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Abstract

There exists a number of mathematical procedures for designing
discrete-time compensators. However, the digital implementation of
these designs, with a microprocessor for example, has not received
nearly as thorough an investigation. The finite-precision nature of
the digital hardware makes it necessary to choose an algorithm
(computational structure) that will perform ‘well-enough' with re=~
gard to the initial objectives of the design. This paper describes
a procedure for astimating the required fixed-point coefficient
wordlength for any given computational structure for the implementation
of a single-input single-output 1QG design. The results are compared
to the actual number of bits necessary to achieve a specified
performance index.
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1. Introduction

The design of discrete-time compensators through the use of
optimal regulators, pole-placement concepts, observer theory, optimal
filtering [l,Zf and also via classical control theory [3] has received
a great deal of attention in the literature. 1In the past such designs
have usually been implemented on large, expensive, floating-point
computer systems. However, the number of applications that could
effectively use small-scale hardware control systems that work in real
time has greatly increased, especially with the advent of the
inexpensive microprocessor.

While the recent advances in digital hardware capabilities have
opened many new possibilities for control system implementations,
they have also raised new issues. A number of these involve the pro-
blems that arise in dealing with the fixed-point arithmetic and
finite wordlengths (limited storage) of small-scale digital systems.
As these problems are not addressed at all in the idealized mathematical
design procedures that have been developed to date, a methodology must
be established for treating the digital implementation of a design.

The mathematical design procedure, only a first step, produces an

infinite-precision compensator that is 'ideal,' at least with respect

to all finite-precision implementations. The job of the implementation

step will be to specify and order the critical computations that must
take place in the compensator so that the end result (finite-precision)

performs as close to the 'ideal' as is consistent with the expense and



and speed requirements of the application. The implementation step
will also include a specification of the hardware architecture and
components. It is important to note that the mathematical design and
the impleﬁentation phases are not totally independent, since the im-
plementation can be very important in determining an acceptable sam-
pling rate and the number of operations that can be performed per
sampling pericd.

Some effort has been directed to the implementation phase of an
overall controller design, but it has been quite limited. Knowles
and Edwards [4] have considered some roundoff noise questions for a spe-
cific classical controller design. Sripad [5] has locked at the roundoff
noise and coefficient sensitivity of the Kalman filter. Rink and
Chong [6] have derived bounds on the quantization error in floating
point regqulators.

Our approach will draw on the field of digital signal processing
[7], which has generated many results concerning the realistic imple-
mentation of digital filters. The finite precision effects of coef-
ficient quantization, limit cycles, and quantizaticn noise have been
reviewed (for filters) in (8], [9], and [10]. These resuvlts are very
important for control applications, since a control system can be
viewed as a digital filter (compensator) imbedded in a feedback loop
through a plant. Our work is a first step towards bridging the gap

between the digital filtering results (no extermal feedback) and the ideal



controller design procedures. This paper bring the techniques for
digital filter implementation to bear on the fixed-point compensator
coefficient wordlength issue.

Approximating the coefficients of an implementation with a finite
number of bits will cause a degradation in the system's performance as
compared to the ideal. Assuming that a given quantitative performarce
measure is provided, we can measure the tradeoff in the number of bits
vs. the degradation. Then, assuming that we specify an acceptable
amount of degradation, one must determine the minimum number of coef-
ficient bits needed to meet this goal. Clearly a straightforward way
to determine this wordlength is to simply reevaluate the measure of
performance over a number of different rounded wordlengths, and to
choose the smallest wordlength meeting the design specification.

