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Highlights 

 SLR is conducted using PRISMA approach and148 articles are selected and critically 

analyzed.  

 The results show the extent of digital technologies adoption in agriculture. 

 The potential benefits of digital technologies and roadblocks hindering their implementation 

in agriculture sector are identified and discussed. 

 The study will positively impact the research around agriculture 4.0. 
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Abstract 

Agriculture is considered one of the most important sectors that play a strategic role in ensuring food security. 

However, with the increasing world‘s population, agri-food demands are growing — posing the need to switch 

from traditional agricultural methods to smart agriculture practices, also known as agriculture 4.0. To fully 

benefit from the potential of agriculture 4.0, it is significant to understand and address the problems and 

challenges associated with it. This study, therefore, aims to contribute to the development of agriculture 4.0 by 

investigating the emerging trends of digital technologies in the agricultural industry. For this purpose, a 

systematic literature review based on Protocol of Preferred Reporting Items for Systematic Reviews and Meta-

Analyses is conducted to analyse the scientific literature related to crop farming published in the last decade. 

After applying the protocol, 148 papers were selected and the extent of digital technologies adoption in 

agriculture was examined in the context of service type, technology readiness level, and farm type. The results 

have shown that digital technologies such as autonomous robotic systems, internet of things, and machine 

learning are significantly explored and open-air farms are frequently considered in research studies (69%), 

contrary to indoor farms (31%). Moreover, it is observed that most use cases are still in the prototypical phase. 

Finally, potential roadblocks to the digitization of the agriculture sector were identified and classified at 

technical and socio-economic levels. This comprehensive review results in providing useful information on the 

current status of digital technologies in agriculture along with prospective future opportunities. 

Keywords: agriculture 4.0;  industry 4.0; digitization;  connectivity; internet of things; smart agricultural systems 

1. Introduction 

1.1. A global food security problem 

Food security is a multidimensional concept that alleviates hunger by ensuring a sustainable, nutritious 

food supply. It is characterized by a four-pillar model shown in Fig.1, with each pillar intrinsic to ensure food 

security [1].  

 

Fig. 1. Four-pillar model of food security by Food and Agriculture Organization of the United Nations. 

Due to several anthropogenic factors, such as rapid population growth, urbanization, industrialization, 

farmland loss, freshwater scarcity, and environmental degradation, food security is becoming a serious global 

issue. This is because these factors are also directly impacting agricultural industry which is a primary source of 

agri-food production around the world. It is anticipated that by 2050 global population will be increased from 

the current 7.7 billion to 9.2 billion, urban population will be rise by 66%, arable land will be declined by 

approximately 50 million hectares, global GHG emissions (source of CO2 – promote crop disease and pest 

growth) will be increased by 50%, agri-food production will be declined by 20%, and eventually, food demand 

will be increased by 59 to 98% – posing an imminent threat to food security and adequate food availability [2–

4]. To satisfy the increasing food demands, agricultural practitioners worldwide will need to maximise the 

agricultural productivity involving crop and livestock farming. In this review paper, the focus is on crop farming 

that involves cultivation of both food and cash crops. A typical agri-food value chain depicting three primary 

stages, namely pre-field (pre-plantation stage), in-field (plantation and harvesting stage), and post-field (post-

harvesting stage) involved in the production of agricultural products is shown in Fig.2. All the stages play a vital 
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role in the value chain but, in this review, the second stage ˝in-field˝ will be considered that involves several 

crop growing processes such as plowing, sowing, spraying, and harvesting, etc. These processes currently 

employ traditional agricultural practices that are labor-intensive, require arable land, time, and a substantial 

amount of water (for irrigation) – making it a challenge to produce enough agri-food [5]. A part of problem is 

also related to irregular use of pesticides and herbicides and misuse of available technology which cause harm to 

crop and eventually resulting in agricultural wastes [6]. These issues can be addressed by integrating 

sophisticated technologies and computer-based applications that ensure high crop yield, less water consumption, 

optimised pesticide/herbicide utilization, and enhanced crop quality. This is where the smart agriculture concept 

comes in. 

 
Fig. 2. Agriculture value chain: stages and main functions. 

1.2. Smart agriculture 

Industry 4.0, also known as the fourth industrial revolution, is revolutionizing, and reshaping every 

industry. It is a strategic initiative characterized by a fusion of emerging disruptive digital technologies such as 

Internet of Things (IoT), big data and analytics (BDA), system integration (SI), cloud computing (CC), 

simulation, autonomous robotic systems (ARS), augmented reality (AR), artificial intelligence (AI), wireless 

sensor networks (WSN), cyber-physical system (CPS), digital twin (DT), and additive manufacturing (AM) to 

enable the digitization of the industry [7]. The integration of these technologies in agriculture is sparking the 

next generation industrial agriculture, namely, agriculture 4.0 – also termed smart agriculture, smart farming, 

or digital farming [7].  

 
Fig. 3. The concept of "Smart Agriculture". 

Smart agriculture provides farmers with a diverse set of tools (shown in Fig.3) to address several 

agricultural food production challenges associated with farm productivity, environmental impact, food security, 

crop losses, and sustainability. For instance, with IoT-enabled systems consisting of WSNs, farmers can connect 

to farms remotely irrespective of place and time to monitor and control farm operations. Drones equipped with 

hyperspectral cameras can be used to collect data from heterogeneous sources on farmlands and autonomous 

robots can be used to support or accomplish repetitive tasks at farms. Data analytics techniques can be employed 

to analyze the gathered data with computer applications can be used to assist farmers in decision-making 

process. Likewise, a wide variety of parameters related to environmental factors, weed control, crop production 

status, water management, soil conditions, irrigation scheduling, herbicides, and pesticides, and controlled 

environment agriculture can be monitored and analyzed in smart agriculture to increase crop yields, minimize 

costs, enhance product quality, and maintain process inputs through the use of modern systems [8].  
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1.3. Research motivation and contribution 

The motivation for preparing this review stems from the fact that digital technologies in agricultural 

systems offer new strategic solutions for enhancing the efficiency and effectiveness of farms‘ production. 

Moreover, digital transformation provides a way forward to implement modern farming practices such as 

vertical farming (hydroponics, aquaponics and aeroponics), which has the potential to overcome food security 

problems. But there is a set of problems and limitations associated with this transformation from the technical, 

socio-economic, and management standpoint that must be death to fully exploit the potential of agriculture 4.0 

[9].There are number of studies that have discussed emerging trends in the development of agriculture 4.0 by 

providing succinct information on key applications, advantages, and corresponding research challenges of smart 

farming [9–18]. The research focus of these studies is limited to either explaining more generic technical aspects 

while paying attention to only one or few digital technologies, and/or enhancing agricultural supply chain 

performance, and/or developing agriculture 4.0 definition, and/or achieving sustainable agronomy through 

precision agriculture, and/or proposing a smart farming framework. Nevertheless, these studies do not involve 

explicit discussion on the tools and techniques used to develop different systems and maturity level of these 

systems. There is also a lack of studies considering modern soilless farms such as hydroponics, aquaponics and 

aeroponics (indoor/outdoor) and implications of digital technologies in these farms. Hence, it is necessary to 

analyse the evolution of agriculture 4.0 from different perspectives to stimulate the discussion in the area. This 

study aims to present a holistic overview of digital technologies implemented in second stage of agricultural 

production value chain (in-field) for different types of farms as mentioned in section 1.1. The main theoretical 

contribution of the study involves analysis and dissemination of the tools and techniques employed, the farm 

type, the maturity level of the developed systems, along with potential roadblocks or inhibiting factors in 

development of agriculture 4.0. The reflections presented in the review will support researchers and agricultural 

practitioner in future research on agriculture 4.0. 

1.4. Paper organization 

Following the introduction, the paper is structured as follows: Section 2 discusses the approach used to 

gather the relevant literature; then, Section 3 presents the statistical results obtained after a general analysis of 

the selected research studies; next, Section 4 provides a detailed overview of the core technologies used in the 

digitization of agriculture; after, Section 5 highlights the technical and socio-economic roadblocks to digital 

integration in agriculture; next, Section 6 outlines a discussion about the research questions followed by added 

value, considerations and future prospects related to agricultural digitization, and transition to agriculture 5.0; 

and lastly, Section 8 concludes the review. 

2. Research methodology 

A systematic literature review (SLR) is a tool used to manage the diverse knowledge and identify research 

related to a predetermined topic [19]. In this study, SLR is conducted to investigate the status of Industry 4.0 

technologies in agricultural industry. Particularly, cases are searched where the term ‗agriculture‘ appeared 

concurrently in the title, abstract, or keywords of an article with any of the ‗Industry 4.0 technologies‖ 

mentioned in section 1.2. Before conducting the SLR, a review protocol is defined to ensure a transparent and 

high-quality research process, which are the characteristics that make a literature review systematic [20]. The 

review protocol also helps to minimize bias by conducting exhaustive literature searches. This includes three 

steps: the formulation of the research questions, the definition of the search strategy, and the specification of 

inclusion and exclusion criteria. This paper uses a preferred reporting item for systematic reviews and meta-

analysis (PRISMA) approach to conduct SLR. PRISMA is an evidence-based minimum set of items that are 

used to guide the development process of systematic literature reviews and other meta-analyses [19].   

2.1. Review protocol 

 A review protocol (in Table 1) is defined before conducting the bibliographic analysis to identify, 

evaluate, and interpret results relevant to the research scope. First, research questions are formulated to provide 

insight into the analysis of published studies in the research area of interest from different dimensions. These 

questions need to be answered in the study. Next, the search strategy is defined, which helps identify appropriate 

keywords later in the search equation to identify the relevant information sources, such as academic databases 

and search engines that provide access to a massive amount of digital documentation. Three online research 

repositories are used to retrieve relevant studies: ScienceDirect
1
, Scopus

2
, and IEEE Xplore

3
. Finally, to refine 

the search results of each database, boundaries are set by predefining inclusion and exclusion criteria for further 

                                                           
1
 www.sciencedirect.com 

2
 www.scopus.com 

3
 ieeexplore.ieee.org 
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investigation and content assessments of selected publications. It involves, for instance, defining the time 

interval for the research process from 2011 to 2021 to limit the studies to those published in English, 

disregarding chapters of books and grey literature, such as reports and summaries of events and seminars. These 

last two steps of the review protocol allow the preliminary filtering of metadata sources and narrow down the 

scope of research. 

