous irfcrease in state 
energy [x'(n + 1) x(n + 1) - x(n)'x(n)] i s  precisely equal to 
the instantaneous input energy u'(n) u(n). Hence (9.10) is  an 
energybalance relation. Note that this statement is stronger 
than that of (2.8); anystructuresatisfyingtheenergybalance 
relation certainly satisfies the (external) losslessness con- 
dition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2.8), but the converse is not necessarily true. How- 
ever, given any lossless structure satisfying (2.8), there exists 
a similarity transformation which renders the structure in 
an energy balanced form. (Such a transformation can, in 
fact, be constructed from the observabilitygrammian of the 
system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[66].) From this observation, we may restate the sca- 
lar discrete-time LBR lemma as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Y(z)/U(z) i s  an all-pass function if and only if i t  admits a 
realization whose state-space description satisfies the 
energy balance relation of (9. IO). 

Consider, for example, cascaded lattice structure of Fig. 
3. Bychoosingtheoutputsof thedelayvariablesasthestates 
x&), and implementing each two-pair in normalized form 
(cf. Fig. 4(b)), the structure is known [14], [65] to satisfy the 
energy balance realization of (9.10). Sincean arbitrary stable 
all-pass function can be realized using the normalized cas- 
caded lattice, we have identified an energy balanced struc- 
ture. In fact, many more such structures can be identified 
as, e.g., orthogonal digital filters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 67 ,  [68], properly scaled 
wave digital filters [191, and LBR digital filters [2]. 

Applications to Roundoff Noise Gain 

The state-space description of (9.1) i s  depicted in Fig. 25(a). 
In a practical implementation, quantizers must be intro- 
duced into the feedback loop to prevent an unlimited accu- 
mulation of the number of bits required to represent the 
signals. The quantization error is  typically modeled by 
introducing an error vector e(n) in the feedback loop, as 
shown in Fig. 25(b). Consider again the cascaded lattice 
structure of Fig. 3. If one quantizer i s  inserted after each 
lattice section just priorto each delay, the model of Fig. 25(b) 
holds. Since the model does not permit any quantizers 
inside the lattice sections, a bit accumulation occurs pro- 

- -  '(') - d + c'(z1 - A)-% 
U(Z) 

(9.2) 

We assume also that the realization i s  minimal in the num- 
ber of states, so that the order of Y(z)lU(z) i s  N (i.e., there 
are no pole-zero cancellations). Now, given any nonsin- 
gular N x N matrix T, we can invoke a similarity transfor- 
mation by replacing the set {A,  b, c} with 

AI = T-'AT b, = T- 'b  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAci = c'T. (9.3) 

This transformation has no effect on the external transfer 
function Y(z)IU(z), and with various choices of T, we can 
derivean unlimited number of structures to implement the 
given transfer function. (In fact, all minimal realizations of 
a given transfer function are related through a similarity 
transformation.) The internal properties of the system 
though, such as scaling at internal nodes, overflow char- 
acteristics, roundoff noise, and coefficient sensitivities, can 
vary markedly among different representations. 

If Y(z)/U(z) is an all-pass function, the state-space param- 
eters {A,b,c, d }  in (9.1) satisfysomeveryelegant properties 
which have implications in roundoff noise gain, scaling 
properties, and limit cycle behavior. We begin by quoting 
a scalar (SISO) version of the discrete-time lossless bounded 
real (LBR) lemma: 

lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[65]: Given the state-space system of  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9.1), the 
transfer function Y(z)/U(z) in (9.2) is a stable all-pass func- 
tion if and only if there exists an N x N symmetric positive- 
definite matrix P such that 

A'PA + CC' = P (9.4a) 

b'P b + d'd = 1 (9.4b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I A'Pb + cd = 0. (9.4c) 

To better understand this lemma, wecan derive from (9.4) 
an important "energy balance" result. Since Pis symmetric 
and positive-definite, there exists a nonsingular matrix T 
such that P = T'T. Consider the new set of state-space 
parameters which result from the (inverse) similarity trans- 
formation 

A2 = T A  T-' b2 = T b  C: = c'T-'. (9.5) 

Writing (9.4) in terms of the parameters {A2, b2, c2, d }  results 
in 

(9.6a) 

(9.6b) 

(9.6~) 

A g 2  + c2c: = I 

ba2 + d'd = 1 

A82 + ~ 2 d  = 0. 