This brute force method can be gquite time-consuming. The concept of

a (simpler) statistical estimate of the wordlength originated in the
study of digital filters with the work of Knowles and Olcayto [11].
Avenhaus [12] applied this idea to the digital filter power transfer
function (as a performance measure), and later Crochiere [13,14] used
the concept with the filter transfer function magnitude and a word-
length optimization procedure. All three of these studies chose dif-
different performance measures, none of which seem to be particularly
appropriate for control prokblems where the compensator phase is critical.
In this paper we wili adapt the statistical wordlength concept tc the

steady-state linear-quadratic-Gaussian (LQG) control problem, using the



IQG penalty function as our measure of performance. After discussing
the IQG configuration, a notation for specifying different implementa-
tions will be presented, followed by the actual statistical wordlength

procedure. Examples demonstrating this procedure and comparing it to

the brute-~force method follow.

2. The LOG Controller Problem

This section will present the single~input single-output LQG
control configuration and the mathematical (ideal) design of the
compensator. The discretized plant equations are described as follows

(assume a given sample rate):

x(k+l) = Ix(k) + Tu(k) + wl(k) (1)

y(k) = Lx(k) + v, (k)

where ¢(nxn) is the transition matrix, I'(nxl) and L(lxn) are the

input and output gains, and w. and w, are discrete white Gaussian

1 2
noise sequences with covariance matrices Ol(nxn) and Oz(lxl) respect-
ively. The control law is chosen to minimize the following performance

index: (the discretized version of a continuous-time performance

index)
1 H 2
J=E{ln Zr ] (x'(k)gx(k) + x' (k)Mu(k) + Ru”(k)) (2)
. 1 .
o k=-i

where Q is nxn, M is nxl1l, and R is 1xl. The result is the following

'

regulator/Kalman filter compensator:



x(k+1) = dx(k) + Ta(k) + K(y(k) - Lx(k))
(3)

u(k) =-Gx(k)

Note that the equations in (3) base the current control u(k)
only on past outputs y(k-1), y(k-2) ,...,[1]. A real compensator
(one that can be implemented) cannot allow u(k) to depend on y(k),
gince a finite amount of computation time must elapse before y (k)
can affect the output u. Thus y(k) can affect u(k+l) but not u(k).

The gains G(lxn) and K(nxl) can be found by solving the fol-

lowing two algebraic Ricatti equations [1]:

(&-TR IM') 'P{I-T (R+T'PT) "I ' P} (3-TR *u') + Q-MR_l

Pa M'
1 (4)
L= Q{I-ZL'(92+LZL’) L}ZID' + el
and
G = (ReT PO LT B (&-TR M) + R M’ (5)
[ |-l
K = $IL (62+LZL )

Figure 1 presents a simple block diagram of the system and its
(infinite~precision) compensator. This ideal compensator (3) can
be described by an infinite~precision map (transfer function) in the

digital frequency domain:



= =G(z - O+KL + TG) 1k 6)

The digital filter transfar function (6) must be implemanted
in finite precision with aa little degradation in some system per-
formance measure as possible. In the setting of a steady-state IOG
problem, it is convenient to select the performance index J in (2) as
the measure of performance, since it reflects the weighted steady-
state ’MS state and centrol fluctuations. Tt would also have been
possible to choose a criterion such as phase margin, output noise
power, or any combination of stability or noise measures. If the
problem under consideratioh was simply a Kalman filter, then a
suitable performance measure would be the trace of the error covariance
matrix. We have chosen J in order to present our results in a
specific context. These results extend in a simple and direct fashion
to other measures. It should also be noted that the selection of a
single-input single-output system has only been done for convenience,
and the following analysis can be easily extended to the multiple~

input multiple-cutput case.
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3. Algorithmsand Structures

In order to discuss different implementations, one must have
an accurate notation that reflects these differences. The temm
‘algorithm' or ‘'structure' will be employea to specify the exact finite-
precision procedure by which the compensator output samples u are
generated from its input samples y. All structures for implementing
a given filter or compensator would perform identically under infinite=~
precision arithmetic, but will produce different guantization noise,
coefficient quantization effects, and limit cycles given the
(realistic) finite-precision environment. A good review of some of
the structures used to implement digital filters can be found in
(141, [15], and [16].

In order to demonstrate the finite-precision effects of different
structures, consider the following example. Assume that an ideal

compensator has been designed, and that its (infinite-precision) trans-

fer function is given in (7).