Table 1. Review protocol for systematic literature review. 

Review questions 

 

RQ1: Which Industry 4.0 technologies have been used in the literature for digitization of agriculture? 

RQ2: How and to what extent have these technologies been applied in the context of service type, 

tools and techniques used, system‘s maturity level, and farm type? 

RQ3: What are the primary roadblocks in implementation of Industry 4.0 technologies for smart 

farming? 

Study selection 

criteria 

Inclusion criteria: 

 Peer-reviewed journal articles and conference papers. 

 Studies published during the period between 2011 and 2021. 

 Studies should provide answers to the research questions. 

 The article must include the title, year, source, abstract, and DOI. 

 Literature focussing on application of Industry 4.0 technologies in crop plantation and 

harvesting activities particularly in-field processes.  

Exclusion criteria: 

 Summaries of events and seminars, book review, and editorial. 

 Literature focusing on application of Industry 4.0 technologies in livestock farming; pre-

field processes such as genetic development, seed development and seed supplying; post-

field stages such as crop distribution, food processing and consumption; and agri-food 

supply chain.   

 Studies published before 2011. 

 The publication is not available in full text. 

 The publication is not in English. 

Literature search Sources: Scopus, ScienceDirect, and IEEE Xplore for academic literature, citations in identified 

literature 

Search equation: (("agriculture*") AND ("Industry 4.0" OR "Digital Farming" OR "Intelligent 

Farming" OR "Smart Agriculture" OR " Agriculture 4.0" OR " Smart Farming" OR "Internet of 

Things" OR "IoT" OR "Cloud Computing" OR "Edge Computing" OR "Wireless Sensor Networks*" 

OR " Artificial Intelligence*" OR "Big Data*" OR "Data Analytics*" OR " Data Science*" OR "Cyber 

Physical System*" OR "Robotics*" OR "Computer Vision*" OR "Machine Learning*" OR "Deep 

Learning*" OR "Data Integration*"))   

 

Fig. 4. Four-step evaluation of literature search process (PRISMA). 

2.2. Evaluation process 

The evaluation of the literature search process is done in four stages: identification, screening, eligibility, 

and inclusion, as detailed by the PRISMA flow diagram shown in Fig.4. After initial metadata filtering through 

the application of search expression, a total of 3165 records are found (1690 from Scopus, 926 from 
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ScienceDirect, and 549 from IEEE Xplore), which are then consolidated for the removal of duplicate items in 

the identification stage. The number of publications after this step is reduced to 2876. In the screening stage, the 

titles and abstracts of the papers are analyzed, and only 498 papers are selected for integral reading. In the third 

stage, full-text screening of these articles is performed to verify their eligibility in relation to the objective of this 

paper, which is to answer the research questions mentioned in Table 1. Of the 498 papers, 137 are found to be 

relevant for this review. Another 11 are added through a cross-referencing approach, adding up to 148 papers 

selected in the final stage for further analysis. 

2.3. Threats to validity  

i. SLR replication: The presented SLR is susceptible to threats to validity because the current search is limited 

to only three online repositories. More publications could potentially be found if additional sources were 

explored. The process of SLR is described clearly in sub-sections 2.1 and 2.2, and hence, validity can be 

considered well addressed. However, in the case of replication of this SLR, it is possible that one can find 

slightly different publications. This difference would result from different personal choices during the 

screening and eligibility steps of PRISMA, but it is highly unlikely that the overall findings would change. 

ii. Search string: the search string used to find the relevant studies cover the whole scope of SLR, but there is a 

possibility that valuable studies might have been missed. Additional keywords and synonyms with a 

broader search might return more studies. 

3. Digitization trends in agriculture 

The year-wise distribution of the 148 articles from 2011 to 2021 is represented in Fig.5. Around 22% of 

the scientific publications in the last ten years were published in 2018. This reflects that the agricultural industry 

is making considerable progress in the context of the implementation of digital technologies, but the pace is still 

slow as compared to other domains such as healthcare, manufacturing, mining, automotive, energy, etc.,[15]. 

 

Fig. 5. Year-wise distribution of selected research studies from 2011 to 2021. 

The breakdown of these publications with respect to digital technologies (mentioned in sub-section 1.2) 

and targeted farm types is represented in Fig.6.  
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Fig. 6. Technology-wise distribution of the 148 selected research studies.  

The farm type refers to the crop farming method considered while developing an application or framework. 

For instance, the farming method can be soil-based or soilless. The soil-based farming category involves open-

air fields (traditional outdoor agricultural farms) and greenhouse farms (indoor). On the other hand, the soilless 

farming category involves modern farming practices such as aquaponics, aeroponics, and hydroponics (mostly 

indoor). The numbers at the top of the stacked column in Fig.6 indicate the total number of studies that have 

used the particular technology to develop a smart agriculture system, whereas different colors of columns 

indicate the respective farm types. Use cases are from these publications are analysed, and conclusions are 

drawn. For instance, it is found that autonomous robotics systems (including unmanned guided vehicles and 

unmanned aerial vehicles (drones)), internet of things, and machine learning appear to be the widely applied 

technologies in the agricultural domain in the last decade. The same illustration suggests that big data, wireless 

sensor networks, cyber-physical systems, and digital twins are the emerging areas in agriculture. Moreover, 

open-air farms are the most frequently considered in research studies (69%), contrary to indoor farms (31%). 

For soilless farming systems (aquaponics, aeroponics, and hydroponics), only 22 publications are found, which 

insinuates that these modern farming practices are still in their infancy. 

Likewise, services of each use case are identified and are classified under nine different service categories, 

namely: i) crop management, CM (Estimation/ prediction of crop yield/ growth rate/ harvesting period and seed 

plantation/ harvesting/ pollination/ spraying (fertilizer/ pesticide)); ii) crop quality management, CQM (fresh 

weight, green biomass, height, length, width, leaf density, piment content (chlorophyll) and phytochemical 

composition); iii) water and environment management, WEM (monitoring and control of flow rate, water level, 

water quality (nutrients), temperature, humidity, CO2, and weather forecast etc.); iv) irrigation management, IM 

(water stress detection and scheduling); v) farm management, FM (monitoring of farm operations, tracking and 

counting products, determining production efficiency, financial analysis, energy consumption analysis, 

technology integration and decisions implementation); vi) pest and disease management, PDM (pest 

identification and disease detection); vii) soil management, SM (moisture content, soil nutrients, fertilizer needs 

and application); viii) weed and unwanted vegetation management, WUVM (weed/unknown vegetation 

mapping, classification, and herbicides application); and ix) fruit detection and counting, FDC — as shown in 

Fig.7. These categories illustrate the role of different digital technologies in smart farming. Upon analysis, it is 

found that crop management parameters, such as crop yield prediction, growth rate estimation, or evaluation of 

harvesting period are the most frequently researched areas for agriculture 4.0 in the last decade (29%), whereas 

very little heed is paid towards soil management (2%), fruit detection and counting (2%), and crop quality 

management (3%). 
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Fig. 7. Service-wise distribution of selected research studies:  

The technology readiness level (TRL) of all the use cases is examined using European Union‘s TRL scale 

that partitions system‘s maturity level into three generic levels [21]. The first level is conceptual, that represents 

European TRL 1–2 (use case is in conceptual phase), the second level is the prototype, which means European 

TRL 3–6 (use case is working even without the complete planned functionality), and the third level is deployed, 

that includes European TRL 7–9 (use case is mature with all the possible functions). Fig.8 depicts the TRL of 

each use case developed in selected studies. It is observed that little progress has been made in advancing smart 

agricultural systems beyond the concept and prototype levels to the commercial level. For instance, most use 

cases (129) are at the prototype level. 

 
Fig. 8. Distribution of studies based on the service category and system's maturity level. 

4. Agriculture 4.0 enabling technologies 

This section provides critical insights towards answering RQ1 and RQ2 from Table 1. 

4.1. Internet of Things driven agricultural systems 

Internet of things (IoT) refers to a cosmos of interrelated computing devices, sensors, appliances, and 

machines connected with the internet, each having unique identities and capabilities for performing remote 

sensing and monitoring [21]. The reference architecture of IoT with six layers, namely perception layer 

(hardware devices), network layer (communication), middleware layer (device management and 

interoperability), service layer (cloud computing), application layer (data integration and analytics), and end-

user layer (user-interface), is shown in Fig.9. In the agricultural domain, IoT devices in the physical layer gather 

data related to environmental and crop parameters such as temperature, humidity, pH value, water level, leaf 

color, fresh leaf weight, etc. The transmission of this data takes place in the network layer, the design of which 

depends on the selection of suitable communication technologies relevant to the field size, farm location, and 
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type of farming method. For instance, ZigBee, LoRa, and Sigfox are widely used and employed in outdoor 

fields because they are cheaper and have low energy consumption and a good transmission range [22,23]. 

Despite being a secure technology, Bluetooth is only used in indoor farms as it offers a short transmission range 

[22]. Wi-Fi is not a promising technology for agricultural applications due to its high costs and high energy 

consumption [22]. RFID (radio frequency identification) and NFC (near field communication) technologies, on 

the other hand, are increasingly being implemented in agricultural systems for tracking agricultural products 

[24]. GPRS or mobile communication technology (2G, 3G, and 4G) are used for periodic monitoring of 

environmental and soil parameters. In addition, communication protocols mostly used in the agricultural 

scenarios are HTTP, WWW, and SMTP. Likewise, to ensure interoperability and system security to their 

context-aware functionalities, middleware HYDRA and SMEPP are mostly employed in agricultural systems 

[25]. To store data, cloud computing techniques are employed in the service layer. This data is then used in the 

application layer to build smart applications used by farmers, agriculture experts, and supply chain professionals 

to enhance farm monitoring capacity and productivity. 