By considering the (N + 1) x (N + 1) matrix R formed as 

(9.7) 

the constraints of (9.6) become equivalent to orthogonality 
of R 

R'R = 1. (9.8) 

Now, upon recognizing that (9.1) may be written as 

(9.9) 

(a) 

(b) 
Fig. 25. (a) State-space filter description. (b) Error vector 
model for quantization noise. 
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gressing from left to right along the upper portion of the 
lattice, although this accumulation i s  finite (proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N).  Such accumulation can be avoided by inserting two 
quantizers (rather than one) between successive lattice sec- 
tions. We shall proceed with the model of Fig. 25(b), though, 
to keep the discussion manageable. 

Our goal is to minimize the error component in the out- 
put sequence introduced by the quantization error vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e(n), subject to the constraint that the transfer function to 
each state variable be properly scaled to minimize the prob- 
ability of overflow. Let us introduce two vectors 

and 

g(n) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[gl(n) * * * gN(n)l' 

such that f&) i s  the response at the kth state variable to a 
unit pulse input, and &(n) i s  the response at the output to 
a unit pulseatthekth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstatevariable.Thesevectorsareeasily 
found as 

f ( n )  = Anb g'(n) = C'A". (9.11) 

It is convenient to introduce the controllability and observ- 
ability Grammian matrices K and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW associated with these 
two vectors: 

m m 

K = f ( n )  f'(n) = Anb(Anb)' (9.12a) 
n=O n=O 

m m 

W = g(n) g'(n) = (c'A")'(C'A"). (9.12b) 
n=O n=O 

These matrices are positive-definite provided there are no 
pole-zero cancellations in the filter [69], and can be iden- 
tified as solutions to the equations 

K = A K A' + b b' W = A'W A + c c'. (9.13) 

Moreover, if A has all its eigenvalues inside the unit circle, 
the solutions Kand Win (9.13) are unique [70]. In particular, 
the diagonal elements of either matrix are the squares of 
the P2 norms of the elements of f and g 

cm 

K k k  = 11 fk1I2 = ngo I fk(n)I2 

w k k  = llgk1I2 = Igk(n)I2* (9.14b) 

Assume now that the components of the noise vector e(n) 
areuncorrelatedand thateach iswhitewithvariancea:, i.e., 
the covariance matrix of e(n) i s  a:/. Under these assump- 
tions, the variance of the error at the filter output caused 
by the quantizers i s  equal to 

(9.14a) 

m 

n=O 

N 

= a2 Wkk. (9.15) 

Now, the diagonal elements K k k  of the matrix K represent 
thesquareoftheP,normsofthe impulse reponsesequences 
fk(n) to the state variable nodes. For a structure scaled in an 
t2 sense, these quantities should equal unity. This i s  easily 
accomplished by using adiagonal similarity transformation 
matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,  such that 

r = diag {1 /11 fkk l l } .  (9.16) 

k = l  

In effect, each term fk(n) i s  replaced by fk(n)/ll f k l l ,  and each 
term &(n) i s  replaced by 11 fk I I  &(n) to compensate. Hence, 
the roundoff noisevariance for a scaled realization in terms 
of the unscaled parameters i s  

N N 

k = l  k = l  
= 0: I)fk11211gk112 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof K k k  Wkk. (9.17) 

For a given transfer function, the term 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e K k k W k k  

k = l  

depends on the state-space description, and can be con- 
sidered a"noise gain" forthe realization in question. It has 
been shown [69] that this noise gain i s  minimized when 
{A ,  b, c} are such that K and W satisfy the following two 
properties: 

1) K = A W A  for some diagonal matrix A of positive ele- 
ments. 

2) K k k  w k k  = constant independent of k. (9.18) 

In fact, a minimum-noise description satisfying these prop- 
erties always exists [69]. 

Assume now that Y(z)/U(z) i s  an all-pass function realized 
in an energy balanced structure, so that the matrix R in (9.8) 
i s  orthogonal. The orthogonality of R also implies orthog- 
onality of R', so that R R' = I yields three equations anal- 
ogous to (9.6). The first of these is 

A A ' +  b b ' =  I. (9.19) 

The comparison of (9.19) with (9.13) reveals K = I, which 
indicates an energy balanced filter is inherently scaled in 
an t2 sense. Likewise, comparing (9.6a) with (9.13) reveals W 
= I, so that the roundoff noise i s  minimized according to 
the conditions (9.18) above. In other words, for any energy- 
balanced structure, the constraints of internal scaling and 
minimum roundoff noise are automatically satisfied. For 
such structures, the output noise variance is found from 
(9.17) as 

N 

U: = U2 K k k W k k  = NU: (9.20) 

sothat the noisegain isfound knowingonlythefilterorder. 
We point out that this result holds independent of the pole 
locations of the filter. 