T 2 (7)
¥(z) 1+1.11z 140.2872 2

One possible structure for implementing this filter is the direct
form II [7). Figure 2-A shows a signal flow graph of this filter
where the coefficients b1 and b2 can be read directly from (7), the

unfactored ideal transfer function. Given  finite precision fixed-

point arithaetic (say 10 bits total per coefficient), the ideal



A: Direct Form Il

by 1.11 (ideal, o bits)
1.109375 (10 bits)

bos 0.287 (ideal)
210.28515625 (10 bits)

B: Cascade

Form

y

Y

o] 41 (ideal)
1 0.41015625 (10 bits)

o.J0.70 (ideal)
21 0.69921875 (10 bits)

Example Structures
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coefficients values of b1 and b, must be quantized (assume rounding).

2
Reserving two bits for the integral portion of the coefficient word
(bits to the left of the binary point) and 8 bits for the fractional
portion, the rounded coefficient values wouid be 1.109375 and 0.28515625.
Figure 2-B shows the flow graph of another common structure,
the cascade form. Here we realize (7} by a series cascade of two
first-order filter sections. The coefficients a, and a, can be found
by factoring the denominator of (7). Again, the ideal values must be
rounded to fit 10 bit words, producing a1-0.69921875 and
a2-0.41015625.
Now let us examine the performance of these two structures given
their respective finite-precision coefficients. The (10-bit) direct

form II and the cascade have the transfer functions shown in (8)

and (9) respectively.

U(z) z-l

Y(z) -1 - (8)
1+41.1093752 + 0.28515625z2

u(z) z-l 9)

Y(z) 1

141.109375z = + 0.2867889404296875

Clearly these two structures produce slightly different transfer
functions under finite precision, and we have not even mentioned
their respective quantization noise and limit cycle behavior. Thus
different structures will in general result in different finite-

precision performance even tnough their infinite-precision
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counterparts have equivalent performance (that of the ideal design)

In order to deal with these different structures, it is important
to have an accurate way in which to represent. the operations involved.
The modificd state-space of Chan [15] is the most convenient method.
Consider a filter (compensator) with input y, output u, and state vactor
v. Then the coefficierts and the sequence of multiplies and critical

additions in any structare can be specified with the following

representation:
v(k+l).\ v(k)
"YW, -V (10)
u(k) da-1 N oy

Two important points make {10) useful:

{1) Each (rounded) coefficient in the structure occurs once
and only once as an entry in one of the wi matrices, The remaindex
of the matrix entries are ones and zeros.

(2) The concept of a precedence to the operations {multiplies,

adds, and quantizations) is maintazined. The ordering of the ¥

vik)
matrices implies that the operations in computing 1,‘11 y (k) are
vik)
completed first, then lb2 “’1 next, and so forth. The
y (k)

paramater q .pecifies the number of such precedence levels.

Consider the example of the last section. The direct form II

in Figure 2-A has a ong-level modifed state space representation as
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shewn in (11), while the cascade (12) requires two levels to describe
its operations (even though its multiplics can be confined to one

level):

vik+l) 0 1l 0 v(k)
- r\ (11)
u(k) 'bz -bl 1 y (k)
to 1 o
v(ik+l) 1 0 0 -al 0 1 vi(k)
- (12)
(k) 11 oflo  -a, Ol m
| 0 0 1 0 1 0

Thus any two structures will have associated with them two
different sets of | matrices. Let the coefficients in each wi matrix
be replaced by their infinite-precision counterparts (their values
before rounding), and define ww to be the infinite-precision product
R

q'q-1
similarity transform) for all structures - it depends strictly on the

ves wl. This matrix y will then be identical (within a

idea! design and choice of states v(k). It is also notationally
convenient to partition ww into a state-space representation, with no

feedthrough term. (see Section 2.)



v(k+1) ¢11 wlz v(k)

= (13)
u(k) W21 0 y (k)

Thus (13) represents the ideal compensator's input-output behavior
in a state-space form, and any factorization (10) of ww, with the
resulting coefficients rounded, will represent a specific finite

precision structure for implementing the ideal transfer function.

