THE DIMENSION OF A CUT LOCUS ON A SMOOTH RIEMANNIAN MANIFOLD

JIN-ICHI ITOH* AND MINORU TANAKA

(Received April 9, 1997, revised September 12, 1997)

Abstract. In this note we prove that the Hausdorff dimension of a cut locus on a smooth Riemannian manifold is an integer.

It is very difficult to investigate the structure of a cut locus (cf. [1] for the definition) on a complete Riemannian manifold. The difficulty lies in the non-differentiability of a cut locus. This means that one cannot describe the structure of a cut locus in a smooth category. For example, it is not always triangulable (cf. [3]). In this note, the structure of a cut locus will be described in terms of the Hausdorff dimension (cf. [2], [9] for the definition of the Hausdorff dimension), that is, the aim of this note is to determine the Hausdorff dimension of the cut locus of a point on a complete, connected C^{∞} -Riemannian manifold. The cut locus on a 2-dimensional Riemannian manifold has been investigated in detail by many reseachers. Actually it is already known that the Hausdorff dimension of a cut locus on a smooth 2-dimensional Riemannian manifold is 0 or 1 (cf. [4], [5]). On the other hand, the Hausdorff dimension of a cut locus on a Riemannian manifold is not always an integer, if the order of differentiability of the Riemannian metric is low. In fact, for each integer $k \ge 2$, the first author, constructed in [6] an n(k)-dimensional sphere $S^{n(k)}$ with a C^k -Riemannian metric which admits a cut locus whose Hausdorff dimension is greater than 1, and less than 2 (cf. [5]). In this note we prove that the Hausdorff dimension of a cut locus on a C^{∞} -Riemannian manifold is an integer. More precisely, we prove the following theorem.

MAIN THEOREM. Let M be a complete, connected smooth Riemannian manifold of dimension n, and C_p the cut locus of a point p on M. Then for each cut point q of p, there exists a postive number δ_0 and a non-negative integer $k \le n-1$ such that for any positive $\delta \le \delta_0$, the Hausdorff dimension of $B(q, \delta) \cap C_p$ is k. Here $B(q, \delta)$ denotes the open ball centered at q with radius δ .

REMARK. The topological dimension is not greater than the Hausdorff dimension for a metric space. Since $C_p \cap B(q, \delta)$ contains a submanifold with the same dimension as the Hausdorff dimension of $C_p \cap B(q, \delta)$, both dimensions coincide.

^{*} Partially supported by the Grant-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan.

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C22; Secondary 28A78.

J. ITOH AND M. TANAKA

For some basic tools in Riemannian geometry refer to [1], [8].

Let *M* be a complete, connected, smooth (C^{∞}) Riemannian manifold of dimension *n* and let S_pM denote the unit sphere of all unit tangent vectors to *M* at *p*. For each $v \in S_pM$, let $\rho(v)$ denote the distance from *p* to the cut point of it along a unit speed geodesic $\gamma_v : [0, \infty) \to M$ emanating from *p* with $\gamma'_v(0) = v$. If there is no cut point of *p* along γ_v , define $\rho(v) = \infty$. Then it is well-known that the function $\rho : S_pM \to [0, \infty]$ is continuous. The cut locus of *p* will be denoted by C_p . For each $v \in S_pM$, let $\lambda(v)$ denote the distance function on the tangent space T_pM of *M* at *p* between the zero vector to its first tangent conjugate point along γ_v . If there is no conjugate point of *p* along γ_v , define $\lambda(v) = \infty$. It follows from the proof of the Morse index theorem (cf. [8]) that the function $\lambda : S_pM \to [0, \infty]$ is continuous. Note also that $\rho \leq \lambda$ on S_pM . We define two maps e_{λ} and e_{ρ} on $\{v \in S_pM \mid \lambda(v) < \infty\}$, $\{v \in S_pM \mid \rho(v) < \infty\}$ respectively by

$$e_{\lambda}(v) := \exp_{p}(\lambda(v)v), \quad e_{p}(v) := \exp_{p}(\rho(v)v),$$