Referring again to the normalized lattice structure, in 
practice it may be convenient to introduce quantizers into 
both upper and lower branches connecting adjacent sec- 
tions to preventword lengthsfrom accumulating in the suc- 
cessive lattice stage computations. Upon effecting this 
modification, the roundoff noise variance appearing at the 
output can be found as 

k = l  

ai = 2Na:. 

The state-space descriptions corresponding to the other 
Gray-Markel lattice structures can be obtained from that 
of the normalized form via a diagonal similarity transfor- 
mation matrix T. Accordingly, the matrices Kl and Wl for 
such structures are given by 

K~ = r;IK r;' = ry2 
wl = r!, w rl = r:. 
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These matrices sti l l  satisfy conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9.18), which indicates 
that scaledversions of these structures are minimum noise 
structures. Of course, upon scaling these structures in an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 sense, the resulting statespace description coincides with 
that of the normalized form. 

Limit Cycle Behavior 

The quantizers in the feedback loop of Fig. 25(b) are non- 
linear elements, and can cause nonlinear oscillations known 
as limit cycles, resulting in a periodic output even after the 
input signal has been removed. We assume that the quan- 
tizers use magnitude truncation in the absence of an over- 
flow, and two's-complement overflow followed by 
magnitude truncation otherwise. In circuits using such 
quantizers, two types of limit cycles are commonly 
observed, namely granular oscillations and overflow oscil- 
lations [71]. A sufficient condition [72] for the absence of 
zero-input limit cycles i s  the existence of a diagonal matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Do of positive elements such that4 

Do - A'DoA 2 0. (9.21) 

In view of condition (9.6a), we see that (9.21) i s  satisified with 
Do = 1. That is, the energy balance condition ensures the 
absence of limit cycles. Moreover, if A satisfies condition 
(9.21), so does T- 'A Tfor any diagonal transformation matrix 
T, simply by replacing Do with T DOT. Hence scaling does 
not sacrifice the freedom from limit cycle property, and 
accordingly, all the Gray-Markel lattice structures are 
devoid of limit cycles 1141, 1721. 

Applications to Complex All-Pass Functions 

In quoting the discretetime LBR lemma we have assumed 
real coefficient filtering. The many results above easilygen- 
eralize to complex filters by replacing, for example, matrix 
transposition operations with conjugate transposition 
operations. As such, one can show that complex filters 
which satisfy the energy balance constraint are minimum 
noise structures and are free from limit cycles. Thus the 
complex lattice filters, for example, share the attractive 
properties of their real arithmetic counterparts. 

Complex all-pass filters derived from other methods have 
desirable finite word-length properties as well. For exam- 
ple, the complex transformation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.7) may be interpreted 
as a diagonal similarity transformation T, such that 

T = diag {e'4k}. (9.22) 

This transformation matrix is unitary, and as such has no 
effect on the energy balance properties (or lack thereof) of 
the structure to which it i s  applied. 

Finally, the (nonminimal) first-order complex all-pass 
structure of Fig. 7 admits the state-space description 

a - jb 
+ [, ] u(n) 

4The inequality in (9.21) indicates that the (symmetric) matrix on 
the left i s  positive semidefinite. 

where a + jb = y is the pole of the filter. Upon setting the 
input u(n) to zero, the feedback portion reduces to 

x,(n + 1) = yx,(n). (9.23) 

Now, stability of the filter implies 

1 - Iy12 > 0 (9.24) 

which, in view of (9.21) (with Do = 1 andA = y), ensures the 
absence of zero-input limit cycles. 

X. CONCLUDING REMARKS 

In this paper we have outlined the use of all-pass filters 
in a variety of signal processing applications, including 
complementary filtering and filter banks, multirate filter- 
ing, frequency response equalization, etc. Fundamental to 
many of these results i s  the lossless property exhibited by 
an all-pass function; provided this property i s  structurally 
induced, the desirable features in each application exhibit 
very robust performance in the face of coefficient quan- 
tization. Furthermore, by using filter structures which sat- 
isfy the energy balance relation of Section IX, limit cycles 
are avoided and the roundoff noise of the filter is mini- 
mized. 
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