4. Statistical Wordlength

The need for a coefficient wordlength estimate is twofold.
First, the computation of an estimate should be simpler than directly
evaluating the performance measure over and over as "the number of
coefficient bits is varied. More importantly, if the estimate is
continuous in nature (not confined to integral numbers of bits)
then it is possible to apply simple optimization techniques to syn-
thesize better structures. The statistical wordlength estimate can
fulfill both these aims.

The remainder of this section will review the basic development
of the statistical wordlength measure. [13] Consider a general
measure of performance f. With a finite-precision implementation, the

resulting f will then depend on the coefficients (c .,cm) of the

l,Cz,--

structure. The value of f associated with any particular finite-

precision structure will reflect a degradation in performance as
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compared to the ideal (unrounded coefficients) case fw. This
degradation df can be expanded in a Taylor's series about the ideal

value. To first order

[ af
df (cl'CZ'." ,cm)z z a—c-' dci (14)
i=1 il

where ¢, is the ith coefficient to be rounded, dci is the error due

i
to quantization, and %g is the first partial derivative of f
i {0

evaluated with the unrounded coefficient values. Note that coef-
ficients such as 3,2,1, % «+«.. are not normally affected by rounding
and s .~11d not be included in the sum (14).

If A is the quantizatioq step size (the fraction represented by
the least significant bit of the fixed-point coefficient word), then each
dci must lie between t.%-(rounding assumed) . Given the partial derivatives
in (14), we could then (upper)bound the error df, producing a very
pessimistic wordlength estimate.

The basic statistical wordlength idea is to treat an ensemble
of structures. Over this ensemble, the coefficient errors dci can
be described as uniformly—-distributed zero-mean uncorrelated random

variables, each of variance A2/12. The error df is therefore also

zero-mean, with a variance:

RSY YOO WETr Y "
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2
g = = Iy (15)

o
For large m, the central limit theorem can be applied to

justify a Gaussian distribution for 4f. Thus with a given confidence

level (probability), say 95%, one can predict the variance c:f

needed for the error df to remain within some prescribed bound.

In other words, 95 out of 100 of the structures in the ensemble will

result in systems where df remains within this bound.

From a table of the Gaussian distribution,

Pri|ag|< 20,1 = .954 (16)

If the quantity of interest f is constrained to lie within i-Eo
of the ideal f_ then (16) implies that 93¢ equal Eo/z. This
’

result can be combined with (15) to produce an estimate of the

parameter A:

V3 E
NP S— (17
i=l (aci )
Given A, the statistical wordlength can be defined to be
SWL = £ + log 3 (18)
2 A
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The first term in (18) represents the number of bit necessary
to represent the integer portion of the coefficients (bits to the
left of the fixed-point binary word 'decimal point') and the second
term gives the number of bits necessary for the fractional portion
of the coefficient word (bits to the right of the binary point).

In the digital filter area, Crochiere [13,14,16] presents a
number of results comparing the statistical wordlength of structures
using the transfer function magnitude as the performance measure f.
Since this choice of £ is frequency-dependent, the resulting estimate
is also frequency-dependent. The final wordlength can be selected
as the maximum of the estimates over the frequency range of interest.
In the examples%reated by Crochiere, the statistical wordlength
estimate was always 1 to 3 bits conservative as compared to the actual
minimum number ¢~ bits necessary to just meet the transfer function error
limit. In a related work by Chan and Rabiner [17], which considered a
large number of finite-impulse-response filters and a similar statistical
approach to coefficient wordlength, the resulting 95% confidence level
estimates were also cbserved to be conservative. Crochiere [13] was
also able to use statistical wordlength as the basis for an optimi-
zation procedure involving the filter-specification filter-order

tradeoff.