where \exp_p denotes the exponential map on T_pM . If a cut point q of p is conjugate to p along some minimal geodesic joining p to q, is called a *conjugate cut point*. Otherwise q is called a *non-conjugate cut point*. If a cut point q of p is non-conjugate and if there exist exactly two minimal geodesics joining p to q, then the cut point q will be called a *normal cut point*. It follows from the implicit function theorem that the set of all normal cut points forms a smooth hypersurface of M. For each $v \in S_pM$ with $\lambda(v) < +\infty$, let N(v) denote the kernel of the map $(d \exp_p)_{\lambda(v)v}$ and denote its dimension by v(v), which is called the conjugate multiplicity of the conjugate point $e_{\lambda}(v)$ along γ_v . It follows from a property of Jacobi fields that N(v) can be identified with a linear subspace of the tangent space of S_pM at v. It follows from the implicit function theorem that if the function v is constant on an open sebset U in S_pM , then λ is smooth on U.

LEMMA 1. Suppose that v is constant on an open subset U in S_pM . If $\lambda(v_0) = \rho(v_0) < \infty$ at a point v_0 in U, then any vector of $N(v_0)$ is mapped to the zero vector by the differential de_{λ} of e_{λ} .

PROOF. Let w be any element of $N(v_0)$. Choose a smooth curve $v: (-1, 1) \rightarrow S_p M$ with $v(0) = v_0$, v'(0) = w such that $v'(t) \in N(v(t))$ for each $t \in (-1, 1)$. Suppose that $de_{\lambda}(w)$ is non-zero. Since we get

$$de_{\lambda}(v'(t)) = \gamma'_{v(t)}(\lambda(v(t)))(\lambda \circ v)'(t)$$
,

we may assume that $(\lambda \circ v)'(t)$ is negative on $[0, \delta]$ for some positive $\delta < 1$. The length $l(\delta)$ of the subarc $e_{\lambda} \circ v | [0, \delta]$ is

(1)
$$l(\delta) = \lambda(v_0) - \lambda(v(\delta)).$$

By the triangle inequality we have

(2)
$$l(\delta) + \lambda(v(\delta)) \ge d(p, e_{\lambda}(v_0)) = \rho(v_0) = \lambda(v_0).$$

572

573

The equation (1) implies that the equality holds in (2). This is impossible, because $\lambda(v(\delta)) \ge \rho(v(\delta))$. Therefore $de_{\lambda}(N(v_0)) = 0$.

If Q_p denotes the set of all conjugate cut points, then we have:

LEMMA 2. The Hausdorff dimension of Q_p is not greater than n-2.

PROOF. It follows from the Morse-Sard-Federer theorem [9] that the Hausdorff dimension of the set

$$\{\exp_{p}(w) \mid w \in T_{p}M, \operatorname{rank}(d\exp_{p})_{w} \leq n-2\}$$

is not greater than n-2. Thus the Hausdorff dimension of the set

$$\{e_p(v) \in Q_p \mid v \in S_p M, v(v) \ge 2\}$$

is not greater than n-2. Thus it sufficies to prove that the Hausdorff dimension of the set $A_1 := \{e_p(v) \in Q_p \mid v(v) = 1\}$ is not greater than n-2. By the proof of the Morse index theorem (cf. [8]), the function v is locally constant around a neighborhood of each $v \in A_1$. Thus λ is smooth around each $v \in S_pM$ with $v \in A_1$. It follows from Lemma 1 that A_1 is a subset of

$$\{e_{\lambda}(v) \mid v \in S_{p}M, v(v) = 1, \dim de_{\lambda}(T_{v}S_{p}M) \leq n-2\}$$

Therefore by the Morse-Sard-Federer theorem, the Hausdorff dimension of A_1 is not greater than n-2.

If L_p denotes the set of non-conjugate cut points which are not normal, then we have:

LEMMA 3. The Hausdorff dimension of L_p is not greater than n-2. Thus the Hausdorff dimension of the cut locus of p is not greater than n-1.