 The integration of IoT in agriculture is meant to empower farmers with the decision tools and automation 

technologies that seamlessly integrate knowledge, products, and services to achieve high productivity, quality, 

and profit. A multitude of studies is performed and put forward concerning the incubation of the IoT concepts in 

the agricultural sector. The main findings of some of the studies are presented in Table 2. Multiple technological 

issues and architectural problems have been addressed through the development of IoT-based agricultural 

systems. But most of these systems are either in a conceptual stage or in a prototype form (not commercial) at 

the moment. Focus is mainly laid on-farm management, irrigation control, crop growth, health monitoring, and 

disease detection. Some of these studies have also explained IoT implementation in modern agricultural systems 

such as vertical farming (soilless farming - aquaponics, hydroponics, and aeroponics) and greenhouse farming 

(soil-based). Moreover, most studies have focused on addressing a specific problem. 

 

 

Fig. 9. Six-layered architecture of Internet of Things (IoT), (adapted)[26]. 

Table 2. IoT-driven agricultural systems. 

Use case 

No. 

Service 

category 
Tools and techniques Farm type Maturity level  Citations 

1. 

CM 

WSN, CC, and reinforcement learning Greenhouse (soil-based) Deployed [27] 

2. Sensors, actuators, and controllers Open-air Prototype [28] 

3. Sensors, controllers, and mobile app Greenhouse (soil-based) Prototype [29] 

4. Sensors, CC, BD analysis, and  ML Greenhouse (soil-based) Prototype [30] 

5. Sensors, and CC Aeroponics Prototype [31] 

6. Sensors, actuators, and control system Aeroponics Prototype [32] 

7. Weather boxes, sensors, and camera Open-air Prototype [33] 

8. CQM 
IoT devices, LED lights, and software 

application 
Hydroponics Prototype [34] 
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9. 

WEM 

Sensors, and CC Aquaponics Conceptual [35] 

10. Sensors, Arduino board, and database  Open-air Prototype [36] 

11. Sensors, Arduino board, and database Greenhouse (soil-based) Prototype [37] 

12. 
Sensors, CPS, edge, and cloud 

computing 
Hydroponics Prototype [38] 

13. 
Sensors, electronic components, and 

network 
Aquaponics Prototype [39] 

14. 
Sensors, Arduino, Raspberry Pi3, and 

deep neural network  
Hydroponics Prototype [40] 

15. Sensors, and database Aquaponics Prototype [41] 
16. Sensors, actuators, and CC Aquaponics Prototype [42] 

17. Sensors, controllers, and mobile app Aquaponics Prototype [43] 

18. 

IM 

WSN, fuzzy logic and neural network Open-air Prototype [44] 

19. 
Sensor information unit, MQTT, 
HTTP, and neural network 

Greenhouse (soil-based) Prototype [45] 

20. 

FM 

Sensors, controllers, web interface, 

and CC 
Open-air Conceptual [46] 

21. 
Sensors, controllers, cloud, and 

Android application 
Open-air Prototype [47] 

22. Sensors, IEEE, and GSM protocols Open-air Prototype [48] 

23. 

PDM 

Sensors, controllers, and image 

processing 
Open-air Prototype [49] 

24. 
Cloud, camera, controllers, and K-

mean clustering 
Open-air Prototype [50] 

25. WSN, controller, and cloud Open-air Prototype [51] 

26. 
WSN, cloud storage, and agricultural 

knowledge base  
Open-air Prototype [52] 

27. 
WSN, Hidden Markov Model, and 

SMS module 
Open-air Deployed [53] 

28. 
Sensors, Image processing, k-mean 
clustering, and support vector 

machine 

Open-air Prototype [54] 

4.2. Wireless sensor networks in agriculture 

Wireless sensor network (WSN) is regarded as a technology that is used within an IoT system. It can be 

defined as a group of spatially distributed sensors for monitoring the physical conditions of the environment, 

temporarily storing the collected data, and transmitting the gathered information at a central location [22]. The 

general architecture of WSN is shown in Fig.10. A WSN for smart farming is made up of numerous sensor 

nodes connected through a wireless connection module. These nodes have a variety of abilities (e.g., processing, 

transmission, and sensation) that allow them to self-organize, self-configure, and self-diagnose. There are 

different types of WSNs, which are categorized depending on the environment where they are deployed. These 

include terrestrial wireless sensor networks (TWSNs), wireless underground sensor networks (WUSNs), 

underwater wireless sensor networks (UWSNs), wireless multimedia sensor networks (WMSNs), and mobile 

wireless sensor networks (MWSNs) [55]. In agricultural applications, TWSN and UWSN are widely used. In 

TWSNs, the nodes are deployed above the ground surface, consisting of sensors for gathering the surrounding 

data. The second variant of WSNs is its underground counterpart – WUSNs, where sensor nodes are planted 

inside the soil. In this setting, lower frequencies easily penetrate through the soil, whereas higher frequencies 

suffer severe attenuation [56]. Therefore, the network requires a higher number of nodes to cover a large area 

because of the limited communication radius. Many research articles are available in the literature that discusses 

the use of WSN for different outdoor and indoor farms‘ applications such as irrigation management, water 

quality assessment, and environmental monitoring. A summary of some of these articles is given in Table 3. 

These studies have focused on developing WSNs architectures that are simplified, low cost, energy-efficient and 

scalable. Yet, various factors associated with WSNs need further attention, such as minimum maintenance, 

robust and fault-tolerant architecture, and interoperability.  

 

Fig. 10. General architecture wireless sensor network (WSN). 
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Table 3. Use of WSNs in agricultural systems. 
Use case 

No. 

Service 

category 
Tools and techniques used Farm type Maturity level Citation 

29. 

IM 

Soil-moisture and temperature sensors, web 

application, and photovoltaic panels 
Open-air Prototype [57] 

30. 
Electronic board, sensor board and GPRS 

board. 
Open-air Prototype [58] 

31. Wireless sensor nodes, and Zigbee Open-air Conceptual [59] 

32. Moisture sensors, actuators, and GUI Greenhouse (soil-based) Prototype [60] 

33. 

WEM 

Wireless communication, temperature, and 

humidity sensors 
Greenhouse (soil-based) Prototype [61] 

34. 
Sensor nodes, gateway unit, database, 
ordinary kriging spatial interpolation (OKSI) 

algorithm 

Hydroponics Prototype [62] 

35. 
Microcontrollers, wireless radio frequency 
and  sensor nodes 

Greenhouse (soil-based) Prototype [63] 

36. 
Wireless sensor nodes, communication 

network, and mobile application 
Aquaponics Prototype [64] 

37. 
Arduino, wireless module with temperature, 
relative humidity, luminosity, and air 

pressure sensors 

Any farm Prototype [65] 

38. Zigbee, Wi-fi and sensors  Hydroponics Prototype [66] 

4.3. Cloud computing in agriculture 

According to the National Institute of Standard and Technologies (NIST), cloud computing (CC) is defined 

as a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable 

computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned 

and released with minimal management effort or service provider interaction [67]. The main architecture of CC 

shown in Fig.11 is comprised of four layers: datacenter (hardware), infrastructure, platform, and application 

[68]. Each of these layers is linked with specific cloud service models, which are classified as software as a 

service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS). Cloud computing has gained 

great attention over the past decade in the agriculture sector because it provides: 1) inexpensive storage services 

for data gathered from different domains through WSNs and other preconfigured IoT devices, 2) large-scale 

computing systems to perform intelligent decision-making by transforming this raw data into useful knowledge, 

and 3) a secure platform to develop agricultural IoT applications [69]. In combination with IoT and WSN, CC is 

employed to develop different agricultural applications, most of which are presented in Tables 2 and 3. CC 

technology is also used to create operational farm management systems (FMSs) to support farmers and farm 

managers in efficient monitoring of farm operations. Table 4 presents the salient features of some of these 

FMSs. Another topic of interest that is being explored in global research is related to the traceability of agri-

product quality [70]. But only preliminary research has been attempted to explore traceability compliance with 

standards of food safety and quality.  

 

Fig. 11. Architecture of cloud computing, adapted from [68]. 

Table 4. Cloud computing-based farm management systems. 

Use case No. 
Service 

category 
Tools used Farm type Maturity level Citation 

39. FM Fuzzy logic, Java, HTML, Apache Greenhouse (soil-based) Conceptual [71] 
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Karaf, etc.; 

40. RFID, and mobile app Open-air Deployed [72] 

41. 
MySQL, financial analysis  tool and 

mobile app 
Open-air Conceptual [73] 

42. 
Self-leveling scale, control box, 

LCD display, and RFID tags 
Open-air Conceptual [74] 

The cloud-based agricultural systems have the potential to solve problems of increasing food demands, 

environmental pollution caused by excessive use of pesticides and fertilizers, and the safety of agricultural 

products. These FMSs, however, do not have the capability to support run-time customization in relation to 

distinct requirements of farmers. Moreover, because most farm data is usually fragmented and dispersed, it is 

difficult to record farm activities properly in current FMSs applications [75].   

4.4. Edge/fog computing in agriculture 

The rapid development of IoT has led to the explosive growth of sensors and smart devices, generating 

large volumes of data. The processing and analysis of such an enormous amount of data in real-time are 

challenging because it increases the load on the cloud server and also reduces the response speed. Simply using 

a cloud server is not able to provide real-time response while handling such a large data set. Additionally, IoT 

applications are sensitive to network latency because they require a constant exchange of information between 

devices and the cloud, making CC unfeasible to handle these applications [23]. The emergence of the edge 

computing concept can resolve the problems associated with CC. This new computing model deploys 

computing and storage resources (such as cloudlets or fog nodes) at the edge of the network closer to data 

sources such as mobile devices or sensors. This way, it can facilitate real-time analytics while keeping data 

secure on the device [23]. Edge computing offers intriguing possibilities for smart agriculture, but the 

applications of this technology are only in their infancy in agricultural systems. Hence, few research studies are 

available in this area; see Table 5. Most of the edge computing-based agricultural systems discussed in these 

studies are prototypical and address a limited selection of problems in various agricultural domains. So far, 

interoperability and scalability issues have not received sufficient consideration.  

Table 5. Edge computing-based agricultural systems. 

Use case 

No. 

Service 

category 
Edge computing techniques used Farm type Maturity level Citation 

43. 