~al
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5. Statistical Wordlength and the Performance Index J

As mentioned above, it is convenient to use the performance index
J in (2) as the measure of performance f in an LQG setting.
Using the approach of the previous section, the change in J would be

estimated by:

dc,) (19)
i

-]

m
0J
a¥(c,,C.y++.,C ) = Z (———
1’72 m im1 3ci

However, the optimal nature of the LQOG control problem forces all

the sensitivities g%— to be zero. Therefore a higher-order
i

approximation is necessary:

m m 82J v
arx [ ] \555g | deyde. (20)
i=l §=1 \°%1%¢j J

[ ]

The use of second~order terms (not seen in digital filter analysis)
will make the statistical wordlength expression for IQG compensators
unigue, and as will be shown, quite complex to compute.

Proceeding from (20), the mean of d4J will no longer be zero:

m 2
E(43) = ) 34 (21)

- E[(dci)zl
i=1 Bci

For convenience, define the random variable € to be the square of
dci. Its mean and variance can be shown to be A2/12 and A4/18O.

The second moment and variance of 4J can now be found:

v d
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e ﬁ 2 _2 m m /.2 2
et@n? =& J (3—‘12 )+ @ ] Z(-a—‘-’— )(-B——J—

i=1 \3c i=1 k=1\3e,? | \3c. 2
i ik i 3
[+ -] @©
) 2
m m
+26€° § ] ( 3
i=l j=1 \3c,dc,
i%3 e
m 2 ? m m 2
°§j = ] T va@ ) 3%
i=l Jdc, i=l 4j=1\ oc adc.
1 e i>j 1 -'loo

(22)

(23)

The same Gaussian assumption and confidence level approach can

be applied to this higher-order formul&tion, as shown in Figure 3.

Since the value of J can only increase under coefficient gquantization,

we need only have a specification on its maximum allowed value

Jo + Eo. If we choose two standard deviations around the mean, then

we can write

JQ+E =Jm+dJ+20

° 4aJ

This choice of cd gives a 97.5% confidence level in terms of

J

remaining below the allowed deviation Eo. Combining (22}, (23),

and (24) we can derive an expression for A2:

(24)
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Figure 3: Probability Density of 4J



=20~

i=] §=1 dc.
i>j © 1 s
i (25)
1 ? 3%z
12E 21 \s 2
o i e
Using (18), the SWL can then be written:
1 1
= R = =
SWL + 3 log2 A (26)
The use of second-partial derivatives in approximating
d4J in (20) has given rise to a complex expression for the
statistical wordlength. Efficient methods for evaluating (26)
will be discussed in the next section.
6. Computational Procedure
In order to compute the derivatives of J_, the infinite-
precision (ideal) performance index, it is convenient to use the
trace form of equation (2): [18]
J, = trace [S 2] 27)
The 2nx2n matrices S and Z are defined by (28) and (29):
a2 21
(28)

VMt ¥y Ry



x(k)
Z=E (%' (k) v'(k)] (29)
v(k)

where Q,M, and R are the performance index parameters described in

(2) and w21 is the lower left-hand portion of y_ as described in (13).

The matrix 2, the covariance matrix for plant and compensator states,

can be shown to satisfy the following Lyapunov equation:

Gl 0
2 = AZA' + (30)
0 V120,91,
where
. ¢ Ty
A = 21
wl2L wll

Note that (27)-(30) depend on the infinite-precision (ideal)
compensator and on the selection of compensator state variables v.