PROOF. Let q be any element of L_p . Let v_1, \ldots, v_k be all the elements of $e_p^{-1}(q)$. It follows from the implicit function theorem that for each pair of two vectors v_i, v_j (i < j) in $e_p^{-1}(q)$ there exist hypersurfaces W_i , W_j , $H_{i,j}$ containing $\rho(v_i)v_i$, $\rho(v_j)v_j$, q respectively such that for each $x \in H_{i,j}$ there exist vectors $w_i \in W_i$, $w_j \in W_j$ of the same length with $\exp_p w_i = \exp_p w_j = x$ (cf. [7]). Let v_i, v_j, v_k (i < j < k) be any distinct three vectors in $e_p^{-1}(q)$. Since the tangent spaces of $H_{i,j}$ and $H_{j,k}$ at q are distinct, we may assume that the intersection $H_{i,j,k} := H_{i,j} \cap H_{j,k}$ forms an (n-2)-dimensional submanifold containing q, by taking smaller hypersurfaces $H_{i,j}$, $H_{j,k}$. If we set $H_q = \bigcup_{i < j < k} H_{i,j,k}$, then any cut point of L_p sufficiently close to q is an element of H_q . Moreover, the Hausdorff dimension of H_q is n-2. Therefore for each point $q \in L_p$ we can choose a subset $H_q (\ni q)$ of Hausdorff dimension n-2 such that $L_p \cap H_q$ is relatively open in L_p . Since M satisfies the second countability axiom, L_p is covered by at most a countable number of H_{q_i} , $q_i \in L_p$. Thus implies that the Hausdorff dimension of L_p is at most n-2. As was observed above, $C_p \setminus (L_p \cup Q_p)$ is a countable disjoint union of smooth

J. ITOH AND M. TANAKA

hypersurfaces of M. In particular its Hausdorff dimension is n-1. Thus the latter claim is clear from Lemma 2.

LEMMA 4. If $v_0 \in S_p M$ satisfies $\rho(v_0) < \lambda(v_0)$, then there exists a sequence of $\{v_j\}$ of elements in $S_p M$ convergent to v_0 such that $e_o(v_j)$ is a normal cut point for each j.

PROOF. Since the functions ρ , λ are continuous, there exists a relatively open neighborhood U around v_0 in S_pM on which $\rho < \lambda$. Since $d\exp_p$ has maximal rank at each $v \in U$, we have

$$\dim_{\mathrm{H}}(e_{\rho}|_{U})^{-1}(Q_{p}\cup L_{p}) = \dim_{\mathrm{H}}(Q_{p}\cup L_{p})$$

where \dim_{H} denotes the Hausdorff dimension. Thus by Lemmas 2 and 3,

(3)
$$\dim_{\mathrm{H}}(e_{\rho}|_{U})^{-1}(Q_{p}\cup L_{p}) \leq n-2$$

This inequality implies that the set $U \setminus e_{\rho}^{-1}(Q_p \cup L_p)$ is open and dense in U, since $\dim_{\mathrm{H}} U = n - 1$. Therefore if we get a sequence $\{v_i\}$ of points in $U \setminus e_{\rho}^{-1}(Q_p \cup L_p)$ convergent to v_0 , then the sequence $\{e_{\rho}(v_i)\}$ of normal cut points converges to q. \Box

REMARK. The inequality (3) is a generalization of Lemmas 2.1 and 3.1 in [10].

PROOF OF THE MAIN THEOREM. Let q be any cut point of p. Suppose that there exists a sequence $\{v_j\}$ of tangent vectors in S_pM with $\lim_{j\to\infty} e_{\rho}(v_j) = q$ such that $\rho(v_j) < \lambda(v_j)$ for each j. By Lemma 4 for any positive ε

$$\dim_{\mathbf{H}} B(q, \varepsilon) \cap C_{p} \ge n - 1 .$$

On the other hand, $\dim_{\mathrm{H}} C_p \leq n-1$. Thus $\dim_{\mathrm{H}} (B(q, \varepsilon) \cap C_p) = n-1$ for any positive ε . Suppose that the cut point q does not admit a sequence $\{v_j\}$ as above. Then there exists a neighborhood W around $e_p^{-1}(q)$ in S_pM such that $\rho(w) = \lambda(w)$ for any $w \in W$. For each $v \in e_p^{-1}(q)$, we define a positive integer k(v) by

$$k(v) := \lim_{w \to v} \inf v(w) \; .$$

Thus we may take a sufficiently small neighborhood U(v) ($\subset W$) around v in S_pM such that min $v|_{U(v)} = k(v)$. Since $e_p^{-1}(q)$ is compact, we may choose finitely many neighborhoods $U(v_1), \ldots, U(v_l)$ from $U(v), v \in e_p^{-1}(q)$, which cover $e_p^{-1}(q)$. Set $U_i := U(v_i), k_i := k(v_i)$ for simplicity. Without loss of generality we may assume that

$$k_1 = \min\{k_i \mid 1 \le i \le l\}$$
.