FM 

Computation offloading Aeroponics Prototype [76] 

44. Computation offloading (automated control) Hydroponics Prototype [77] 

45. Computation offloading (alert generation) Any farm Prototype [78] 

46. PDM Computation offloading Open-air Prototype [79] 

47. 
WEM 

Latency reduction Any farm Prototype [80] 

48. Computation offloading Aquaponics Prototype [81] 

49. SM Computation offloading (data analysis) Open-air Prototype [82] 

4.5. Autonomous robot systems in agriculture 

      Autonomous robot systems (ARS) are intelligent machines capable of performing tasks, making decisions, 

and acting in real-time, with a high degree of autonomy (without external influence or without explicit human 

intervention) [83]. Interest in agricultural ARS (AARS) has grown significantly in recent years because of their 

ability to automate some practices in outdoor and indoor farms - including seeding, watering, fertilizing, 

spraying, plant monitoring and phenotyping, environmental monitoring, disease detection, weed and pest 

controlling, and harvesting [15]. The agricultural robots use a combination of emerging technologies such as 

computer vision, WSNs, satellite navigation systems (GPS), AI, CC, and IoT, thereby facilitating the farmers to 

enhance productivity and quality of agricultural products. AARS in smart farming can be mobile AARS, which 

can move throughout the working field, or fixed AARS [84]. Mobile AARSs are further classified into 

unmanned ground vehicles (UGVs) and 2) unnamed aerial vehicles (UAVs), which are explained in the 

following sections.  

4.5.1. Unmanned ground vehicles in agriculture 

      Unmanned ground vehicles (UGVs) are agricultural robots that operate on the ground without a human 

operator. The main components of UGVs generally include; a platform for locomotive apparatus and 

manipulator, sensors for navigation, a supervisory control system, an interface for the control system, the 

communication links for information exchange between devices, and a system architecture for integration 

between hardware and software agents [85]. The control architecture of UGV can be remote-operated 

(controlled by a human operator via the interface) or fully autonomous (operated without the need for a human 

controller based on artificial intelligence technologies) [85]. Likewise, locomotive systems can be based on 

wheels, tracks, or legs [85]. Despite  high ground adaptability, intrinsic omnidirectionality and soil protection of 
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legged robots, they are uncommon in agriculture. However, when combined with wheels (wheel-legged robots), 

these robots offer a disruptive locomotion system for smart farms. In addition to their needed characteristics for 

infield operations, UGV should fulfill certain requirements such as small size, maneuverability, resilience, 

efficiency, human-friendly interface, and safety – to enhance crop yields and farm productivity. Table 6 

summarizes the diverse range of UGVs designed for agricultural operations.  

Table 6. Different types of UGVs designed for performing agricultural tasks. 

Use case 

No. 

Service 

category 

Primary 

function 
Tools and techniques used 

Locomotion 

system 

Farm 

type 

Maturity 

level 
Citation 

50. 

WUVM 
Weed 

control 

Modules (Vision, spray, mechanical 

weeding), and classification 
algorithms  

Four-wheel-

steering system 
(4WS). 

Open-air Prototype [86] 

51. 

Vision system with Kinect v2 

sensor, and random sample 

consensus algorithm 

Four-wheel-
drive (4WD) 

Open-air Prototype [87] 

52. 

PDM 
 

Pesticides 

spraying 

RGB camera, HMI, and LiDAR 
Four-wheel-

drive (4WD) 
Open-air Prototype [88] 

53. RGB camera,  and laser  
Four-wheel-

drive (4WD) 
Open-air Prototype [89] 

54. 
Crop 

treatment 

Hyperspectral cameras, thermal and 

infrared detecting systems.  

Four-wheel 
steering system 

(4WS) 

Open-air Prototype [90] 

55. 

CM 

Seed 

sowing 

Ultrasonic sensor, and PI controller 
Caterpillar 

treads 
Open-air Prototype [91] 

56. 
Ultrasonic sensor, GSM module and 

actuators. 

Four-wheel-

drive (4WD) 
Open-air Prototype [92] 

57. 
Artificial 

pollination 
Sensing module, pollinator system, 
RGB camera and odometry. 

Four-wheel-
drive (4WD) 

Open-air Prototype [93] 

58. 

Harvesting 

RGB-D camera and RCNN 
Four-wheel-

steering system 

(4WS). 

Open-air Prototype [94] 

59. RGB camera and RCNN 
Four-wheel-

drive (4WD). 
Open-air Prototype [95] 

Most of the agricultural robotic systems presented above have a 4WD locomotive system because it offers 

ease of construction and control. The drawback of 4WD is that the wheels are strongly affected by terrains 

containing stone elements and/or cavities [85]. Hence, it is significant to explore other mechanisms, such as 

legged or wheel-legged locomotive systems. Some robots have computer vision systems, but due to the 

difficulty of developing an accurate and reliable system that replaces manual labor, most of these robots are 

built with a low-cost computer vision system, that is, using conventional RGB cameras. Moreover, most of the 

systems mentioned above are still in the research phase, with no commercial use on a large scale. 

4.5.2. Unmanned aerial vehicles in agriculture 

        Unmanned aerial vehicles (UAVs) or aerial robots are aircrafts with no human pilot on board. Depending 

on the type of technology incorporated to fly (wing structure) and autonomy level, there is a wide variety of 

UAVs [96]. For instance, according to wing type, UAVs can be fixed-wing (planes), single-rotor (helicopter), 

hybrid system (vertical takeoff and landing), and multirotor (drone). Among these, drones (multi-rotor 

technology) which are lifted and propelled by four (quadrotor) or six (hex-rotor) rotors, have become 

increasingly popular in the agriculture sector due to their mechanical simplicity in comparison to helicopters, 

which rely on a much more sophisticated plate control mechanism [97]. Similarly, according to autonomy level, 

UAVs can be either teleoperated in which the pilot provides references to each actuator of the aircraft so as to 

control it, in the same manner, an onboard pilot would, or tele-commanded in which the aircraft relies on an 

automatic controller on board that is in charge of maintaining a stable flight [96]. Equipped with the appropriate 

sensors (vision, infrared, multispectral, and hyperspectral cameras, etc.), agricultural UAVs allow farmers to 

obtain data (vegetation, leaf area, and reflectance indexes) from their fields to study dynamic changes in crops 

that cannot be detected by scouting the ground [98]. This data permits farmers to infer information related to 

crop diseases, nutrient deficiencies, water level, and other crop growth parameters. With this information, 

farmers can plan possible remedies (irrigation, fertilization, weed control, etc.). Table 7 reviews some of the 

UAV-based systems used for different agricultural operations.  
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Table 7. Different UAV based systems developed for performing different agricultural operations. 

Use case 

No. 

Service 

category 
Primary function UAV type  

Cameras/ 

sensors  

Flight 

altitude 

(m) 

Farm 

type 

Maturity 

level 
Citation 

60. 

CQM 

Vegetation 
monitoring 

Hexacopter  

Hyper-

spectral 

camera 

30 Open-air Prototype [99] 

61. 
Biomass 

monitoring 
Octocopter RGB-sensor 50 Open-air Prototype [100] 

62. 

CM 

Real-time growth 

monitoring 
Quadcopter 

Digital 

camera 
100 Open-air Prototype [101] 

63. 

Photosynthetic 

active radiation 

mapping 

Fixed wing 

Multi-

spectral 

camera 

150 Open-air Prototype [102] 

64. Remote sensing Helicopter 

Multi-

spectral 

camera 

15-70 Open-air Prototype [103] 

65. 
Remote sensing 

and mapping 
RC plane 

Digital 

camera 
100-400 Open-air Prototype [104] 

66. Rice pollination Helicopter 
Wind speed 

sensor 

1.15, 1.23, 

1.33 
Open-air Prototype [18] 

67. 
Droplet 
distribution 

estimation 

Quadcopter 
Digital 
canopy 

imager 

3.5, 4, 4.5 Open-air Prototype [105] 

68. UREA spraying Quadcopter 
Multi and 
hyper spectral 

cameras  

Few meters Open-air Prototype [106] 

69. Pesticide spraying Quadcopter RF module 5, 10, 20 Open-air Prototype [107] 

70. 
Pesticide spray 

application 

Helicopter Digital 

camera 
3-4 Open-air Prototype [108] 

71. 
Automatic spray 

control system 

Helicopter Image 

transmitter 
5, 7, 9 Open-air Prototype [109] 

72. 

WUVM 

Multi-temporal 

mapping of weed 
Quadcopter 

Digital 

camera 
30, 60 Open-air Prototype [110] 

73. 
Weed mapping 

and control 

Digital 

camera 
30 Open-air Prototype [111] 

74. 

IM 

Water status 

assessment 
Fixed wing 

Multi-

spectral 

camera 

200 Open-air Prototype [112] 

75. 
Water stress 
detection 

Fixed wing 

Micro-hyper 

spectral 

camera 

575 Open-air Prototype [113] 

76. 
Water stress 

investigation 
Fixed wing 

Digital 

camera 
90 Open-air Prototype [114] 

77. 

Assessing the 

effects of saline 

reclaimed waters 
and deficit 

irrigation on Citrus 

physiology 

Fixed wing 
Digital 
camera 

100 Open-air Prototype [115] 

78. 

Water status and 

irrigation 

assessment 

Quadcopter 

Multi-

spectral 

camera 

30 Open-air Prototype [116] 

79. 

PDM 

Phylloxera disease 

detection 
Hexacopter 

RGB and 

multi-spectral 

cameras 
 

60, 100 Open-air Prototype [117] 

80. 
Citrus greening 

disease detection 
Hexacopter 

Multi-

spectral 
camera 

100 Open-air Prototype [118] 

Most of the systems mentioned above are still in the research phase, with no commercial use on a large 

scale. Other problems with these UAVs are associated with battery and flight time [96]. At the moment, lithium-

ion batteries are being used because their capacity is larger than that of conventional batteries. But an increase in 

battery capacity increases the drone weight, and now research is undergoing to address this issue. In addition, 

the existing UAVs have complex user interfaces, and only experts can use them to perform agricultural tasks. 

By improving the user interface making it human-centered with multimodal feedback will allow people who are 

older or unfamiliar with UAV technology to control it more easily.  
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4.6. Big data and analytics in agriculture 

 Rapid developments in IoT and CC technologies have increased the magnitude of data immeasurably. 