The resulting J, will be independent of structure. However, the

partial derivatives of J, (evaluated for ideal coefficients) will
depend on the structure since each coefficient c; resides in one
of the structure's wi matrices. Taking the partial derivatives of
(27) will produce: (assume all partials are evaluated at the ideal

values of the coefficients)

RE——
. -



2 (31)
+ trace (s A )

At first glance, (31) represents a great deal of computation.
The first term requires the solution of (30) for Z. However, the

second trace term involves the first partial derivatives of 2Z:

92 9%

i i
where
0 0
~ oA A
O "%, W *Ay] 2 Oy
1 1 0 12 e ,I + w e 12
3c, 2¥12 ¥ Y12%2 3¢,

Evaluation of the second trace term in (31) for all i or j will
imply solving m Lyapunov equations of the form shown in (32). The

final term of (31) requires second partials of Z:

2 2
ﬁ.— = A .a_L aA' + E. . (33)
dc, 9 dc,dc, ij
i‘e i34

3

where the 2nx2n matrix Eij involves partial derivatives of A, Z, and

b, with respect to the i'th and jth coefficients. Solving (33) for all

i and j would require m(m+l)/2 more Lyapunov solutions.
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Fortunately, this burden can be substantially reduced.
Specifically, the concept of adjoint operators can be used [l1] to
simplify the last term of (31). If we take the trace of the product
of two matrices to be an inner product on the space of matrices, and

L to be a matrix operator, then:

trace(L(X) U) = trace(x L (U)) (34)

*
where L is the adjoint operator of L. For L(X) = X-AXA', the

*
operator L can be derived from (34):

trace ((X=-AXA') U) = trace(XU) - trace (AXA'U)
= trace (XU) - trace (XA'UA)

= trace (X{U-A'UA)) ' (35)

»*
Thus L (u) = U-A'UA. This adjoint operator can be used to simplify

*
the last term of (31) if X is 322 and L (U) equals S. Since
dc, dc,

13
2
o 2 ~ '
L (aciacj ) equals cij' we can rewrite (3%).

2 2
9 J 3°s 3S 92 oS 02 ) ~
= trace | ==— 2] + trace{ =— + + trace (UC. )
5ci8cj (aciacj ) (Bci Bcj acj Bci i3
(36)

where U satisfies U-A'UA=S. Thus the last term of (36) requires only

one Lyapunov solution.
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There is still the problem of tha m Lyapunov solutions needed in
term 2. By using the Lyapunov solution method of Barraud [19], this
computation can alsc be simplified. Consider the general Lyapunov

equation (37):

X = FXF' + C (37)

Barraud's method breaks into two distinct parts, one which transforms
F into the upper Schur form, and one which back substitutes using the
transformed F matrix and C. The major portion of this computation
involves the initial F transformation. Thus, if there exists several
Lyapunov equations with identical F matrices but different C matrices,
then the F transformation need be done only once. This is exactly the
situation for the iyapunov equations (30) and (32) needed for the
first two terms of (31). Typically, 50-90% of the Lyapunov computation
time can be saved, depending on the particular matrices.

Further computational time savings are possible. Certain partial

Y
, and %% expressions are known to

ij ;
i 2
be zero and need not be computed. As an example, the term 9 Voo
oc, Jc,
i

]

derivatives involved in the 51' ¢

must ba zero if the ith and jth coefficients are in the same

precedence level, Suppose y_ equals wlw2w3 (three precedence levels
exist). The nature of the modified state-space representation
guarantees that each of these coefficients may be a :iingle entry in

only one precedence level. Assume that ci and ¢, are both in Y,.

3
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Taking the partial derivative with respect to c,:

i
Wy, W,
E ot 3, Yy (38)
awz
The natrix 5;; must be an all-zero matrix excluding a single unit

entry at the same location as ci in wz. The expression in (38) is

%y
3¢, dc,
1

3

now independent of cj, implying that equals zero.

The specific details of the computational procedure (heavily
involving the use of trace identities to simplify expressions) and

the program itself ~an be found in the appendices of [20].

7. An_1QG Example

The following sixth-order example was chosen to test the
statistical wordlength algorithm. It is adapted from the bngitudinal
control system design done for the F8 digital fly-by-wire flighter

[21).