For each *i*, let

$$W_i := (v|_{U_i})^{-1}(k_1)$$
.

If W_i is not empty, i.e. $k_1 = k_i$, then it follows from the Morse index theorem that W_i is an open subset of U_i . Therefore λ is smooth on $\bigcup_{i=1}^{l} W_i$. Since $\lambda = \rho$ on $\bigcup_{i=1}^{l} U_i \subset W$, it follows from the Morse-Sard-Federer theorem and Lemma 1 that

574

$$\dim_{\mathrm{H}} e_{\rho} \left(\bigcup_{i=1}^{l} W_{i} \right) \leq n - (k_{1} + 1), \quad \dim_{\mathrm{H}} e_{\rho} \left(\bigcup_{i=1}^{l} U_{i} \setminus W_{i} \right) \leq n - (k_{1} + 1).$$

Therefore we get

(4)
$$\dim_{\mathrm{H}} e_{\rho} \left(\bigcup_{i=1}^{l} U_{i} \right) \leq n - (k_{1} + 1) .$$

Let δ_0 be a sufficiently small positive number satisfying

$$C_p \cap B(q, \delta_0) \subset e_\rho \left(\bigcup_{i=1}^l U_i \right).$$

By (4) we have

(5)
$$\dim_{\mathrm{H}} C_p \cap B(q, \delta_0) \le n - (k_1 + 1) .$$

Let $\delta \in (0, \delta_0]$ be fixed. Since v_1 is an element of the closure of W_1 , there exists an open subset $\tilde{W} \subset W_1$ such that $e_{\rho}(\tilde{W}) \subset C_p \cap B(q, \delta)$. By Theorem 3.3 in [11], $e_{\rho}(\tilde{W}) = e_{\lambda}(\tilde{W})$ is a submanifold of dimension $n - (k_1 + 1)$. Thus

(6)
$$\dim_{\mathrm{H}} C_p \cap B(q, \delta) \ge n - (k_1 + 1)$$

for any $\delta \in (0, \delta_0]$. Combining (5) and (6), we conclude the proof of the main theorem.

References

- J. CHEEGER AND D. EBIN, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975.
- [2] K. J. FALCONER, The geometry of fractal sets, Cambridge Univ. Press, 1985.
- [3] H. GLUCK AND D. SINGER, Scattering of geodesic fields I, Ann. of Math. 108 (1978), 347–372.
- [4] J. HEBDA, Metric structure of cut loci in surfaces and Ambrose's problem, J. Differential Geom. 40 (1994), 621–642.
- [5] J. ITOH, The length of cut locus in a surface and Ambrose's problem, J. Differential Geom. 43 (1996), 642–651.
- [6] J. ITOH, Riemannian metric with fractal cut locus, to appear.
- [7] V. OZOLS, Cut locus in Riemannian manifolds, Tôhoku Math. J. 26 (1974), 219-227.
- [8] J. MILNOR, Morth theory, Ann. of Math. Studies No. 51, Princeton Univ. Press, 1963.
- [9] F. MORGAN, Geometric measure theory, A beginner's guide, Academic Press 1988.
- [10] K. SHIOHAMA AND M. TANAKA, The length function of geodesic parallel circles, in "Progress in Differential Geometry" (K. Shiohama, ed.) Adv. Studies in Pure Math., Kinokuniya, Tokyo 22 (1993), 299–308.
- [11] F. W. WARNER, The conjugate locus of a Riemannian manifold, Amer. J. Math. 87 (1965), 575-604.

FACULTY OF EDUCATION	Department of Mathematics
Kumamoto University	Tokai University
Кимамото 860	Hiratsuka 259–1292
Japan	JAPAN
E-mail address: j-itoh@gpo.kumamoto-u.ac.jp	E-mail address: m-tanaka@sm.u-tokai.ac.jp