This data, also referred to as Big Data (BD), includes textual content (i.e., structured, semi-structured, and 

unstructured), and multimedia content (e.g., videos, images, audio) [119]. The process of examining this data to 

uncover hidden patterns, unknown correlations, market trends, customer preferences, and other useful 

information is referred to as big data analytics (BDA). Big data is typically characterized according to five 

dimensions defined by five Vs, which are displayed in Fig.12 [120]. The paradigm of BD-driven smart 

agriculture is comparatively new, but the trend of this application is positive as it has the capacity to bring a 

revolutionary change in the food supply chain and food security through increased production. Agricultural big 

data is usually generated from various sectors and stages in agriculture, which can be collected either from 

agricultural fields through ground sensors, aerial vehicles, and ground vehicles using special cameras and 

sensors; from governmental bodies in the form of reports and regulations; from private organizations through 

online web services; from farmers in the form of knowledge through surveys; or from social media [120]. The 

data can be environmental (weather, climate, moisture level, etc.), biological (plant disease), or geo-spatial 

depending on the agricultural domain and differs in volume, velocity, and formats [121]. The gathered data is 

stored in a computer database and processed by computer algorithms for analyzing seed characteristics, weather 

patterns, soil properties (like pH or nutrient content), marketing and trade management, consumers‘ behavior, 

and inventory management. A variety of techniques and tools are employed to analyze big data in agriculture. A 

summary of some of the studies is given in Table 8. Machine learning, cloud-based platforms, and modeling and 

simulation are the most commonly used techniques. Particularly, machine learning tools are used in prediction, 

clustering, and classification problems. Whereas cloud platforms are used for large-scale data storing, 

preprocessing, and visualization. There are still many potential areas that are not adequately covered in existing 

literature, where BDA can be applied to address various agricultural issues. For instance, these include data-

intensive greenhouses and indoor vertical farming systems, quality control and health monitoring of crops in 

outdoor and indoor farms, genetic engineering, decision support platforms to assist farmers in the design of 

indoor vertical farms, and scientific models for policymakers to assist them in decision-making regarding the 

sustainability of the physical ecosystem. Lastly, most systems are still in the prototypical stage. 

   

Fig. 12. Five dimensions of "Big Data". 

Table 8. Big data tools and services in agriculture. 

Use case 

No. 

Service 

category 
Tools and techniques used Big data source Farm type Maturity level Citation 

81. WEM 
Crop modelling and simulation, 

geospatial analysis 

Weather station, 

historical databases 
Open-air Conceptual [121] 

82. 
CM 

Clustering, prediction, and 
classification 

Sensor, historical, 
and farmer data 

Open-air Conceptual [122] 

83. Support vector machine Sensor data Open-air Conceptual [123] 

84. 
IM 

Cloud-based application.  Sensor data Hydroponics Prototype [124] 

85. 
Cloud-based platform, and web 

services 

Sensor data, 

industry standards 
Open-air Conceptual [125] 
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4.7. Artificial intelligence in agriculture 

 Artificial intelligence (AI) involves the development of theory and computer systems capable of 

performing tasks requiring human intelligence, such as sensorial perception and decision-making [126]. 

Combined with CC, IoT, and big data, AI, particularly in the facet of machine learning (ML) and deep learning 

(DL), is regarded as one of the key drivers behind the digitization of agriculture. These technologies have the 

potential to enhance crop production and improve real-time monitoring, harvesting, processing, and marketing 

[127]. Several intelligent agricultural systems are developed that use ML and DL algorithms to determine 

various parameters like weed detection, yield prediction, or disease identification. These systems are discussed 

in the next two sub-sections. 

4.7.1. Machine learning in agriculture 

Machine learning (ML) techniques are broadly classified into three categories: 1) supervised learning 

(linear regression, regression trees, non-linear regression, Bayesian linear regression, polynomial regression, and 

support vector regression), 2) unsupervised learning (k-means clustering, hierarchal clustering, anomaly 

detection, neural networks (NN), principal component analysis, independent component analysis, a-priori 

algorithm and singular value decomposition (SVD)); and 3) reinforcement learning (Markov decision process 

(MDP) and Q learning) [128]. ML techniques and algorithms are implemented in the agriculture sector for crop 

yield prediction, disease, and weed detection, weather prediction (rainfall), soil properties estimation (type, 

moisture content, pH, temperature, etc.), water management, determination of the optimal amount of fertilizer, 

and livestock production and management [129]. Table 9 presents a list of publications where different ML 

algorithms are utilized for various agricultural applications. From the analysis of these articles, ―crop yield 

prediction‖ is a widely explored area, and linear regression, neural network (NN), random forest (RF), and 

support vector machine (SVM) is the most used ML techniques to enable smart farming. The presented use 

cases are still in the research phase with no reported commercial usage at the moment. Moreover, it is also found 

that AI and ML techniques are sparsely explored in the greenhouse and indoor vertical farming systems, 

particularly hydroponics, aquaponics, and aeroponics. There are only a few publications available summarized 

in the same table where ML techniques are employed. Considering the digital transformation's cyber-security 

and data privacy challenges, new approaches such as federated learning and privacy-preserving methods are 

being developed to enable digital farming [130]. These approaches build ML models from local parameters 

without sharing private data samples, thus mitigating security issues. 

Table 9. Machine learning-based agricultural systems. 

Use case 

No. 

Service 

category 
Data sources  Algorithms used Farm type 

Maturity 

level 
Citation 

86. 

CM 

Yield maps, climate, and 

temporal data. 

SVM with radial basis 

functions 
Open-air Prototype [131] 

87. 
Vegetation dataset from 

Landsat 8 OLI. 

Boosted regression tree, RF 
regression, support vector 

regression, and Gaussian 

process regression  

Open-air Prototype [132] 

88. 
Historical soil and rainfall 

data 
Recurrent neural network Open-air Prototype [133] 

89.  Plot-scale wheat data 
Multiple linear regression 
and RF 

Open-air Prototype [134] 

90. 
Temperature and rainfall 

records 
Artificial neural network Open-air Prototype [135] 

91. 
Soil data, and satellite 
imagery  

Counter-propagation 
artificial neural networks 

Open-air Prototype [136] 

92. Rainfall records RF Open-air Prototype [137] 
93. Field survey data of 64 farms SVM, RF, decision tree Open-air Prototype [138] 

94. Tap water samples RF Hydroponics Prototype [139] 

95. 

PDM 

Images from a strawberry 

greenhouse 
SVM 

Greenhouse 

(soil-based) 
Prototype [140] 

96. Sensor data Least squares SVM  Open-air Prototype [141] 

97. Sensor data Decision trees Aquaponics Prototype [142] 

98. 

WUVM 

Image data  RF Open-air Prototype [143] 

99. 
Images from a university 
farm. 

SVM Open-air Prototype  [144] 

100. 

SM 

140 soil samples from top 

layer 
 

Least squares support 

vector machines 
Open-air Prototype [145] 

101. 
Humidity data from Radarsat-

2 

Extreme learning machine-

based regression  
Open-air Prototype [146] 

102. WEM Rainfall data  

Bayesian linear regression, 

boosted decision tree and 
decision forest regression, 

Open-air Prototype [147] 
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neural network regression 

103.  
Air temperature, wind speed, 

and solar radiation data  

Artificial neural network 

and SVM 

Greenhouse 

(soil-based) 
Prototype [148] 

4.7.2. Deep learning in agriculture 

Deep learning (DL) represents the extension of classical ML that can solve complex problems (predictions 

and classification) particularly well and fast because more ―depth‖ (complexity) is added into the model. The 

primary advantage of DL is feature learning which involves automatic extraction of features (high-level 

information) from large datasets [149]. Different DL algorithms are convolutional neural networks (CNNs), 

long short term memory (LSTM) networks, recurrent neural (RNN) networks, generative adversarial networks 

(GANs), radial basis function networks (RBFNs), multilayer perceptron (MLPs), feedforward artificial neural 

network (ANN), self-organizing maps (SOMs), deep belief networks (DBNs), restricted Boltzmann machines 

(RBMs), and autoencoders. A detailed description of these algorithms, popular architectures, and training 

platforms is available at various sources [150]. Fig.13 illustrates an example of DL architecture of CNN [151]. 

In the agriculture sector, DL algorithms are mostly used to solve problems associated with computer vision 

applications that target the prediction of key parameters, such as crop yields, soil moisture content, weather 

conditions, and crop growth conditions; the detection of diseases, pests, and weed; and the identification of leaf 

or plant species [152]. Computer vision is an interdisciplinary field that has been gaining huge amounts of 

traction in recent years due to the surge in CNNs. It offers methods and techniques that allow the processing of 

digital images accurately and enables computers to interpret and understand the visual world [153]. A summary 

of agricultural applications using DL and computer vision techniques is given in Table 10. Among all the DL 

algorithms, CNNs or Convet and its variants are the most used algorithms in agricultural applications. The 

variants of CNN are region-based CNNs (RCNN), Fast-RCNN, Faster-RCNN, YOLO, and Mask-RCNN, 

among which the first four are mostly used to solve object detection problems. Mask-RCNN, on the other hand, 

is used to solve instance segmentation problems. The reader could refer to the existing bibliography for a 

detailed description of these algorithms and their applications [152]. Few studies have also used other DL 

techniques. Talking about datasets, most DL models are trained using images, and few models are trained using 

sensor data gathered from fields. This shows that DL can be applied to a wide variety of datasets. It is also 

observed that most of the work is done on outdoor farms, whereas next-generation farms (environment-

controlled) are not extensively explored. Though DL has the potential to enable digital farming, most systems 

are still in the prototype phase. Additionally, the new challenges imposed by cyber-security and privacy issues 

require optimization of current DL and computer vision approaches. 

 

Fig. 13. Example of CNN architecture. 

Table 10. Deep learning-based agricultural systems. 

Use case 

No. 
Service category Data sources Algorithms used Farm type 

Maturity 

level 
Citation 

104. CM Satellite and weather data LSTM network Open-air Prototype [154] 
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105. 
Rice yield data, meteorology, 

and area data (81 counties). 