Continuous Time System Parameters:

-0.6696 5.7x10°% -9.01 o -15.77 0
0 -0.01357 -14.11 -32.2 -0.433 0
-4

1 -1.2x10 -1.214 0 -0.1394 0

A= 1 0 o] 0 0] 0
0 0 0 0 -12 12

0 0 0 0 0 0
L -
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B= [0 o 0 0o o 1)

C= [1 0.003091 31.28 1 3.592 0]

Continuous-Time Performance Index Parameter:

6.637 0 0 0 0 0
-7 -3 -4
) 2.6554x10 2.686x10 0 3.085x10
R 0 2.686x10 0 27.174 0 3.121 0
Q-
0 0 0 27.174 0 n
0 3.085x10" 2 3.121 0 0.3585 0
v 0 0 0 J 0
(4
R=  5.252

Continuous-Time Noise Covariances

5|~ diaglo 0 0 0 10°% 1079

EZ = .00368825

This continuous-time system was discretized at a sampie rate of
10 HZ and the optimal regulator and Kalman filter designed. The
double-precision parzueters ¢, T, L, Q, M, R,Gl, 92, G, and K can
be found in [20].




Four structures for implementing the ideal compensator transfer
function (6) were examined. The first three are regular filter
structures - the direct form II, the cascade form, and the parallel
form. The coeffirients of the direct form II structure (recall
Figure 2) come directly from the unfactored transfer function (39);

the 12 coefficients and one precedence level wl are shown in (40).

a.z taz 2iaz ez Ya z 0va z
1 2 3% 8% tagz rag

- -2 -3 -4 -5 -
1+blz +bzz +b3z +b4z +b5z +b6z

H(z) =

3 (39)

lbl = (40)

The actual a; and bi values, and the ideal coefficient values for
the other 3 structures can be found in [20].

The sccond structure, the cascade (see Figure 2), derives its
coefficients from a multiplicative factorization of (39) and breaks
into 3 series direct form II second-order sections. The factored
transfer function (twelve coefficients) and the two precedence level

natrices wl and w2 are shown in (41) and (42):
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(r z Yar z7 %) (14r z Yer z72) (14r 2 tir 272
1 2 3 4 5 6
H(z) = T =3 ] =3 =1 = (41)
(1+c1z +czz )(l+c3z +c4z )(1+csz +csz )
1 0 0 0 0 0 0]
0 1 Q 0 0 0 0
“*lo o0 1 0 0o o0 o0 (42)

-

The third structure, the parallel form, corresponds to a partial-
fraction expansion of (39) and breaks into parallel direct form II first
and second-order sections. The expanded transfzr function (also 12
zoefficienty and the one precedence level wl are shown in (43) and (44): .

e Z-l+e z-z e Z-l (-] Z-l e Z-l e z-l
H(z) = —= 2 . 3 + 2 3 . 5 (43)

-1 -2 -
l+clz +czz 1+d3z
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2 1
0 0 -ds'o 0 o0 1
- (44)
l‘)l - s] 0 0 d‘.4 0 0 1
0 0 0 0 -ds 0 1
0 v} 0 Q 0 -d6 1l
e e e e e e o}

The fourth structure (hereii referred to as the ‘simple’ form)
is taken ‘directly from the original IQG compensator equations (3).
The parameters of ¢, I, X, L and G are taken to be the coefficients
of this structure. The form of the transfer function containing
these coefficients is shown in (45), and the modified state-space
representation of the structure (two precedence levels ) is shown

in (46):

H(z) = -G(z~3+KLATG) " & (45)



-30-

L} 1 -
v P 0
) -x - I, §oo
- . i 0
Ya¥y = oo P o (46)
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0000000 ! -1 N b
<4
[}
- G H 0 -

Table 1 presents data concerning the statistical wordlength
estimate for the four structures described above. For this system,
a five percent degradation was specified as the maximal deterioration

allowable in the measure of performance J.