Back-Propagation 

neural networks 

and RNN 

Open-air Prototype [155] 

106. Commercial fields‘ images CNN  Open-air Prototype [156] 
107. Aerial orthoimages  Faster RCNN  Open-air Prototype [157] 

108. 

Historical yields and 

greenhouse environmental 
parameters. 

Temporal CNN and 

RNN. 

Greenhouse (soil-

based) 
Prototype [158] 

109. Lettuce images from farm. CNN  
Greenhouse (soil-

based) 
Prototype [159] 

110. WEM 
Soil moisture data, and daily 

meteorological data  
RBMs Open-air Prototype [160] 

111. CQM 
Images from the farm and 

Google search engine 
Mask-RCNN Aquaponics Prototype [161] 

112.  WUVM 
Weed and crop species images 

from 6 different datasets. 
CNN  Open-air Prototype [162] 

113. 

PDM 

Images collected from 

Internet. 
CNN  Open-air Prototype [163] 

114. Public dataset  Deep CNN Open-air Prototype [164] 

115. Images from camera. 

Faster R-CNN, and 

single shot 

multibox detector  

Open-air Prototype [165] 

116. 
Dataset with images of 

Walnut leaves 
CNN  Open-air Prototype [166] 

117. 

FDC  

RGB and multi-modal images  Faster R-CNN Open-air Prototype [167] 

118. 
Images of oranges and green 
apples 

CNN  Open-air Prototype [168] 

119. 
Images of  ripe young and 
expanding apples. 

YOLO-V3 Open-air Prototype [169] 

4.8. Agricultural decision support systems 

A decision support system (DSS) can be defined as a smart system that supports decision-making to 

specific demands and problems by providing operational answers to stakeholders and potential users based on 

useful information extracted from raw data, documents, personal knowledge, and/or models [170]. DSS can be 

data-driven, model-driven, communication-driven, document-driven, and knowledge-driven. The salient 

features of these DSSs are available at following source [171]. Fig.14 presents the general architecture of a DSS, 

consisting of four fundamental components, each having its specific purpose.  

 

Fig. 14. The general architecture of decision support system. 

Due to the evolution of agriculture 4.0, the amount of farming data has increased immensely. To transfer 

this heterogenous data into practical knowledge, platforms like agricultural decision support systems (ADSS) 

are required to make evidence-based and precise decisions regarding farm operation and facility layout [172]. 

Over the past few years, ADSSs are gaining much attention in the agriculture sector. A number of ADSSs have 

been developed that focus on a variety of agricultural aspects, such as farm management, water management, 

and environmental management. Table 11 presents a summary of the ADSSs found in the literature. From this 

analysis, most ADSSs have been found to not consider expert knowledge, which is highly valuable as it allows 

to development of systems as per user‘s needs. The other reported issues with some of these ADDSs are 

complex GUIs, inadequate re-planning components, a lack of prediction and forecast abilities, and a lack of 

ability to adapt to uncertain and dynamic factors. It is also worth noting that all the ADSSs are for outdoor 

agricultural systems and are in the research phase. In comparison, the application of ADSS in indoor soilless 

farming is still very much unexploited. 
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Table 11. Agricultural decision support systems. 

Use case 

No. 

Service 

category 
Data sources Tools and techniques used Maturity level Farm type Citation 

120. 
IM 

Environmental and 
crop data 

Partial least squares regression and 

adaptive neuro fuzzy inference 

system 

Prototype Open-air [173] 

121. Crop and site data Fuzzy C-means algorithm Prototype Open-air [174] 

122. 

WEM 

Meteorological 

and crop data 

Geographical information system 

(GIS)  
Prototype Open-air [175] 

123. 

Environmental, 

economic, and 

crop data 

VEGPER, ONTO, SVAT-CN, 
EROSION, GLPROD 

Prototype Open-air [176] 

124. 

FM 

Environmental and 

crop-related data 
B-patterns optimization algorithm Prototype Open-air [177] 

125. 
Environmental and 
crop data 

Agent-based modeling, SVM and 
decision trees  

Prototype Aquaponics [178] 

126. 
Environmental and 

crop data 
Object-oriented methodology Prototype 

Greenhouse 

(soil-based) 
[179] 

127. 

PDM 

Crop data Excel based algorithm Prototype 
Greenhouse 
(soil-based) 

[180] 

128. 
Environmental 

data 
Rule-based approach Conceptual 

Greenhouse 

(soil-based) 
[181] 

129. 
Environmental 

data 

Rule-based approach  

 
Prototype 

Greenhouse 

(soil-based) 
[182] 

130. WUVM 
10 years weather 
data and a set of 

vegetation index. 

Rule-based application Prototype Open-air [183] 

4.9. Agricultural cyber-physical systems  

As one of the main technologies of Industry 4.0, a cyber-physical system (CPS) refers to an automated 

distributed system that integrates physical processes with communication networks and computing 

infrastructures [184]. There are three standard CPS reference architecture models: namely, 5C, RAMI 4.0, and 

IIRA, and their detailed description is available at following source [185]. Among these, the 5C is a well-known 

reference model with widespread usage. The architecture of 5C consists of five levels which are represented in 

Fig.15. CPS benefits from a variety of existing technologies such as agent systems, IoT, CC, augmented reality, 

big data, and ML [186]. Its implementation ensures scalability, adaptability, autonomy, reliability, resilience, 

safety, and security improvements. 

 
Fig. 15. 5C architecture for cyber-physical systems, (adapted)[187]. 

Agricultural field is regarded as one of the complex domains that can benefit from CPS technology. 

Agricultural cyber-physical systems (ACPSs) use advanced electronic technologies and agricultural facilities to 

build integrated farm management systems that interact with the physical environment to maintain an optimal 

growth environment for crops [188]. ACPSs collect the essential and appropriate data about climate, soil, and 

crops, with high accuracy and use it to manage watering, humidity, and plant health, etc. A variety of ACPSs 

has been developed for the management of different services, and their summary is given in Table 12. Looking 

at these ACPSs, most systems are still at the prototype and conceptual level. Moreover, most studies are 

conducted for outdoor farms, with only a few works published related to soil-based greenhouse systems. No 

study is found that is relevant to indoor soilless farming systems. ACPSs has attracted significant research 
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interest because of their promising applications across different domains; deploying CPS models in real-life 

applications is still a challenge as it requires proper hardware and software [189]. Moreover, particular attention 

should be given to autonomy, robustness, and resilience while engineering ACPSs in order to handle the 

unpredictability of the environment and the uncertainty of the characteristics of agricultural facilities. There are 

multiple factors (humans, sensors, robots, crops, and data, among others) that impact ACPSs. To ensure a 

smooth operation while avoiding conflicts, errors, and disruptions, ACPSs need to be designed carefully and 

comprehensively.  

Table 12. Agricultural cyber-physical systems. 

Use case No. 
Service 

category 
Tools and techniques used 

Maturity 

level 
Farm type Citation 

131. 

IM 

Integrated open geospatial web service Prototype Open-air [190] 

132. Moisture sensors, and solenoid valves Prototype 
Greenhouse 

(soil-based) 
[191] 

133. 
Sensor and sink nodes, network, and control 
centre 

Prototype 
Greenhouse 
(soil-based) 

[188] 

134. 
Transceiver modules, multi-sensor array and 

weather forecasting system 
Prototype Open-air [186] 

135. 

PDM 

ToxTrac and NS2 simulator Conceptual Open-air [192] 

136. Sensors and cameras Prototype 
Greenhouse 

(soil-based) 
[193] 

137. Unmanned aircraft system Conceptual Open-air [194] 

138. 
CM 

Multispectral terrestrial mobile and autonomous 

aerial mobile mechatronic systems, and GIS 
Conceptual Open-air [195] 

139. Edge and cloud computing Prototype Open-air [196] 

140. Sensors, actuators, Arduino, and Raspberry Pi Prototype Any farm [197] 

4.10. Digital twins in agriculture 

Digital twin (DT) is a dynamic virtual replica of a real-life (physical) object of which it mirrors its 

behaviors and states over multiple stages of object‘s lifecycle by using real-world data, simulation, and machine 

learning models, combined with data analytics to enable understanding, learning, and reasoning[198]. A 

complete description of the DT concept for any physical system requires consolidation and formalization of 

various characteristics, including the physical and virtual entities, the physical and virtual environments, the 

metrology, and realization modules that perform the physical to virtual and the virtual to physical connection or 

twinning, the twinning and twinning rate, and the physical and virtual processes [199]. The schematic showing 

the mapping of these characteristics is shown in Fig.16. The DT concept has gained prominence due to the 

advances in the technologies such as the Internet of Things, big data, wireless sensor networks, and cloud 

computing. This is because these technologies allow real-time monitoring of physical twins at high spatial 

resolutions through both miniature devices and remote sensing that produce ever-increasing data streams [21]. 

 
Fig. 16. Schematic of a digital twinning process, (adapted)[199]. 

The concept of DT in agricultural applications is rather immature as compared to other disciplines with its 

first references occurred in 2017; hence its added value has not yet been discussed extensively [21]. This is 
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because framing is a highly complex and dynamic domain because of its dependence on natural conditions 

(climate, soil, humidity) and presence of living physical twins (plants and animals) and non-living physical 

twins (indoor farm buildings, grow beds, outdoor agricultural fields, agricultural machinery). The non-living 

physical twins interact directly or indirectly with plants and animals (living physical twins), thereby introducing 

more challenges for DT in agriculture. Whereas in other domains such as manufacturing DTs are mostly 

concerned with non-living physical twins. Table 13 summarises the agricultural DTs developed in the last 10 

years. 

Table 13. Digital twins in agriculture 

Use case No. 
Service 

category 
Physical twin Tools and techniques used Maturity level Farm type Citation 

141. WEM 
Aquaponics 
system and 

building 

IoT sensor system, and 

MQQT broker 
Prototype Aquaponics  [200] 

142. CM 
Agricultural 

product 
Sensor, network, and 
computational units 

Prototype Open-air [201] 

143. 

FM 

Agricultural 
machinery 

ROS platform, 

Gazebo 3D and Open Street 

Maps 

Prototype Open-air [202] 

144. Farmland 
Sensor, network, and 

computational units 
Prototype Open-air [203] 

145. 
Agricultural 

farm/landscape 
Sensors, and PLCs Conceptual Open-air [204] 

146. 
Agricultural 

building 

Sensors, GUI, and control 

centre  
Prototype 

Greenhouse 

(soil-based) 
[205] 

147. 

PDM 

Crops (plants)/ 
Trees 

Mobile application and 
computational unit 

Deployed 
 

Open-air 
 

[206] 

 

 

148. 
Trees planted on 

orchard 

IoT sensors, network, and 

computational units 
Prototype Open-air [207] 

The analysis shows that most studies have focused on open-air farming systems. Only one study is found 

that has proposed DT for soil-based vertical farming system and one study that implemented DT for soilless 

farming system (aquaponics). This might be because the design and management of modern farming systems 

are challenging. Moreover, most DTs are in the research phase with no commercial deployment at the moment. 

The reported benefits of the DT applications in agriculture are cost reductions, catastrophe prevention, clearer 

decision making, and efficient management operations, which can be applied to several agricultural subfields 

like plant and animal breeding, aquaponics, vertical farming, cropping systems, and livestock farming.  While 

DT technology has great potential, achieving the synchronization between the physical entity and its digital 

counterpart is challenging. The complexity of this process is further amplified in agricultural systems due to the 

idiosyncrasies of living physical twins. Hence, implementation of agricultural DT should start with micro-farms, 

which can then be gradually enhanced to an intelligent and autonomous version by incorporating more 

components.  

5. Roadblocks in digitization of agriculture industry 

This section provides an answer to RQ3 by listing a series of interconnected roadblocks hampering a larger 

adoption of digital technologies in the agriculture sector. After analysing 148 articles, 21 roadblocks are 

identified which can be categorized at technical and socio-economic levels.  

5.1. Technical roadblocks 

 Interoperability: data is considered a cornerstone for the success of smart systems. Agricultural data 

usually comes from multiple heterogeneous sources such as thousands of individual farmlands, animal 

factories, and enterprise applications. This data can have diverse formats, making data integration 

complex. Hence, data interoperability is essential to enhance the value of this massively dispersed data 

after systematic data collection, storage, processing, and knowledge mining [208]. Likewise, for 

establishing effective communication between heterogeneous devices, they need to be interconnected and 

interoperable. With cross-technology communication, interoperability of the system can be improved 

[209]. 

 Standardization: to fully exploit the digital technologies for smart farming applications, standardization of 

the devices is essential. Output differences can occur because of misinterpretation and alterations from 

time to time. With standardization, the interoperability issues of the devices, applications, and systems can 

also be resolved [25]. 

 Data quality: to produce meaningful results, data quality is also crucial along with data security, storage, 

and openness. The lack of decentralized data management systems is another roadblock hindering the 
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adoption of smart farming practices [9]. This issue decreases the willingness of multiple actors to share 

agriculture data.  

 Hardware implementation: the deployment of a smart agricultural setup in large-scale open fields is 

extremely challenging. This is because all the hardware consisting of IoT devices, wireless sensor 

networks, sensor nodes, machinery, and equipment directly exposed to harsh environmental conditions 

such as heavy rainfall, high/low-temperature levels, extreme humidity, strong wind speeds and many 

other possible dangers which can destroy electronic circuits or disrupt their normal functionality [210]. A 

possible solution is to build an adequate casing for all the costly devices that is robust and durable enough 

to endure real field conditions [211].  

 Adequate power sources: typically, the wireless devices deployed at farms consistently operate for a long 

time and have limited battery life. A suitable energy saving scheme is necessary because, in case of any 

failure, instant battery replacement is complicated, especially in open-air farms where devices are 

strategically placed with minimum access [210]. The possible solutions to optimize energy consumption 

are usage of low power sensors and, proper management of communication [24,212]. Wireless power 

transfer and self-supporting wireless system are other promising solutions to eliminate the need for battery 

replacement by recharging the batteries through electromagnetic waves. However, long-distance wireless 

charging is needed in most agricultural applications[9]. Ambient energy harvesting from rivers, fluid 

flow, movement of vehicles and, ground surface using sensor nodes offers another viable solution, but the 

converted electrical energy is limited at present – posing the need to improve power conversion efficiency 

[213].  

 Reliability: The reliability of devices, as well as corresponding software applications, is crucial. This is 

because IoT devices need to gather and transfer the data based on which decisions are made using several 

software packages. Unreliable sensing, processing, and transmission can cause false monitoring data 

reports, long delays, and even data loss – eventually impacting the performance of agricultural system 

[25]. 

 Adaptability: agricultural environments are complex, dynamic, and rapidly changing. Hence, when 

designing a system, it is pertinent for the devices and applications to proactively adapt with the other 

entities under uncertain and dynamic factors - offering the needed performance [214].  

 Robust wireless architectures: wireless networks and communication technologies offer several benefits 

in terms of low cost, wide-area coverage, adequate networking flexibility, and high scalability. But 

dynamic agriculture environments such as temperature variations, living objects‘ movements, and the 

presence of obstacles pose severe challenges to reliable wireless communication. For instance, 

fluctuations in the signal intensity occur due to the multipath propagation effects – causing unstable 

connectivity and inadequate data transmission[215]. These factors impact the performance of the 

agricultural system. Hence, there is a need for robust and fault-tolerant wireless architectures with 

appropriate location of sensor nodes, antenna height, network topology, and communication protocols that 

also require minimum maintenance [11].  

 Interference: another challenge is wireless interference and degradation of the quality of service because 

of the dense deployment of IoT devices and wireless sensor networks. These issues can be mitigated with 

efficient channel scheduling between heterogeneous sensing devices, cognitive radio-assisted WSNs, and 

emerging networking primitives such as concurrent transmission [216]. Since agriculture devices are 

distributed at indoor greenhouses, outdoor farmlands, underground areas, or even water areas, cross-

media communication between underground, underwater, and air is also required for the complete 

incorporation of smart technologies [217].  

 Security and privacy: the distributed nature of smart agricultural systems brings potential vulnerabilities 

to cyber-attacks such as eavesdropping, data integrity, denial-of-service attacks, or other types of 

disruptions that may risk privacy, integrity, and availability of the system [218]. Cyber-security is a major 

challenge that needs to be addressed within the context of smart farming, with diverse privacy-preserving 

mechanisms and federated learning approaches [130]. 

 Compatibility: to achieve the standards of fragmentation and scalability, the models or software 

applications developed should be flexible and run on any machine installed in the agricultural system 

[13]. 

 Resource optimization: farmers require a resource optimization process to estimate the optimal number of 

IoT devices and gateways, cloud storage size, and amount of transmitted data to improve farm 

profitability. Since farms have different sizes and need distinct types of sensors to measure different 

variables, resource optimization is challenging[219]. Secondly, most of the farm management systems do 

not offer run-time customization in relation to the distinct requirements of farmers. Hence, complex 

mathematical models and algorithms are required to estimate adequate resource allocation [75].  
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 Scalability: the number of devices, machinery, and sensors installed at farms is increasing gradually due 

to advancements in technologies. To support these entities, gateways, network applications, and back-end 

databases should be reliable and scalable [220].  

 Human-centered user interfaces: complex user interfaces of existing agricultural applications and devices 

are impeding smart farming practices. Most GUI is designed in a way that only experts can use to perform 

agricultural tasks. Improving the user interface by making it human-centered with multimodal feedback 

will allow a larger group of people to use it to perform different agricultural operations [96]. 

5.2. Socio-economic roadblocks 

 Gap between farmers and researchers: the participation of farmers is a key factor toward the success of 

the digitization of the agricultural industry. Farmers face a lot of problems during the agri-food production 

process, which smart technologies could fix, but agricultural experts are not usually aware of these issues 

[16]. Moreover, to devise an adequate smart solution, first, it is important to fully understand the nature of 

problems. Hence, it is essential to bridge the gap between farmers, agricultural professionals, and AI 

researchers.  

 Costs associated with smart systems: the costs associated with the adoption of smart technologies and 

systems are the major deterrent in the digitization of the agricultural sector.  These costs usually involve 

deployment, operating, and maintenance costs. The deployment costs of smart systems are usually very 

high as they involve;  i) hardware installation such as autonomous robots and drones, WSNs, gateways, 

and base station infrastructure, etc., to perform certain farm operations, and ii) hiring the skilled labour 

[221]. Likewise, to facilitate data processing, management of IoT devices and equipment, and knowledge 

exchange, subscription of centralized networks and software packages is required, which ultimately 

increases the operating costs [222]. Though sometimes service providers offer free subscription packages 

with restricted features, the amount of storage capacity is limited. To ensure the adequate operations of 

the smart system, occasional maintenance is required, which then also adds up to total costs. Other types 

of costs associated with smart systems deployment could be environmental, ethical, and social costs. To 

overcome cost related roadblocks,  initiatives focusing on cooperative farming are needed that provide; i) 

support services for better handling of costs and needed investments, and ii) hardware solutions to 

transform conventional equipment into smart farm-ready machinery to reduce high initial costs [222]. 

 Digital division: another factor that is slowing the digitization of the agricultural sector is the lack of 

knowledge of digital technologies and their applications. The majority of farmers have no idea about the 

significance of digital technologies, how to implement and use them, and which technology is suitable for 

their farm and meets their requirements[14]. Hence, it is essential to educate farmers about modern 

farming technologies and systems. Moreover, different strategies are needed to build tools using natural 

language that farmers with low education levels can easily understand [223]. 

 Return on investment: in agriculture, the profit margin is very important like other sectors. When it comes 

to the implementation of advanced technologies, farmers have concerns related to the time to recover the 

investment and to the difficulties in evaluating the advantages [12].  

 Trust building: unlike in other disciplines, building trust regarding the effectiveness of smart technologies 

in agriculture is difficult because many decisions affect systems that involve living and non-living 

entities, and consequences can be hard to reverse [16]. Additionally, insufficient proof of the impact of 

digital tools on-farm productivity further intensifies the current challenges.  

 Laws and regulations: different regions and countries have different legal frameworks which impact the 

implementation of digital technologies in the agriculture sector, particularly in monitoring and agri-food 

supply[70]. Likewise, regulations related to resource allocation (spectrum for wireless devices), data 

privacy, and security also vary from one country to another [70].  