SWL TWL
Structure (eqn) 2 bits (time) bits (time) coefficients
direct-1I(40) 3 26.68(.75) 27(1.18) 12
cascade {(42) 1 16.78(.81) 15(1.34) 12
parallel(44) 1 12.65(.71) 12(.77) 12
simple (46) 5 22.50(4.2) 21(.7¢) 47

TABLE 1l: SWL Results for the F8 Example

The effect of structure on coefficient wordlength is evident
from Table 1. The direct form II structure requires by far the most
bits, while the cascade and parallel forms require the least. Both of
these results are also typical of digital filters [7]. The simple

form structure derived directly from the LQG compensator equations
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requires an intermediate number of bits, but its most undesireable
property is its 47 coefficients, implying many hardware multipliers
or a long calculation time (low system sample rate).

As an estimate, the statistical wordlength for this LQG example
is between =-.32 and +1.78 bits of the true wordlength (TWL), With
this error range, the statistical wordlength estimate is quite useful
both for the comparison of different structures and for the deter-
mination of an acceptable design wordlength. For comparison, the
digital filter examined by Crochiere [14] has statistical wordlength
estimates (based on transfer function magnitude) that were between
1 and 3 bits conservative.

Before interpreting the computation times listed in parentheses
in Table 1, the method for determining the true wordlength must be
described. The performance index J is roughly a monotonic function in
the number of coefficient bits. This fact allows a binary search type
of algorithm to be used,re-evaluating the index J until the degradation
specification is met with a minimum number of bits. Unfortunately,
there are several problems that can arise. Pirst, when rounded ccef-
ficients produce an unstable closed-loop system, J can be below its J
value and even be negative. Even when this situation does not occur,
J is not necessarily montonic; certain valuesof J can be slightly
smaller then the J value using l more coefficient bit, These two pro-

blems can slow down (or 'tie up') the search algorithm used in
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determining a true required wordlength, and explains the 1.18 and
1.34 second computation times for the direct and cascade structures'
true wordlength.

Comparing the computation times for the statistical and true
wordlengths, we see that the statistical wordlength is somewhat
faster to compute in all cases except the simple form. This excep-
tion is due to the strong computational dependence of the statistical
estimate on the number of coefficients. However, as mentioned above,
this simple form would probably never be considered due to the

hardware implications of computing 47 multiplies per sample period.

8. Conclusion

This paper constitutes a firxrst step in examining the issues
involved in the digital implementation of control compensators. To
deal with these issues, we have sought to ally the fields of digital
signal processing and control and estimation, a fairly novel approach.

More specifically, this paper treats the statistical coefficient
wordlength issue for the 1QG compensator using fixed-peint arithmetic.
After reviewing the LQG design procedure and defining the notion of
an implementation structure, the statistical wordlength concept for
digital filters was described. 1In adapting this concept to a control
and estimation problem, we stressed the importance of selecting a
good performance measure. The index J was chosen for the LQG problem,

although the method readily extends to other measures (for example,
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the covariance matrix trace for Kalman filter problems). Finally
an efficient computational method was discussed and an illustrative
example presented.

Our results demonstrate the feasibility of using the statistical
approach in determining a sufficient LOG compensator coefficient
wordlength. One application of this technique would be in the com-
parison of different structures for implementing a design. In
addition, the statistical wordlength is also an accurate criterion
for selecting the wordlength once a specific structure is chosen.

Perhaps of more importance, the continuous 'closed-form' nature
of the statistical wordlength estimate makes it possible to synthesize
minimum coefficient wordlength structures in a straightforward manner.
Chan [15] hﬁs described such a technigue, using the modified state-
space notation, for digital filters. This idea can be easily extended
to the LOG statistical wordlength estimate presented in this paper. [20]

Finally, as a genzral technique, the statistical measure of coef-
ficient wcidlength can be applied to a variety of control and estimation
problems, using whatever measure of performance seems appropriate
(gain margin, phase margin, transfer function magnitude and phase, a
covariance matrix trace, etc.). Within the computational formulation
of sections4 and 5, suboptimal IQG compensators or Kalman filters can
be considered simply by including first derivative terms in the analysis
(with a moderate increase in computation). These and related questions

are considered in more detail in [20].
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