 Connectivity infrastructure: most less-developed countries usually have insufficient connectivity 

infrastructure that limits access to advanced digital tools that would help to turn data from heterogenous 

sources into valuable and actionable insights [10]. 

6. Discussion  

This section discusses the main conclusions of RQ1, RQ2, and RQ3. In addition, added value, 

considerations, and future directions are also presented to ensure higher accuracy and great advancements in 

agricultural industry. 

6.1. RQ1, RQ2 and RQ3 

The present study tried to articulate the emerging digital technologies being implemented in agricultural 

industry to anticipate the future trajectories of agriculture 4.0. By looking at Tables 2-13 in section 4, it can be 

seen some technologies such as big data and analytics, wireless sensor networks, cyber-physical systems, and 
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digital twins are not significantly explored in agriculture. A reason for this gap could be that implementing 

advanced technologies with more complex operations can be expensive, at least in the early experimental phase 

of their adoption. Hence, the development of these technologies in agricultural industry should increase in the 

coming years. The results of SLR also show that IoT is significantly implemented in farms. This is due to the 

broad functionality of IoT such as in the monitoring, tracking and tracing, agriculture machinery, and precision 

agriculture [21]. It can be said that IoT is one of the main research objectives within the agriculture 4.0 

approaches. Nevertheless, only few studies have considered data security and reliability, scalability, and 

interoperability while developing an intelligent agricultural system.   

The research findings also demonstrated that most use cases are still in the prototype phase. The possible 

reason could be because most agricultural operations have to do with living subjects, like animals and plants or 

perishable products, and developing systems is harder than non-living human-made systems. Another reason 

might be that agriculture is a slow adopter of technology because of transdisciplinary nature of this field, and 

hence to develop intelligent systems, the agricultural community must become familiar will all the digital 

technologies. Lastly, variations in plant/crops‘ species, and growth conditions also make digitization of 

agricultural systems complex [188]. The SLR findings also show that most of the systems are developed for 

open-air soil-based farms contrary to indoor farms (soilless and soil-based). This is due to complex design and 

management of indoor farms particularly soilless farms where parameters and factors (pH, air temperature, 

humidity, etc.) to be controlled are diverse [5]. But with introduction of digital technologies and data-driven 

computer applications in indoor farms, a more robust control of the process can be achieved. Furthermore, it is 

also revealed from SLR that limited research is conducted in three ( soil management,  fruit detection and 

counting and crop quality management) out of nine different service categories mentioned in section 3. This 

corroborates that substantial research and development is needed in some areas to ensure successful digitization 

of agriculture industry in developed countries as well as in developing countries.   

The complexity of agriculture ecosystem presents a series of interconnected roadblocks that hinder the full 

integration of digital technologies for agriculture 4.0 realization. Hence, it is essential to identify potential 

roadblocks in order to come up with strategic solutions to overcome them. This study is an attempt to explore 

what these roadblocks are. Based on analysis, 21 roadblocks were identified and classified at technical and 

socio-economic levels. These roadblocks are listed in section 5, which suggests what needs to be done for 

digitization of agricultural industry on larger scale. But it is still not known, to what extent elimination or 

mitigation of these roadblocks assist in successful integration of digital technologies.  

6.2. Added value of agricultural digitization 

Based on analysis, several benefits that can motivate framers and other actors to support digitization of 

agricultural industry are identified and summarised below. The presented benefits have potential to maximise 

the farm‘s productivity and enhance product quality, but they should not be considered a panacea for challenges 

associated with smart agriculture [222].  

 Improved agility: digital technologies improve the agility of farm operations. Through real-time 

surveillance and forecast systems, farmers or agricultural experts can rapidly react to any potential 

fluctuations in environmental and water conditions to save crops [221]. 

 Green process: digital technologies make the farming process more environmentally friendly and climate-

resilient by significantly reducing the usage of in-field fuel, nitrogen fertilizers, pesticides, and herbicides 

[224]. 

 Resource use efficiency: digital platforms can improve resource use efficiency by enhancing the quantity 

and quality of agricultural output and limiting the usage of water, energy, fertilizers, and pesticides[3].  

 Time and cost savings: digital technologies enable significant time and cost savings by automating 

different operations, such as harvesting, sowing, or irrigation, controlling the application of fertilizers or 

pesticides, and scheduling the irrigation [225].  

 Asset management: digital technologies allow real-time surveillance of farm properties and equipment to 

prevent theft, expedite component replacement and perform routine maintenance [10]. 

 Product safety: digital technologies ensure adequate farm productivity and guarantee a safe and nutritious 

supply of agri-food products by preventing fraud related to adulteration, counterfeit, and artificial 

enhancement [218]. 

6.3. Considerations and future prospects  

The upcoming initiatives would result in significant improvements in the agricultural sector. But in order 

to make things sustainable for small and medium-scale growers, roadblocks mentioned in section 5 need to be 

addressed first. Awareness campaigns highlighting the significance of smart agriculture at every level of the 

agricultural value chain and promoting innovative ways (such as gamification) to encourage stakeholders to take 

on an active role in the digital revolution can mitigate some of the mentioned roadblocks [9]. Government level 
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initiatives, grants and endowments, public-private partnerships, the openness of data, and regional basis research 

work can also assist in coping with potential roadblocks. Lastly, a roadmap can be adopted while developing a 

smart agriculture system, starting from basic architecture with few components and simpler functionality, 

gradually adding components and functionality to develop a complex system with the full potential of 

digitization [21]. These considerations can pave the way for successful implementation of agriculture 4.0. 

The future prospects of digital technologies in smart agriculture involve using explainable artificial 

intelligence to monitor crop growth, estimate crop biomass, evaluate crop health, and control pests and diseases. 

Explainable AI fades away the traditional black-box concept of machine learning and enables understanding the 

reasons behind any specific decision [15]. Description of big data through common semantics and ontologies 

and the adoption of open standards have great potential to boost research and development towards smart 

farming . Similarly, to ensure enhanced connectivity and live streaming of crop data, 5G technology need to be 

extensively explored [6]. 5G technology will minimize internet costs and augment the overall user experience of 

farm management and food safety by performing accurate crop inspections remotely [226]. Furthermore, it will 

significantly bridge the gap between stakeholders by keeping them well informed on produce availability. 

Lastly, blockchain in combination with IoT and other technologies can be implemented to address the 

challenges related to data privacy and security [227].  

6.4. Transition to Agriculture 5.0 

 The industrial revolutions have always brought a breakthrough in the agricultural sector. As formally 

discussed in previous sections, agriculture 4.0 has great potential to counterbalance the growing food demands 

and prepare for future by reinforcing agricultural systems with WSN, IoT, AI, etc. While the realization of 

agriculture 4.0 is still underway, there is already a talk about agriculture 5.0. Agriculture 5.0 extends agriculture 

4.0 with inclusion of industry 5.0 principles to produce healthy and affordable food while ensuring to prevent 

degradation of the ecosystems on which life depends [228]. The European Commission formally called for the 

Fifth Industrial Revolution (industry 5.0) in 2021 after observing that industry 4.0 focuses less on the original 

principles of social fairness and sustainability but more on digitalization and AI-driven technologies for 

increasing the efficiency and flexibility [229]. Industry 5.0 complements and extends industry 4.0 concept to 

recognize the human-centricity, sustainability, and resilience [230]. It involves refining the collaborative 

interactions between humans and machines, reducing environmental impact through circular economy, and 

developing high degree of robustness in systems to achieve optimal balance between efficiency and 

productivity.  The enabling technologies of industry 5.0 are Cobots (collaborative robots), smart materials with 

embedded bio-inspired sensors, digital twins, AI, energy efficient and secure data management, renewable 

energy sources, etc. [229]. In agriculture 5.0 settings, farm‘s production efficiency and crop quality can be 

enhanced by assigning repetitive and monotonous tasks to the machines and the tasks which need critical 

thinking to the humans. For this purpose, similar to manufacturing sector cyber physical cognitive systems 

(CPCS) that observe/study the environment and take actions accordingly should be developed for agricultural 

sector.  This may include collaborative farm robots which will work in the fields and assist crop producers in 

tedious tasks such as seed sowing and harvesting etc. Likewise, digital twins in agriculture 5.0 can also offer 

significant value by identifying technical issues in agricultural systems and overcoming them at a faster speed, 

detecting  crop diseases, and making crop yield predictions at a higher accuracy rate. This shows that agriculture 

5.0 has potential to pave a way for climate smart, sustainable and resilient agriculture but as of now, it is in the 

developing phase.  

7. Conclusions  

Increased concerns about global food security have accelerated the need for next-generation industrial 

farms and intensive production methods in agriculture. At the forefront of this modern agricultural era, digital 

technologies offered by Industry 4.0 initiative are suggesting a myriad of creative solutions. The scientific 

community and researchers integrate disruptive technologies in conventional agriculture systems to increase 

crop yields, minimize costs, reduce wastes, and maintain process inputs. An SLR discussing the prevailing state 

of these technologies in the agriculture sector is presented in this study. After applying SLR protocol, 148 

articles were considered from the time frame of the year 2011 to 2021. Various research questions pertaining to 

i) current and continuing research trends, ii) functionality, maturity level, farm type and tools and techniques 

used, iii) primary roadblocks, and iv) added value of digital technologies; were put forward and answered. 

Several conclusions are drawn such as integration of big data and analytics, wireless sensor networks, cyber-

physical systems, and digital twins in agriculture is only in its infancy, and most use cases are in the prototype 

phase. Likewise, 21 roadblocks are identified and classified at technical and socioeconomic levels. To ensure 

the digitization of agricultural industry, these roadblocks must be  analyzed and overcome. The added value of 

digital technologies in agriculture industry are also identified and presented in the study. Overall, this study 
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contributes  to the research being carried around agriculture 4.0. The primary limitation of this review is 

twofold: firstly, only three online repositories are considered for literature search (Scopus, IEEE and Science 

Direct), and secondly additional keywords and synonyms might return more studies. In both scenarios, it is 

highly unlikely that the overall findings would change. For the future work, additional research databases and 

aspects can be considered to provide holistic overview of agricultural industry in terms of digitization. 

Moreover, studies targeting agriculture 5.0 in general will also be included. 
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